MODULE sbcfwb !!====================================================================== !! *** MODULE sbcfwb *** !! Ocean fluxes : domain averaged freshwater budget !!====================================================================== !! History : OPA ! 2001-02 (E. Durand) Original code !! NEMO 1.0 ! 2002-06 (G. Madec) F90: Free form and module !! 3.0 ! 2006-08 (G. Madec) Surface module !! 3.2 ! 2009-07 (C. Talandier) emp mean s spread over erp area !! 3.6 ! 2014-11 (P. Mathiot ) add ice shelf melting !! 4.2 ! 2022-12 (J. Chanut ) Compatibility with AGRIF !! + analytical cycle !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! sbc_fwb : freshwater budget for global ocean configurations (free surface & forced mode) !!---------------------------------------------------------------------- USE oce ! ocean dynamics and tracers USE dom_oce ! ocean space and time domain USE sbc_oce ! surface ocean boundary condition USE isf_oce , ONLY : fwfisf_cav, fwfisf_par, ln_isfcpl, ln_isfcpl_cons, risfcpl_cons_ssh ! ice shelf melting contribution USE sbc_ice , ONLY : snwice_mass, snwice_mass_b, snwice_fmass USE phycst ! physical constants USE sbcrnf ! ocean runoffs USE sbcssr ! Sea-Surface damping terms #if defined key_agrif USE agrif_oce , ONLY: Kmm_a #endif ! USE in_out_manager ! I/O manager USE iom ! IOM USE lib_mpp ! distribued memory computing library USE timing ! Timing USE lbclnk ! ocean lateral boundary conditions USE lib_fortran ! IMPLICIT NONE PRIVATE PUBLIC sbc_fwb ! routine called by step REAL(wp) :: rn_fwb0 ! initial freshwater adjustment flux [kg/m2/s] (nn_fwb = 2 only) INTEGER :: nn_fwb_voltype LOGICAL :: ln_hvolg_var ! Prescribed a time varying volume REAL(wp) :: rn_hvolg_amp ! Global seasonal volume height amplitude (m) REAL(wp) :: rn_hvolg_trd ! Global seasonal volume height trend (m/s) INTEGER :: nn_hvolg_mth ! Month when global volume height starts to rise REAL(wp) :: a_fwb ! annual domain averaged freshwater budget from the previous year REAL(wp) :: a_fwb_b ! annual domain averaged freshwater budget from the year before or at initial state REAL(wp) :: area ! global mean ocean surface (interior domain) REAL(wp) :: emp_corr ! current, globally constant, emp correction REAL(wp) :: emp_ext ! prescribed emp flux REAL(wp) :: hvolg_n, hvolg_a ! Now and future equivalent height to prescribe #if defined key_agrif !$AGRIF_DO_NOT_TREAT REAL(wp), ALLOCATABLE, DIMENSION(:) :: agrif_tmp ! temporary array holding values for each grid !$AGRIF_END_DO_NOT_TREAT #endif !! * Substitutions # include "do_loop_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OCE 4.0 , NEMO Consortium (2018) !! $Id: sbcfwb.F90 15439 2021-10-22 17:53:09Z clem $ !! Software governed by the CeCILL license (see ./LICENSE) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE sbc_fwb( kt, kn_fwb, kn_fsbc, Kmm ) !!--------------------------------------------------------------------- !! *** ROUTINE sbc_fwb *** !! !! ** Purpose : Control the mean sea surface drift !! !! ** Method : several ways depending on kn_fwb !! =0 no control !! =1 global mean of emp set to zero at each nn_fsbc time step !! =2 annual global mean corrected from previous year !! =3 global mean of emp set to zero at each nn_fsbc time step !! & spread out over erp area depending its sign !! Note: if sea ice is embedded it is taken into account when computing the budget !!---------------------------------------------------------------------- INTEGER, INTENT( in ) :: kt ! ocean time-step index INTEGER, INTENT( in ) :: kn_fsbc ! INTEGER, INTENT( in ) :: kn_fwb ! ocean time-step index INTEGER, INTENT( in ) :: Kmm ! ocean time level index ! INTEGER :: ios, inum, ikty, igrid ! local integers INTEGER :: ji, jj, istart, iend, jstart, jend REAL(wp) :: z_fwf, z_fwf_nsrf, zsum_fwf, zsum_erp ! local scalars REAL(wp) :: zsurf_neg, zsurf_pos, zsurf_tospread ! - - REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: ztmsk_neg, ztmsk_pos, z_wgt ! 2D workspaces REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: ztmsk_tospread, zerp_cor ! - - REAL(wp) ,DIMENSION(1) :: z_fwfprv COMPLEX(dp),DIMENSION(1) :: y_fwfnow ! NAMELIST/namsbc_fwb/rn_fwb0, nn_fwb_voltype, ln_hvolg_var, rn_hvolg_amp, rn_hvolg_trd, nn_hvolg_mth !!---------------------------------------------------------------------- ! IF( kt == nit000 ) THEN READ( numnam_ref, namsbc_fwb, IOSTAT = ios, ERR = 901 ) 901 IF( ios /= 0 ) CALL ctl_nam( ios, 'namsbc_fwb in reference namelist' ) READ( numnam_cfg, namsbc_fwb, IOSTAT = ios, ERR = 902 ) 902 IF( ios > 0 ) CALL ctl_nam( ios, 'namsbc_fwb in configuration namelist' ) IF(lwm) WRITE( numond, namsbc_fwb ) #if defined key_agrif IF ( .NOT.Agrif_Root() ) THEN ! Copy namelist values from parent (for print) nn_fwb_voltype = Agrif_parent(nn_fwb_voltype) rn_fwb0 = Agrif_parent(rn_fwb0) ln_hvolg_var = Agrif_parent(ln_hvolg_var) rn_hvolg_amp = Agrif_parent(rn_hvolg_amp) rn_hvolg_trd = Agrif_parent(rn_hvolg_trd) nn_hvolg_mth = Agrif_parent(nn_hvolg_mth) ENDIF #endif IF(lwp) THEN WRITE(numout,*) WRITE(numout,*) 'sbc_fwb : FreshWater Budget correction' WRITE(numout,*) '~~~~~~~' SELECT CASE ( kn_fwb ) CASE ( 1 ) WRITE(numout,*) ' nn_fwb = 1: Volume set to zero at each time step' WRITE(numout,*) ' => uniform correction to emp' CASE( 2 ) WRITE(numout,*) ' nn_fwb = 2: Volume adjusted from previous year budget' WRITE(numout,*) ' => uniform correction to emp' WRITE(numout,*) ' Namelist namsbc_fwb' WRITE(numout,*) ' Initial freshwater adjustment flux [kg/m2/s] = ', rn_fwb0 CASE( 3 ) WRITE(numout,*) ' nn_fwb = 3: Volume set to zero at each time step' WRITE(numout,*) ' => non-uniform correction proportional to erp' CASE( 4 ) WRITE(numout,*) ' nn_fwb = 4: ISOMIP+ case' CASE DEFAULT CALL ctl_stop( 'sbc_fwb : wrong nn_fwb value for the FreshWater Budget correction, choose either 1, 2, 3 or 4' ) END SELECT ! SELECT CASE ( nn_fwb_voltype ) CASE( 1 ) WRITE(numout,*) ' ' WRITE(numout,*) ' nn_fwb_voltype = 1: Control ICE + OCEAN volume' WRITE(numout,*) ' ' CASE( 2 ) WRITE(numout,*) ' ' WRITE(numout,*) ' nn_fwb_voltype = 2: Control OCEAN volume' WRITE(numout,*) ' ' CASE DEFAULT CALL ctl_stop( 'sbc_fwb : wrong nn_fwb_voltype value for the FreshWater Budget correction, choose either 1 or 2' ) END SELECT ! IF (ln_hvolg_var) THEN WRITE(numout,*) ' ' WRITE(numout,*) ' ln_hvolg_var = T: specify the global volume variation' WRITE(numout,*) ' Seasonnal height amplitude [m]: ', rn_hvolg_amp WRITE(numout,*) ' Volume anomaly crosses zero at month (1:12): ', nn_hvolg_mth WRITE(numout,*) ' Trend [m/s]: ', rn_hvolg_trd WRITE(numout,*) ' ' ELSE WRITE(numout,*) ' ' WRITE(numout,*) ' ln_hvolg_var = F: no specification of the volume variation ' WRITE(numout,*) ' ' ENDIF ENDIF ! IF( kn_fwb == 3 .AND. nn_sssr /= 2 ) CALL ctl_stop( 'sbc_fwb: nn_fwb = 3 requires nn_sssr = 2, we stop ' ) IF( kn_fwb == 3 .AND. ln_isfcav ) CALL ctl_stop( 'sbc_fwb: nn_fwb = 3 with ln_isfcav = .TRUE. not working, we stop ' ) #if defined key_agrif IF((kn_fwb == 3).AND.(Agrif_maxlevel()/=0)) CALL ctl_stop( 'sbc_fwb: nn_fwb = 3 not yet implemented with AGRIF zooms ' ) #endif ! IF ( Agrif_Root() ) THEN #if defined key_agrif ALLOCATE(agrif_tmp(Agrif_nb_fine_grids()+1)) agrif_tmp(:) = HUGE(1._wp) ! Initialize to a big value agrif_tmp(1) = glob_sum( 'sbcfwb', e1e2t(A2D(0)) * tmask_agrif(A2D(0)) ) ! Coarse grid value CALL Agrif_step_child_adj(glob_sum_area_agrif) ! Get value over child grids CALL mpp_min('sbcfwb', agrif_tmp(:)) ! Required with // sisters to populate the value of each grid on each processor area = SUM(agrif_tmp) ! Sum over all grids IF (lwp) WRITE(numout,*) 'Domain area for each agrif grid (km**2):' DO igrid = 1, Agrif_nb_fine_grids() + 1 IF (lwp) WRITE(numout,*) ' ', igrid, agrif_tmp(igrid)/1000._wp/1000._wp END DO #else area = glob_sum( 'sbcfwb', e1e2t(A2D(0)) * smask0(:,:) ) ! interior global domain surface #endif IF (lwp) WRITE(numout,*) 'Total Domain area (km**2):', area/1000._wp/1000._wp ! IF ( ln_hvolg_var ) THEN ! get global ssh at "now" time step: CALL set_hglo_ana(kt, 0, rn_hvolg_amp, nn_hvolg_mth, rn_hvolg_trd, hvolg_a) ELSE hvolg_n = 0._wp hvolg_a = 0._wp emp_ext = 0._wp ENDIF ENDIF ! isf cavities are excluded because it can feedback to the melting with generation of inhibition of plumes ! and in case of no melt, it can generate HSSW. ! IF( nn_ice == 0 ) THEN snwice_mass_b(:,:) = 0.e0 ! no sea-ice model is being used : no snow+ice mass snwice_fmass (:,:) = 0.e0 ENDIF ! ENDIF ! If needed, define the volume change to prescribe: #if defined key_agrif IF ( Agrif_Root() ) THEN #endif IF ( ln_hvolg_var ) THEN IF( MOD( kt-1, kn_fsbc ) == 0 ) THEN hvolg_n = hvolg_a CALL set_hglo_ana(kt, kn_fsbc, rn_hvolg_amp, nn_hvolg_mth, rn_hvolg_trd, hvolg_a) ! prescribed volume change leads to the following freshwater flux: emp_ext = -rho0 * (hvolg_a - hvolg_n) / ( rn_Dt * REAL(kn_fsbc, wp) ) ENDIF ENDIF #if defined key_agrif ENDIF #endif SELECT CASE ( kn_fwb ) ! CASE ( 1 ) !== set volume at each time step ==! ! #if defined key_agrif IF ( Agrif_Root() ) THEN IF ( Agrif_maxlevel()==0 ) THEN ! No child grid, correct "now" fluxes (i.e. as in the "no agrif" case) #endif IF( MOD( kt-1, kn_fsbc ) == 0 ) THEN SELECT CASE (nn_fwb_voltype) CASE( 1 ) z_fwfprv(1) = glob_sum( 'sbcfwb', e1e2t(A2D(0)) * ( emp(A2D(0)) - rnf(A2D(0)) & & - fwfisf_cav(A2D(0)) - fwfisf_par(A2D(0)) & & - snwice_fmass(A2D(0)) ) ) !y_fwfnow(1) = local_sum( e1e2t(A2D(0)) * ( emp(A2D(0)) - rnf(A2D(0)) - fwfisf_cav(A2D(0)) - fwfisf_par(A2D(0)) - snwice_fmass(A2D(0)) ) ) !CALL mpp_delay_sum( 'sbcfwb', 'fwb', y_fwfnow(:), z_fwfprv(:), kt == nitend - nn_fsbc + 1 ) CASE( 2 ) z_fwfprv(1) = glob_sum( 'sbcfwb', e1e2t(A2D(0)) * ( emp(A2D(0)) - rnf(A2D(0)) & & - fwfisf_cav(A2D(0)) - fwfisf_par(A2D(0)) )) !y_fwfnow(1) = local_sum( e1e2t(A2D(0)) * ( emp(A2D(0)) - rnf(A2D(0)) - fwfisf_cav(A2D(0)) - fwfisf_par(A2D(0)) ) ) !CALL mpp_delay_sum( 'sbcfwb', 'fwb', y_fwfnow(:), z_fwfprv(:), kt == nitend - nn_fsbc + 1 ) END SELECT ENDIF emp_corr = emp_ext - z_fwfprv(1) / area #if defined key_agrif ELSE ! ! Volume is here corrected according to the budget computed in the past, e.g. between ! the last two consecutive calls to the surface module. Hence, the volume is allowed to drift slightly during ! the current time step. ! IF( kt == nit000 ) THEN ! initialisation ! ! IF ( ln_rstart .AND. iom_varid( numror, 'a_fwb', ldstop = .FALSE. ) > 0 & ! read from restart file & .AND. iom_varid( numror, 'emp_corr', ldstop = .FALSE. ) > 0 ) THEN IF(lwp) WRITE(numout,*) 'sbc_fwb : reading freshwater-budget from restart file' CALL iom_get( numror, 'a_fwb' , a_fwb ) CALL iom_get( numror, 'emp_corr' , emp_corr ) ! ELSE emp_corr = 0._wp a_fwb = 999._wp a_fwb_b = 999._wp END IF ! IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*)'sbc_fwb : initial freshwater correction flux = ', emp_corr , 'kg/m2/s' ! ENDIF ! IF( MOD( kt-1, kn_fsbc ) == 0 ) THEN a_fwb_b = a_fwb ! time swap agrif_tmp(:) = HUGE(1._wp) ! Initialize to a big value SELECT CASE (nn_fwb_voltype) CASE( 1 ) agrif_tmp(1) = glob_sum( 'sbcfwb', e1e2t(A2D(0)) * tmask_agrif(A2D(0)) * ( ssh(A2D(0),Kmm) + snwice_mass_b(A2D(0)) * r1_rho0 )) CASE( 2 ) agrif_tmp(1) = glob_sum( 'sbcfwb', e1e2t(A2D(0)) * tmask_agrif(A2D(0)) * ssh(A2D(0),Kmm)) END SELECT CALL Agrif_step_child_adj(glob_sum_volume_agrif) ! Get value over child grids CALL mpp_min('sbcfwb', agrif_tmp(:)) ! Required with // sisters to populate the value of each grid on each processor a_fwb = SUM(agrif_tmp) * rho0 / area ! Sum over all grids IF ( a_fwb_b == 999._wp ) a_fwb_b = a_fwb emp_corr = (a_fwb - a_fwb_b) / ( rn_Dt * REAL(kn_fsbc, wp) ) + emp_corr + emp_ext !! IF (lwp) WRITE(numout,*) 'Averaged liquid height (m) and flux correction (kg/m2/s):', kt, a_fwb * r1_rho0, emp_corr ENDIF ! ENDIF ELSE ! child grid if any IF( MOD( kt-1, kn_fsbc ) == 0 ) THEN emp_corr = Agrif_parent(emp_corr) ENDIF ENDIF #endif ! IF( MOD( kt-1, kn_fsbc ) == 0 ) THEN ! correct the freshwater fluxes on all grids emp(A2D(0)) = emp(A2D(0)) + emp_corr * smask0(:,:) qns(:,:) = qns(:,:) - emp_corr * rcp * sst_m(A2D(0)) * smask0(:,:) ! account for change to the heat budget due to fw correction ENDIF IF ( Agrif_Root() ) THEN ! Output restart information (root grid only) IF( lrst_oce ) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'sbc_fwb : writing FW-budget adjustment to ocean restart file at it = ', kt IF(lwp) WRITE(numout,*) '~~~~' CALL iom_rstput( kt, nitrst, numrow, 'a_fwb' , a_fwb ) CALL iom_rstput( kt, nitrst, numrow, 'emp_corr', emp_corr ) END IF ! IF( kt == nitend .AND. lwp ) THEN WRITE(numout,*) 'sbc_fwb : freshwater-budget at the end of simulation (year now) = ', emp_corr , 'kg/m2/s' END IF END IF ! outputs IF( MOD( kt-1, kn_fsbc ) == 0 ) THEN IF( iom_use('hflx_fwb_cea') ) CALL iom_put( 'hflx_fwb_cea', -emp_corr * rcp * sst_m(A2D(0)) * smask0(:,:) ) IF( iom_use('vflx_fwb_cea') ) CALL iom_put( 'vflx_fwb_cea', -emp_corr * smask0(:,:) ) ENDIF ! CASE ( 2 ) !== set volume annual trend ==! ! IF ( Agrif_Root() ) THEN IF( kt == nit000 ) THEN ! initialisation ! ! IF ( ln_rstart .AND. iom_varid( numror, 'a_fwb', ldstop = .FALSE. ) > 0 & ! read from restart file & .AND. iom_varid( numror, 'a_fwb_b', ldstop = .FALSE. ) > 0 & & .AND. iom_varid( numror, 'emp_corr', ldstop = .FALSE. ) > 0 ) THEN IF(lwp) WRITE(numout,*) 'sbc_fwb : reading freshwater-budget from restart file' CALL iom_get( numror, 'a_fwb' , a_fwb ) CALL iom_get( numror, 'a_fwb_b' , a_fwb_b ) CALL iom_get( numror, 'emp_corr' , emp_corr ) ELSE ! as specified in namelist IF(lwp) WRITE(numout,*) 'sbc_fwb : setting freshwater-budget from namelist rn_fwb0' emp_corr = rn_fwb0 a_fwb = 999._wp a_fwb_b = 999._wp END IF ! IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*)'sbc_fwb : initial freshwater correction flux = ', emp_corr , 'kg/m2/s' ! ENDIF ! ! at the end of year n: ikty = nyear_len(1) * rday / NINT(rn_Dt) IF( MOD( kt-1, ikty ) == 0 ) THEN ! Update a_fwb at the last time step of a year a_fwb_b = a_fwb ! mean sea level taking into account ice+snow #if defined key_agrif agrif_tmp(:) = HUGE(1._wp) ! Initialize to a big value SELECT CASE (nn_fwb_voltype) CASE( 1 ) agrif_tmp(1) = glob_sum( 'sbcfwb', e1e2t(A2D(0)) * tmask_agrif(A2D(0)) * ( ssh(A2D(0),Kmm) + snwice_mass_b(A2D(0)) * r1_rho0 )) CASE( 2 ) agrif_tmp(1) = glob_sum( 'sbcfwb', e1e2t(A2D(0)) * tmask_agrif(A2D(0)) * ssh(A2D(0),Kmm) ) END SELECT CALL Agrif_step_child_adj(glob_sum_volume_agrif) ! Get value over child grids CALL mpp_min('sbcfwb', agrif_tmp(:)) ! Required with // sisters to populate the value of each grid on each processor a_fwb = SUM(agrif_tmp) ! Sum over all grids #else SELECT CASE (nn_fwb_voltype) CASE( 1 ) a_fwb = glob_sum( 'sbcfwb', e1e2t(A2D(0)) * ( ssh(A2D(0),Kmm) + snwice_mass_b(A2D(0)) * r1_rho0 ) ) CASE( 2 ) a_fwb = glob_sum( 'sbcfwb', e1e2t(A2D(0)) * ssh(A2D(0),Kmm) ) END SELECT #endif a_fwb = a_fwb * rho0 / area - hvolg_n * rho0 ! ! Special case if less than a year has been performed: ! hence namelist rn_fwb0 still rules IF ( a_fwb_b == 999._wp ) a_fwb_b = a_fwb ! emp_corr = ( a_fwb - a_fwb_b ) / ( rday * REAL(nyear_len(1), wp) ) + emp_corr IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*)'sbc_fwb : Compute new global mass at step = ', kt IF(lwp) WRITE(numout,*)'sbc_fwb : New averaged liquid height (ocean + snow + ice) = ', a_fwb * r1_rho0, 'm' IF(lwp) WRITE(numout,*)'sbc_fwb : Previous averaged liquid height (ocean + snow + ice) = ', a_fwb_b * r1_rho0, 'm' IF(lwp) WRITE(numout,*)'sbc_fwb : Implied freshwater-budget correction flux = ', emp_corr , 'kg/m2/s' ENDIF #if defined key_agrif ELSE ! child grid if any IF( MOD( kt-1, kn_fsbc ) == 0 ) THEN emp_corr = Agrif_parent(emp_corr) ENDIF #endif ENDIF ! IF( MOD( kt-1, kn_fsbc ) == 0 ) THEN ! correct the freshwater fluxes emp(A2D(0)) = emp(A2D(0)) + emp_corr * smask0(:,:) qns(:,:) = qns(:,:) - emp_corr * rcp * sst_m(A2D(0)) * smask0(:,:) ! account for change to the heat budget due to fw correction ! outputs IF( iom_use('hflx_fwb_cea') ) CALL iom_put( 'hflx_fwb_cea', -emp_corr * rcp * sst_m(A2D(0)) * smask0(:,:) ) IF( iom_use('vflx_fwb_cea') ) CALL iom_put( 'vflx_fwb_cea', -emp_corr * smask0(:,:) ) ENDIF IF ( Agrif_Root() ) THEN ! Output restart information (root grid only) IF( lrst_oce ) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'sbc_fwb : writing FW-budget adjustment to ocean restart file at it = ', kt IF(lwp) WRITE(numout,*) '~~~~' CALL iom_rstput( kt, nitrst, numrow, 'a_fwb', a_fwb ) CALL iom_rstput( kt, nitrst, numrow, 'a_fwb_b', a_fwb_b ) CALL iom_rstput( kt, nitrst, numrow, 'emp_corr',emp_corr) END IF ! IF( kt == nitend .AND. lwp ) THEN IF(lwp) WRITE(numout,*)'sbc_fwb : Previous year averaged liquid height (ocean + snow + ice) = ', a_fwb * r1_rho0, 'm' IF(lwp) WRITE(numout,*)'sbc_fwb : Previous previous year averaged liquid height (ocean + snow + ice) = ', a_fwb_b * r1_rho0, 'm' IF(lwp) WRITE(numout,*)'sbc_fwb : freshwater-budget correction flux = ', emp_corr , 'kg/m2/s' END IF END IF ! CASE ( 3 ) !== set volume at each time step and spread out the correction over erp area ==! ! ALLOCATE( ztmsk_neg(A2D(0)) , ztmsk_pos(A2D(0)) , ztmsk_tospread(A2D(0)) , z_wgt(A2D(0)) , zerp_cor(A2D(0)) ) ! IF( MOD( kt-1, kn_fsbc ) == 0 ) THEN ztmsk_pos(:,:) = smask0_i(:,:) ! Select <0 and >0 area of erp WHERE( erp < 0._wp ) ztmsk_pos = 0._wp ztmsk_neg(:,:) = smask0_i(:,:) - ztmsk_pos(:,:) ! ! fwf global mean (excluding ocean to ice/snow exchanges) SELECT CASE (nn_fwb_voltype) CASE( 1 ) z_fwf = -emp_ext + glob_sum( 'sbcfwb', e1e2t(A2D(0)) * ( emp(A2D(0)) - rnf(A2D(0)) - fwfisf_cav(A2D(0)) - fwfisf_par(A2D(0)) - snwice_fmass(A2D(0)) ) ) / area CASE( 2 ) z_fwf = -emp_ext + glob_sum( 'sbcfwb', e1e2t(A2D(0)) * ( emp(A2D(0)) - rnf(A2D(0)) - fwfisf_cav(A2D(0)) - fwfisf_par(A2D(0)) ) ) / area END SELECT ! IF( z_fwf < 0._wp ) THEN ! spread out over >0 erp area to increase evaporation zsurf_pos = glob_sum( 'sbcfwb', e1e2t(A2D(0))*ztmsk_pos(:,:) ) zsurf_tospread = zsurf_pos ztmsk_tospread(:,:) = ztmsk_pos(:,:) ELSE ! spread out over <0 erp area to increase precipitation zsurf_neg = glob_sum( 'sbcfwb', e1e2t(A2D(0))*ztmsk_neg(:,:) ) ! Area filled by <0 and >0 erp zsurf_tospread = zsurf_neg ztmsk_tospread(:,:) = ztmsk_neg(:,:) ENDIF ! zsum_fwf = glob_sum( 'sbcfwb', e1e2t(A2D(0)) * z_fwf ) ! fwf global mean over <0 or >0 erp area !!gm : zsum_fwf = z_fwf * area ??? it is right? I think so.... z_fwf_nsrf = zsum_fwf / ( zsurf_tospread + rsmall ) ! ! weight to respect erp field 2D structure zsum_erp = glob_sum( 'sbcfwb', ztmsk_tospread(:,:) * erp(:,:) * e1e2t(A2D(0)) ) z_wgt(:,:) = ztmsk_tospread(:,:) * erp(:,:) / ( zsum_erp + rsmall ) ! ! final correction term to apply zerp_cor(:,:) = -1. * z_fwf_nsrf * zsurf_tospread * z_wgt(:,:) ! emp(A2D(0)) = emp(A2D(0)) + zerp_cor(:,:) qns(:,:) = qns(:,:) - zerp_cor(:,:) * rcp * sst_m(A2D(0)) ! account for change to the heat budget due to fw correction erp(:,:) = erp(:,:) + zerp_cor(:,:) ! outputs IF( iom_use('hflx_fwb_cea') ) CALL iom_put( 'hflx_fwb_cea', -zerp_cor(:,:) * rcp * sst_m(A2D(0)) ) IF( iom_use('vflx_fwb_cea') ) CALL iom_put( 'vflx_fwb_cea', -zerp_cor(:,:) ) ! IF( lwp ) THEN ! control print IF( z_fwf < 0._wp ) THEN WRITE(numout,*)' z_fwf < 0' WRITE(numout,*)' SUM(erp+) = ', SUM( ztmsk_tospread(:,:)*erp(:,:)*e1e2t(A2D(0)) )*1.e-9,' Sv' ELSE WRITE(numout,*)' z_fwf >= 0' WRITE(numout,*)' SUM(erp-) = ', SUM( ztmsk_tospread(:,:)*erp(:,:)*e1e2t(A2D(0)) )*1.e-9,' Sv' ENDIF WRITE(numout,*)' SUM(empG) = ', SUM( z_fwf*e1e2t(A2D(0)) )*1.e-9,' Sv' WRITE(numout,*)' z_fwf = ', z_fwf ,' Kg/m2/s' WRITE(numout,*)' z_fwf_nsrf = ', z_fwf_nsrf ,' Kg/m2/s' WRITE(numout,*)' MIN(zerp_cor) = ', MINVAL(zerp_cor) WRITE(numout,*)' MAX(zerp_cor) = ', MAXVAL(zerp_cor) ENDIF ENDIF DEALLOCATE( ztmsk_neg , ztmsk_pos , ztmsk_tospread , z_wgt , zerp_cor ) ! CASE ( 4 ) !== global mean fwf set to zero (ISOMIP case) ==! ! IF( MOD( kt-1, kn_fsbc ) == 0 ) THEN ! ! fwf global mean (excluding ocean to ice/snow exchanges) emp_corr = glob_sum( 'sbcfwb', e1e2t(A2D(0)) * ( emp(A2D(0)) - rnf(A2D(0)) - fwfisf_cav(A2D(0)) - fwfisf_par(A2D(0)) & & - snwice_fmass(A2D(0)) ) ) / area ! clem: use y_fwfnow instead to improve performance? !y_fwfnow(1) = local_sum( e1e2t(A2D(0)) * ( emp(A2D(0)) - rnf(A2D(0)) - fwfisf_cav(A2D(0)) - fwfisf_par(A2D(0)) & ! & - snwice_fmass(A2D(0)) ) ) ! correction for ice sheet coupling testing (ie remove the excess through the surface) ! test impact on the melt as conservation correction made in depth ! test conservation level as sbcfwb is conserving ! avoid the model to blow up for large ssh drop (isomip OCEAN3 with melt switch off and uniform T/S) IF (ln_isfcpl .AND. ln_isfcpl_cons) THEN emp_corr = emp_corr + glob_sum( 'sbcfwb', e1e2t(A2D(0)) * risfcpl_cons_ssh(A2D(0)) * rho0 ) / area ! y_fwfnow(1) = y_fwfnow(1) + local_sum( e1e2t(A2D(0)) * risfcpl_cons_ssh(A2D(0)) * rho0 ) END IF !CALL mpp_delay_sum( 'sbcfwb', 'fwb', y_fwfnow(:), z_fwfprv(:), kt == nitend - nn_fsbc + 1 ) !emp_corr = z_fwfprv(1) / area ! emp(A2D(0)) = emp(A2D(0)) - emp_corr * smask0(:,:) ! (Eq. 34 AD2015) qns(:,:) = qns(:,:) + emp_corr * rcp * sst_m(A2D(0)) * smask0(:,:) ! (Eq. 35 AD2015) ! use sst_m to avoid generation of any bouyancy fluxes sfx(:,:) = sfx(:,:) + emp_corr * sss_m(A2D(0)) * smask0(:,:) ! (Eq. 36 AD2015) ! use sss_m to avoid generation of any bouyancy fluxes ! IF( iom_use('hflx_fwb_cea') ) CALL iom_put( 'hflx_fwb_cea', emp_corr * rcp * sst_m(A2D(0)) * smask0(:,:) ) IF( iom_use('vflx_fwb_cea') ) CALL iom_put( 'vflx_fwb_cea', emp_corr * smask0(:,:) ) ENDIF ! CASE DEFAULT !== you should never be there ==! CALL ctl_stop( 'sbc_fwb : wrong nn_fwb value for the FreshWater Budget correction, choose either 1, 2, 3 or 4' ) ! END SELECT ! END SUBROUTINE sbc_fwb SUBROUTINE set_hglo_ana(kt, koffset, rn_sshm_amp, nn_sshm_mth, rn_sshm_trd, phglo) !!--------------------------------------------------------------------- !! *** Set the global volume *** !! !! Define the globally averaged equivalent volume height analytically !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: kt, koffset REAL(wp), INTENT(in) :: rn_sshm_amp, rn_sshm_trd INTEGER, INTENT(in) :: nn_sshm_mth REAL(wp), INTENT(out) :: phglo ! REAL(wp) :: zt, zf0, zr_nsy !!---------------------------------------------------------------------- ! IF ( nleapy==1 ) THEN zr_nsy = 1._wp / ( 365.25_wp * rday ) ELSE zr_nsy = 1._wp / ( nyear_len(1) * rday ) ENDIF ! ! Time at "Now" time step (i.e. 0.5*dt seconds in the past compared to what nsec_year gives) zt = REAL(nsec1jan000 + nsec_year, wp) + (REAL(koffset,wp) - 0.5_wp) * rn_Dt zf0 = 2._wp * rpi * REAL(nn_sshm_mth-1, wp) / 12._wp ! Phase lag ! phglo = 0.5_wp * rn_sshm_amp * SIN(2._wp * rpi * zr_nsy * zt - zf0) & & + rn_sshm_trd * (kt + koffset - 1) * rn_Dt END SUBROUTINE set_hglo_ana #if defined key_agrif SUBROUTINE glob_sum_area_agrif() !!--------------------------------------------------------------------- !! *** compute area with embedded zooms *** !!---------------------------------------------------------------------- INTEGER :: igrid IF (Agrif_root()) RETURN igrid = agrif_fixed() + 1 agrif_tmp(igrid) = glob_sum( 'sbcfwb', e1e2t(:,:) * tmask_agrif(:,:)) END SUBROUTINE glob_sum_area_agrif SUBROUTINE glob_sum_volume_agrif() !!--------------------------------------------------------------------- !! *** Compute volume with embedded zooms *** !!---------------------------------------------------------------------- INTEGER :: igrid ! IF (Agrif_root()) RETURN igrid = agrif_fixed() + 1 IF (( nn_ice==2 ).OR.(nn_fwb_voltype==1)) THEN ! NB: we use "now" value for snwice_mass over child grids since it has not been updated yet at the time ! this call is made (e.g. when starting a new step over the parent grid) agrif_tmp(igrid) = glob_sum( 'sbcfwb', e1e2t(:,:) * tmask_agrif(:,:) * ( ssh(:,:,Kmm_a) + snwice_mass(:,:) * r1_rho0 )) ELSE agrif_tmp(igrid) = glob_sum( 'sbcfwb', e1e2t(:,:) * tmask_agrif(:,:) * ssh(:,:,Kmm_a) ) ENDIF END SUBROUTINE glob_sum_volume_agrif #endif !!====================================================================== END MODULE sbcfwb