MODULE icethd_do !!====================================================================== !! *** MODULE icethd_do *** !! sea-ice: sea ice growth in the leads (open water) !!====================================================================== !! History : ! 2005-12 (M. Vancoppenolle) Original code !! 4.0 ! 2018 (many people) SI3 [aka Sea Ice cube] !!---------------------------------------------------------------------- #if defined key_si3 !!---------------------------------------------------------------------- !! 'key_si3' SI3 sea-ice model !!---------------------------------------------------------------------- !! ice_thd_do : ice growth in open water (=lateral accretion of ice) !! ice_thd_do_init : initialization !!---------------------------------------------------------------------- USE dom_oce ! ocean space and time domain USE phycst ! physical constants USE sbc_oce , ONLY : sss_m USE sbc_ice , ONLY : utau_ice, vtau_ice USE ice1D ! sea-ice: thermodynamics variables USE ice ! sea-ice: variables USE icetab ! sea-ice: 2D <==> 1D USE icectl ! sea-ice: conservation USE icevar ! sea-ice: operations USE icethd_sal ! sea-ice: salinity profiles ! USE in_out_manager ! I/O manager USE lib_mpp ! MPP library USE lib_fortran ! fortran utilities (glob_sum + no signed zero) IMPLICIT NONE PRIVATE PUBLIC ice_thd_do ! called by ice_thd PUBLIC ice_thd_frazil ! called by ice_thd PUBLIC ice_thd_do_init ! called by ice_stp !! * Substitutions # include "do_loop_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/ICE 4.0 , NEMO Consortium (2018) !! $Id: icethd_do.F90 15388 2021-10-17 11:33:47Z clem $ !! Software governed by the CeCILL license (see ./LICENSE) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE ice_thd_do !!------------------------------------------------------------------- !! *** ROUTINE ice_thd_do *** !! !! ** Purpose : Computation of the evolution of the ice thickness and !! concentration as a function of the heat balance in the leads !! !! ** Method : Ice is formed in the open water when ocean looses heat !! (heat budget of open water is negative) following !! !! (dA/dt)acc = F[ (1-A)/(1-a) ] * [ Bl / (Li*h0) ] !! where - h0 is the thickness of ice created in the lead !! - a is a minimum fraction for leads !! - F is a monotonic non-increasing function defined as: !! F(X)=( 1 - X**exld )**(1.0/exld) !! - exld is the exponent closure rate (=2 default val.) !! !! ** Action : - Adjustment of snow and ice thicknesses and heat !! content in brine pockets !! - Updating ice internal temperature !! - Computation of variation of ice volume and mass !! - Computation of a_i after lateral accretion and !! update h_s_1d, h_i_1d !!------------------------------------------------------------------------ INTEGER :: ji, jj, jk, jl ! dummy loop indices ! REAL(wp) :: ztmelts REAL(wp) :: zdE REAL(wp) :: zQm ! enthalpy exchanged with the ocean (J/m2, >0 towards ocean) REAL(wp) :: zEi ! sea ice specific enthalpy (J/kg) REAL(wp) :: zEw ! seawater specific enthalpy (J/kg) REAL(wp) :: zfmdt ! mass flux x time step (kg/m2, >0 towards ocean) ! INTEGER :: jcat ! indexes of categories where new ice grows REAL(wp) :: zswinew ! switch for new ice or not ! REAL(wp) :: zv_newfra REAL(wp) :: zv_newice ! volume of accreted ice REAL(wp) :: za_newice ! fractional area of accreted ice REAL(wp) :: ze_newice ! heat content of accreted ice REAL(wp) :: zo_newice ! age of accreted ice REAL(wp) :: zdv_res ! residual volume in case of excessive heat budget REAL(wp) :: zda_res ! residual area in case of excessive heat budget REAL(wp) :: zv_frazb ! accretion of frazil ice at the ice bottom ! REAL(wp), DIMENSION(jpl) :: zv_b ! old volume of ice in category jl REAL(wp), DIMENSION(jpl) :: za_b ! old area of ice in category jl ! REAL(wp), DIMENSION(jpij) :: zs_newice ! salinity of accreted ice REAL(wp), DIMENSION(jpij) :: zh_newice ! thickness of accreted ice REAL(wp), DIMENSION(jpij) :: zfraz_frac_1d ! relative ice / frazil velocity (1D vector) ! REAL(wp), DIMENSION(0:nlay_i+1) :: zh_i_old, ze_i_old !!-----------------------------------------------------------------------! IF( ln_icediachk ) CALL ice_cons_hsm( 0, 'icethd_do', rdiag_v, rdiag_s, rdiag_t, rdiag_fv, rdiag_fs, rdiag_ft ) IF( ln_icediachk ) CALL ice_cons2D ( 0, 'icethd_do', diag_v, diag_s, diag_t, diag_fv, diag_fs, diag_ft ) !------------------------------------------------------------------------------! ! 1) Compute thickness, salinity, enthalpy, age, area and volume of new ice !------------------------------------------------------------------------------! ! it occurs if cooling at_i(A2D(0)) = SUM( a_i(A2D(0),:), dim=3 ) ! Identify grid points where new ice forms npti = 0 ; nptidx(:) = 0 DO_2D( 0, 0, 0, 0 ) IF ( qlead(ji,jj) < 0._wp ) THEN npti = npti + 1 nptidx( npti ) = (jj - 1) * jpi + ji ENDIF END_2D ! Move from 2-D to 1-D vectors IF ( npti > 0 ) THEN CALL tab_2d_1d( npti, nptidx(1:npti), at_i_1d(1:npti) , at_i ) CALL tab_3d_2d( npti, nptidx(1:npti), a_i_2d (1:npti,1:jpl), a_i (:,:,:) ) CALL tab_3d_2d( npti, nptidx(1:npti), v_i_2d (1:npti,1:jpl), v_i (:,:,:) ) CALL tab_3d_2d( npti, nptidx(1:npti), sv_i_2d(1:npti,1:jpl), sv_i(:,:,:) ) CALL tab_4d_3d( npti, nptidx(1:npti), e_i_2d (1:npti,:,:) , e_i ) CALL tab_2d_1d( npti, nptidx(1:npti), qlead_1d (1:npti) , qlead ) CALL tab_2d_1d( npti, nptidx(1:npti), t_bo_1d (1:npti) , t_bo ) CALL tab_2d_1d( npti, nptidx(1:npti), sfx_opw_1d (1:npti) , sfx_opw ) CALL tab_2d_1d( npti, nptidx(1:npti), wfx_opw_1d (1:npti) , wfx_opw ) CALL tab_2d_1d( npti, nptidx(1:npti), zh_newice (1:npti) , ht_i_new ) CALL tab_2d_1d( npti, nptidx(1:npti), zfraz_frac_1d(1:npti) , fraz_frac ) CALL tab_2d_1d( npti, nptidx(1:npti), hfx_thd_1d(1:npti) , hfx_thd ) CALL tab_2d_1d( npti, nptidx(1:npti), hfx_opw_1d(1:npti) , hfx_opw ) CALL tab_2d_1d( npti, nptidx(1:npti), rn_amax_1d(1:npti) , rn_amax_2d ) CALL tab_2d_1d( npti, nptidx(1:npti), sss_1d (1:npti) , sss_m ) ! Convert units for ice internal energy DO jl = 1, jpl DO jk = 1, nlay_i WHERE( v_i_2d(1:npti,jl) > 0._wp ) e_i_2d(1:npti,jk,jl) = e_i_2d(1:npti,jk,jl) / v_i_2d(1:npti,jl) * REAL( nlay_i ) ELSEWHERE e_i_2d(1:npti,jk,jl) = 0._wp END WHERE END DO END DO ! --- Salinity of new ice --- ! SELECT CASE ( nn_icesal ) CASE ( 1 ) ! Sice = constant zs_newice(1:npti) = rn_icesal CASE ( 2 ) ! Sice = F(z,t) [Vancoppenolle et al (2005)] DO ji = 1, npti zs_newice(ji) = MIN( 4.606 + 0.91 / zh_newice(ji) , rn_simax , 0.5 * sss_1d(ji) ) END DO CASE ( 3 ) ! Sice = F(z) [multiyear ice] zs_newice(1:npti) = 2.3 END SELECT ! ! ! ==================== ! ! ! Start main loop here ! ! ! ==================== ! DO ji = 1, npti ! Keep old ice areas and volume in memory DO jl = 1, jpl zv_b(jl) = v_i_2d(ji,jl) za_b(jl) = a_i_2d(ji,jl) ENDDO ! --- Heat content of new ice --- ! ! We assume that new ice is formed at the seawater freezing point ztmelts = - rTmlt * zs_newice(ji) ! Melting point (C) ze_newice = rhoi * ( rcpi * ( ztmelts - ( t_bo_1d(ji) - rt0 ) ) & & + rLfus * ( 1.0 - ztmelts / MIN( t_bo_1d(ji) - rt0, -epsi10 ) ) & & - rcp * ztmelts ) ! --- Age of new ice --- ! zo_newice = 0._wp ! --- Volume of new ice --- ! zEi = - ze_newice * r1_rhoi ! specific enthalpy of forming ice [J/kg] zEw = rcp * ( t_bo_1d(ji) - rt0 ) ! specific enthalpy of seawater at t_bo_1d [J/kg] ! clem: we suppose we are already at the freezing point (condition qlead<0 is satisfyied) zdE = zEi - zEw ! specific enthalpy difference [J/kg] zfmdt = - qlead_1d(ji) / zdE ! Fm.dt [kg/m2] (<0) ! clem: we use qlead instead of zqld (icethd) because we suppose we are at the freezing point zv_newice = - zfmdt * r1_rhoi zQm = zfmdt * zEw ! heat to the ocean >0 associated with mass flux ! Contribution to heat flux to the ocean [W.m-2], >0 hfx_thd_1d(ji) = hfx_thd_1d(ji) + zfmdt * zEw * r1_Dt_ice ! Total heat flux used in this process [W.m-2] hfx_opw_1d(ji) = hfx_opw_1d(ji) - zfmdt * zdE * r1_Dt_ice ! mass flux wfx_opw_1d(ji) = wfx_opw_1d(ji) - zv_newice * rhoi * r1_Dt_ice ! salt flux sfx_opw_1d(ji) = sfx_opw_1d(ji) - zv_newice * rhoi * zs_newice(ji) * r1_Dt_ice ! A fraction fraz_frac of frazil ice is accreted at the ice bottom rswitch = 1._wp - MAX( 0._wp, SIGN( 1._wp , - at_i_1d(ji) ) ) zv_frazb = zfraz_frac_1d(ji) * rswitch * zv_newice zv_newice = ( 1._wp - zfraz_frac_1d(ji) * rswitch ) * zv_newice ! --- Area of new ice --- ! za_newice = zv_newice / zh_newice(ji) ! --- Redistribute new ice area and volume into ice categories --- ! ! --- lateral ice growth --- ! ! If lateral ice growth gives an ice concentration > amax, then ! we keep the excessive volume in memory and attribute it later to bottom accretion IF ( za_newice > MAX( 0._wp, rn_amax_1d(ji) - at_i_1d(ji) ) ) THEN ! max is for roundoff error zda_res = za_newice - MAX( 0._wp, rn_amax_1d(ji) - at_i_1d(ji) ) zdv_res = zda_res * zh_newice(ji) za_newice = MAX( 0._wp, za_newice - zda_res ) zv_newice = MAX( 0._wp, zv_newice - zdv_res ) ELSE zda_res = 0._wp zdv_res = 0._wp ENDIF ! find which category to fill at_i_1d(ji) = 0._wp DO jl = 1, jpl IF( zh_newice(ji) > hi_max(jl-1) .AND. zh_newice(ji) <= hi_max(jl) ) THEN a_i_2d(ji,jl) = a_i_2d(ji,jl) + za_newice v_i_2d(ji,jl) = v_i_2d(ji,jl) + zv_newice jcat = jl ENDIF at_i_1d(ji) = at_i_1d(ji) + a_i_2d(ji,jl) END DO ! Heat content jl = jcat ! categroy in which new ice is put zswinew = MAX( 0._wp , SIGN( 1._wp , - za_b(jl) ) ) ! 0 if old ice DO jk = 1, nlay_i jl = jcat rswitch = MAX( 0._wp, SIGN( 1._wp , v_i_2d(ji,jl) - epsi20 ) ) e_i_2d(ji,jk,jl) = zswinew * ze_newice + & & ( 1.0 - zswinew ) * ( ze_newice * zv_newice + e_i_2d(ji,jk,jl) * zv_b(jl) ) & & * rswitch / MAX( v_i_2d(ji,jl), epsi20 ) END DO ! --- bottom ice growth + ice enthalpy remapping --- ! DO jl = 1, jpl ! for remapping zh_i_old(0:nlay_i+1) = 0._wp ze_i_old(0:nlay_i+1) = 0._wp DO jk = 1, nlay_i zh_i_old(jk) = v_i_2d(ji,jl) * r1_nlay_i ze_i_old(jk) = e_i_2d(ji,jk,jl) * v_i_2d(ji,jl) * r1_nlay_i END DO ! new volumes including lateral/bottom accretion + residual rswitch = MAX( 0._wp, SIGN( 1._wp , at_i_1d(ji) - epsi20 ) ) zv_newfra = rswitch * ( zdv_res + zv_frazb ) * a_i_2d(ji,jl) / MAX( at_i_1d(ji) , epsi20 ) a_i_2d(ji,jl) = rswitch * a_i_2d(ji,jl) v_i_2d(ji,jl) = v_i_2d(ji,jl) + zv_newfra ! for remapping zh_i_old(nlay_i+1) = zv_newfra ze_i_old(nlay_i+1) = ze_newice * zv_newfra ! --- Update salinity --- ! sv_i_2d(ji,jl) = sv_i_2d(ji,jl) + zs_newice(ji) * ( v_i_2d(ji,jl) - zv_b(jl) ) ! --- Ice enthalpy remapping --- ! e_i_2d(ji,:,jl) = ice_ent2( zh_i_old(:), ze_i_old(:) ) END DO END DO ! npti ! ! ================== ! ! ! End main loop here ! ! ! ================== ! ! ! Change units for e_i DO jl = 1, jpl DO jk = 1, nlay_i e_i_2d(1:npti,jk,jl) = e_i_2d(1:npti,jk,jl) * v_i_2d(1:npti,jl) * r1_nlay_i END DO END DO ! Move 2D vectors to 1D vectors CALL tab_2d_3d( npti, nptidx(1:npti), a_i_2d (1:npti,1:jpl), a_i (:,:,:) ) CALL tab_2d_3d( npti, nptidx(1:npti), v_i_2d (1:npti,1:jpl), v_i (:,:,:) ) CALL tab_2d_3d( npti, nptidx(1:npti), sv_i_2d(1:npti,1:jpl), sv_i(:,:,:) ) CALL tab_3d_4d( npti, nptidx(1:npti), e_i_2d (1:npti,:,:) , e_i ) CALL tab_1d_2d( npti, nptidx(1:npti), sfx_opw_1d(1:npti), sfx_opw ) CALL tab_1d_2d( npti, nptidx(1:npti), wfx_opw_1d(1:npti), wfx_opw ) CALL tab_1d_2d( npti, nptidx(1:npti), hfx_thd_1d(1:npti), hfx_thd ) CALL tab_1d_2d( npti, nptidx(1:npti), hfx_opw_1d(1:npti), hfx_opw ) ! ENDIF ! npti > 0 ! ! the following fields need to be updated on the halos (done in icethd): a_i, v_i, sv_i, e_i ! IF( ln_icediachk ) CALL ice_cons_hsm(1, 'icethd_do', rdiag_v, rdiag_s, rdiag_t, rdiag_fv, rdiag_fs, rdiag_ft) IF( ln_icediachk ) CALL ice_cons2D (1, 'icethd_do', diag_v, diag_s, diag_t, diag_fv, diag_fs, diag_ft) ! END SUBROUTINE ice_thd_do SUBROUTINE ice_thd_frazil !!----------------------------------------------------------------------- !! *** ROUTINE ice_thd_frazil *** !! !! ** Purpose : frazil ice collection thickness and fraction !! !! ** Inputs : u_ice, v_ice, utau_ice, vtau_ice !! ** Ouputs : ht_i_new, fraz_frac !!----------------------------------------------------------------------- INTEGER :: ji, jj ! dummy loop indices INTEGER :: iter REAL(wp) :: zvfrx, zvgx, ztaux, zf, ztenagm, zvfry, zvgy, ztauy, zvrel2, zfp, ztwogp REAL(wp), PARAMETER :: zcai = 1.4e-3_wp ! ice-air drag (clem: should be dependent on coupling/forcing used) REAL(wp), PARAMETER :: zhicrit = 0.04_wp ! frazil ice thickness REAL(wp), PARAMETER :: zsqcd = 1.0_wp / SQRT( 1.3_wp * zcai ) ! 1/SQRT(airdensity*drag) REAL(wp), PARAMETER :: zgamafr = 0.03_wp !!----------------------------------------------------------------------- ! !---------------------------------------------------------! ! Collection thickness of ice formed in leads and polynyas !---------------------------------------------------------! ! ht_i_new is the thickness of new ice formed in open water ! ht_i_new can be either prescribed (ln_frazil=F) or computed (ln_frazil=T) ! Frazil ice forms in open water, is transported by wind, accumulates at the edge of the consolidated ice edge ! where it forms aggregates of a specific thickness called collection thickness. ! fraz_frac(:,:) = 0._wp ! ! Default new ice thickness WHERE( qlead(:,:) < 0._wp ) ! cooling ht_i_new(:,:) = rn_hinew ELSEWHERE ht_i_new(:,:) = 0._wp END WHERE IF( ln_frazil ) THEN ztwogp = 2._wp * rho0 / ( grav * 0.3_wp * ( rho0 - rhoi ) ) ! reduced grav ! DO_2D( 0, 0, 0, 0 ) IF ( qlead(ji,jj) < 0._wp ) THEN ! cooling ! -- Wind stress -- ! ztaux = utau_ice(ji,jj) * smask0(ji,jj) ztauy = vtau_ice(ji,jj) * smask0(ji,jj) ! Square root of wind stress ztenagm = SQRT( SQRT( ztaux * ztaux + ztauy * ztauy ) ) ! -- Frazil ice velocity -- ! rswitch = MAX( 0._wp, SIGN( 1._wp , ztenagm - epsi10 ) ) zvfrx = rswitch * zgamafr * zsqcd * ztaux / MAX( ztenagm, epsi10 ) zvfry = rswitch * zgamafr * zsqcd * ztauy / MAX( ztenagm, epsi10 ) ! -- Pack ice velocity -- ! zvgx = ( u_ice(ji-1,jj ) * umask(ji-1,jj ,1) + u_ice(ji,jj) * umask(ji,jj,1) ) * 0.5_wp zvgy = ( v_ice(ji ,jj-1) * vmask(ji ,jj-1,1) + v_ice(ji,jj) * vmask(ji,jj,1) ) * 0.5_wp ! -- Relative frazil/pack ice velocity -- ! rswitch = MAX( 0._wp, SIGN( 1._wp , at_i(ji,jj) - epsi10 ) ) zvrel2 = MAX( (zvfrx - zvgx)*(zvfrx - zvgx) + (zvfry - zvgy)*(zvfry - zvgy), 0.15_wp*0.15_wp ) * rswitch ! -- fraction of frazil ice -- ! fraz_frac(ji,jj) = rswitch * ( TANH( rn_Cfraz * ( SQRT(zvrel2) - rn_vfraz ) ) + 1._wp ) * 0.5_wp * rn_maxfraz ! -- new ice thickness (iterative loop) -- ! ht_i_new(ji,jj) = zhicrit + ( zhicrit + 0.1_wp ) & & / ( ( zhicrit + 0.1_wp ) * ( zhicrit + 0.1_wp ) - zhicrit * zhicrit ) * ztwogp * zvrel2 iter = 1 DO WHILE ( iter < 20 ) zf = ( ht_i_new(ji,jj) - zhicrit ) * ( ht_i_new(ji,jj) * ht_i_new(ji,jj) - zhicrit * zhicrit ) - & & ht_i_new(ji,jj) * zhicrit * ztwogp * zvrel2 zfp = ( ht_i_new(ji,jj) - zhicrit ) * ( 3.0_wp * ht_i_new(ji,jj) + zhicrit ) - zhicrit * ztwogp * zvrel2 ht_i_new(ji,jj) = ht_i_new(ji,jj) - zf / MAX( zfp, epsi20 ) iter = iter + 1 END DO ! ! bound ht_i_new (though I don't see why it should be necessary) ht_i_new(ji,jj) = MAX( 0.01_wp, MIN( ht_i_new(ji,jj), hi_max(jpl) ) ) ! ELSE ht_i_new(ji,jj) = 0._wp ENDIF ! END_2D ! ENDIF END SUBROUTINE ice_thd_frazil FUNCTION ice_ent2( ph_old, pe_old ) !!------------------------------------------------------------------- !! *** ROUTINE ice_ent2 *** !! !! ** Purpose : !! This routine computes new vertical grids in the ice, !! and consistently redistributes temperatures. !! Redistribution is made so as to ensure to energy conservation !! !! !! ** Method : linear conservative remapping !! !! ** Steps : 1) cumulative integrals of old enthalpies/thicknesses !! 2) linear remapping on the new layers !! !! ------------ cum0(0) ------------- cum1(0) !! NEW ------------- !! ------------ cum0(1) ==> ------------- !! ... ------------- !! ------------ ------------- !! ------------ cum0(nlay_i+2) ------------- cum1(nlay_i) !! !! !! References : Bitz & Lipscomb, JGR 99; Vancoppenolle et al., GRL, 2005 !!------------------------------------------------------------------- REAL(wp), DIMENSION(0:nlay_i+1), INTENT(in) :: ph_old, pe_old ! old tickness and enthlapy REAL(wp), DIMENSION(1:nlay_i) :: ice_ent2 ! new enthlapies (J.m-3, remapped) ! INTEGER :: ji ! dummy loop indices INTEGER :: jk0, jk1 ! old/new layer indices REAL(wp) :: zswitch ! REAL(wp), DIMENSION(0:nlay_i+2) :: zeh_cum0, zh_cum0 ! old cumulative enthlapies and layers interfaces REAL(wp), DIMENSION(0:nlay_i) :: zeh_cum1, zh_cum1 ! new cumulative enthlapies and layers interfaces REAL(wp) :: zhnew ! new layers thicknesses !!------------------------------------------------------------------- !-------------------------------------------------------------------------- ! 1) Cumulative integral of old enthalpy * thickness and layers interfaces !-------------------------------------------------------------------------- zeh_cum0(0) = 0._wp zh_cum0 (0) = 0._wp DO jk0 = 1, nlay_i+2 zeh_cum0(jk0) = zeh_cum0(jk0-1) + pe_old(jk0-1) zh_cum0 (jk0) = zh_cum0 (jk0-1) + ph_old(jk0-1) END DO !------------------------------------ ! 2) Interpolation on the new layers !------------------------------------ ! new layer thickesses zhnew = SUM( ph_old(0:nlay_i+1) ) * r1_nlay_i ! new layers interfaces zh_cum1(0) = 0._wp DO jk1 = 1, nlay_i zh_cum1(jk1) = zh_cum1(jk1-1) + zhnew END DO zeh_cum1(0:nlay_i) = 0._wp ! new cumulative q*h => linear interpolation DO jk0 = 1, nlay_i+2 DO jk1 = 1, nlay_i-1 IF( zh_cum1(jk1) <= zh_cum0(jk0) .AND. zh_cum1(jk1) > zh_cum0(jk0-1) ) THEN zeh_cum1(jk1) = ( zeh_cum0(jk0-1) * ( zh_cum0(jk0) - zh_cum1(jk1 ) ) + & & zeh_cum0(jk0 ) * ( zh_cum1(jk1) - zh_cum0(jk0-1) ) ) & & / ( zh_cum0(jk0) - zh_cum0(jk0-1) ) ENDIF END DO END DO ! to ensure that total heat content is strictly conserved, set: zeh_cum1(nlay_i) = zeh_cum0(nlay_i+2) ! new enthalpies DO jk1 = 1, nlay_i zswitch = MAX( 0._wp , SIGN( 1._wp , zhnew - epsi20 ) ) ice_ent2(jk1) = zswitch * MAX( 0._wp, zeh_cum1(jk1) - zeh_cum1(jk1-1) ) / MAX( zhnew, epsi20 ) ! max for roundoff error END DO ! --- diag error on heat remapping --- ! ! comment: if input h_old and eh_old are already multiplied by a_i (as in icethd_do), ! then we should not (* a_i) again but not important since this is just to check that remap error is ~0 ! hfx_err_rem_1d(ji) = hfx_err_rem_1d(ji) + a_i_1d(ji) * r1_Dt_ice * & ! & ( SUM( pe_new(ji,1:nlay_i) ) * zhnew(ji) - SUM( eh_old(ji,0:nlay_i+1) ) ) END FUNCTION ice_ent2 SUBROUTINE ice_thd_do_init !!----------------------------------------------------------------------- !! *** ROUTINE ice_thd_do_init *** !! !! ** Purpose : Physical constants and parameters associated with !! ice growth in the leads !! !! ** Method : Read the namthd_do namelist and check the parameters !! called at the first timestep (nit000) !! !! ** input : Namelist namthd_do !!------------------------------------------------------------------- INTEGER :: ios ! Local integer !! NAMELIST/namthd_do/ rn_hinew, ln_frazil, rn_maxfraz, rn_vfraz, rn_Cfraz !!------------------------------------------------------------------- ! READ ( numnam_ice_ref, namthd_do, IOSTAT = ios, ERR = 901) 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namthd_do in reference namelist' ) READ ( numnam_ice_cfg, namthd_do, IOSTAT = ios, ERR = 902 ) 902 IF( ios > 0 ) CALL ctl_nam ( ios , 'namthd_do in configuration namelist' ) IF(lwm) WRITE( numoni, namthd_do ) ! IF(lwp) THEN ! control print WRITE(numout,*) WRITE(numout,*) 'ice_thd_do_init: Ice growth in open water' WRITE(numout,*) '~~~~~~~~~~~~~~~' WRITE(numout,*) ' Namelist namthd_do:' WRITE(numout,*) ' ice thickness for lateral accretion rn_hinew = ', rn_hinew WRITE(numout,*) ' Frazil ice thickness as a function of wind or not ln_frazil = ', ln_frazil WRITE(numout,*) ' Maximum proportion of frazil ice collecting at bottom rn_maxfraz = ', rn_maxfraz WRITE(numout,*) ' Threshold relative drift speed for collection of frazil rn_vfraz = ', rn_vfraz WRITE(numout,*) ' Squeezing coefficient for collection of frazil rn_Cfraz = ', rn_Cfraz ENDIF ! IF ( rn_hinew < rn_himin ) CALL ctl_stop( 'ice_thd_do_init : rn_hinew should be >= rn_himin' ) ! END SUBROUTINE ice_thd_do_init #else !!---------------------------------------------------------------------- !! Default option NO SI3 sea-ice model !!---------------------------------------------------------------------- #endif !!====================================================================== END MODULE icethd_do