diff --git a/latex/NEMO/main/bibliography.bib b/latex/NEMO/main/bibliography.bib index d7a61a53981ad2b9597bdd8b2cb07958d6aa3f8c..c9723ad8748834469e7ff69292f24d5f266cc68c 100644 --- a/latex/NEMO/main/bibliography.bib +++ b/latex/NEMO/main/bibliography.bib @@ -972,6 +972,22 @@ doi = {10.5194/gmd-12-2255-2019} } +@article{ ferreira.marshall.ea_JPO05, + title = "Estimating eddy stresses by fitting dynamics to observations + using a residual-mean ocean circulation model and its + adjoint", + pages = "1891--1910", + journal = "Journal of Physical Oceanography", + volume = "35", + number = "10", + author = "D. Ferreira and J. Marshall and P. Heimbach", + year = "2005", + month = "oct", + publisher = "American Meteorological Society", + issn = "1520-0485", + doi = "10.1175/JPO2785.1" +} + @article{ flather_JPO94, title = "A storm surge prediction model for the northern Bay of Bengal with application to the cyclone disaster in April @@ -2250,6 +2266,37 @@ DOI = {10.5194/gmd-15-1567-2022} doi = "10.1029/1998jc900013" } +@article{ mak.marshall.ea_GRL22, + title = "Acute sensitivity of global ocean circulation and heat + content to eddy energy dissipation timescale", + pages = "e2021GL097259", + journal = "Geophysical Research Letters", + volume = "49", + number = "8", + author = "J. Mak and D. P. Marshall and G. Madec and J. R. Maddison", + year = "2022", + month = "apr", + publisher = "American Geophysical Union (AGU)", + issn = "0094-8276", + doi = "10.1029/2021GL097259" +} + +@article{ mak.avdis.ea_JAMES22, + title = "On constraining the mesoscale eddy energy dissipation + time-scale", + pages = "e2022MS003223", + journal = "Journal of Advances in Modeling Earth Systems", + volume = "14", + number = "11", + author = "J. Mak and A. Avdis and T. W. David and H. S. Lee and Y. Na + and Y. Wang and F. E. Yan", + year = "2022", + month = "nov", + publisher = "American Geophysical Union (AGU)", + issn = "1942-2466", + doi = "10.1029/2022MS003223" +} + @article{ marchesiello.mcwilliams.ea_OM01, title = "Open boundary conditions for long-term integration of regional oceanic models", diff --git a/latex/NEMO/subfiles/chap_LDF.tex b/latex/NEMO/subfiles/chap_LDF.tex index 4d1381c7199179b5a884d200c4189521dd6edebe..6c5663acb306d65c6022e75edf06b4f4fdc5ca87 100644 --- a/latex/NEMO/subfiles/chap_LDF.tex +++ b/latex/NEMO/subfiles/chap_LDF.tex @@ -522,9 +522,53 @@ paramount importance. At the surface, lateral and bottom boundaries, the eddy induced velocity, and thus the advective eddy fluxes of heat and salt, are set to zero. -The value of the eddy induced mixing coefficient and its space variation is controlled in a similar way as for lateral mixing coefficient described in the preceding subsection (\np{nn_aei_ijk_t}{nn\_aei\_ijk\_t}, \np{rn_Ue}{rn\_Ue}, \np{rn_Le}{rn\_Le} namelist parameters). +The value of the eddy induced mixing coefficient and its space variation is controlled +in a similar way as for lateral mixing coefficient described in the preceding subsection +(\np{nn_aei_ijk_t}{nn\_aei\_ijk\_t}, \np{rn_Ue}{rn\_Ue}, \np{rn_Le}{rn\_Le} namelist +parameters). \colorbox{yellow}{CASE \np{nn_aei_ijk_t}{nn\_aei\_ijk\_t} = 21 to be added} +In the case of \np{nn_aei_ijk_t}{nn\_aei\_ijk\_t} = 32, the GEOMETRIC scaling for the +eddy induced velocity coefficient from \citet{mak.marshall.ea_GRL22} +\begin{equation} + \label{eq:ldf_eke_aeiv} + A^{eiv} = \alpha\frac{\hat{E}}{\int sN \; \Gamma(z) \; \mathrm{d}z} \Gamma(z), +\end{equation} +is used, where $\alpha$ (\np{rn_geom}{rn\_geom}) is a non-dimensional factor bounded in +magnitude by 1, $\Gamma(z) = N^2 / N^2_{ref}$ (controlled by \np{rn_SFmin}{rn\_SFmin} and +\np{rn_SFmax}{rn\_SFmax}, switch off by setting them equal to 1) is a vertical structure +function based on \citet{ferreira.marshall.ea_JPO05}, and $s$ is the isopycnal slope +($s^2 = r_{1w}^2 + r_{2w}^2$). The parameterized depth-integrated eddy energy $\hat{E}$ +is calculated from +\begin{equation} + \label{eq:ldf_eke_ene} + \frac{\mathrm{d}\hat{E}}{\mathrm{d}t} + + \underbrace{\nabla_H \cdot \left( \left(\widetilde{u}^z - c\right) \hat{E} \right)}_\textnormal{advection} + = \underbrace{\int A^{eiv} s^2N^2\; \mathrm{d}z}_\textnormal{source} + - \underbrace{\lambda (\hat{E} - \hat{E}_0)}_\textnormal{dissipation} + + \underbrace{\eta_E\nabla^2_H \hat{E}}_\textnormal{diffusion}, +\end{equation} +where $\nabla_H$ is the horiziontal gradient operator, $\tilde{u}^z$ is the +depth-averaged velocity in the $1,2$ direction, $c$ is the long Rossby phase velocity +pointing into the $i$ direction with speed $|c| = \pi^{-1}\int |N|\; \mathrm{d}z$ +via a WKB-type approximation, $\lambda$ (\np{rn_eke_dis}{rn\_eke\_dis}) is a linear +dissipation time-scale in units of days (converted to per second in NEMO), $\hat{E}_0$ +(\np{rn_eke_min}{rn\_eke\_min}) is a stabilizer for oscillations in $\hat{E}$, and +$\eta_E$ (\np{rn_eke_lap}{rn\_eke\_lap}) is a diffusion coefficient. Various options +controlling the calculation of $A^{eiv}$ or $\hat{E}$ may be made through namelist +parameters in \nam{ldf_eke}{ldf\_eke}. + +An option is provided to read in a bespoke spatially varying but constant in +time $\lambda^{-1}$ in units of days (\np{rn_eke_dis}{rn\_eke\_dis} = -20). See +\citet{mak.avdis.ea_JAMES22} and associated data repository for an estimate and some +scripts to regenerate the estimates and/or sample this on various ORCA grids. + +\begin{listing} + \nlst{namldf_eke} + \caption{\forcode{&namldf_eke}} + \label{lst:namldf_eke} +\end{listing} + In case of setting \np[=.true.]{ln_traldf_triad}{ln\_traldf\_triad}, a skew form of the eddy induced advective fluxes is used, which is described in \autoref{apdx:TRIADS}. %% ================================================================================================= diff --git a/namelists b/namelists index 835213cd38ff66d60cf8c2b11a7665e7c4f68a75..62d162f9d27dfae37835d6f1a0e73690a65b84b0 160000 --- a/namelists +++ b/namelists @@ -1 +1 @@ -Subproject commit 835213cd38ff66d60cf8c2b11a7665e7c4f68a75 +Subproject commit 62d162f9d27dfae37835d6f1a0e73690a65b84b0