MODULE diaptr !!====================================================================== !! *** MODULE diaptr *** !! Ocean physics: Computes meridonal transports and zonal means !!===================================================================== !! History : 1.0 ! 2003-09 (C. Talandier, G. Madec) Original code !! 2.0 ! 2006-01 (A. Biastoch) Allow sub-basins computation !! 3.2 ! 2010-03 (O. Marti, S. Flavoni) Add fields !! 3.3 ! 2010-10 (G. Madec) dynamical allocation !! 3.6 ! 2014-12 (C. Ethe) use of IOM !! 3.6 ! 2016-06 (T. Graham) Addition of diagnostics for CMIP6 !! 4.0 ! 2010-08 ( C. Ethe, J. Deshayes ) Improvment !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! dia_ptr : Poleward Transport Diagnostics module !! dia_ptr_init : Initialization, namelist read !! ptr_sjk : "zonal" mean computation of a field - tracer or flux array !! ptr_sj : "zonal" and vertical sum computation of a "meridional" flux array !! (Generic interface to ptr_sj_3d, ptr_sj_2d) !!---------------------------------------------------------------------- USE oce ! ocean dynamics and active tracers USE dom_oce ! ocean space and time domain USE domtile USE phycst ! physical constants ! USE iom ! IOM library USE in_out_manager ! I/O manager USE lib_mpp ! MPP library USE timing ! preformance summary IMPLICIT NONE PRIVATE INTERFACE ptr_sum MODULE PROCEDURE ptr_sum_3d, ptr_sum_2d END INTERFACE INTERFACE ptr_sj MODULE PROCEDURE ptr_sj_3d, ptr_sj_2d END INTERFACE PUBLIC dia_ptr ! call in step module PUBLIC dia_ptr_hst ! called from tra_ldf/tra_adv routines REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: hstr_adv, hstr_ldf, hstr_eiv !: Heat/Salt TRansports(adv, diff, Bolus.) REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: hstr_ove, hstr_btr, hstr_vtr !: heat Salt TRansports(overturn, baro, merional) REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:,:) :: pvtr_int, pzon_int !: Other zonal integrals LOGICAL, PUBLIC :: l_diaptr !: tracers trend flag INTEGER, PARAMETER :: jp_msk = 3 INTEGER, PARAMETER :: jp_vtr = 4 REAL(wp) :: rc_sv = 1.e-6_wp ! conversion from m3/s to Sverdrup REAL(wp) :: rc_pwatt = 1.e-15_wp ! conversion from W to PW (further x rho0 x Cp) REAL(wp) :: rc_ggram = 1.e-9_wp ! conversion from g to Gg (further x rho0) REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: btmsk ! T-point basin interior masks REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: btmsk34 ! mask out Southern Ocean (=0 south of 34°S) LOGICAL :: ll_init = .TRUE. !: tracers trend flag !! * Substitutions # include "do_loop_substitute.h90" # include "domzgr_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OCE 4.0 , NEMO Consortium (2018) !! $Id: diaptr.F90 14834 2021-05-11 09:24:44Z hadcv $ !! Software governed by the CeCILL license (see ./LICENSE) !!---------------------------------------------------------------------- CONTAINS ! NOTE: [tiling] tiling sometimes changes the diagnostics very slightly, usually where there are few zonal points e.g. the northern Indian Ocean basin. The difference is usually very small, for one point in one diagnostic. Presumably this is because of the additional zonal integration step over tiles. SUBROUTINE dia_ptr( kt, Kmm, pvtr ) !!---------------------------------------------------------------------- !! *** ROUTINE dia_ptr *** !!---------------------------------------------------------------------- INTEGER , INTENT(in) :: kt ! ocean time-step index INTEGER , INTENT(in) :: Kmm ! time level index REAL(wp), DIMENSION(A2D(nn_hls),jpk) , INTENT(in), OPTIONAL :: pvtr ! j-effective transport !!---------------------------------------------------------------------- ! IF( ln_timing ) CALL timing_start('dia_ptr') IF( kt == nit000 .AND. ll_init ) CALL dia_ptr_init ! -> will define l_diaptr and nbasin ! IF( l_diaptr ) THEN ! Calculate zonal integrals IF( PRESENT( pvtr ) ) THEN CALL dia_ptr_zint( Kmm, pvtr) ELSE CALL dia_ptr_zint( Kmm ) ENDIF ! Calculate diagnostics only when zonal integrals have finished IF( .NOT. l_istiled .OR. ntile == nijtile ) CALL dia_ptr_iom(kt, Kmm, pvtr) ENDIF IF( ln_timing ) CALL timing_stop('dia_ptr') ! END SUBROUTINE dia_ptr SUBROUTINE dia_ptr_iom( kt, Kmm, pvtr ) !!---------------------------------------------------------------------- !! *** ROUTINE dia_ptr_iom *** !!---------------------------------------------------------------------- !! ** Purpose : Calculate diagnostics and send to XIOS !!---------------------------------------------------------------------- INTEGER , INTENT(in) :: kt ! ocean time-step index INTEGER , INTENT(in) :: Kmm ! time level index REAL(wp), DIMENSION(A2D(nn_hls),jpk) , INTENT(in), OPTIONAL :: pvtr ! j-effective transport ! INTEGER :: ji, jj, jk, jn ! dummy loop indices REAL(wp), DIMENSION(jpi,jpj) :: z2d ! 2D workspace REAL(wp), DIMENSION(jpj) :: zvsum, ztsum, zssum ! 1D workspace ! !overturning calculation REAL(wp), DIMENSION(:,:,: ), ALLOCATABLE :: sjk, r1_sjk, v_msf ! i-mean i-k-surface and its inverse REAL(wp), DIMENSION(:,:,: ), ALLOCATABLE :: zt_jk, zs_jk ! i-mean T and S, j-Stream-Function REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: z4d1, z4d2 REAL(wp), DIMENSION(:,:,: ), ALLOCATABLE :: z3dtr !!---------------------------------------------------------------------- ! ALLOCATE( z3dtr(jpi,jpj,nbasin) ) IF( PRESENT( pvtr ) ) THEN IF( iom_use( 'zomsf' ) ) THEN ! effective MSF ALLOCATE( z4d1(jpi,jpj,jpk,nbasin) ) ! DO jn = 1, nbasin ! by sub-basins z4d1(1,:,:,jn) = pvtr_int(:,:,jp_vtr,jn) ! zonal cumulative effective transport excluding closed seas DO jk = jpkm1, 1, -1 z4d1(1,:,jk,jn) = z4d1(1,:,jk+1,jn) - z4d1(1,:,jk,jn) ! effective j-Stream-Function (MSF) END DO DO ji = 2, jpi z4d1(ji,:,:,jn) = z4d1(1,:,:,jn) ENDDO END DO CALL iom_put( 'zomsf', z4d1 * rc_sv ) ! DEALLOCATE( z4d1 ) ENDIF IF( iom_use( 'sopstove' ) .OR. iom_use( 'sophtove' ) ) THEN ALLOCATE( sjk(jpj,jpk,nbasin), r1_sjk(jpj,jpk,nbasin), v_msf(jpj,jpk,nbasin), & & zt_jk(jpj,jpk,nbasin), zs_jk(jpj,jpk,nbasin) ) ! DO jn = 1, nbasin sjk(:,:,jn) = pvtr_int(:,:,jp_msk,jn) r1_sjk(:,:,jn) = 0._wp WHERE( sjk(:,:,jn) /= 0._wp ) r1_sjk(:,:,jn) = 1._wp / sjk(:,:,jn) ! i-mean T and S, j-Stream-Function, basin zt_jk(:,:,jn) = pvtr_int(:,:,jp_tem,jn) * r1_sjk(:,:,jn) zs_jk(:,:,jn) = pvtr_int(:,:,jp_sal,jn) * r1_sjk(:,:,jn) v_msf(:,:,jn) = pvtr_int(:,:,jp_vtr,jn) hstr_ove(:,jp_tem,jn) = SUM( v_msf(:,:,jn)*zt_jk(:,:,jn), 2 ) hstr_ove(:,jp_sal,jn) = SUM( v_msf(:,:,jn)*zs_jk(:,:,jn), 2 ) ! ENDDO DO jn = 1, nbasin z3dtr(1,:,jn) = hstr_ove(:,jp_tem,jn) * rc_pwatt ! (conversion in PW) DO ji = 2, jpi z3dtr(ji,:,jn) = z3dtr(1,:,jn) ENDDO ENDDO CALL iom_put( 'sophtove', z3dtr ) DO jn = 1, nbasin z3dtr(1,:,jn) = hstr_ove(:,jp_sal,jn) * rc_ggram ! (conversion in Gg) DO ji = 2, jpi z3dtr(ji,:,jn) = z3dtr(1,:,jn) ENDDO ENDDO CALL iom_put( 'sopstove', z3dtr ) ! DEALLOCATE( sjk, r1_sjk, v_msf, zt_jk, zs_jk ) ENDIF IF( iom_use( 'sopstbtr' ) .OR. iom_use( 'sophtbtr' ) ) THEN ! Calculate barotropic heat and salt transport here ALLOCATE( sjk(jpj,1,nbasin), r1_sjk(jpj,1,nbasin) ) ! DO jn = 1, nbasin sjk(:,1,jn) = SUM( pvtr_int(:,:,jp_msk,jn), 2 ) r1_sjk(:,1,jn) = 0._wp WHERE( sjk(:,1,jn) /= 0._wp ) r1_sjk(:,1,jn) = 1._wp / sjk(:,1,jn) ! zvsum(:) = SUM( pvtr_int(:,:,jp_vtr,jn), 2 ) ztsum(:) = SUM( pvtr_int(:,:,jp_tem,jn), 2 ) zssum(:) = SUM( pvtr_int(:,:,jp_sal,jn), 2 ) hstr_btr(:,jp_tem,jn) = zvsum(:) * ztsum(:) * r1_sjk(:,1,jn) hstr_btr(:,jp_sal,jn) = zvsum(:) * zssum(:) * r1_sjk(:,1,jn) ! ENDDO DO jn = 1, nbasin z3dtr(1,:,jn) = hstr_btr(:,jp_tem,jn) * rc_pwatt ! (conversion in PW) DO ji = 2, jpi z3dtr(ji,:,jn) = z3dtr(1,:,jn) ENDDO ENDDO CALL iom_put( 'sophtbtr', z3dtr ) DO jn = 1, nbasin z3dtr(1,:,jn) = hstr_btr(:,jp_sal,jn) * rc_ggram ! (conversion in Gg) DO ji = 2, jpi z3dtr(ji,:,jn) = z3dtr(1,:,jn) ENDDO ENDDO CALL iom_put( 'sopstbtr', z3dtr ) ! DEALLOCATE( sjk, r1_sjk ) ENDIF ! hstr_ove(:,:,:) = 0._wp ! Zero before next timestep hstr_btr(:,:,:) = 0._wp pvtr_int(:,:,:,:) = 0._wp ELSE IF( iom_use( 'zotem' ) .OR. iom_use( 'zosal' ) .OR. iom_use( 'zosrf' ) ) THEN ! i-mean i-k-surface ALLOCATE( z4d1(jpi,jpj,jpk,nbasin), z4d2(jpi,jpj,jpk,nbasin) ) ! DO jn = 1, nbasin z4d1(1,:,:,jn) = pzon_int(:,:,jp_msk,jn) DO ji = 2, jpi z4d1(ji,:,:,jn) = z4d1(1,:,:,jn) ENDDO ENDDO CALL iom_put( 'zosrf', z4d1 ) ! DO jn = 1, nbasin z4d2(1,:,:,jn) = pzon_int(:,:,jp_tem,jn) / MAX( z4d1(1,:,:,jn), 10.e-15 ) DO ji = 2, jpi z4d2(ji,:,:,jn) = z4d2(1,:,:,jn) ENDDO ENDDO CALL iom_put( 'zotem', z4d2 ) ! DO jn = 1, nbasin z4d2(1,:,:,jn) = pzon_int(:,:,jp_sal,jn) / MAX( z4d1(1,:,:,jn), 10.e-15 ) DO ji = 2, jpi z4d2(ji,:,:,jn) = z4d2(1,:,:,jn) ENDDO ENDDO CALL iom_put( 'zosal', z4d2 ) ! DEALLOCATE( z4d1, z4d2 ) ENDIF ! ! ! Advective and diffusive heat and salt transport IF( iom_use( 'sophtadv' ) .OR. iom_use( 'sopstadv' ) ) THEN ! DO jn = 1, nbasin z3dtr(1,:,jn) = hstr_adv(:,jp_tem,jn) * rc_pwatt ! (conversion in PW) DO ji = 2, jpi z3dtr(ji,:,jn) = z3dtr(1,:,jn) ENDDO ENDDO CALL iom_put( 'sophtadv', z3dtr ) DO jn = 1, nbasin z3dtr(1,:,jn) = hstr_adv(:,jp_sal,jn) * rc_ggram ! (conversion in Gg) DO ji = 2, jpi z3dtr(ji,:,jn) = z3dtr(1,:,jn) ENDDO ENDDO CALL iom_put( 'sopstadv', z3dtr ) ENDIF ! IF( iom_use( 'sophtldf' ) .OR. iom_use( 'sopstldf' ) ) THEN ! DO jn = 1, nbasin z3dtr(1,:,jn) = hstr_ldf(:,jp_tem,jn) * rc_pwatt ! (conversion in PW) DO ji = 2, jpi z3dtr(ji,:,jn) = z3dtr(1,:,jn) ENDDO ENDDO CALL iom_put( 'sophtldf', z3dtr ) DO jn = 1, nbasin z3dtr(1,:,jn) = hstr_ldf(:,jp_sal,jn) * rc_ggram ! (conversion in Gg) DO ji = 2, jpi z3dtr(ji,:,jn) = z3dtr(1,:,jn) ENDDO ENDDO CALL iom_put( 'sopstldf', z3dtr ) ENDIF ! IF( iom_use( 'sophteiv' ) .OR. iom_use( 'sopsteiv' ) ) THEN ! DO jn = 1, nbasin z3dtr(1,:,jn) = hstr_eiv(:,jp_tem,jn) * rc_pwatt ! (conversion in PW) DO ji = 2, jpi z3dtr(ji,:,jn) = z3dtr(1,:,jn) ENDDO ENDDO CALL iom_put( 'sophteiv', z3dtr ) DO jn = 1, nbasin z3dtr(1,:,jn) = hstr_eiv(:,jp_sal,jn) * rc_ggram ! (conversion in Gg) DO ji = 2, jpi z3dtr(ji,:,jn) = z3dtr(1,:,jn) ENDDO ENDDO CALL iom_put( 'sopsteiv', z3dtr ) ENDIF ! IF( iom_use( 'sopstvtr' ) .OR. iom_use( 'sophtvtr' ) ) THEN DO jn = 1, nbasin z3dtr(1,:,jn) = hstr_vtr(:,jp_tem,jn) * rc_pwatt ! (conversion in PW) DO ji = 2, jpi z3dtr(ji,:,jn) = z3dtr(1,:,jn) ENDDO ENDDO CALL iom_put( 'sophtvtr', z3dtr ) DO jn = 1, nbasin z3dtr(1,:,jn) = hstr_vtr(:,jp_sal,jn) * rc_ggram ! (conversion in Gg) DO ji = 2, jpi z3dtr(ji,:,jn) = z3dtr(1,:,jn) ENDDO ENDDO CALL iom_put( 'sopstvtr', z3dtr ) ENDIF ! IF( iom_use( 'uocetr_vsum_cumul' ) ) THEN CALL iom_get_var( 'uocetr_vsum_op', z2d ) ! get uocetr_vsum_op from xml z2d(:,:) = ptr_ci_2d( z2d(:,:) ) CALL iom_put( 'uocetr_vsum_cumul', z2d ) ENDIF ! hstr_adv(:,:,:) = 0._wp ! Zero before next timestep hstr_ldf(:,:,:) = 0._wp hstr_eiv(:,:,:) = 0._wp hstr_vtr(:,:,:) = 0._wp pzon_int(:,:,:,:) = 0._wp ENDIF ! DEALLOCATE( z3dtr ) ! END SUBROUTINE dia_ptr_iom SUBROUTINE dia_ptr_zint( Kmm, pvtr ) !!---------------------------------------------------------------------- !! *** ROUTINE dia_ptr_zint *** !!---------------------------------------------------------------------- !! ** Purpose : i and i-k sum operations on arrays !! !! ** Method : - Call ptr_sjk (i sum) or ptr_sj (i-k sum) to perform the sum operation !! - Call ptr_sum to add this result to the sum over tiles !! !! ** Action : pvtr_int - terms for volume streamfunction, heat/salt transport barotropic/overturning terms !! pzon_int - terms for i mean temperature/salinity !!---------------------------------------------------------------------- INTEGER , INTENT(in) :: Kmm ! time level index REAL(wp), DIMENSION(A2D(nn_hls),jpk), INTENT(in), OPTIONAL :: pvtr ! j-effective transport REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: zmask ! 3D workspace REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: zts ! 4D workspace REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: sjk, v_msf ! Zonal sum: i-k surface area, j-effective transport REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: zt_jk, zs_jk ! Zonal sum: i-k surface area * (T, S) REAL(wp) :: zsfc, zvfc ! i-k surface area INTEGER :: ji, jj, jk, jn ! dummy loop indices !!---------------------------------------------------------------------- IF( PRESENT( pvtr ) ) THEN ! i sum of effective j transport excluding closed seas IF( iom_use( 'zomsf' ) .OR. iom_use( 'sopstove' ) .OR. iom_use( 'sophtove' ) ) THEN ALLOCATE( v_msf(A1Dj(nn_hls),jpk,nbasin) ) DO jn = 1, nbasin v_msf(:,:,jn) = ptr_sjk( pvtr(:,:,:), btmsk34(:,:,jn) ) ENDDO CALL ptr_sum( pvtr_int(:,:,jp_vtr,:), v_msf(:,:,:) ) DEALLOCATE( v_msf ) ENDIF ! i sum of j surface area, j surface area - temperature/salinity product on V grid IF( iom_use( 'sopstove' ) .OR. iom_use( 'sophtove' ) .OR. & & iom_use( 'sopstbtr' ) .OR. iom_use( 'sophtbtr' ) ) THEN ALLOCATE( zmask(A2D(nn_hls),jpk), zts(A2D(nn_hls),jpk,jpts), & & sjk(A1Dj(nn_hls),jpk,nbasin), & & zt_jk(A1Dj(nn_hls),jpk,nbasin), zs_jk(A1Dj(nn_hls),jpk,nbasin) ) zmask(:,:,:) = 0._wp zts(:,:,:,:) = 0._wp DO_3D( 1, 1, 1, 0, 1, jpkm1 ) zvfc = e1v(ji,jj) * e3v(ji,jj,jk,Kmm) zmask(ji,jj,jk) = vmask(ji,jj,jk) * zvfc zts(ji,jj,jk,jp_tem) = (ts(ji,jj,jk,jp_tem,Kmm)+ts(ji,jj+1,jk,jp_tem,Kmm)) * 0.5 * zvfc !Tracers averaged onto V grid zts(ji,jj,jk,jp_sal) = (ts(ji,jj,jk,jp_sal,Kmm)+ts(ji,jj+1,jk,jp_sal,Kmm)) * 0.5 * zvfc END_3D DO jn = 1, nbasin sjk(:,:,jn) = ptr_sjk( zmask(:,:,:) , btmsk(:,:,jn) ) zt_jk(:,:,jn) = ptr_sjk( zts(:,:,:,jp_tem), btmsk(:,:,jn) ) zs_jk(:,:,jn) = ptr_sjk( zts(:,:,:,jp_sal), btmsk(:,:,jn) ) ENDDO CALL ptr_sum( pvtr_int(:,:,jp_msk,:), sjk(:,:,:) ) CALL ptr_sum( pvtr_int(:,:,jp_tem,:), zt_jk(:,:,:) ) CALL ptr_sum( pvtr_int(:,:,jp_sal,:), zs_jk(:,:,:) ) DEALLOCATE( zmask, zts, sjk, zt_jk, zs_jk ) ENDIF ELSE ! i sum of j surface area - temperature/salinity product on T grid IF( iom_use( 'zotem' ) .OR. iom_use( 'zosal' ) .OR. iom_use( 'zosrf' ) ) THEN ALLOCATE( zmask(A2D(nn_hls),jpk), zts(A2D(nn_hls),jpk,jpts), & & sjk(A1Dj(nn_hls),jpk,nbasin), & & zt_jk(A1Dj(nn_hls),jpk,nbasin), zs_jk(A1Dj(nn_hls),jpk,nbasin) ) zmask(:,:,:) = 0._wp zts(:,:,:,:) = 0._wp DO_3D( 1, 1, 1, 1, 1, jpkm1 ) zsfc = e1t(ji,jj) * e3t(ji,jj,jk,Kmm) zmask(ji,jj,jk) = tmask(ji,jj,jk) * zsfc zts(ji,jj,jk,jp_tem) = ts(ji,jj,jk,jp_tem,Kmm) * zsfc zts(ji,jj,jk,jp_sal) = ts(ji,jj,jk,jp_sal,Kmm) * zsfc END_3D DO jn = 1, nbasin sjk(:,:,jn) = ptr_sjk( zmask(:,:,:) , btmsk(:,:,jn) ) zt_jk(:,:,jn) = ptr_sjk( zts(:,:,:,jp_tem), btmsk(:,:,jn) ) zs_jk(:,:,jn) = ptr_sjk( zts(:,:,:,jp_sal), btmsk(:,:,jn) ) ENDDO CALL ptr_sum( pzon_int(:,:,jp_msk,:), sjk(:,:,:) ) CALL ptr_sum( pzon_int(:,:,jp_tem,:), zt_jk(:,:,:) ) CALL ptr_sum( pzon_int(:,:,jp_sal,:), zs_jk(:,:,:) ) DEALLOCATE( zmask, zts, sjk, zt_jk, zs_jk ) ENDIF ! i-k sum of j surface area - temperature/salinity product on V grid IF( iom_use( 'sopstvtr' ) .OR. iom_use( 'sophtvtr' ) ) THEN ALLOCATE( zts(A2D(nn_hls),jpk,jpts) ) zts(:,:,:,:) = 0._wp DO_3D( 1, 1, 1, 0, 1, jpkm1 ) zvfc = e1v(ji,jj) * e3v(ji,jj,jk,Kmm) zts(ji,jj,jk,jp_tem) = (ts(ji,jj,jk,jp_tem,Kmm)+ts(ji,jj+1,jk,jp_tem,Kmm)) * 0.5 * zvfc !Tracers averaged onto V grid zts(ji,jj,jk,jp_sal) = (ts(ji,jj,jk,jp_sal,Kmm)+ts(ji,jj+1,jk,jp_sal,Kmm)) * 0.5 * zvfc END_3D CALL dia_ptr_hst( jp_tem, 'vtr', zts(:,:,:,jp_tem) ) CALL dia_ptr_hst( jp_sal, 'vtr', zts(:,:,:,jp_sal) ) DEALLOCATE( zts ) ENDIF ENDIF END SUBROUTINE dia_ptr_zint SUBROUTINE dia_ptr_init !!---------------------------------------------------------------------- !! *** ROUTINE dia_ptr_init *** !! !! ** Purpose : Initialization !!---------------------------------------------------------------------- INTEGER :: inum, jn ! local integers !! REAL(wp), DIMENSION(jpi,jpj) :: zmsk !!---------------------------------------------------------------------- ! l_diaptr is defined with iom_use ! --> dia_ptr_init must be done after the call to iom_init ! --> cannot be .TRUE. without cpp key: key_xios --> nbasin define by iom_init is initialized l_diaptr = iom_use( 'zomsf' ) .OR. iom_use( 'zotem' ) .OR. iom_use( 'zosal' ) .OR. & & iom_use( 'zosrf' ) .OR. iom_use( 'sopstove' ) .OR. iom_use( 'sophtove' ) .OR. & & iom_use( 'sopstbtr' ) .OR. iom_use( 'sophtbtr' ) .OR. iom_use( 'sophtadv' ) .OR. & & iom_use( 'sopstadv' ) .OR. iom_use( 'sophtldf' ) .OR. iom_use( 'sopstldf' ) .OR. & & iom_use( 'sophteiv' ) .OR. iom_use( 'sopsteiv' ) .OR. iom_use( 'sopstvtr' ) .OR. & & iom_use( 'sophtvtr' ) .OR. iom_use( 'uocetr_vsum_cumul' ) IF(lwp) THEN ! Control print WRITE(numout,*) WRITE(numout,*) 'dia_ptr_init : poleward transport and msf initialization' WRITE(numout,*) '~~~~~~~~~~~~' WRITE(numout,*) ' Poleward heat & salt transport (T) or not (F) l_diaptr = ', l_diaptr ENDIF IF( l_diaptr ) THEN ! IF( dia_ptr_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'dia_ptr_init : unable to allocate arrays' ) ! rc_pwatt = rc_pwatt * rho0_rcp ! conversion from K.s-1 to PetaWatt rc_ggram = rc_ggram * rho0 ! conversion from m3/s to Gg/s IF( lk_mpp ) CALL mpp_ini_znl( numout ) ! Define MPI communicator for zonal sum btmsk(:,:,1) = tmask_i(:,:) IF( nbasin == 5 ) THEN ! nbasin has been initialized in iom_init to define the axis "basin" CALL iom_open( 'subbasins', inum ) CALL iom_get( inum, jpdom_global, 'atlmsk', btmsk(:,:,2) ) ! Atlantic basin CALL iom_get( inum, jpdom_global, 'pacmsk', btmsk(:,:,3) ) ! Pacific basin CALL iom_get( inum, jpdom_global, 'indmsk', btmsk(:,:,4) ) ! Indian basin CALL iom_close( inum ) btmsk(:,:,5) = MAX ( btmsk(:,:,3), btmsk(:,:,4) ) ! Indo-Pacific basin ENDIF DO jn = 2, nbasin btmsk(:,:,jn) = btmsk(:,:,jn) * tmask_i(:,:) ! interior domain only END DO ! JD : modification so that overturning streamfunction is available in Atlantic at 34S to compare with observations WHERE( gphit(:,:)*tmask_i(:,:) < -34._wp) zmsk(:,:) = 0._wp ! mask out Southern Ocean ELSE WHERE zmsk(:,:) = ssmask(:,:) END WHERE btmsk34(:,:,1) = btmsk(:,:,1) DO jn = 2, nbasin btmsk34(:,:,jn) = btmsk(:,:,jn) * zmsk(:,:) ! interior domain only ENDDO ! Initialise arrays to zero because diatpr is called before they are first calculated ! Note that this means diagnostics will not be exactly correct when model run is restarted. hstr_adv(:,:,:) = 0._wp hstr_ldf(:,:,:) = 0._wp hstr_eiv(:,:,:) = 0._wp hstr_ove(:,:,:) = 0._wp hstr_btr(:,:,:) = 0._wp ! hstr_vtr(:,:,:) = 0._wp ! pvtr_int(:,:,:,:) = 0._wp pzon_int(:,:,:,:) = 0._wp ! ll_init = .FALSE. ! ENDIF ! END SUBROUTINE dia_ptr_init SUBROUTINE dia_ptr_hst( ktra, cptr, pvflx ) !!---------------------------------------------------------------------- !! *** ROUTINE dia_ptr_hst *** !!---------------------------------------------------------------------- !! Wrapper for heat and salt transport calculations to calculate them for each basin !! Called from all advection and/or diffusion routines !!---------------------------------------------------------------------- INTEGER , INTENT(in ) :: ktra ! tracer index CHARACTER(len=3) , INTENT(in) :: cptr ! transport type 'adv'/'ldf'/'eiv' REAL(wp), DIMENSION(A2D(nn_hls),jpk) , INTENT(in) :: pvflx ! 3D input array of advection/diffusion REAL(wp), DIMENSION(A1Dj(nn_hls),nbasin) :: zsj ! INTEGER :: jn ! DO jn = 1, nbasin zsj(:,jn) = ptr_sj( pvflx(:,:,:), btmsk(:,:,jn) ) ENDDO ! IF( cptr == 'adv' ) THEN IF( ktra == jp_tem ) CALL ptr_sum( hstr_adv(:,jp_tem,:), zsj(:,:) ) IF( ktra == jp_sal ) CALL ptr_sum( hstr_adv(:,jp_sal,:), zsj(:,:) ) ELSE IF( cptr == 'ldf' ) THEN IF( ktra == jp_tem ) CALL ptr_sum( hstr_ldf(:,jp_tem,:), zsj(:,:) ) IF( ktra == jp_sal ) CALL ptr_sum( hstr_ldf(:,jp_sal,:), zsj(:,:) ) ELSE IF( cptr == 'eiv' ) THEN IF( ktra == jp_tem ) CALL ptr_sum( hstr_eiv(:,jp_tem,:), zsj(:,:) ) IF( ktra == jp_sal ) CALL ptr_sum( hstr_eiv(:,jp_sal,:), zsj(:,:) ) ELSE IF( cptr == 'vtr' ) THEN IF( ktra == jp_tem ) CALL ptr_sum( hstr_vtr(:,jp_tem,:), zsj(:,:) ) IF( ktra == jp_sal ) CALL ptr_sum( hstr_vtr(:,jp_sal,:), zsj(:,:) ) ENDIF ! END SUBROUTINE dia_ptr_hst SUBROUTINE ptr_sum_2d( phstr, pva ) !!---------------------------------------------------------------------- !! *** ROUTINE ptr_sum_2d *** !!---------------------------------------------------------------------- !! ** Purpose : Add two 2D arrays with (j,nbasin) dimensions !! !! ** Method : - phstr = phstr + pva !! - Call mpp_sum if the final tile !! !! ** Action : phstr !!---------------------------------------------------------------------- REAL(wp), DIMENSION(jpj,nbasin) , INTENT(inout) :: phstr ! REAL(wp), DIMENSION(A1Dj(nn_hls),nbasin), INTENT(in) :: pva ! INTEGER :: jj #if ! defined key_mpi_off INTEGER, DIMENSION(1) :: ish1d INTEGER, DIMENSION(2) :: ish2d REAL(wp), DIMENSION(jpj*nbasin) :: zwork #endif DO jj = ntsj, ntej phstr(jj,:) = phstr(jj,:) + pva(jj,:) END DO #if ! defined key_mpi_off IF( .NOT. l_istiled .OR. ntile == nijtile ) THEN ish1d(1) = jpj*nbasin ish2d(1) = jpj ; ish2d(2) = nbasin zwork(:) = RESHAPE( phstr(:,:), ish1d ) CALL mpp_sum( 'diaptr', zwork, ish1d(1), ncomm_znl ) phstr(:,:) = RESHAPE( zwork, ish2d ) ENDIF #endif END SUBROUTINE ptr_sum_2d SUBROUTINE ptr_sum_3d( phstr, pva ) !!---------------------------------------------------------------------- !! *** ROUTINE ptr_sum_3d *** !!---------------------------------------------------------------------- !! ** Purpose : Add two 3D arrays with (j,k,nbasin) dimensions !! !! ** Method : - phstr = phstr + pva !! - Call mpp_sum if the final tile !! !! ** Action : phstr !!---------------------------------------------------------------------- REAL(wp), DIMENSION(jpj,jpk,nbasin) , INTENT(inout) :: phstr ! REAL(wp), DIMENSION(A1Dj(nn_hls),jpk,nbasin), INTENT(in) :: pva ! INTEGER :: jj, jk #if ! defined key_mpi_off INTEGER, DIMENSION(1) :: ish1d INTEGER, DIMENSION(3) :: ish3d REAL(wp), DIMENSION(jpj*jpk*nbasin) :: zwork #endif DO jk = 1, jpk DO jj = ntsj, ntej phstr(jj,jk,:) = phstr(jj,jk,:) + pva(jj,jk,:) END DO END DO #if ! defined key_mpi_off IF( .NOT. l_istiled .OR. ntile == nijtile ) THEN ish1d(1) = jpj*jpk*nbasin ish3d(1) = jpj ; ish3d(2) = jpk ; ish3d(3) = nbasin zwork(:) = RESHAPE( phstr(:,:,:), ish1d ) CALL mpp_sum( 'diaptr', zwork, ish1d(1), ncomm_znl ) phstr(:,:,:) = RESHAPE( zwork, ish3d ) ENDIF #endif END SUBROUTINE ptr_sum_3d FUNCTION dia_ptr_alloc() !!---------------------------------------------------------------------- !! *** ROUTINE dia_ptr_alloc *** !!---------------------------------------------------------------------- INTEGER :: dia_ptr_alloc ! return value INTEGER, DIMENSION(2) :: ierr !!---------------------------------------------------------------------- ierr(:) = 0 ! ! nbasin has been initialized in iom_init to define the axis "basin" ! IF( .NOT. ALLOCATED( btmsk ) ) THEN ALLOCATE( btmsk(jpi,jpj,nbasin) , btmsk34(jpi,jpj,nbasin), & & hstr_adv(jpj,jpts,nbasin), hstr_eiv(jpj,jpts,nbasin), & & hstr_ove(jpj,jpts,nbasin), hstr_btr(jpj,jpts,nbasin), & & hstr_ldf(jpj,jpts,nbasin), hstr_vtr(jpj,jpts,nbasin), STAT=ierr(1) ) ! ALLOCATE( pvtr_int(jpj,jpk,jpts+2,nbasin), & & pzon_int(jpj,jpk,jpts+1,nbasin), STAT=ierr(2) ) ! dia_ptr_alloc = MAXVAL( ierr ) CALL mpp_sum( 'diaptr', dia_ptr_alloc ) ENDIF ! END FUNCTION dia_ptr_alloc FUNCTION ptr_sj_3d( pvflx, pmsk ) RESULT ( p_fval ) !!---------------------------------------------------------------------- !! *** ROUTINE ptr_sj_3d *** !! !! ** Purpose : i-k sum computation of a j-flux array !! !! ** Method : - i-k sum of pvflx using the interior 2D vmask (vmask_i). !! pvflx is supposed to be a masked flux (i.e. * vmask*e1v*e3v) !! !! ** Action : - p_fval: i-k-mean poleward flux of pvflx !!---------------------------------------------------------------------- REAL(wp), INTENT(in), DIMENSION(A2D(nn_hls),jpk) :: pvflx ! mask flux array at V-point REAL(wp), INTENT(in), DIMENSION(jpi,jpj) :: pmsk ! Optional 2D basin mask ! INTEGER :: ji, jj, jk ! dummy loop arguments REAL(wp), DIMENSION(A1Dj(nn_hls)) :: p_fval ! function value !!-------------------------------------------------------------------- ! p_fval(:) = 0._wp DO_3D( 0, 0, 0, 0, 1, jpkm1 ) p_fval(jj) = p_fval(jj) + pvflx(ji,jj,jk) * pmsk(ji,jj) * tmask_i(ji,jj) END_3D END FUNCTION ptr_sj_3d FUNCTION ptr_sj_2d( pvflx, pmsk ) RESULT ( p_fval ) !!---------------------------------------------------------------------- !! *** ROUTINE ptr_sj_2d *** !! !! ** Purpose : "zonal" and vertical sum computation of a j-flux array !! !! ** Method : - i-k sum of pvflx using the interior 2D vmask (vmask_i). !! pvflx is supposed to be a masked flux (i.e. * vmask*e1v*e3v) !! !! ** Action : - p_fval: i-k-mean poleward flux of pvflx !!---------------------------------------------------------------------- REAL(wp) , INTENT(in), DIMENSION(A2D(nn_hls)) :: pvflx ! mask flux array at V-point REAL(wp) , INTENT(in), DIMENSION(jpi,jpj) :: pmsk ! Optional 2D basin mask ! INTEGER :: ji,jj ! dummy loop arguments REAL(wp), DIMENSION(A1Dj(nn_hls)) :: p_fval ! function value !!-------------------------------------------------------------------- ! p_fval(:) = 0._wp DO_2D( 0, 0, 0, 0 ) p_fval(jj) = p_fval(jj) + pvflx(ji,jj) * pmsk(ji,jj) * tmask_i(ji,jj) END_2D END FUNCTION ptr_sj_2d FUNCTION ptr_ci_2d( pva ) RESULT ( p_fval ) !!---------------------------------------------------------------------- !! *** ROUTINE ptr_ci_2d *** !! !! ** Purpose : "meridional" cumulated sum computation of a j-flux array !! !! ** Method : - j cumulated sum of pva using the interior 2D vmask (umask_i). !! !! ** Action : - p_fval: j-cumulated sum of pva !!---------------------------------------------------------------------- REAL(wp) , INTENT(in), DIMENSION(jpi,jpj) :: pva ! mask flux array at V-point ! INTEGER :: ji,jj,jc ! dummy loop arguments INTEGER :: ijpj ! ??? REAL(wp), DIMENSION(jpi,jpj) :: p_fval ! function value !!-------------------------------------------------------------------- ! ijpj = jpj ! ??? p_fval(:,:) = 0._wp DO jc = 1, jpnj ! looping over all processors in j axis DO_2D( 0, 0, 0, 0 ) p_fval(ji,jj) = p_fval(ji,jj-1) + pva(ji,jj) * tmask_i(ji,jj) END_2D END DO ! END FUNCTION ptr_ci_2d FUNCTION ptr_sjk( pta, pmsk ) RESULT ( p_fval ) !!---------------------------------------------------------------------- !! *** ROUTINE ptr_sjk *** !! !! ** Purpose : i-sum computation of an array !! !! ** Method : - i-sum of field using the interior 2D vmask (pmsk). !! !! ** Action : - p_fval: i-sum of masked field !!---------------------------------------------------------------------- !! IMPLICIT none REAL(wp) , INTENT(in), DIMENSION(A2D(nn_hls),jpk) :: pta ! mask flux array at V-point REAL(wp) , INTENT(in), DIMENSION(jpi,jpj) :: pmsk ! Optional 2D basin mask !! INTEGER :: ji, jj, jk ! dummy loop arguments REAL(wp), DIMENSION(A1Dj(nn_hls),jpk) :: p_fval ! return function value !!-------------------------------------------------------------------- ! p_fval(:,:) = 0._wp ! DO_3D( 0, 0, 0, 0, 1, jpkm1 ) p_fval(jj,jk) = p_fval(jj,jk) + pta(ji,jj,jk) * pmsk(ji,jj) * tmask_i(ji,jj) END_3D END FUNCTION ptr_sjk !!====================================================================== END MODULE diaptr