From ea600b6cf18409728fe642ad893267843abd9553 Mon Sep 17 00:00:00 2001
From: Sibylle Techene <sibylle.techene@locean-ipsl.upmc.fr>
Date: Tue, 19 Nov 2024 11:06:54 +0000
Subject: [PATCH] Update file chap_DYN.tex

---
 latex/NEMO/subfiles/chap_DYN.tex | 39 +++++++++++++++++++++++---------
 1 file changed, 28 insertions(+), 11 deletions(-)

diff --git a/latex/NEMO/subfiles/chap_DYN.tex b/latex/NEMO/subfiles/chap_DYN.tex
index b0a735d..3240876 100644
--- a/latex/NEMO/subfiles/chap_DYN.tex
+++ b/latex/NEMO/subfiles/chap_DYN.tex
@@ -124,11 +124,13 @@ taking into account the change of the thickness of the levels:
 \begin{equation}
   \label{eq:DYN_wzv}
   \left\{
+    {
     \begin{aligned}
       &\left. w \right|_{k_b-1/2} \quad= 0    \qquad \text{where } k_b \text{ is the level just above the sea floor }  	\\
       &\left. w \right|_{k+1/2}     = \left. w \right|_{k-1/2}  +  \left. e_{3t} \right|_{k}\;  \left. \chi \right|_k
-      - \frac{1} {2 \rdt} \left(  \left. e_{3t}^{t+1}\right|_{k} - \left. e_{3t}^{t-1}\right|_{k}\right)
+      - \frac{1} {2 \rdt} \left(  { \left. e_{3t}^{t+1}\right|_{k} - \left. e_{3t}^{t-1}\right|_{k} }\right)
     \end{aligned}
+    }
   \right.
 \end{equation}
 
@@ -417,14 +419,6 @@ It is given by:
       -  \overline u ^{j+1/2}\delta_{j+1/2} \left[ {e_{1u} } \right] \right)
 \end{aligned*}
 
-\vskip 0.5cm
-
-\noindent Any of the (\autoref{eq:DYN_vor_ens}), (\autoref{eq:DYN_vor_ene}), (\autoref{eq:DYN_vor_enT} described hereafter ) and (\autoref{eq:DYN_vor_een}) 
-schemes can be used to
-compute the product of the Coriolis parameter and the vorticity.
-However, the energy-conserving schemes (\autoref{eq:DYN_vor_een} and \autoref{eq:DYN_vor_enT})
-have exclusively been used to date.
-
 %                 energy conserving scheme at T-point
 %% =================================================================================================
 \subsubsection[Energy conserving scheme  (\forcode{ln_dynvor_enT})]{Energy conserving scheme (\protect\np{ln_dynvor_enT}{ln\_dynvor\_enT})}
@@ -445,7 +439,15 @@ It is given by:
 \end{equation}
 
 
-This term is evaluated using either a leapfrog scheme or a RK3 scheme.
+\noindent Any of the (\autoref{eq:DYN_vor_ens}), (\autoref{eq:DYN_vor_ene}), (\autoref{eq:DYN_vor_enT}) and (\autoref{eq:DYN_vor_een}) 
+schemes can be used to
+compute the product of the Coriolis parameter and the vorticity.
+However, the energy-conserving schemes (\autoref{eq:DYN_vor_een} and \autoref{eq:DYN_vor_enT})
+have exclusively been used to date.
+
+\vskip 0.5cm
+
+\noindent This term is evaluated using either a leapfrog scheme or a RK3 scheme.
 In the leapfrog case it is centred in time (\textit{now} velocity).
 In the RK3 case it is forward in time (\textit{before} velocity) at stage 1, 
 it is is centred in time (\textit{now} velocity) at stage 2 and 3. 
@@ -454,7 +456,22 @@ it is is centred in time (\textit{now} velocity) at stage 2 and 3.
 \subsection[Flux form advection term (\textit{dynadv.F90})]{Flux form advection term (\protect\mdl{dynadv})}
 \label{subsec:DYN_adv_flux}
 
-
+The discrete expression of the advection term is given by:
+\[
+  % \label{eq:DYN_adv}
+  \left\{
+    \begin{aligned}
+      \frac{1}{e_{1u}\,e_{2u}\,e_{3u}} 
+      \left( \delta_{i+1/2} \left[ \overline{e_{2u}\,e_{3u}\;u }^{i} \ u_t \right]
+        + & \delta_{j} \left[ \overline{e_{1u}\,e_{3u}\;v }^{i+1/2} \ u_f \right] \right.  \\
+       \left. + & \delta_{k} \left[ \overline{e_{1w}\,e_{2w}\;w}^{i+1/2} \ u_{uw} \right] \right)   \\[10pt]
+      \frac{1}{e_{1v}\,e_{2v}\,e_{3v}}
+      \left( \delta_{i} \left[ \overline{e_{2u}\,e_{3u }\;u }^{j+1/2} \ v_f \right]
+        + & \delta_{j+1/2} \left[ \overline{e_{1u}\,e_{3u }\;v }^{i} \ v_t \right] \right.  \\
+       \left. + & \delta_{k} \left[ \overline{e_{1w}\,e_{2w}\;w}^{j+1/2} \ v_{vw} \right] \right) \\
+    \end{aligned}
+  \right.
+\]
 
 Two advection schemes are available:
 a $2^{nd}$ order centered finite difference scheme, CEN2,
-- 
GitLab