From ea600b6cf18409728fe642ad893267843abd9553 Mon Sep 17 00:00:00 2001 From: Sibylle Techene <sibylle.techene@locean-ipsl.upmc.fr> Date: Tue, 19 Nov 2024 11:06:54 +0000 Subject: [PATCH] Update file chap_DYN.tex --- latex/NEMO/subfiles/chap_DYN.tex | 39 +++++++++++++++++++++++--------- 1 file changed, 28 insertions(+), 11 deletions(-) diff --git a/latex/NEMO/subfiles/chap_DYN.tex b/latex/NEMO/subfiles/chap_DYN.tex index b0a735d..3240876 100644 --- a/latex/NEMO/subfiles/chap_DYN.tex +++ b/latex/NEMO/subfiles/chap_DYN.tex @@ -124,11 +124,13 @@ taking into account the change of the thickness of the levels: \begin{equation} \label{eq:DYN_wzv} \left\{ + { \begin{aligned} &\left. w \right|_{k_b-1/2} \quad= 0 \qquad \text{where } k_b \text{ is the level just above the sea floor } \\ &\left. w \right|_{k+1/2} = \left. w \right|_{k-1/2} + \left. e_{3t} \right|_{k}\; \left. \chi \right|_k - - \frac{1} {2 \rdt} \left( \left. e_{3t}^{t+1}\right|_{k} - \left. e_{3t}^{t-1}\right|_{k}\right) + - \frac{1} {2 \rdt} \left( { \left. e_{3t}^{t+1}\right|_{k} - \left. e_{3t}^{t-1}\right|_{k} }\right) \end{aligned} + } \right. \end{equation} @@ -417,14 +419,6 @@ It is given by: - \overline u ^{j+1/2}\delta_{j+1/2} \left[ {e_{1u} } \right] \right) \end{aligned*} -\vskip 0.5cm - -\noindent Any of the (\autoref{eq:DYN_vor_ens}), (\autoref{eq:DYN_vor_ene}), (\autoref{eq:DYN_vor_enT} described hereafter ) and (\autoref{eq:DYN_vor_een}) -schemes can be used to -compute the product of the Coriolis parameter and the vorticity. -However, the energy-conserving schemes (\autoref{eq:DYN_vor_een} and \autoref{eq:DYN_vor_enT}) -have exclusively been used to date. - % energy conserving scheme at T-point %% ================================================================================================= \subsubsection[Energy conserving scheme (\forcode{ln_dynvor_enT})]{Energy conserving scheme (\protect\np{ln_dynvor_enT}{ln\_dynvor\_enT})} @@ -445,7 +439,15 @@ It is given by: \end{equation} -This term is evaluated using either a leapfrog scheme or a RK3 scheme. +\noindent Any of the (\autoref{eq:DYN_vor_ens}), (\autoref{eq:DYN_vor_ene}), (\autoref{eq:DYN_vor_enT}) and (\autoref{eq:DYN_vor_een}) +schemes can be used to +compute the product of the Coriolis parameter and the vorticity. +However, the energy-conserving schemes (\autoref{eq:DYN_vor_een} and \autoref{eq:DYN_vor_enT}) +have exclusively been used to date. + +\vskip 0.5cm + +\noindent This term is evaluated using either a leapfrog scheme or a RK3 scheme. In the leapfrog case it is centred in time (\textit{now} velocity). In the RK3 case it is forward in time (\textit{before} velocity) at stage 1, it is is centred in time (\textit{now} velocity) at stage 2 and 3. @@ -454,7 +456,22 @@ it is is centred in time (\textit{now} velocity) at stage 2 and 3. \subsection[Flux form advection term (\textit{dynadv.F90})]{Flux form advection term (\protect\mdl{dynadv})} \label{subsec:DYN_adv_flux} - +The discrete expression of the advection term is given by: +\[ + % \label{eq:DYN_adv} + \left\{ + \begin{aligned} + \frac{1}{e_{1u}\,e_{2u}\,e_{3u}} + \left( \delta_{i+1/2} \left[ \overline{e_{2u}\,e_{3u}\;u }^{i} \ u_t \right] + + & \delta_{j} \left[ \overline{e_{1u}\,e_{3u}\;v }^{i+1/2} \ u_f \right] \right. \\ + \left. + & \delta_{k} \left[ \overline{e_{1w}\,e_{2w}\;w}^{i+1/2} \ u_{uw} \right] \right) \\[10pt] + \frac{1}{e_{1v}\,e_{2v}\,e_{3v}} + \left( \delta_{i} \left[ \overline{e_{2u}\,e_{3u }\;u }^{j+1/2} \ v_f \right] + + & \delta_{j+1/2} \left[ \overline{e_{1u}\,e_{3u }\;v }^{i} \ v_t \right] \right. \\ + \left. + & \delta_{k} \left[ \overline{e_{1w}\,e_{2w}\;w}^{j+1/2} \ v_{vw} \right] \right) \\ + \end{aligned} + \right. +\] Two advection schemes are available: a $2^{nd}$ order centered finite difference scheme, CEN2, -- GitLab