MODULE p4zopt
   !!======================================================================
   !!                         ***  MODULE p4zopt  ***
   !! TOP - PISCES : Compute the light availability in the water column
   !!======================================================================
   !! History :  1.0  !  2004     (O. Aumont) Original code
   !!            2.0  !  2007-12  (C. Ethe, G. Madec)  F90
   !!            3.2  !  2009-04  (C. Ethe, G. Madec)  optimisation
   !!            3.4  !  2011-06  (O. Aumont, C. Ethe) Improve light availability of nano & diat
   !!----------------------------------------------------------------------
   !!   p4z_opt       : light availability in the water column
   !!----------------------------------------------------------------------
   USE trc            ! tracer variables
   USE oce_trc        ! tracer-ocean share variables
   USE sms_pisces     ! Source Minus Sink of PISCES
   USE iom            ! I/O manager
   USE fldread        !  time interpolation
   USE prtctl         !  print control for debugging

   IMPLICIT NONE
   PRIVATE

   PUBLIC   p4z_opt        ! called in p4zbio.F90 module
   PUBLIC   p4z_opt_init   ! called in trcsms_pisces.F90 module
   PUBLIC   p4z_opt_alloc

   !! * Shared module variables

   LOGICAL  ::   ln_varpar   ! boolean for variable PAR fraction
   REAL(wp) ::   parlux      ! Fraction of shortwave as PAR
   REAL(wp) ::   xparsw      ! parlux/3
   REAL(wp) ::   xsi0r       ! 1. /rn_si0

   TYPE(FLD), ALLOCATABLE, DIMENSION(:) ::   sf_par      ! structure of input par
   INTEGER , PARAMETER :: nbtimes = 366  !: maximum number of times record in a file
   INTEGER  :: ntimes_par                ! number of time steps in a file
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   par_varsw      ! PAR fraction of shortwave
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) ::   ekb, ekg, ekr  ! wavelength (Red-Green-Blue)
   
   !! * Substitutions
#  include "do_loop_substitute.h90"
#  include "domzgr_substitute.h90"
   !!----------------------------------------------------------------------
   !! NEMO/TOP 4.0 , NEMO Consortium (2018)
   !! $Id: p4zopt.F90 15459 2021-10-29 08:19:18Z cetlod $ 
   !! Software governed by the CeCILL license (see ./LICENSE)
   !!----------------------------------------------------------------------
CONTAINS

   SUBROUTINE p4z_opt( kt, knt, Kbb, Kmm )
      !!---------------------------------------------------------------------
      !!                     ***  ROUTINE p4z_opt  ***
      !!
      !! ** Purpose :   Compute the light availability in the water column
      !!              depending on the depth and the chlorophyll concentration
      !!
      !! ** Method  : - ???
      !!---------------------------------------------------------------------
      INTEGER, INTENT(in) ::   kt, knt   ! ocean time step
      INTEGER, INTENT(in) ::   Kbb, Kmm  ! time level indices
      !
      INTEGER  ::   ji, jj, jk
      INTEGER  ::   irgb
      REAL(wp) ::   zchl
      REAL(wp) ::   zc0 , zc1 , zc2, zc3, z1_dep
      REAL(wp), ALLOCATABLE, DIMENSION(:,:  ) :: zetmp5
      REAL(wp), DIMENSION(jpi,jpj    ) :: zdepmoy, zetmp1, zetmp2, zetmp3, zetmp4
      REAL(wp), DIMENSION(jpi,jpj    ) :: zqsr100, zqsr_corr
      REAL(wp), DIMENSION(jpi,jpj,jpk) :: zpar, ze0, ze1, ze2, ze3
      !!---------------------------------------------------------------------
      !
      IF( ln_timing )   CALL timing_start('p4z_opt')

      IF( knt == 1 .AND. ln_varpar )   CALL p4z_opt_sbc( kt )

      !     Initialisation of variables used to compute PAR
      !     -----------------------------------------------
      ze1(:,:,:) = 0._wp
      ze2(:,:,:) = 0._wp
      ze3(:,:,:) = 0._wp

      !
      ! Attenuation coef. function of Chlorophyll and wavelength (Red-Green-Blue)
      ! Thus the light penetration scheme is based on a decomposition of PAR
      ! into three wave length domains. This was first officially published
      ! in Lengaigne et al. (2007).
      ! --------------------------------------------------------
      !
      ! Computation of the light attenuation parameters based on a 
      ! look-up table
      DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, jpkm1)
         zchl =  ( tr(ji,jj,jk,jpnch,Kbb) + tr(ji,jj,jk,jpdch,Kbb) + rtrn ) * 1.e6
         IF( ln_p5z )   zchl = zchl + tr(ji,jj,jk,jppch,Kbb) * 1.e6
         zchl = MIN(  10. , MAX( 0.05, zchl )  )
         irgb = NINT( 41 + 20.* LOG10( zchl ) + rtrn )
         !                                                         
         ekb(ji,jj,jk) = rkrgb(1,irgb) * e3t(ji,jj,jk,Kmm)
         ekg(ji,jj,jk) = rkrgb(2,irgb) * e3t(ji,jj,jk,Kmm)
         ekr(ji,jj,jk) = rkrgb(3,irgb) * e3t(ji,jj,jk,Kmm)
      END_3D


      ! Photosynthetically Available Radiation (PAR)
      ! Two cases are considered in the following : 
      ! (1) An explicit diunal cycle is activated. In that case, mean 
      ! QSR is used as PISCES in its current state has not been parameterized
      ! for an explicit diurnal cycle
      ! (2) no diurnal cycle of SW is active and in that case, QSR is used.
      ! --------------------------------------------
      IF( ln_trcdc2dm ) THEN                     !  diurnal cycle
         IF ( ln_p4z_dcyc ) THEN   ! Diurnal cycle in PISCES
            !
            !
            ! SW over the ice free zone of the grid cell. This assumes that
            ! SW is zero below sea ice which is a very crude assumption that is 
            ! not fully correct with LIM3 and SI3 but no information is 
            ! currently available to do a better job. SHould be improved in the 
            ! (near) future.
            zqsr_corr(:,:) = qsr_mean(:,:) / ( 1.-fr_i(:,:) + rtrn )
            !
            CALL p4z_opt_par( kt, Kmm, zqsr_corr, ze1, ze2, ze3, pqsr100 = zqsr100 )
            !
            ! Used PAR is computed for each phytoplankton species
            ! etot_ndcy is PAR at level jk averaged over 24h.
            ! Due to their size, they have different light absorption characteristics
            DO jk = 1, nksr
               etot_ndcy(:,:,jk) =        ze1(:,:,jk) +        ze2(:,:,jk) +       ze3(:,:,jk)
            END DO
            !
            ! SW over the ice free zone of the grid cell. This assumes that
            ! SW is zero below sea ice which is a very crude assumption that is 
            ! not fully correct with LIM3 and SI3 but no information is 
            ! currently available to do a better job. SHould be improved in the 
            ! (near) future.
            zqsr_corr(:,:) = qsr(:,:) / ( 1.-fr_i(:,:) + rtrn )
            !
            CALL p4z_opt_par( kt, Kmm, zqsr_corr, ze1, ze2, ze3 )
            !
            ! Total PAR computation at level jk that includes the diurnal cycle
            DO jk = 1, nksr
               etot (:,:,jk) =  ze1(:,:,jk) + ze2(:,:,jk) + ze3(:,:,jk)
               enano(:,:,jk) =  1.85 * ze1(:,:,jk) + 0.69 * ze2(:,:,jk) + 0.46 * ze3(:,:,jk)
               ediat(:,:,jk) =  1.62 * ze1(:,:,jk) + 0.74 * ze2(:,:,jk) + 0.63 * ze3(:,:,jk)
            END DO
            IF( ln_p5z ) THEN
               DO jk = 1, nksr
                  epico  (:,:,jk) =  1.94 * ze1(:,:,jk) + 0.66 * ze2(:,:,jk) + 0.4 * ze3(:,:,jk)
               END DO
            ENDIF

         ELSE ! No diurnal cycle in PISCES

            !
            !
            ! SW over the ice free zone of the grid cell. This assumes that
            ! SW is zero below sea ice which is a very crude assumption that is 
            ! not fully correct with LIM3 and SI3 but no information is 
            ! currently available to do a better job. SHould be improved in the 
            ! (near) future.
            zqsr_corr(:,:) = qsr_mean(:,:) / ( 1.-fr_i(:,:) + rtrn )
            !
            CALL p4z_opt_par( kt, Kmm, zqsr_corr, ze1, ze2, ze3, pqsr100 = zqsr100 ) 
            !
            ! Used PAR is computed for each phytoplankton species
            ! etot_ndcy is PAR at level jk averaged over 24h.
            ! Due to their size, they have different light absorption characteristics
            DO jk = 1, nksr      
               etot_ndcy(:,:,jk) =        ze1(:,:,jk) +        ze2(:,:,jk) +       ze3(:,:,jk)
               enano    (:,:,jk) =  1.85 * ze1(:,:,jk) + 0.69 * ze2(:,:,jk) + 0.46 * ze3(:,:,jk)
               ediat    (:,:,jk) =  1.62 * ze1(:,:,jk) + 0.74 * ze2(:,:,jk) + 0.63 * ze3(:,:,jk)
            END DO
            IF( ln_p5z ) THEN
               DO jk = 1, nksr      
                  epico  (:,:,jk) =  1.94 * ze1(:,:,jk) + 0.66 * ze2(:,:,jk) + 0.4 * ze3(:,:,jk)
               END DO
            ENDIF
            !
            ! SW over the ice free zone of the grid cell. This assumes that
            ! SW is zero below sea ice which is a very crude assumption that is 
            ! not fully correct with LIM3 and SI3 but no information is 
            ! currently available to do a better job. SHould be improved in the 
            ! (near) future.
            zqsr_corr(:,:) = qsr(:,:) / ( 1.-fr_i(:,:) + rtrn )
            !
            CALL p4z_opt_par( kt, Kmm, zqsr_corr, ze1, ze2, ze3 ) 
            !
            ! Total PAR computation at level jk that includes the diurnal cycle
            DO jk = 1, nksr      
               etot(:,:,jk) =  ze1(:,:,jk) + ze2(:,:,jk) + ze3(:,:,jk)
            END DO
         ENDIF
         !
      ELSE   ! no diurnal cycle
         !
         !
         ! SW over the ice free zone of the grid cell. This assumes that
         ! SW is zero below sea ice which is a very crude assumption that is 
         ! not fully correct with LIM3 and SI3 but no information is 
         ! currently available to do a better job. SHould be improved in the 
         ! (near) future.
         zqsr_corr(:,:) = qsr(:,:) / ( 1.-fr_i(:,:) + rtrn )
         !
         CALL p4z_opt_par( kt, Kmm, zqsr_corr, ze1, ze2, ze3, pqsr100 = zqsr100  ) 
         !

         ! Used PAR is computed for each phytoplankton species
         ! Due to their size, they have different light absorption characteristics
         DO jk = 1, nksr      
            etot (:,:,jk) =        ze1(:,:,jk) +        ze2(:,:,jk) +       ze3(:,:,jk)    ! Total PAR
            enano(:,:,jk) =  1.85 * ze1(:,:,jk) + 0.69 * ze2(:,:,jk) + 0.46 * ze3(:,:,jk)  ! Nanophytoplankton
            ediat(:,:,jk) =  1.62 * ze1(:,:,jk) + 0.74 * ze2(:,:,jk) + 0.63 * ze3(:,:,jk)  ! Diatoms
         END DO
         IF( ln_p5z ) THEN
            DO jk = 1, nksr      
              epico(:,:,jk) =  1.94 * ze1(:,:,jk) + 0.66 * ze2(:,:,jk) + 0.4 * ze3(:,:,jk)  ! Picophytoplankton (PISCES-QUOTA)
            END DO
         ENDIF
         etot_ndcy(:,:,:) =  etot(:,:,:) 
      ENDIF


      ! Biophysical feedback part (computation of vertical penetration of SW)
      IF( ln_qsr_bio ) THEN                    !* heat flux accros w-level (used in the dynamics)
         !                                     !  ------------------------
         CALL p4z_opt_par( kt, Kmm, qsr, ze1, ze2, ze3, pe0=ze0 )
         !
         etot3(:,:,1) =  qsr(:,:) * tmask(:,:,1)
         DO jk = 2, nksr + 1
            etot3(:,:,jk) =  ( ze0(:,:,jk) + ze1(:,:,jk) + ze2(:,:,jk) + ze3(:,:,jk) ) * tmask(:,:,jk)
         END DO
         !                                     !  ------------------------
      ENDIF
      
      ! Euphotic depth and level
      ! Two definitions of the euphotic zone are used here. 
      ! (1) The classical definition based on the relative threshold value
      ! (2) An alternative definition based on a absolute threshold value.
      ! -------------------------------------------------------------------
      neln(:,:) = 1
      heup   (:,:) = gdepw(:,:,2,Kmm)
      heup_01(:,:) = gdepw(:,:,2,Kmm)

      DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 2, nksr)
        IF( etot_ndcy(ji,jj,jk) * tmask(ji,jj,jk) >=  zqsr100(ji,jj) )  THEN
           neln(ji,jj) = jk+1                    ! Euphotic level : 1rst T-level strictly below Euphotic layer
           !                                     ! nb: ensure the compatibility with nmld_trc definition in trd_mld_trc_zint
           heup(ji,jj) = gdepw(ji,jj,jk+1,Kmm)     ! Euphotic layer depth
        ENDIF
        IF( etot_ndcy(ji,jj,jk) * tmask(ji,jj,jk) >= 0.10 )  THEN
           heup_01(ji,jj) = gdepw(ji,jj,jk+1,Kmm)  ! Euphotic layer depth (light level definition)
        ENDIF
      END_3D
      !
      ! The euphotic depth can not exceed 300 meters.
      heup   (:,:) = MIN( 300., heup   (:,:) )
      heup_01(:,:) = MIN( 300., heup_01(:,:) )
      
      ! Mean PAR over the mixed layer
      ! -----------------------------
      zdepmoy(:,:)   = 0.e0             
      zetmp1 (:,:)   = 0.e0
      zetmp2 (:,:)   = 0.e0

      DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, nksr)
         IF( gdepw(ji,jj,jk+1,Kmm) <= hmld(ji,jj) ) THEN
            zetmp1 (ji,jj) = zetmp1 (ji,jj) + etot     (ji,jj,jk) * e3t(ji,jj,jk,Kmm) ! Actual PAR for remineralisation
            zetmp2 (ji,jj) = zetmp2 (ji,jj) + etot_ndcy(ji,jj,jk) * e3t(ji,jj,jk,Kmm) ! Par averaged over 24h for production
            zdepmoy(ji,jj) = zdepmoy(ji,jj) +                       e3t(ji,jj,jk,Kmm)
         ENDIF
      END_3D
      !
      emoy(:,:,:) = etot(:,:,:)       ! remineralisation
      zpar(:,:,:) = etot_ndcy(:,:,:)  ! diagnostic : PAR with no diurnal cycle 
      !
      DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, nksr)
         IF( gdepw(ji,jj,jk+1,Kmm) <= hmld(ji,jj) ) THEN
            z1_dep = 1. / ( zdepmoy(ji,jj) + rtrn )
            emoy (ji,jj,jk) = zetmp1(ji,jj) * z1_dep
            zpar (ji,jj,jk) = zetmp2(ji,jj) * z1_dep
         ENDIF
      END_3D

      ! Computation of the mean usable light for the different phytoplankton
      ! groups based on their absorption characteristics.
      zdepmoy(:,:)   = 0.e0
      zetmp3 (:,:)   = 0.e0
      zetmp4 (:,:)   = 0.e0
      !
      DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, nksr)
         IF( gdepw(ji,jj,jk+1,Kmm) <= MIN(hmld(ji,jj), heup_01(ji,jj)) ) THEN
            zetmp3 (ji,jj) = zetmp3 (ji,jj) + enano    (ji,jj,jk) * e3t(ji,jj,jk,Kmm) ! Nanophytoplankton
            zetmp4 (ji,jj) = zetmp4 (ji,jj) + ediat    (ji,jj,jk) * e3t(ji,jj,jk,Kmm) ! Diatoms
            zdepmoy(ji,jj) = zdepmoy(ji,jj) +                       e3t(ji,jj,jk,Kmm)
         ENDIF
      END_3D
      enanom(:,:,:) = enano(:,:,:)
      ediatm(:,:,:) = ediat(:,:,:)
      !
      DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, nksr)
         IF( gdepw(ji,jj,jk+1,Kmm) <= hmld(ji,jj) ) THEN
            z1_dep = 1. / ( zdepmoy(ji,jj) + rtrn )
            enanom(ji,jj,jk) = zetmp3(ji,jj) * z1_dep
            ediatm(ji,jj,jk) = zetmp4(ji,jj) * z1_dep
         ENDIF
      END_3D
      !
      IF( ln_p5z ) THEN
         ! Picophytoplankton when using PISCES-QUOTA
         ALLOCATE( zetmp5(jpi,jpj) )  ;   zetmp5 (:,:) = 0.e0
         DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, nksr)
            IF( gdepw(ji,jj,jk+1,Kmm) <= MIN(hmld(ji,jj), heup_01(ji,jj)) ) THEN
               zetmp5(ji,jj)  = zetmp5 (ji,jj) + epico(ji,jj,jk) * e3t(ji,jj,jk,Kmm)
            ENDIF
         END_3D
         !
         epicom(:,:,:) = epico(:,:,:)
         !
         DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, nksr)
            IF( gdepw(ji,jj,jk+1,Kmm) <= hmld(ji,jj) ) THEN
               z1_dep = 1. / ( zdepmoy(ji,jj) + rtrn )
               epicom(ji,jj,jk) = zetmp5(ji,jj) * z1_dep
            ENDIF
         END_3D
         DEALLOCATE( zetmp5 )
      ENDIF
      !
      IF( lk_iomput .AND.  knt == nrdttrc ) THEN
         CALL iom_put( "Heup" , heup(:,:  ) * tmask(:,:,1) )  ! euphotic layer deptht
         IF( iom_use( "PAR" ) ) THEN
            zpar(:,:,1) = zpar(:,:,1) * ( 1._wp - fr_i(:,:) )
            CALL iom_put( "PAR", zpar(:,:,:) * tmask(:,:,:) )  ! Photosynthetically Available Radiation
         ENDIF
      ENDIF
      !
      IF( ln_timing )   CALL timing_stop('p4z_opt')
      !
   END SUBROUTINE p4z_opt


   SUBROUTINE p4z_opt_par( kt, Kmm, pqsr, pe1, pe2, pe3, pe0, pqsr100 ) 
      !!----------------------------------------------------------------------
      !!                  ***  routine p4z_opt_par  ***
      !!
      !! ** purpose :   compute PAR of each wavelength (Red-Green-Blue)
      !!                for a given shortwave radiation
      !!
      !!----------------------------------------------------------------------
      INTEGER                         , INTENT(in)              ::   kt                ! ocean time-step
      INTEGER                         , INTENT(in)              ::   Kmm               ! ocean time-index
      REAL(wp), DIMENSION(jpi,jpj)    , INTENT(in   )           ::   pqsr              ! shortwave
      REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout)           ::   pe1 , pe2 , pe3   ! PAR ( R-G-B)
      REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout), OPTIONAL ::   pe0               !
      REAL(wp), DIMENSION(jpi,jpj)    , INTENT(  out), OPTIONAL ::   pqsr100           !
      !
      INTEGER    ::   ji, jj, jk     ! dummy loop indices
      REAL(wp), DIMENSION(jpi,jpj) ::  zqsr   ! shortwave
      !!----------------------------------------------------------------------

      !  Real shortwave
      IF( ln_varpar ) THEN  ;  zqsr(:,:) = par_varsw(:,:) * pqsr(:,:)
      ELSE                  ;  zqsr(:,:) = xparsw         * pqsr(:,:)
      ENDIF
      
      !  Light at the euphotic depth 
      IF( PRESENT( pqsr100 ) )   pqsr100(:,:) = 0.01 * 3. * zqsr(:,:)

      IF( PRESENT( pe0 ) ) THEN     !  W-level
         !
         pe0(:,:,1) = pqsr(:,:) - 3. * zqsr(:,:)    !   ( 1 - 3 * alpha ) * q
         pe1(:,:,1) = zqsr(:,:)         
         pe2(:,:,1) = zqsr(:,:)
         pe3(:,:,1) = zqsr(:,:)
         !
         DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 2, nksr + 1)
            pe0(ji,jj,jk) = pe0(ji,jj,jk-1) * EXP( -e3t(ji,jj,jk-1,Kmm) * xsi0r )
            pe1(ji,jj,jk) = pe1(ji,jj,jk-1) * EXP( -ekb  (ji,jj,jk-1 )        )
            pe2(ji,jj,jk) = pe2(ji,jj,jk-1) * EXP( -ekg  (ji,jj,jk-1 )        )
            pe3(ji,jj,jk) = pe3(ji,jj,jk-1) * EXP( -ekr  (ji,jj,jk-1 )        )
        END_3D
        !
      ELSE   ! T- level
        !
        pe1(:,:,1) = zqsr(:,:) * EXP( -0.5 * ekb(:,:,1) )
        pe2(:,:,1) = zqsr(:,:) * EXP( -0.5 * ekg(:,:,1) )
        pe3(:,:,1) = zqsr(:,:) * EXP( -0.5 * ekr(:,:,1) )
        !
        DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 2, nksr)
           pe1(ji,jj,jk) = pe1(ji,jj,jk-1) * EXP( -0.5 * ( ekb(ji,jj,jk-1) + ekb(ji,jj,jk) ) )
           pe2(ji,jj,jk) = pe2(ji,jj,jk-1) * EXP( -0.5 * ( ekg(ji,jj,jk-1) + ekg(ji,jj,jk) ) )
           pe3(ji,jj,jk) = pe3(ji,jj,jk-1) * EXP( -0.5 * ( ekr(ji,jj,jk-1) + ekr(ji,jj,jk) ) )
        END_3D
        !
      ENDIF
      ! 
   END SUBROUTINE p4z_opt_par


   SUBROUTINE p4z_opt_sbc( kt )
      !!----------------------------------------------------------------------
      !!                  ***  routine p4z_opt_sbc  ***
      !!
      !! ** purpose :   read and interpolate the variable PAR fraction
      !!                of shortwave radiation
      !!
      !! ** method  :   read the files and interpolate the appropriate variables
      !!
      !! ** input   :   external netcdf files
      !!
      !!----------------------------------------------------------------------
      INTEGER, INTENT(in) ::   kt   ! ocean time step
      !
      INTEGER  :: ji,jj
      REAL(wp) :: zcoef
      !!---------------------------------------------------------------------
      !
      IF( ln_timing )  CALL timing_start('p4z_optsbc')
      !
      ! Compute par_varsw at nit000 or only if there is more than 1 time record in par coefficient file
      IF( ln_varpar ) THEN
         IF( kt == nit000 .OR. ( kt /= nit000 .AND. ntimes_par > 1 ) ) THEN
            CALL fld_read( kt, 1, sf_par )
            par_varsw(:,:) = ( sf_par(1)%fnow(:,:,1) ) / 3.0
         ENDIF
      ENDIF
      !
      IF( ln_timing )  CALL timing_stop('p4z_optsbc')
      !
   END SUBROUTINE p4z_opt_sbc


   SUBROUTINE p4z_opt_init
      !!----------------------------------------------------------------------
      !!                  ***  ROUTINE p4z_opt_init  ***
      !!
      !! ** Purpose :   Initialization of tabulated attenuation coef
      !!                and of the percentage of PAR in Shortwave
      !!
      !! ** Input   :   external ascii and netcdf files
      !!----------------------------------------------------------------------
      INTEGER :: numpar, ierr, ios   ! Local integer 
      !
      CHARACTER(len=100) ::  cn_dir          ! Root directory for location of ssr files
      TYPE(FLD_N) ::   sn_par                ! informations about the fields to be read
      !
      NAMELIST/nampisopt/cn_dir, sn_par, ln_varpar, parlux, ln_p4z_dcyc
      !!----------------------------------------------------------------------
      IF(lwp) THEN
         WRITE(numout,*)
         WRITE(numout,*) 'p4z_opt_init : '
         WRITE(numout,*) '~~~~~~~~~~~~ '
      ENDIF
      READ  ( numnatp_ref, nampisopt, IOSTAT = ios, ERR = 901)
901   IF( ios /= 0 )   CALL ctl_nam ( ios , 'nampisopt in reference namelist' )
      READ  ( numnatp_cfg, nampisopt, IOSTAT = ios, ERR = 902 )
902   IF( ios >  0 )   CALL ctl_nam ( ios , 'nampisopt in configuration namelist' )
      IF(lwm) WRITE ( numonp, nampisopt )

      IF(lwp) THEN
         WRITE(numout,*) '   Namelist : nampisopt '
         WRITE(numout,*) '      PAR as a variable fraction of SW       ln_varpar      = ', ln_varpar
         WRITE(numout,*) '      Default value for the PAR fraction     parlux         = ', parlux
         WRITE(numout,*) '      Activate the diurnal cycle in PISCES   ln_p4z_dcyc    = ', ln_p4z_dcyc
      ENDIF
      !
      xparsw = parlux / 3.0
      xsi0r  = 1.e0 / rn_si0

      ! Warning : activate the diurnal cycle with no diurnal cycle in the forcing fields makes no sense
      ! That does not produce a bug because the model does not use the flag but a warning is necessary
      ! ----------------------------------------------------------------------------------------------
      IF ( ln_p4z_dcyc .AND. l_trcdm2dc ) THEN
         IF (lwp) WRITE(numout,*) 'No diurnal cycle in the PAR forcing field '
         IF (lwp) WRITE(numout,*) 'Activating the diurnal cycle in PISCES has no effect'
      ENDIF
      !
      ! Variable PAR at the surface of the ocean
      ! ----------------------------------------
      IF( ln_varpar ) THEN
         IF(lwp) WRITE(numout,*)
         IF(lwp) WRITE(numout,*) '   ==>>>   initialize variable par fraction (ln_varpar=T)'
         !
         ALLOCATE( par_varsw(jpi,jpj) )
         !
         ALLOCATE( sf_par(1), STAT=ierr )           !* allocate and fill sf_sst (forcing structure) with sn_sst
         IF( ierr > 0 )   CALL ctl_stop( 'STOP', 'p4z_opt_init: unable to allocate sf_par structure' )
         !
         CALL fld_fill( sf_par, (/ sn_par /), cn_dir, 'p4z_opt_init', 'Variable PAR fraction ', 'nampisopt' )
                                   ALLOCATE( sf_par(1)%fnow(jpi,jpj,1)   )
         IF( sn_par%ln_tint )      ALLOCATE( sf_par(1)%fdta(jpi,jpj,1,2) )

         CALL iom_open (  TRIM( sn_par%clname ) , numpar )
         ntimes_par = iom_getszuld( numpar )   ! get number of record in file
      ENDIF
      !
                         ekr      (:,:,:) = 0._wp
                         ekb      (:,:,:) = 0._wp
                         ekg      (:,:,:) = 0._wp
                         etot     (:,:,:) = 0._wp
                         etot_ndcy(:,:,:) = 0._wp
                         enano    (:,:,:) = 0._wp
                         ediat    (:,:,:) = 0._wp
      IF( ln_p5z     )   epico    (:,:,:) = 0._wp
      IF( ln_qsr_bio )   etot3    (:,:,:) = 0._wp
      ! 
   END SUBROUTINE p4z_opt_init


   INTEGER FUNCTION p4z_opt_alloc()
      !!----------------------------------------------------------------------
      !!                     ***  ROUTINE p4z_opt_alloc  ***
      !!----------------------------------------------------------------------
      !
      ALLOCATE( ekb(jpi,jpj,jpk), ekr(jpi,jpj,jpk),  &
                ekg(jpi,jpj,jpk), STAT= p4z_opt_alloc  ) 
      !
      IF( p4z_opt_alloc /= 0 ) CALL ctl_stop( 'STOP', 'p4z_opt_alloc : failed to allocate arrays.' )
      !
   END FUNCTION p4z_opt_alloc

   !!======================================================================
END MODULE p4zopt