MODULE traqsr !!====================================================================== !! *** MODULE traqsr *** !! Ocean physics: solar radiation penetration in the top ocean levels !!====================================================================== !! History : OPA ! 1990-10 (B. Blanke) Original code !! 7.0 ! 1991-11 (G. Madec) !! ! 1996-01 (G. Madec) s-coordinates !! NEMO 1.0 ! 2002-06 (G. Madec) F90: Free form and module !! - ! 2005-11 (G. Madec) zco, zps, sco coordinate !! 3.2 ! 2009-04 (G. Madec & NEMO team) !! 3.6 ! 2012-05 (C. Rousset) store attenuation coef for use in ice model !! 3.6 ! 2015-12 (O. Aumont, J. Jouanno, C. Ethe) use vertical profile of chlorophyll !! 3.7 ! 2015-11 (G. Madec, A. Coward) remove optimisation for fix volume !! 4.0 ! 2020-11 (A. Coward) optimisation !! 4.5 ! 2021-03 (G. Madec) further optimisation + adaptation for RK3 !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! tra_qsr : temperature trend due to the penetration of solar radiation !! qsr_RGBc : IR + RGB light penetration with Chlorophyll data case !! qsr_RGB : IR + RGB light penetration with constant Chlorophyll case !! qsr_2BD : 2 bands (InfraRed + Visible light) case !! qsr_ext_lev : level of extinction for each bands !! tra_qsr_init : initialization of the qsr penetration !!---------------------------------------------------------------------- USE oce ! ocean dynamics and active tracers USE phycst ! physical constants USE dom_oce ! ocean space and time domain USE domtile USE sbc_oce ! surface boundary condition: ocean USE trc_oce ! share SMS/Ocean variables USE trd_oce ! trends: ocean variables USE trdtra ! trends manager: tracers ! USE in_out_manager ! I/O manager USE prtctl ! Print control USE iom ! I/O library USE fldread ! read input fields USE restart ! ocean restart USE lib_mpp ! MPP library USE lbclnk ! ocean lateral boundary conditions (or mpp link) USE timing ! Timing IMPLICIT NONE PRIVATE PUBLIC tra_qsr ! routine called by step.F90 (ln_traqsr=T) PUBLIC tra_qsr_init ! routine called by nemogcm.F90 ! !!* Namelist namtra_qsr: penetrative solar radiation LOGICAL , PUBLIC :: ln_traqsr !: light absorption (qsr) flag LOGICAL , PUBLIC :: ln_qsr_rgb !: Red-Green-Blue light absorption flag LOGICAL , PUBLIC :: ln_qsr_2bd !: 2 band light absorption flag LOGICAL , PUBLIC :: ln_qsr_bio !: bio-model light absorption flag INTEGER , PUBLIC :: nn_chldta !: use Chlorophyll data (=1) or not (=0) REAL(wp), PUBLIC :: rn_abs !: fraction absorbed in the very near surface (RGB & 2 bands) REAL(wp), PUBLIC :: rn_si0 !: very near surface depth of extinction (RGB & 2 bands) REAL(wp), PUBLIC :: rn_si1 !: deepest depth of extinction (water type I) (2 bands) ! INTEGER, PARAMETER :: np_RGB = 1 ! R-G-B light penetration with constant Chlorophyll INTEGER, PARAMETER :: np_RGBc = 2 ! R-G-B light penetration with Chlorophyll data INTEGER, PARAMETER :: np_2BD = 3 ! 2 bands light penetration INTEGER, PARAMETER :: np_BIO = 4 ! bio-model light penetration ! INTEGER :: nqsr ! user choice of the type of light penetration INTEGER :: nc_rgb ! RGB with cst Chlorophyll: index associated with the chosen Chl value ! ! ! extinction level INTEGER :: nk0 !: IR (depth larger ~12 m) INTEGER :: nkV !: Visible light (depth larger than ~840 m) INTEGER :: nkR, nkG, nkB !: RGB (depth larger than ~100 m, ~470 m, ~1700 m, resp.) ! INTEGER, PUBLIC :: nksr !: =nkV, i.e. maximum level of light extinction (used in traatf(_qco).F90) ! ! ! inverse of attenuation length REAL(wp) :: r1_si0 ! all schemes : infrared = 1/rn_si0 REAL(wp) :: r1_si1 ! 2 band : mean RGB = 1/rn_si1 REAL(wp) :: r1_LR, r1_LG, r1_LB ! RGB with constant Chl (np_RGB) ! REAL(wp) , PUBLIC, DIMENSION(3,61) :: rkrgb ! tabulated attenuation coefficients for RGB absorption TYPE(FLD), ALLOCATABLE, DIMENSION(:) :: sf_chl ! structure of input Chl (file informations, fields read) !! * Substitutions # include "do_loop_substitute.h90" # include "domzgr_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OCE 4.0 , NEMO Consortium (2018) !! $Id: traqsr.F90 15157 2021-07-29 08:28:32Z techene $ !! Software governed by the CeCILL license (see ./LICENSE) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE tra_qsr( kt, Kmm, pts, Krhs ) !!---------------------------------------------------------------------- !! *** ROUTINE tra_qsr *** !! !! ** Purpose : Compute the temperature trend due to the solar radiation !! penetration and add it to the general temperature trend. !! !! ** Method : The profile of the solar radiation within the ocean is defined !! through 2 wavebands (rn_si0,rn_si1) or 3 wavebands (RGB) or computed by !! the biogeochemical model !! The computation is only done down to the level where !! I(k) < 1.e-15 W/m2 (i.e. over the top nk levels) . !! !! ** Action : - update ts(jp_tem) with the penetrative solar radiation trend !! - send trend for further diagnostics (l_trdtra=T) !!---------------------------------------------------------------------- INTEGER, INTENT(in ) :: kt, Kmm, Krhs ! ocean time-step and time-level indices REAL(wp), DIMENSION(jpi,jpj,jpk,jpts,jpt), INTENT(inout) :: pts ! active tracers and RHS of tracer equation ! INTEGER :: ji, jj, jk ! dummy loop indices REAL(wp) :: z1_2, ze3t ! local scalars REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: ztrdt, zetot !!---------------------------------------------------------------------- ! IF( ln_timing ) CALL timing_start('tra_qsr') ! IF( .NOT. l_istiled .OR. ntile == 1 ) THEN ! Do only on the first tile IF( kt == nit000 ) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'tra_qsr : penetration of the surface solar radiation' IF(lwp) WRITE(numout,*) '~~~~~~~' ENDIF ENDIF ! IF( l_trdtra ) THEN ! trends diagnostic: save the input temperature trend ALLOCATE( ztrdt(jpi,jpj,jpk) ) ztrdt(:,:,:) = pts(:,:,:,jp_tem,Krhs) ENDIF ! #if ! defined key_RK3 ! ! MLF only : heat content trend due to Qsr flux (qsr_hc) ! ! !-----------------------------------! ! ! before qsr induced heat content ! ! !-----------------------------------! IF( kt == nit000 ) THEN !== 1st time step ==! IF( ln_rstart .AND. .NOT.l_1st_euler ) THEN ! read in restart z1_2 = 0.5_wp IF( .NOT. l_istiled .OR. ntile == 1 ) THEN ! Do only on the first tile IF(lwp) WRITE(numout,*) ' nit000-1 qsr tracer content forcing field read in the restart file' CALL iom_get( numror, jpdom_auto, 'qsr_hc_b', qsr_hc_b ) ! before heat content trend due to Qsr flux ENDIF ELSE ! No restart or Euler forward at 1st time step z1_2 = 1._wp DO_3D_OVR( 0, 0, 0, 0, 1, jpk ) qsr_hc_b(ji,jj,jk) = 0._wp END_3D ENDIF ELSE !== Swap of qsr heat content ==! z1_2 = 0.5_wp DO_3D_OVR( 0, 0, 0, 0, 1, jpk ) qsr_hc_b(ji,jj,jk) = qsr_hc(ji,jj,jk) END_3D ENDIF #endif ! !----------------------------! SELECT CASE( nqsr ) ! qsr induced heat content ! ! !----------------------------! ! CASE( np_RGBc ) ; CALL qsr_RGBc( kt, Kmm, pts, Krhs ) !== R-G-B fluxes using chlorophyll data ==! with Morel &Berthon (1989) vertical profile ! CASE( np_RGB ) ; CALL qsr_RGB ( kt, Kmm, pts, Krhs ) !== R-G-B fluxes with constant chlorophyll ==! ! CASE( np_2BD ) ; CALL qsr_2BD ( Kmm, pts, Krhs ) !== 2-bands fluxes ==! ! CASE( np_BIO ) !== bio-model fluxes ==! DO_3D( 0, 0, 0, 0, 1, nkV ) #if defined key_RK3 ! !- RK3 : temperature trend at jk t-level ze3t = e3t(ji,jj,jk,Kmm) pts(ji,jj,jk,jp_tem,Krhs) = pts(ji,jj,jk,jp_tem,Krhs) + r1_rho0_rcp * ( etot3(ji,jj,jk) - etot3(ji,jj,jk+1) ) / ze3t #else ! !- MLF : heat content trend due to Qsr flux (qsr_hc) qsr_hc(ji,jj,jk) = r1_rho0_rcp * ( etot3(ji,jj,jk) - etot3(ji,jj,jk+1) ) #endif END_3D ! !- sea-ice : store the 1st level attenuation coefficient WHERE( etot3(A2D(0),1) /= 0._wp ) ; fraqsr_1lev(A2D(0)) = 1._wp - etot3(A2D(0),2) / etot3(A2D(0),1) ELSEWHERE ; fraqsr_1lev(A2D(0)) = 1._wp END WHERE ! END SELECT ! #if defined key_RK3 ! ! RK3 : diagnostics/output IF( l_trdtra .OR. iom_use('qsr3d') ) THEN ! qsr diagnostics ztrdt(:,:,:) = pts(:,:,:,jp_tem,Krhs) - ztrdt(:,:,:) ! ! qsr tracers trends saved for diagnostics IF( l_trdtra ) CALL trd_tra( kt, Kmm, Krhs, 'TRA', jp_tem, jptra_qsr, ztrdt ) IF( iom_use('qsr3d') ) THEN ! qsr distribution DO jk = nkV, 1, -1 ztrdt(:,:,jk) = ztrdt(:,:,jk+1) + qsr_hc(:,:,jk) * rho0_rcp END DO CALL iom_put( 'qsr3d', ztrdt ) ! 3D distribution of shortwave Radiation ENDIF DEALLOCATE( ztrdt ) ENDIF #else ! ! MLF : add the temperature trend DO_3D( 0, 0, 0, 0, 1, nksr ) pts(ji,jj,jk,jp_tem,Krhs) = pts(ji,jj,jk,jp_tem,Krhs) & & + z1_2 * ( qsr_hc_b(ji,jj,jk) + qsr_hc(ji,jj,jk) ) & & / e3t(ji,jj,jk,Kmm) END_3D ! ! sea-ice: store the 1st ocean level attenuation coefficient DO_2D( 0, 0, 0, 0 ) IF( qsr(ji,jj) /= 0._wp ) THEN ; fraqsr_1lev(ji,jj) = qsr_hc(ji,jj,1) / ( r1_rho0_rcp * qsr(ji,jj) ) ELSE ; fraqsr_1lev(ji,jj) = 1._wp ENDIF END_2D ! IF( iom_use('qsr3d') ) THEN ! output the shortwave Radiation distribution ALLOCATE( zetot(A2D(nn_hls),jpk) ) zetot(:,:,nksr+1:jpk) = 0._wp ! below ~400m set to zero DO_3DS(0, 0, 0, 0, nksr, 1, -1) zetot(ji,jj,jk) = zetot(ji,jj,jk+1) + qsr_hc(ji,jj,jk) * rho0_rcp END_3D CALL iom_put( 'qsr3d', zetot ) ! 3D distribution of shortwave Radiation DEALLOCATE( zetot ) ENDIF ! IF( l_trdtra ) THEN ! qsr tracers trends saved for diagnostics ztrdt(:,:,:) = pts(:,:,:,jp_tem,Krhs) - ztrdt(:,:,:) CALL trd_tra( kt, Kmm, Krhs, 'TRA', jp_tem, jptra_qsr, ztrdt ) DEALLOCATE( ztrdt ) ENDIF #endif ! IF( .NOT. l_istiled .OR. ntile == nijtile ) THEN ! Do only on the last tile IF( lrst_oce ) THEN ! write in the ocean restart file CALL iom_rstput( kt, nitrst, numrow, 'qsr_hc_b' , qsr_hc ) CALL iom_rstput( kt, nitrst, numrow, 'fraqsr_1lev', fraqsr_1lev ) ENDIF ENDIF ! ! ! print mean trends (used for debugging) IF(sn_cfctl%l_prtctl) CALL prt_ctl( tab3d_1=pts(:,:,:,jp_tem,Krhs), clinfo1=' qsr - Ta: ', mask1=tmask, clinfo3='tra-ta' ) ! IF( ln_timing ) CALL timing_stop('tra_qsr') ! END SUBROUTINE tra_qsr SUBROUTINE qsr_RGBc( kt, Kmm, pts, Krhs ) !!---------------------------------------------------------------------- !! *** ROUTINE qsr_RGBc *** !! !! ** Purpose : Red-Green-Blue solar radiation using chlorophyll data !! !! ** Method : The profile of the solar radiation within the ocean is defined !! through 2 wavebands (rn_si0,rn_si1) or 3 wavebands (RGB) and a ratio rn_abs !! Considering the 2 wavebands case: !! I(k) = Qsr*( rn_abs*EXP(z(k)/rn_si0) + (1.-rn_abs)*EXP(z(k)/rn_si1) ) !! The temperature trend associated with the solar radiation penetration !! is given by : zta = 1/e3t dk[ I ] / (rho0*Cp) !! At the bottom, boudary condition for the radiation is no flux : !! all heat which has not been absorbed in the above levels is put !! in the last ocean level. !! The computation is only done down to the level where !! I(k) < 1.e-15 W/m2 (i.e. over the top nk levels) . !! !! ** Action : - update ta with the penetrative solar radiation trend !! - send trend for further diagnostics (l_trdtra=T) !! !! Reference : Lengaigne et al. 2007, Clim. Dyn., V28, 5, 503-516. !! Morel, A. et Berthon, JF, 1989, Limnol Oceanogr 34(8), 1545-1562 !!---------------------------------------------------------------------- INTEGER, INTENT(in ) :: kt, Kmm, Krhs ! ocean time-step and time-level indices REAL(wp), DIMENSION(jpi,jpj,jpk,jpts,jpt), INTENT(inout) :: pts ! active tracers and RHS of tracer equation !! INTEGER :: ji, jj, jk ! dummy loop indices INTEGER :: irgb ! local integer REAL(wp) :: zc1 , zc2 , zc3, zchl ! local scalars REAL(wp) :: zze0, zzeR, zzeG, zzeB, zzeT ! - - REAL(wp) :: zz0 , zz1 , ze3t ! - - REAL(wp) :: zCb, zCmax, zpsi, zpsimax, zrdpsi, zCze ! - - REAL(wp) :: zlogc, zlogze, zlogCtot, zlogCze ! - - REAL(wp), DIMENSION(A2D(0) ) :: ze0, zeR, zeG, zeB, zeT REAL(wp), DIMENSION(A2D(0),0:3) :: zc !!---------------------------------------------------------------------- ! ! ! !===========================================! ! !== R-G-B fluxes using chlorophyll data ==! with Morel &Berthon (1989) vertical profile ! !===================================****====! ! ! != Chlorophyll data =! ! IF( ntile == 0 .OR. ntile == 1 ) THEN ! Do only for the full domain IF( ln_tile ) CALL dom_tile( ntsi, ntsj, ntei, ntej, ktile = 0 ) ! Use full domain CALL fld_read( kt, 1, sf_chl ) ! Read Chl data and provides it at the current time step IF( ln_tile ) CALL dom_tile( ntsi, ntsj, ntei, ntej, ktile = 1 ) ! Revert to tile domain ENDIF ! DO_2D( 0, 0, 0, 0 ) ! pre-calculated expensive coefficient zlogc = LOG( MAX( 0.03_wp, MIN( sf_chl(1)%fnow(ji,jj,1) ,10._wp ) ) ) ! zlogc = log(zchl) with 0.03 <= Chl >= 10. zc1 = 0.113328685307 + 0.803 * zlogc ! zc1 : log(zCze) = log (1.12 * zchl**0.803) zc2 = 3.703768066608 + 0.459 * zlogc ! zc2 : log(zCtot) = log(40.6 * zchl**0.459) zc3 = 6.34247346942 - 0.746 * zc2 ! zc3 : log(zze) = log(568.2 * zCtot**(-0.746)) IF( zc3 > 4.62497281328 ) zc3 = 5.298317366548 - 0.293 * zc2 ! IF(log(zze)>log(102)) log(zze) = log(200*zCtot**(-0.293)) ! zc(ji,jj,0) = zlogc ! ze(0) = log(zchl) zc(ji,jj,1) = EXP( zc1 ) ! ze(1) = zCze zc(ji,jj,2) = 1._wp / ( 0.710 + zlogc * ( 0.159 + zlogc * 0.021 ) ) ! ze(2) = 1/zdelpsi zc(ji,jj,3) = EXP( - zc3 ) ! ze(3) = 1/zze END_2D ! ! != surface light =! ! zz0 = rn_abs ! Infrared absorption zz1 = ( 1._wp - rn_abs ) / 3._wp ! R-G-B equi-partition ! DO_2D( 0, 0, 0, 0 ) ! surface light ze0(ji,jj) = zz0 * qsr(ji,jj) ; zeR(ji,jj) = zz1 * qsr(ji,jj) ! IR ; Red zeG(ji,jj) = zz1 * qsr(ji,jj) ; zeB(ji,jj) = zz1 * qsr(ji,jj) ! Green ; Blue zeT(ji,jj) = qsr(ji,jj) ! Total END_2D ! ! != interior light =! ! DO jk = 1, nk0 !* near surface layers *! (< ~12 meters : IR + RGB ) DO_2D( 0, 0, 0, 0 ) ! !- inverse of RGB attenuation lengths zlogc = zc(ji,jj,0) zCb = 0.768 + zlogc * ( 0.087 - zlogc * ( 0.179 + zlogc * 0.025 ) ) zCmax = 0.299 - zlogc * ( 0.289 - zlogc * 0.579 ) zpsimax = 0.6 - zlogc * ( 0.640 - zlogc * ( 0.021 + zlogc * 0.115 ) ) ! zdelpsi = 0.710 + zlogc * ( 0.159 + zlogc * 0.021 ) zCze = zc(ji,jj,1) zrdpsi = zc(ji,jj,2) ! 1/zdelpsi !!st05 zpsi = zc(ji,jj,3) * gdepw(ji,jj,jk,Kmm) ! gdepw/zze zpsi = zc(ji,jj,3) * gdepw(ji,jj,jk+1,Kmm) ! gdepw/zze ! ! make sure zchl value is such that: 0.03 < zchl < 10. zchl = MAX( 0.03_wp , MIN( zCze * ( zCb + zCmax * EXP( -( (zpsi - zpsimax) * zrdpsi )**2 ) ) , 10._wp ) ) ! ! Convert chlorophyll value to attenuation coefficient irgb = NINT( 41 + 20.*LOG10(zchl) + 1.e-15 ) ! look-up table index ! Red ! Green ! Blue r1_LR = rkrgb(3,irgb) ; r1_LG = rkrgb(2,irgb) ; r1_LB = rkrgb(1,irgb) ! ! !- fluxes at jk+1 w-level ze3t = e3t(ji,jj,jk,Kmm) zze0 = ze0(ji,jj) * EXP( - ze3t*r1_si0 ) ; zzeR = zeR(ji,jj) * EXP( - ze3t*r1_LR ) ! IR ; Red at jk+1 w-level zzeG = zeG(ji,jj) * EXP( - ze3t*r1_LG ) ; zzeB = zeB(ji,jj) * EXP( - ze3t*r1_LB ) ! Green ; Blue - - zzeT = ( zze0 + zzeB + zzeG + zzeR ) * wmask(ji,jj,jk+1) ! Total - - !!st01 zzeT = ( zze0 + zzeR + zzeG + zzeB ) * wmask(ji,jj,jk+1) ! Total - - ! #if defined key_RK3 ! !- RK3 : temperature trend at jk t-level pts(ji,jj,jk,jp_tem,Krhs) = pts(ji,jj,jk,jp_tem,Krhs) + r1_rho0_rcp * ( zeT(ji,jj) - zzeT ) / ze3t #else ! !- MLF : heat content trend due to Qsr flux (qsr_hc) qsr_hc(ji,jj,jk) = r1_rho0_rcp * ( zeT(ji,jj) - zzeT ) #endif ze0(ji,jj) = zze0 ; zeR(ji,jj) = zzeR ! IR ; Red store at jk+1 w-level zeG(ji,jj) = zzeG ; zeB(ji,jj) = zzeB ! Green ; Blue - - - zeT(ji,jj) = zzeT ! total - - - END_2D ! END DO ! DO jk = nk0+1, nkR !* down to Red extinction *! (< ~71 meters : RGB , IR removed from calculation) DO_2D( 0, 0, 0, 0 ) ! !- inverse of RGB attenuation lengths zlogc = zc(ji,jj,0) zCb = 0.768 + zlogc * ( 0.087 - zlogc * ( 0.179 + zlogc * 0.025 ) ) zCmax = 0.299 - zlogc * ( 0.289 - zlogc * 0.579 ) zpsimax = 0.6 - zlogc * ( 0.640 - zlogc * ( 0.021 + zlogc * 0.115 ) ) ! zdelpsi = 0.710 + zlogc * ( 0.159 + zlogc * 0.021 ) zCze = zc(ji,jj,1) zrdpsi = zc(ji,jj,2) ! 1/zdelpsi zpsi = zc(ji,jj,3) * gdepw(ji,jj,jk+1,Kmm) ! gdepw/zze !!st05 zpsi = zc(ji,jj,3) * gdepw(ji,jj,jk,Kmm) ! gdepw/zze ! ! make sure zchl value is such that: 0.03 < zchl < 10. zchl = MAX( 0.03_wp , MIN( zCze * ( zCb + zCmax * EXP( -( (zpsi - zpsimax) * zrdpsi )**2 ) ) , 10._wp ) ) ! ! Convert chlorophyll value to attenuation coefficient irgb = NINT( 41 + 20.*LOG10(zchl) + 1.e-15 ) ! look-up table index ! Red ! Green ! Blue r1_LR = rkrgb(3,irgb) ; r1_LG = rkrgb(2,irgb) ; r1_LB = rkrgb(1,irgb) ! ! !- fluxes at jk+1 w-level ze3t = e3t(ji,jj,jk,Kmm) zzeR = zeR(ji,jj) * EXP( - ze3t*r1_LR ) ! Red at jk+1 w-level zzeG = zeG(ji,jj) * EXP( - ze3t*r1_LG ) ; zzeB = zeB(ji,jj) * EXP( - ze3t*r1_LB ) ! Green ; Blue - - zzeT = ( zzeR + zzeG + zzeB ) * wmask(ji,jj,jk+1) ! Total - - ! #if defined key_RK3 ! !- RK3 : temperature trend at jk t-level pts(ji,jj,jk,jp_tem,Krhs) = pts(ji,jj,jk,jp_tem,Krhs) + r1_rho0_rcp * ( zeT(ji,jj) - zzeT ) / ze3t #else ! !- MLF : heat content trend due to Qsr flux (qsr_hc) qsr_hc(ji,jj,jk) = r1_rho0_rcp * ( zeT(ji,jj) - zzeT ) #endif zeR(ji,jj) = zzeR ! Red store at jk+1 w-level zeG(ji,jj) = zzeG ; zeB(ji,jj) = zzeB ! Green ; Blue - - - zeT(ji,jj) = zzeT ! total - - - END_2D END DO ! DO jk = nkR+1, nkG !* down to Green extinction *! (< ~350 m : GB , IR+R removed from calculation) DO_2D( 0, 0, 0, 0 ) ! !- inverse of RGB attenuation lengths zlogc = zc(ji,jj,0) zCb = 0.768 + zlogc * ( 0.087 - zlogc * ( 0.179 + zlogc * 0.025 ) ) zCmax = 0.299 - zlogc * ( 0.289 - zlogc * 0.579 ) zpsimax = 0.6 - zlogc * ( 0.640 - zlogc * ( 0.021 + zlogc * 0.115 ) ) ! zdelpsi = 0.710 + zlogc * ( 0.159 + zlogc * 0.021 ) zCze = zc(ji,jj,1) zrdpsi = zc(ji,jj,2) ! 1/zdelpsi zpsi = zc(ji,jj,3) * gdepw(ji,jj,jk+1,Kmm) ! gdepw/zze !!st05 zpsi = zc(ji,jj,3) * gdepw(ji,jj,jk,Kmm) ! gdepw/zze ! ! make sure zchl value is such that: 0.03 < zchl < 10. zchl = MAX( 0.03_wp , MIN( zCze * ( zCb + zCmax * EXP( -( (zpsi - zpsimax) * zrdpsi )**2 ) ) , 10._wp ) ) ! ! Convert chlorophyll value to attenuation coefficient irgb = NINT( 41 + 20.*LOG10(zchl) + 1.e-15 ) ! look-up table index ! Green ! Blue r1_LG = rkrgb(2,irgb) ; r1_LB = rkrgb(1,irgb) ! ! !- fluxes at jk+1 w-level ze3t = e3t(ji,jj,jk,Kmm) zzeG = zeG(ji,jj) * EXP( - ze3t * r1_LG ) ; zzeB = zeB(ji,jj) * EXP( - ze3t * r1_LB ) ! Green ; Blue zzeT = ( zzeG + zzeB ) * wmask(ji,jj,jk+1) ! Total - - #if defined key_RK3 ! !- RK3 : temperature trend at jk t-level pts(ji,jj,jk,jp_tem,Krhs) = pts(ji,jj,jk,jp_tem,Krhs) + r1_rho0_rcp * ( zeT(ji,jj) - zzeT ) / ze3t #else ! !- MLF : heat content trend due to Qsr flux (qsr_hc) qsr_hc(ji,jj,jk) = r1_rho0_rcp * ( zeT(ji,jj) - zzeT ) #endif zeG(ji,jj) = zzeG ; zeB(ji,jj) = zzeB ! Green ; Blue store at jk+1 w-level zeT(ji,jj) = zzeT ! total - - - END_2D END DO ! DO jk = nkG+1, nkB !* down to Blue extinction *! (< ~1300 m : B , IR+RG removed from calculation) DO_2D( 0, 0, 0, 0 ) ! !- inverse of RGB attenuation lengths zlogc = zc(ji,jj,0) zCb = 0.768 + zlogc * ( 0.087 - zlogc * ( 0.179 + zlogc * 0.025 ) ) zCmax = 0.299 - zlogc * ( 0.289 - zlogc * 0.579 ) zpsimax = 0.6 - zlogc * ( 0.640 - zlogc * ( 0.021 + zlogc * 0.115 ) ) ! zdelpsi = 0.710 + zlogc * ( 0.159 + zlogc * 0.021 ) zCze = zc(ji,jj,1) zrdpsi = zc(ji,jj,2) ! 1/zdelpsi zpsi = zc(ji,jj,3) * gdepw(ji,jj,jk+1,Kmm) ! gdepw/zze !!st05 zpsi = zc(ji,jj,3) * gdepw(ji,jj,jk,Kmm) ! gdepw/zze ! ! make sure zchl value is such that: 0.03 < zchl < 10. zchl = MAX( 0.03_wp , MIN( zCze * ( zCb + zCmax * EXP( -( (zpsi - zpsimax) * zrdpsi )**2 ) ) , 10._wp ) ) ! ! Convert chlorophyll value to attenuation coefficient irgb = NINT( 41 + 20.*LOG10(zchl) + 1.e-15 ) ! look-up table index r1_LB = rkrgb(1,irgb) ! Blue ! ! !- fluxes at jk+1 w-level ze3t = e3t(ji,jj,jk,Kmm) zzeB = zeB(ji,jj) * EXP( - ze3t * r1_LB ) ! Blue zzeT = ( zzeB ) * wmask(ji,jj,jk+1) ! Total - - #if defined key_RK3 ! !- RK3 : temperature trend at jk t-level pts(ji,jj,jk,jp_tem,Krhs) = pts(ji,jj,jk,jp_tem,Krhs) + r1_rho0_rcp * ( zeT(ji,jj) - zzeT ) / ze3t #else ! !- MLF : heat content trend due to Qsr flux (qsr_hc) qsr_hc(ji,jj,jk) = r1_rho0_rcp * ( zeT(ji,jj) - zzeT ) #endif zeB(ji,jj) = zzeB ! Blue store at jk+1 w-level zeT(ji,jj) = zzeT ! total - - - END_2D END DO ! END SUBROUTINE qsr_RGBc SUBROUTINE qsr_RGB( kt, Kmm, pts, Krhs ) !!---------------------------------------------------------------------- !! *** ROUTINE qsr_RGB *** !! !! ** Purpose : Red-Green-Blue solar radiation with constant chlorophyll !! !! ** Method : The profile of the solar radiation within the ocean is defined !! through 2 wavebands (rn_si0,rn_si1) or 1 (rn_si0,rn_abs) + 3 wavebands (RGB) !! At the bottom, boudary condition for the radiation is no flux : !! all heat which has not been absorbed in the above levels is put !! in the last ocean level. !! For each band, the computation is only done down to the level where !! I(k) < 1.e-15 W/m2 (i.e. over the top nk levels) . !! !! ** Action : - update ta with the penetrative solar radiation trend !! - send trend for further diagnostics (l_trdtra=T) !! !! Reference : Lengaigne et al. 2007, Clim. Dyn., V28, 5, 503-516. !! Morel, A. et Berthon, JF, 1989, Limnol Oceanogr 34(8), 1545-1562 !!---------------------------------------------------------------------- INTEGER, INTENT(in ) :: kt, Kmm, Krhs ! ocean time-step and time-level indices REAL(wp), DIMENSION(jpi,jpj,jpk,jpts,jpt), INTENT(inout) :: pts ! active tracers and RHS of tracer equation !! INTEGER :: ji, jj, jk ! dummy loop indices REAL(wp) :: zze0, zzeR, zzeG, zzeB, zzeT ! - - REAL(wp) :: zz0 , zz1 , ze3t ! - - REAL(wp), DIMENSION(A2D(0)) :: ze0, zeR, zeG, zeB, zeT !!---------------------------------------------------------------------- ! ! ! !==============================================! ! !== R-G-B fluxes with constant chlorophyll ==! ! !======================********================! ! ! != surface light =! ! zz0 = rn_abs ! Infrared absorption zz1 = ( 1._wp - rn_abs ) / 3._wp ! surface equi-partition in R-G-B ! DO_2D( 0, 0, 0, 0 ) ! surface light ze0(ji,jj) = zz0 * qsr(ji,jj) ; zeR(ji,jj) = zz1 * qsr(ji,jj) ! IR ; Red zeG(ji,jj) = zz1 * qsr(ji,jj) ; zeB(ji,jj) = zz1 * qsr(ji,jj) ! Green ; Blue zeT(ji,jj) = qsr(ji,jj) ! Total END_2D ! ! != interior light =! ! DO jk = 1, nk0 !* near surface layers *! (< ~12 meters : IR + RGB ) DO_2D( 0, 0, 0, 0 ) ze3t = e3t(ji,jj,jk,Kmm) zze0 = ze0(ji,jj) * EXP( - ze3t * r1_si0 ) ; zzeR = zeR(ji,jj) * EXP( - ze3t * r1_LR ) ! IR ; Red at jk+1 w-level zzeG = zeG(ji,jj) * EXP( - ze3t * r1_LG ) ; zzeB = zeB(ji,jj) * EXP( - ze3t * r1_LB ) ! Green ; Blue - - zzeT = ( zze0 + zzeB + zzeG + zzeR ) * wmask(ji,jj,jk+1) ! Total - - !!st7-9 zzeT = ( zze0 + zzeR + zzeG + zzeB ) * wmask(ji,jj,jk+1) ! Total - - #if defined key_RK3 ! ! RK3 : temperature trend at jk t-level pts(ji,jj,jk,jp_tem,Krhs) = pts(ji,jj,jk,jp_tem,Krhs) + r1_rho0_rcp * ( zeT(ji,jj) - zzeT ) / ze3t #else ! ! MLF : heat content trend due to Qsr flux (qsr_hc) qsr_hc(ji,jj,jk) = r1_rho0_rcp * ( zeT(ji,jj) - zzeT ) #endif ze0(ji,jj) = zze0 ; zeR(ji,jj) = zzeR ! IR ; Red store at jk+1 w-level zeG(ji,jj) = zzeG ; zeB(ji,jj) = zzeB ! Green ; Blue - - - zeT(ji,jj) = zzeT ! total - - - END_2D !!stbug IF( jk == 1 ) THEN !* sea-ice *! store the 1st level attenuation coeff. !!stbug WHERE( qsr(A2D(0)) /= 0._wp ) ; fraqsr_1lev(A2D(0)) = 1._wp - zeT(A2D(0)) / qsr(A2D(0)) !!stbug ELSEWHERE ; fraqsr_1lev(A2D(0)) = 1._wp !!stbug END WHERE !!stbug ENDIF END DO ! DO jk = nk0+1, nkR !* down to Red extinction *! (< ~71 meters : RGB , IR removed from calculation) DO_2D( 0, 0, 0, 0 ) ze3t = e3t(ji,jj,jk,Kmm) zzeR = zeR(ji,jj) * EXP( - ze3t * r1_LR ) ! Red at jk+1 w-level zzeG = zeG(ji,jj) * EXP( - ze3t * r1_LG ) ; zzeB = zeB(ji,jj) * EXP( - ze3t * r1_LB ) ! Green ; Blue - - zzeT = ( zzeB + zzeG + zzeR ) * wmask(ji,jj,jk+1) ! Total - - !!st7-11 zzeT = ( zzeR + zzeG + zzeB ) * wmask(ji,jj,jk+1) ! Total - - #if defined key_RK3 ! ! RK3 : temperature trend at jk t-level pts(ji,jj,jk,jp_tem,Krhs) = pts(ji,jj,jk,jp_tem,Krhs) + r1_rho0_rcp * ( zeT(ji,jj) - zzeT ) / ze3t #else ! ! MLF : heat content trend due to Qsr flux (qsr_hc) qsr_hc(ji,jj,jk) = r1_rho0_rcp * ( zeT(ji,jj) - zzeT ) #endif zeR(ji,jj) = zzeR ! Red store at jk+1 w-level zeG(ji,jj) = zzeG ; zeB(ji,jj) = zzeB ! Green ; Blue - - - zeT(ji,jj) = zzeT ! total - - - END_2D END DO ! DO jk = nkR+1, nkG !* down to Green extinction *! (< ~350 m : GB , IR+R removed from calculation) DO_2D( 0, 0, 0, 0 ) ze3t = e3t(ji,jj,jk,Kmm) zzeG = zeG(ji,jj) * EXP( - ze3t * r1_LG ) ; zzeB = zeB(ji,jj) * EXP( - ze3t * r1_LB ) ! Green ; Blue at jk+1 w-level zzeT = ( zzeG + zzeB ) * wmask(ji,jj,jk+1) ! Total - - #if defined key_RK3 ! ! RK3 : temperature trend at jk t-level pts(ji,jj,jk,jp_tem,Krhs) = pts(ji,jj,jk,jp_tem,Krhs) + r1_rho0_rcp * ( zeT(ji,jj) - zzeT ) / ze3t #else ! ! MLF : heat content trend due to Qsr flux (qsr_hc) qsr_hc(ji,jj,jk) = r1_rho0_rcp * ( zeT(ji,jj) - zzeT ) #endif zeG(ji,jj) = zzeG ; zeB(ji,jj) = zzeB ! Green ; Blue store at jk+1 w-level zeT(ji,jj) = zzeT ! total - - - END_2D END DO ! DO jk = nkG+1, nkB !* down to Blue extinction *! (< ~1300 m : B , IR+RG removed from calculation) DO_2D( 0, 0, 0, 0 ) ze3t = e3t(ji,jj,jk,Kmm) zzeB = zeB(ji,jj) * EXP( - ze3t * r1_LB ) ! Blue at jk+1 w-level zzeT = ( zzeB ) * wmask(ji,jj,jk+1) ! Total - - #if defined key_RK3 ! ! RK3 : temperature trend at jk t-level pts(ji,jj,jk,jp_tem,Krhs) = pts(ji,jj,jk,jp_tem,Krhs) + r1_rho0_rcp * ( zeT(ji,jj) - zzeT ) / ze3t #else ! ! MLF : heat content trend due to Qsr flux (qsr_hc) qsr_hc(ji,jj,jk) = r1_rho0_rcp * ( zeT(ji,jj) - zzeT ) #endif zeB(ji,jj) = zzeB ! Blue store at jk+1 w-level zeT(ji,jj) = zzeT ! total - - - END_2D END DO ! END SUBROUTINE qsr_RGB SUBROUTINE qsr_2BD( Kmm, pts, Krhs ) !!---------------------------------------------------------------------- !! *** ROUTINE qsr_2BD *** !! !! ** Purpose : 2 bands (IR+visible) solar radiation with constant chlorophyll !! !! ** Method : The profile of the solar radiation within the ocean is defined !! through 2 wavebands (rn_si0,rn_si1) a ratio rn_abs for IR absorbtion. !! Considering the 2 wavebands case: !! I(k) = Qsr*( rn_abs*EXP(z(k)/rn_si0) + (1.-rn_abs)*EXP(z(k)/rn_si1) ) !! The temperature trend associated with the solar radiation penetration !! is given by : zta = 1/e3t dk[ I ] / (rho0*Cp) !! At the bottom, boudary condition for the radiation is no flux : !! all heat which has not been absorbed in the above levels is put !! in the last ocean level. !! The computation is only done down to the level where !! I(k) < 1.e-15 W/m2 (i.e. over the top nk levels) . !! !! ** Action : - update ta with the penetrative solar radiation trend !! - send trend for further diagnostics (l_trdtra=T) !! !! Reference : Jerlov, N. G., 1968 Optical Oceanography, Elsevier, 194pp. !! Lengaigne et al. 2007, Clim. Dyn., V28, 5, 503-516. !! Morel, A. et Berthon, JF, 1989, Limnol Oceanogr 34(8), 1545-1562 !!---------------------------------------------------------------------- INTEGER, INTENT(in ) :: Kmm, Krhs ! ocean time-step and time-level indices REAL(wp), DIMENSION(jpi,jpj,jpk,jpts,jpt), INTENT(inout) :: pts ! active tracers and RHS of tracer equation !! INTEGER :: ji, jj, jk ! dummy loop indices REAL(wp) :: zzatt ! - - REAL(wp) :: zz0 , zz1 , ze3t ! - - REAL(wp), DIMENSION(A2D(0)) :: zatt !!---------------------------------------------------------------------- ! ! !======================! ! !== 2-bands fluxes ==! ! !======================! ! zz0 = rn_abs * r1_rho0_rcp ! surface equi-partition in 2-bands zz1 = ( 1._wp - rn_abs ) * r1_rho0_rcp ! zatt(A2D(0)) = r1_rho0_rcp !* surface value *! ! DO_2D( 0, 0, 0, 0 ) zatt(ji,jj) = ( zz0 * EXP( -gdepw(ji,jj,1,Kmm)*r1_si0 ) + zz1 * EXP( -gdepw(ji,jj,1,Kmm)*r1_si1 ) ) END_2D ! !!st IF(lwp) WRITE(numout,*) 'level = ', 1, ' qsr max = ' , MAXVAL(zatt)*rho0_rcp, ' W/m2', ' qsr min = ' , MINVAL(zatt)*rho0_rcp, ' W/m2' ! DO jk = 1, nk0 !* near surface layers *! (< ~14 meters : IR + visible light ) DO_2D( 0, 0, 0, 0 ) ze3t = e3t(ji,jj,jk,Kmm) ! light attenuation at jk+1 w-level (divided by rho0_rcp) zzatt = ( zz0 * EXP( -gdepw(ji,jj,jk+1,Kmm)*r1_si0 ) & & + zz1 * EXP( -gdepw(ji,jj,jk+1,Kmm)*r1_si1 ) ) * wmask(ji,jj,jk+1) #if defined key_RK3 ! ! RK3 : temperature trend at jk t-level pts(ji,jj,jk,jp_tem,Krhs) = pts(ji,jj,jk,jp_tem,Krhs) + qsr(ji,jj) * ( zatt(ji,jj) - zzatt ) / ze3t #else ! ! MLF : heat content trend due to Qsr flux (qsr_hc) qsr_hc(ji,jj,jk) = qsr(ji,jj) * ( zatt(ji,jj) - zzatt ) #endif zatt(ji,jj) = zzatt ! save for the next level computation END_2D !!stbug ! !* sea-ice *! store the 1st level attenuation coeff. !!stbug IF( jk == 1 ) fraqsr_1lev(A2D(0)) = 1._wp - zatt(A2D(0)) * rho0_rcp END DO !!st IF(lwp) WRITE(numout,*) 'nk0+1= ', nk0+1, ' qsr max = ' , MAXVAL(zatt*qsr)*rho0_rcp, ' W/m2' , MAXVAL(zatt*qsr/e3t(:,:,nk0+1,Kmm)), ' K/s' ! DO jk = nk0+1, nkV !* deeper layers *! (visible light only) DO_2D( 0, 0, 0, 0 ) ze3t = e3t(ji,jj,jk,Kmm) ! light attenuation at jk+1 w-level (divided by rho0_rcp) zzatt = ( zz1 * EXP( -gdepw(ji,jj,jk+1,Kmm)*r1_si1 ) ) * wmask(ji,jj,jk+1) #if defined key_RK3 ! ! RK3 : temperature trend at jk t-level pts(ji,jj,jk,jp_tem,Krhs) = pts(ji,jj,jk,jp_tem,Krhs) + qsr(ji,jj) * ( zatt(ji,jj) - zzatt ) / ze3t #else ! ! MLF : heat content trend due to Qsr flux (qsr_hc) qsr_hc(ji,jj,jk) = qsr(ji,jj) * ( zatt(ji,jj) - zzatt ) #endif zatt(ji,jj) = zzatt ! save for the next level computation END_2D END DO ! !!st IF(lwp) WRITE(numout,*) 'nkV+1= ', nkV+1, ' qsr max = ' , MAXVAL(zatt*qsr)*rho0_rcp, ' W/m2' , MAXVAL(zatt*qsr/e3t(:,:,nkV+1,Kmm)), ' K/s' END SUBROUTINE qsr_2bd FUNCTION qsr_ext_lev( pL, pfr ) RESULT( klev ) !!---------------------------------------------------------------------- !! *** ROUTINE trc_oce_ext_lev *** !! !! ** Purpose : compute the maximum level of light penetration !! !! ** Method : the function provides the level at which irradiance, I, !! has a negligible effect on temperature. !! T(n+1)-T(n) = ∆t dk[I] / ( rho0 Cp e3t_k ) !! I(k) has a negligible effect on temperature at level k if: !! ∆t I(k) / ( rho0*Cp*e3t_k ) <= 1.e-15 °C !! with I(z) = Qsr*pfr*EXP(-z/L), therefore : !! z >= L * LOG( 1.e-15 * rho0*Cp*e3t_k / ( ∆t*Qsr*pfr ) ) !! with Qsr being the maximum normal surface irradiance at sea !! level (~1000 W/m2). !! # pL is the longest depth of extinction: !! - pL = 23.00 m (2 bands case) !! - pL = 48.24 m (3 bands case: blue waveband & 0.03 mg/m2 for the chlorophyll) !! # pfr is the fraction of solar radiation which penetrates, !! considering Qsr=1000 W/m2 and rn_abs = 0.58: !! - Qsr*pfr0 = Qsr * rn_abs = 580 W/m2 (top absorbtion) !! - Qsr*pfr1 = Qsr * (1-rn_abs) = 420 W/m2 (2 bands case) !! - Qsr*pfr1 = Qsr * (1-rn_abs)/3 = 140 W/m2 (3 bands case & equi-partition) !! !!---------------------------------------------------------------------- INTEGER :: klev ! result: maximum level of light penetration REAL(wp), INTENT(in) :: pL ! depth of extinction REAL(wp), INTENT(in) :: pfr ! frac. solar radiation which penetrates ! INTEGER :: jk ! dummy loop index REAL(wp) :: zcoef ! local scalar REAL(wp) :: zhext ! deepest depth until which light penetrates REAL(wp) :: ze3t , zdw ! max( e3t_k ) and min( w-depth_k+1 ) REAL(wp) :: zprec = 10.e-15_wp ! required precision REAL(wp) :: zQmax= 1000._wp ! maximum normal surface irradiance at sea level (W/m2) !!---------------------------------------------------------------------- ! zQmax = 1000._wp ! maximum normal surface irradiance at sea level (W/m2) ! zcoef = zprec * rho0_rcp / ( rDt * zQmax * pfr) ! IF( ln_zco .OR. ln_zps ) THEN ! z- or zps coordinate (use 1D ref vertcial coordinate) klev = jpkm1 ! Level of light extinction zco / zps DO jk = jpkm1, 1, -1 zdw = gdepw_1d(jk+1) ! max w-depth at jk+1 level ze3t = e3t_1d(jk ) ! minimum e3t at jk level zhext = - pL * LOG( zcoef * ze3t ) ! extinction depth IF( zdw >= zhext ) klev = jk ! last T-level reached by Qsr END DO ELSE ! s- or s-z- coordinate (use 3D vertical coordinate) klev = jpkm1 ! Level of light extinction DO jk = jpkm1, 1, -1 ! IF( SUM( tmask(:,:,jk) ) > 0 ) THEN ! ocean point at that level zdw = MAXVAL( gdepw_0(:,:,jk+1) * wmask(:,:,jk) ) ! max w-depth at jk+1 level ze3t = MINVAL( e3t_0(:,:,jk ) , mask=(wmask(:,:,jk+1)==1) ) ! minimum e3t at jk level zhext = - pL * LOG( zcoef * ze3t ) ! extinction depth IF( zdw >= zhext ) klev = jk ! last T-level reached by Qsr ELSE ! only land point at level jk klev = jk ! local domain sea-bed level ENDIF END DO CALL mpp_max('tra_qsr', klev) ! needed for reproducibility !!st may be modified to avoid this comm. ! !!st use ssmask to remove the comm ? ENDIF ! !!st IF(lwp) WRITE(numout,*) ' level of e3t light extinction = ', klev, ' ref depth = ', gdepw_1d(klev+1), ' m' END FUNCTION qsr_ext_lev SUBROUTINE tra_qsr_init !!---------------------------------------------------------------------- !! *** ROUTINE tra_qsr_init *** !! !! ** Purpose : Initialization for the penetrative solar radiation !! !! ** Method : The profile of solar radiation within the ocean is set !! from two length scale of penetration (rn_si0,rn_si1) and a ratio !! (rn_abs). These parameters are read in the namtra_qsr namelist. The !! default values correspond to clear water (type I in Jerlov' !! (1968) classification. !! called by tra_qsr at the first timestep (nit000) !! !! ** Action : - initialize rn_si0, rn_si1 and rn_abs !! !! Reference : Jerlov, N. G., 1968 Optical Oceanography, Elsevier, 194pp. !!---------------------------------------------------------------------- INTEGER :: ji, jj, jk ! dummy loop indices INTEGER :: ios, ierror, ioptio ! local integer REAL(wp) :: zLB, zLG, zLR ! local scalar REAL(wp) :: zVlp, zchl ! - - ! CHARACTER(len=100) :: cn_dir ! Root directory for location of ssr files TYPE(FLD_N) :: sn_chl ! informations about the chlorofyl field to be read !! NAMELIST/namtra_qsr/ sn_chl, cn_dir, ln_qsr_rgb, ln_qsr_2bd, ln_qsr_bio, & & nn_chldta, rn_abs, rn_si0, rn_si1 !!---------------------------------------------------------------------- ! READ ( numnam_ref, namtra_qsr, IOSTAT = ios, ERR = 901) 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namtra_qsr in reference namelist' ) READ ( numnam_cfg, namtra_qsr, IOSTAT = ios, ERR = 902) 902 IF( ios > 0 ) CALL ctl_nam ( ios , 'namtra_qsr in configuration namelist' ) IF(lwm) WRITE ( numond, namtra_qsr ) ! IF(lwp) THEN !** control print **! WRITE(numout,*) WRITE(numout,*) 'tra_qsr_init : penetration of the surface solar radiation' WRITE(numout,*) '~~~~~~~~~~~~' WRITE(numout,*) ' Namelist namtra_qsr : set the parameter of penetration' WRITE(numout,*) ' RGB (Red-Green-Blue) light penetration ln_qsr_rgb = ', ln_qsr_rgb WRITE(numout,*) ' 2 band light penetration ln_qsr_2bd = ', ln_qsr_2bd WRITE(numout,*) ' bio-model light penetration ln_qsr_bio = ', ln_qsr_bio WRITE(numout,*) ' RGB : Chl data (=1) or cst value (=0) nn_chldta = ', nn_chldta WRITE(numout,*) ' RGB & 2 bands: fraction of light (rn_si1) rn_abs = ', rn_abs WRITE(numout,*) ' RGB & 2 bands: shortess attenuation depth rn_si0 = ', rn_si0 WRITE(numout,*) ' 2 bands: longest attenuation depth rn_si1 = ', rn_si1 WRITE(numout,*) ENDIF ! ioptio = 0 !** Parameter control **! IF( ln_qsr_rgb ) ioptio = ioptio + 1 IF( ln_qsr_2bd ) ioptio = ioptio + 1 IF( ln_qsr_bio ) ioptio = ioptio + 1 ! IF( ioptio /= 1 ) CALL ctl_stop( 'Choose ONE type of light penetration in namelist namtra_qsr', & & ' 2 bands, 3 RGB bands or bio-model light penetration' ) ! IF( ln_qsr_rgb .AND. nn_chldta == 0 ) nqsr = np_RGB IF( ln_qsr_rgb .AND. nn_chldta == 1 ) nqsr = np_RGBc IF( ln_qsr_2bd ) nqsr = np_2BD IF( ln_qsr_bio ) nqsr = np_BIO ! ! !** Initialisation **! ! ! !== Infrared attenuation ==! (all schemes) ! !============================! ! r1_si0 = 1._wp / rn_si0 ! inverse of infrared attenuation length ! nk0 = qsr_ext_lev( rn_si0, rn_abs ) ! level of light extinction ! IF(lwp) WRITE(numout,*) ' ==>>> Infrared light attenuation' IF(lwp) WRITE(numout,*) ' level of infrared extinction = ', nk0, ' ref depth = ', gdepw_1d(nk0+1), ' m' IF(lwp) WRITE(numout,*) ! SELECT CASE( nqsr ) ! CASE( np_RGBc, np_RGB ) !== Red-Green-Blue light attenuation ==! (Chl data or constant) ! !========================================! ! IF( nqsr == np_RGB ) THEN ; zchl = 0.05 ! constant Chl value ELSE ; zchl = 0.03 ! minimum Chl value ENDIF zchl = MAX( 0.03_wp , MIN( zchl , 10._wp) ) ! NB. make sure that chosen value verifies: 0.03 < zchl < 10 nc_rgb = NINT( 41 + 20.*LOG10(zchl) + 1.e-15 ) ! Convert Chl value to attenuation coefficient look-up table index ! CALL trc_oce_rgb( rkrgb ) ! tabulated attenuation coef. ! zVlp = ( 1._wp - rn_abs ) / 3._wp ! visible light equi-partition ! ! 1 / length ! attenuation length ! attenuation level r1_LR = rkrgb(3,nc_rgb) ; zLR = 1._wp / r1_LR ; nkR = qsr_ext_lev( zLR, zVlp ) ! Red r1_LG = rkrgb(2,nc_rgb) ; zLG = 1._wp / r1_LG ; nkG = qsr_ext_lev( zLG, zVlp ) ! Green r1_LB = rkrgb(1,nc_rgb) ; zLB = 1._wp / r1_LB ; nkB = qsr_ext_lev( zLB, zVlp ) ! Blue ! nkV = nkB ! maximum level of light penetration ! IF( nqsr == np_RGB ) THEN IF(lwp) WRITE(numout,*) ' ==>>> RGB: light attenuation with a constant Chlorophyll = ', zchl ELSE IF(lwp) WRITE(numout,*) ' ==>>> RGB: light attenuation using Chlorophyll data with min(Chl) = ', zchl ENDIF IF(lwp) WRITE(numout,*) ' level of Red extinction = ', nkR, ' ref depth = ', gdepw_1d(nkR+1), ' m' IF(lwp) WRITE(numout,*) ' level of Green extinction = ', nkG, ' ref depth = ', gdepw_1d(nkG+1), ' m' IF(lwp) WRITE(numout,*) ' level of Blue extinction = ', nkB, ' ref depth = ', gdepw_1d(nkB+1), ' m' IF(lwp) WRITE(numout,*) ! IF( nqsr == np_RGBc ) THEN ! Chl data : set sf_chl structure IF(lwp) WRITE(numout,*) ' ==>>> Chlorophyll read in a file' ALLOCATE( sf_chl(1), STAT=ierror ) IF( ierror > 0 ) THEN CALL ctl_stop( 'tra_qsr_init: unable to allocate sf_chl structure' ) ; RETURN ENDIF ALLOCATE( sf_chl(1)%fnow(jpi,jpj,1) ) IF( sn_chl%ln_tint ) ALLOCATE( sf_chl(1)%fdta(jpi,jpj,1,2) ) ! ! fill sf_chl with sn_chl and control print CALL fld_fill( sf_chl, (/ sn_chl /), cn_dir, 'tra_qsr_init', & & 'Solar penetration function of read chlorophyll', 'namtra_qsr' , no_print ) ENDIF ! CASE( np_2BD ) !== 2 bands light attenuation (IR+ visible light) ==! ! ! IF( lk_top ) CALL trc_oce_rgb( rkrgb ) ! tabulated attenuation coef. ! r1_si1 = 1._wp / rn_si1 ! inverse of visible light attenuation zVlp = ( 1._wp - rn_abs ) ! visible light partition nkV = qsr_ext_lev( rn_si1, zVlp ) ! level of visible light extinction ! IF(lwp) WRITE(numout,*) ' ==>>> 2 bands attenuation (Infrared + Visible light) ' IF(lwp) WRITE(numout,*) ' level of visible light extinction = ', nkV, ' ref depth = ', gdepw_1d(nkV+1), ' m' IF(lwp) WRITE(numout,*) ! CASE( np_BIO ) !== BIO light penetration ==! ! IF(lwp) WRITE(numout,*) ' ==>>> bio-model light penetration' IF( .NOT.lk_top ) CALL ctl_stop( 'No bio model : ln_qsr_bio = true impossible ' ) ! CALL trc_oce_rgb( rkrgb ) ! tabulated attenuation coef. ! nkV = trc_oce_ext_lev( r_si2, 33._wp ) ! maximum level of light extinction ! IF(lwp) WRITE(numout,*) ' level of light extinction = ', nkV, ' ref depth = ', gdepw_1d(nkV+1), ' m' ! END SELECT ! nksr = nkV ! name of max level of light extinction used in traatf(_qco).F90 ! #if ! defined key_RK3 qsr_hc(:,:,:) = 0._wp ! MLF : now qsr heat content set to zero where it will not be computed #endif ! ! ! Sea-ice : 1st ocean level attenuation coefficient (used in sbcssm) IF( iom_varid( numror, 'fraqsr_1lev', ldstop = .FALSE. ) > 0 ) THEN CALL iom_get( numror, jpdom_auto, 'fraqsr_1lev' , fraqsr_1lev ) ELSE fraqsr_1lev(:,:) = 1._wp ! default : no penetration ENDIF ! END SUBROUTINE tra_qsr_init !!====================================================================== END MODULE traqsr