Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
No results found
Show changes
Showing
with 763 additions and 1014 deletions
bld::tool::fppkeys key_si3 key_xios key_qco
......@@ -114,7 +114,7 @@
sn_trcsbc(14) = 'dust.orca.new' , -1 , 'dustfer' , .true. , .true. , 'yearly' , '' , '' , ''
sn_trcsbc(23) = 'ndeposition.orca', -12 , 'ndep' , .false. , .true. , 'yearly' , '' , '' , ''
rn_trsfac(5) = 3.774194e-02 ! ( 1E-3 / 31. * 117 )
rn_trsfac(7) = 9.572954e-03 ! ( 8.8 / 28.1 )
rn_trsfac(7) = 9.572954e-03 ! ( 0.269 / 28.1 )
rn_trsfac(14) = 6.2667860e-04 ! ( 0.035 / 55.85 )
rn_trsfac(23) = 5.2232143e-01 ! ( From kgN m-2 s-1 to molC l-1 ====> zfact = 7.3125/14 )
rn_sbc_time = 1. ! Time scaling factor for SBC and CBC data (seconds in a day)
......
......@@ -114,7 +114,7 @@
sn_trcsbc(14) = 'dust.orca.new' , -1 , 'dustfer' , .true. , .true. , 'yearly' , '' , '' , ''
sn_trcsbc(23) = 'ndeposition.orca', -12 , 'ndep' , .false. , .true. , 'yearly' , '' , '' , ''
rn_trsfac(5) = 3.774194e-02 ! ( 1E-3 / 31. * 117 )
rn_trsfac(7) = 9.572954e-03 ! ( 8.8 / 28.1 )
rn_trsfac(7) = 9.572954e-03 ! ( 0.269 / 28.1 )
rn_trsfac(14) = 6.2667860e-04 ! ( 0.035 / 55.85 )
rn_trsfac(23) = 5.2232143e-01 ! ( From kgN m-2 s-1 to molC l-1 ====> zfact = 7.3125/14 )
rn_sbc_time = 1. ! Time scaling factor for SBC and CBC data (seconds in a day)
......
********************************
Run the Reference configurations
********************************
.. todo::
Lack of illustrations for ref. cfgs, and more generally in the guide.
NEMO is distributed with a set of reference configurations allowing both
the user to set up his own first applications and
the developer to test/validate his NEMO developments (using SETTE package).
.. contents::
:local:
:depth: 1
.. attention::
Concerning the configurations,
the NEMO System Team is only in charge of the so-called reference configurations described below.
.. hint::
Configurations developed by external research projects or initiatives that
make use of NEMO are welcome to be publicized through the website by
filling up the form :website:`to add an associated project<projects/add>`.
How to compile an experiment from a reference configuration
===========================================================
To compile the ORCA2_ICE_PISCES_ reference configuration using :file:`makenemo`,
one should use the following, by selecting among available architecture file or
providing a user defined one:
.. code-block:: console
$ ./makenemo -r 'ORCA2_ICE_PISCES' -m 'my_arch' -j '4'
A new ``EXP00`` folder will be created within the selected reference configurations,
namely ``./cfgs/ORCA2_ICE_PISCES/EXP00``.
It will be necessary to uncompress the archives listed in the above table for
the given reference configuration that includes input & forcing files.
Then it will be possible to launch the execution of the model through a runscript
(opportunely adapted to the user system).
List of Configurations
======================
All forcing files listed below in the table are available from |DOI data|_
=================== === === === === === ==================================
Configuration Component(s) Archives (input & forcing files)
------------------- ------------------- ----------------------------------
Name O S T P A
=================== === === === === === ==================================
AGRIF_DEMO_ X X X AGRIF_DEMO_v4.0.tar,
ORCA2_ICE_v4.0.tar
AMM12_ X AMM12_v4.0.tar
C1D_PAPA_ X INPUTS_C1D_PAPA_v4.0.tar
GYRE_BFM_ X X *none*
GYRE_PISCES_ X X X *none*
ORCA2_ICE_PISCES_ X X X X ORCA2_ICE_v4.0.tar,
INPUTS_PISCES_v4.0.tar
ORCA2_OFF_PISCES_ X X ORCA2_OFF_v4.0.tar,
INPUTS_PISCES_v4.0.tar
ORCA2_OFF_TRC_ X ORCA2_OFF_v4.0.tar
ORCA2_SAS_ICE_ X ORCA2_ICE_v4.0.tar,
INPUTS_SAS_v4.0.tar
SPITZ12_ X X SPITZ12_v4.0.tar
=================== === === === === === ==================================
.. admonition:: Legend for component combination
O for OCE, S for SI\ :sup:`3`, T for TOP, P for PISCES and A for AGRIF
AGRIF_DEMO
----------
``AGRIF_DEMO`` is based on the ``ORCA2_ICE_PISCES`` global configuration at 2° of resolution with
the inclusion of 3 online nested grids to demonstrate the overall capabilities of AGRIF in
a realistic context (including the nesting of sea ice models).
The configuration includes a 1:1 grid in the Pacific and two successively nested grids with
odd and even refinement ratios over the Arctic ocean,
with the finest grid spanning the whole Svalbard archipelago that is of
particular interest to test sea ice coupling.
.. image:: _static/AGRIF_DEMO_no_cap.jpg
:scale: 66%
:align: center
The 1:1 grid can be used alone as a benchmark to check that
the model solution is not corrupted by grid exchanges.
Note that since grids interact only at the baroclinic time level,
numerically exact results can not be achieved in the 1:1 case.
Perfect reproducibility is obtained only by switching to a fully explicit setup instead of
a split explicit free surface scheme.
AMM12
-----
``AMM12`` stands for *Atlantic Margin Model at 12 km* that is
a regional configuration covering the Northwest European Shelf domain on
a regular horizontal grid of ~12 km of resolution (see :cite:`ODEA2012`).
.. image:: _static/AMM_domain.png
:align: center
This configuration allows to tests several features of NEMO specifically addressed to the shelf seas.
In particular, ``AMM12`` accounts for vertical s-coordinates system, GLS turbulence scheme,
tidal lateral boundary conditions using a flather scheme (see more in ``BDY``).
Boundaries may be completely omitted by setting ``ln_bdy = .false.`` in ``nambdy``.
Sample surface fluxes, river forcing and an initial restart file are included to test a realistic model run
(``AMM12_v4.0.tar``).
Note that, the Baltic boundary is included within the river input file and is specified as a river source,
but unlike ordinary river points the Baltic inputs also include salinity and temperature data.
C1D_PAPA
--------
.. figure:: _static/Papa2015.jpg
:height: 225px
:align: left
``C1D_PAPA`` is a 1D configuration for the `PAPA station`_ located in
the northern-eastern Pacific Ocean at 50.1°N, 144.9°W.
See :gmd:`Reffray et al. (2015) <8/69/2015>` for the description of
its physical and numerical turbulent-mixing behaviour.
| The water column setup, called NEMO1D, is activated by
setting ``ln_c1d = .true.`` in ``namdom`` and
has a horizontal domain of 1x1 grid point.
| This reference configuration uses 75 vertical levels grid (1m at the surface),
GLS turbulence scheme with K-epsilon closure and the NCAR bulk formulae.
Data provided with ``INPUTS_C1D_PAPA_v4.2.tar`` file account for:
- :file:`forcing_PAPASTATION_1h_y201[0-1].nc`:
ECMWF operational analysis atmospheric forcing rescaled to 1h
(with long and short waves flux correction) for years 2010 and 2011
- :file:`init_PAPASTATION_m06d15.nc`: Initial Conditions from
observed data and Levitus 2009 climatology
- :file:`chlorophyll_PAPASTATION.nc`: surface chlorophyll file from Seawifs data
GYRE_BFM
--------
``GYRE_BFM`` shares the same physical setup of GYRE_PISCES_,
but NEMO is coupled with the `BFM`_ biogeochemical model as described in ``./cfgs/GYRE_BFM/README``.
GYRE_PISCES
-----------
``GYRE_PISCES`` is an idealized configuration representing a Northern hemisphere double gyres system,
in the Beta-plane approximation with a regular 1° horizontal resolution and 31 vertical levels,
with PISCES BGC model :cite:`gmd-8-2465-2015`.
Analytical forcing for heat, freshwater and wind-stress fields are applied.
This configuration acts also as demonstrator of the **user defined setup**
(``ln_read_cfg = .false.``) and grid setting are handled through
the ``&namusr_def`` controls in :file:`namelist_cfg`:
.. literalinclude:: ../../../cfgs/GYRE_PISCES/EXPREF/namelist_cfg
:language: fortran
:lines: 35-41
Note that, the default grid size is 30x20 grid points (with ``nn_GYRE = 1``) and
vertical levels are set by ``jpkglo``.
The specific code changes can be inspected in :file:`./src/OCE/USR`.
.. rubric:: Running GYRE as a benchmark
| This simple configuration can be used as a benchmark since it is easy to increase resolution,
with the drawback of getting results that have a very limited physical meaning.
| GYRE grid resolution can be increased at runtime by setting a different value of ``nn_GYRE``
(integer multiplier scaling factor), as described in the following table:
=========== ============ ============ ============ ===============
``nn_GYRE`` ``jpiglo`` ``jpjglo`` ``jpkglo`` Equivalent to
=========== ============ ============ ============ ===============
1 30 20 31 GYRE 1°
25 750 500 101 ORCA 1/2°
50 1500 1000 101 ORCA 1/4°
150 4500 3000 101 ORCA 1/12°
200 6000 4000 101 ORCA 1/16°
=========== ============ ============ ============ ===============
| Note that, it is necessary to set ``ln_bench = .true.`` in ``&namusr_def`` to
avoid problems in the physics computation and that
the model timestep should be adequately rescaled.
| For example if ``nn_GYRE = 150``, equivalent to an ORCA 1/12° grid,
the timestep ``rn_rdt`` should be set to 1200 seconds
Differently from previous versions of NEMO, the code uses by default the time-splitting scheme and
internally computes the number of sub-steps.
ORCA2_ICE_PISCES
----------------
``ORCA2_ICE_PISCES`` is a reference configuration for the global ocean with
a 2°x2° curvilinear horizontal mesh and 31 vertical levels,
distributed using z-coordinate system and with 10 levels in the top 100m.
ORCA is the generic name given to global ocean Mercator mesh,
(i.e. variation of meridian scale factor as cosinus of the latitude),
with two poles in the northern hemisphere so that
the ratio of anisotropy is nearly one everywhere
This configuration uses the three components
- |OCE|, the ocean dynamical core
- |ICE|, the thermodynamic-dynamic sea ice model.
- |MBG|, passive tracer transport module and PISCES BGC model :cite:`gmd-8-2465-2015`
All components share the same grid.
The model is forced with CORE-II normal year atmospheric forcing and
it uses the NCAR bulk formulae.
.. rubric:: Ocean Physics
:horizontal diffusion on momentum:
the eddy viscosity coefficient depends on the geographical position.
It is taken as 40000 m\ :sup:`2`/s, reduced in the equator regions (2000 m\ :sup:`2`/s)
excepted near the western boundaries.
:isopycnal diffusion on tracers:
the diffusion acts along the isopycnal surfaces (neutral surface) with
an eddy diffusivity coefficient of 2000 m\ :sup:`2`/s.
:Eddy induced velocity parametrization:
With a coefficient that depends on the growth rate of baroclinic instabilities
(it usually varies from 15 m\ :sup:`2`/s to 3000 m\ :sup:`2`/s).
:lateral boundary conditions:
Zero fluxes of heat and salt and no-slip conditions are applied through lateral solid boundaries.
:bottom boundary condition:
Zero fluxes of heat and salt are applied through the ocean bottom.
The Beckmann [19XX] simple bottom boundary layer parameterization is applied along
continental slopes.
A linear friction is applied on momentum.
:convection:
The vertical eddy viscosity and diffusivity coefficients are increased to 1 m\ :sup:`2`/s in
case of static instability.
:time step: is 5400sec (1h30') so that there is 16 time steps in one day.
ORCA2_OFF_PISCES
----------------
``ORCA2_OFF_PISCES`` shares the same general offline configuration of ``ORCA2_ICE_TRC``,
but only PISCES model is an active component of TOP.
ORCA2_OFF_TRC
-------------
| ``ORCA2_OFF_TRC`` is based on the ORCA2 global ocean configuration
(see ORCA2_ICE_PISCES_ for general description) along with
the tracer passive transport module (TOP),
but dynamical fields are pre-calculated and read with specific time frequency.
| This enables for an offline coupling of TOP components,
here specifically inorganic carbon compounds (CFC11, CFC12, SF6, C14) and water age module (age).
See :file:`namelist_top_cfg` to inspect the selection of
each component with the dedicated logical keys.
Pre-calculated dynamical fields are provided to NEMO using
the namelist ``&namdta_dyn`` in :file:`namelist_cfg`,
in this case with a 5 days frequency (120 hours):
.. literalinclude:: ../../namelists/namdta_dyn
:language: fortran
Input dynamical fields for this configuration (:file:`ORCA2_OFF_v4.0.tar`) comes from
a 2000 years long climatological simulation of ORCA2_ICE using ERA40 atmospheric forcing.
| Note that,
this configuration default uses linear free surface (``ln_linssh = .true.``) assuming that
model mesh is not varying in time and
it includes the bottom boundary layer parameterization (``ln_trabbl = .true.``) that
requires the provision of BBL coefficients through ``sn_ubl`` and ``sn_vbl`` fields.
| It is also possible to activate PISCES model (see ``ORCA2_OFF_PISCES``) or
a user defined set of tracers and source-sink terms with ``ln_my_trc = .true.``
(and adaptation of ``./src/TOP/MY_TRC`` routines).
In addition, the offline module (OFF) allows for the provision of further fields:
1. **River runoff** can be provided to TOP components by setting ``ln_dynrnf = .true.`` and
by including an input datastream similarly to the following:
.. code-block:: fortran
sn_rnf = 'dyna_grid_T', 120, 'sorunoff' , .true., .true., 'yearly', '', '', ''
2. **VVL dynamical fields**, in the case input data were produced by a dyamical core using
variable volume (``ln_linssh = .false.``)
it is necessary to provide also diverce and E-P at before timestep by
including input datastreams similarly to the following
.. code-block:: fortran
sn_div = 'dyna_grid_T', 120, 'e3t' , .true., .true., 'yearly', '', '', ''
sn_empb = 'dyna_grid_T', 120, 'sowaflupb', .true., .true., 'yearly', '', '', ''
More details can be found by inspecting the offline data manager in
the routine :file:`./src/OFF/dtadyn.F90`.
ORCA2_SAS_ICE
-------------
| ORCA2_SAS_ICE is a demonstrator of the Stand-Alone Surface (SAS) module and
it relies on ORCA2 global ocean configuration (see ORCA2_ICE_PISCES_ for general description).
| The standalone surface module allows surface elements such as sea-ice, iceberg drift, and
surface fluxes to be run using prescribed model state fields.
It can profitably be used to compare different bulk formulae or
adjust the parameters of a given bulk formula.
More informations about SAS can be found in :doc:`NEMO manual <cite>`.
SPITZ12
-------
``SPITZ12`` is a regional configuration around the Svalbard archipelago
at 1/12° of horizontal resolution and 75 vertical levels.
See :gmd:`Rousset et al. (2015) <8/2991/2015>` for more details.
This configuration references to year 2002,
with atmospheric forcing provided every 2 hours using NCAR bulk formulae,
while lateral boundary conditions for dynamical fields have 3 days time frequency.
.. rubric:: References
.. bibliography:: cfgs.bib
:all:
:style: unsrt
:labelprefix: C
Simple style rules for namelists
--------------------------------
NEMO reference namelists should adhere to the following simple style rules:
1. Comments outside a namelist block start with !! in column 1
2. Each namelist block starts with 3 lines of the form:
!-----------------------------------------------------------------------
&namblockname ! short description of block
!-----------------------------------------------------------------------
with all ! and & 's starting in column 1
3. The closing / for each namelist block is in column 1
4. Comments within namelist blocks never start with !- . Use ! followed
by space or != etc.
These conventions make it possible to construct empty configuration namelists.
For example, a namelist_cfg template can be produced from namelist_ref with
the following grep command; e.g.:
grep -E '^!-|^&|^/' namelist_ref > namelist_cfg.template
head namelist_cfg.template
!-----------------------------------------------------------------------
&namrun ! parameters of the run
!-----------------------------------------------------------------------
/
!-----------------------------------------------------------------------
&namcfg ! parameters of the configuration
!-----------------------------------------------------------------------
/
!-----------------------------------------------------------------------
&namdom ! time and space domain
!-----------------------------------------------------------------------
/
.
.
If all configuration namelists are produced and maintained using this
strategy then standard, side-by-side comaparators, such as vimdiff or xxdiff,
can be used to compare and transfer lines from the reference namelist to a
configuration namelist when setting up a new configuration.
Tips and tricks
---------------
1. The following bash function is useful when checking which namelist blocks
are in active use in a configuration namelist:
function list_used_nl(){ grep -n -E '^&|^/' "$1" | sed -e 's/:/ /' \
| awk ' BEGIN { x = 0 } \
{if ( NR % 2 == 0 && $1 - x > 2 ) printf("%3d %s\n", $1 - x , n) ; \
else x = $1; n = $2}' \
| sort -k 2;}
which (assuming the namelist adheres to the conventions) will list the number
of entries in each non-empty namelist block. The list is sorted on the block
name to ease comparisons. For example:
list_used_nl ORCA2_LIM3_PISCES/EXP00/namelist_cfg
1 &nambbc
5 &nambbl
30 &namberg
10 &namcfg
4 &namctl
3 &namdom
1 &namdrg
5 &namdyn_adv
1 &namdyn_hpg
22 &namdyn_ldf
1 &namdyn_spg
5 &namdyn_vor
3 &nameos
1 &namhsb
4 &namrun
1 &namsbc
1 &namsbc_blk
3 &namtra_adv
28 &namtra_ldf
10 &namtra_ldfeiv
25 &namzdf
3 &namzdf_iwm
2. vimdiff can give garish colours in some terminals. Usually this is because
vim assumes, incorrectly, that the terminal only supports 8 colours. Try forcing
256 colours with:
:set t_Co=256
to produce more pastel shades (add this to ~/.vimrc if successful).
3. Switching between vsplit panes in vim is a multi-key sequence. The tool is
much easier to use if the sequence is mapped to a spare key. Here I use the
§ and ± key on my Mac keyboard (add to ~/.vimrc):
map § ^Wl
map ± ^Wh
4. With easy switching between panes, constructing namelists in vimdiff just
requires the following commands in addition to normal editing:
]c - Go to next block of the diff
dp - Push version of the block under cursor into the other pane
do - Pull version of the block under cursor from the other pane
***********
Diagnostics
***********
.. todo::
.. contents::
:local:
Output of diagnostics in NEMO is usually done using XIOS.
This is an efficient way of writing diagnostics because
the time averaging, file writing and even some simple arithmetic or regridding is carried out in
parallel to the NEMO model run.
This page gives a basic introduction to using XIOS with NEMO.
Much more information is available from the :xios:`XIOS homepage<>` above and from the NEMO manual.
Use of XIOS for diagnostics is activated using the pre-compiler key ``key_xios``.
Extracting and installing XIOS
==============================
1. Install the NetCDF4 library.
If you want to use single file output you will need to compile the HDF & NetCDF libraries to
allow parallel IO.
2. Download the version of XIOS that you wish to use.
The recommended version is now XIOS 2.5:
.. code-block:: console
$ svn co http://forge.ipsl.jussieu.fr/ioserver/svn/XIOS/branchs/xios-2.5
and follow the instructions in :xios:`XIOS documentation <wiki/documentation>` to compile it.
If you find problems at this stage, support can be found by subscribing to
the :xios:`XIOS mailing list <../mailman/listinfo.cgi/xios-users>` and sending a mail message to it.
XIOS Configuration files
------------------------
XIOS is controlled using XML input files that should be copied to
your model run directory before running the model.
Examples of these files can be found in the reference configurations (:file:`./cfgs`).
The XIOS executable expects to find a file called :file:`iodef.xml` in the model run directory.
In NEMO we have made the decision to use include statements in the :file:`iodef.xml` file to include:
- :file:`field_def_nemo-oce.xml` (for physics),
- :file:`field_def_nemo-ice.xml` (for ice),
- :file:`field_def_nemo-pisces.xml` (for biogeochemistry) and
- :file:`domain_def.xml` from the :file:`./cfgs/SHARED` directory.
Most users will not need to modify :file:`domain_def.xml` or :file:`field_def_nemo-???.xml` unless
they want to add new diagnostics to the NEMO code.
The definition of the output files is organized into separate :file:`file_definition.xml` files which
are included in the :file:`iodef.xml` file.
Modes
=====
Detached Mode
-------------
In detached mode the XIOS executable is executed on separate cores from the NEMO model.
This is the recommended method for using XIOS for realistic model runs.
To use this mode set ``using_server`` to ``true`` at the bottom of the :file:`iodef.xml` file:
.. code-block:: xml
<variable id="using_server" type="boolean">true</variable>
Make sure there is a copy (or link to) your XIOS executable in the working directory and
in your job submission script allocate processors to XIOS.
Attached Mode
-------------
In attached mode XIOS runs on each of the cores used by NEMO.
This method is less efficient than the detached mode but can be more convenient for testing or
with small configurations.
To activate this mode simply set ``using_server`` to false in the :file:`iodef.xml` file
.. code-block:: xml
<variable id="using_server" type="boolean">false</variable>
and don't allocate any cores to XIOS.
.. note::
Due to the different domain decompositions between XIOS and NEMO,
if the total number of cores is larger than the number of grid points in the ``j`` direction then
the model run will fail.
Adding new diagnostics
======================
If you want to add a NEMO diagnostic to the NEMO code you will need to do the following:
1. Add any necessary code to calculate you new diagnostic in NEMO
2. Send the field to XIOS using ``CALL iom_put( 'field_id', variable )`` where
``field_id`` is a unique id for your new diagnostics and
variable is the fortran variable containing the data.
This should be called at every model timestep regardless of how often you want to output the field.
No time averaging should be done in the model code.
3. If it is computationally expensive to calculate your new diagnostic
you should also use "iom_use" to determine if it is requested in the current model run.
For example,
.. code-block:: fortran
IF iom_use('field_id') THEN
!Some expensive computation
!...
!...
iom_put('field_id', variable)
ENDIF
4. Add a variable definition to the :file:`field_def_nemo-???.xml` file.
5. Add the variable to the :file:`iodef.xml` or :file:`file_definition.xml` file.
......@@ -189,12 +189,14 @@
<domain id="grid_F_inner" long_name="grid F inner"/>
<!-- zonal mean grid -->
<domain_group id="gznl">
<domain id="gznl" long_name="gznl"/>
<domain id="ptr" domain_ref="gznl" >
<zoom_domain id="ptr" ibegin="0000" jbegin="0" ni="1" nj="0000" />
</domain>
</domain_group>
<domain id="gznl" long_name="gznl"/>
<domain id="ptr" domain_ref="gznl" >
<zoom_domain id="ptr" ibegin="0000" jbegin="0" ni="1" nj="0000" />
</domain>
<domain id="znl_T" domain_ref="gznl" > <zoom_domain id="znl_T"/> </domain>
<domain id="znl_W" domain_ref="gznl" > <zoom_domain id="znl_W"/> </domain>
<!-- other grids -->
......
......@@ -50,10 +50,11 @@
<field id="icevpnd" long_name="melt pond volume" standard_name="sea_ice_meltpond_volume" unit="m" />
<field id="icehlid" long_name="melt pond lid depth" standard_name="sea_ice_meltpondlid_depth" unit="m" />
<field id="icevlid" long_name="melt pond lid volume" standard_name="sea_ice_meltpondlid_volume" unit="m" />
<field id="dvpn_mlt" long_name="pond volume tendency due to surface melt" standard_name="sea_ice_pondvolume_tendency_melt" unit="kg/m2/s" />
<field id="dvpn_lid" long_name="pond volume tendency due to exchanges with lid" standard_name="sea_ice_pondvolume_tendency_lids" unit="kg/m2/s" />
<field id="dvpn_rnf" long_name="pond volume tendency due to runoff" standard_name="sea_ice_pondvolume_tendency_runoff" unit="kg/m2/s" />
<field id="dvpn_drn" long_name="pond volume tendency due to drainage" standard_name="sea_ice_pondvolume_tendency_drainage" unit="kg/m2/s" />
<field id="iceepnd" long_name="melt pond effective concentration" standard_name="sea_ice_meltpond_effective_concentration" unit="" />
<field id="dvpn_mlt" long_name="pond volume tendency due to surface melt" standard_name="sea_ice_pondvolume_tendency_melt" unit="cm/d" />
<field id="dvpn_lid" long_name="pond volume tendency due to exchanges with lid" standard_name="sea_ice_pondvolume_tendency_lids" unit="cm/d" />
<field id="dvpn_rnf" long_name="pond volume tendency due to runoff" standard_name="sea_ice_pondvolume_tendency_runoff" unit="cm/d" />
<field id="dvpn_drn" long_name="pond volume tendency due to drainage" standard_name="sea_ice_pondvolume_tendency_drainage" unit="cm/d" />
<!-- heat -->
<field id="icetemp" long_name="Mean ice temperature" unit="degC" detect_missing_value="true" />
......@@ -95,6 +96,10 @@
<field id="yield12" long_name="yield surface tensor component 12" standard_name="yield12" unit="N/m" />
<field id="beta_evp" long_name="Relaxation parameter of ice rheology (beta)" standard_name="relaxation_parameter_of_ice_rheology" unit="" />
<field id="isig1" long_name="1st principal stress component for EVP rhg" unit="" />
<field id="isig2" long_name="2nd principal stress component for EVP rhg" unit="" />
<field id="isig3" long_name="convergence measure for EVP rheology (must be around 1)" unit="" />
<!-- surface heat fluxes -->
<field id="qt_ice" long_name="total heat flux at ice surface" standard_name="surface_downward_heat_flux_in_air" unit="W/m2" />
<field id="qsr_ice" long_name="solar heat flux at ice surface" standard_name="surface_downwelling_shortwave_flux_in_air" unit="W/m2" />
......@@ -189,8 +194,15 @@
<field id="icedrift_heat" long_name="Ice heat drift (conservation check)" unit="W/m2" />
<!-- sbcssm variables -->
<field id="sst_m" unit="degC" />
<field id="sss_m" unit="psu" />
<field id="sst_m_pot" unit="degC" />
<!-- EOS-80 -->
<field id="sss_m_pra" unit="psu" />
<!-- TEOS-10 -->
<field id="sss_m_abs" unit="g/kg" />
<!-- SEOS -->
<field id="sss_m_seos" unit="psu" />
<field id="ssu_m" unit="m/s" />
<field id="ssv_m" unit="m/s" />
<field id="ssh_m" unit="m" />
......@@ -407,9 +419,17 @@
<field field_ref="iceapnd" name="siapnd" />
<field field_ref="icehpnd" name="sihpnd" />
<field field_ref="icevpnd" name="sivpnd" />
<field field_ref="iceepnd" name="siepnd" />
<field field_ref="iceage" name="siage" />
<field field_ref="sst_m" name="sst_m" />
<field field_ref="sss_m" name="sss_m" />
<field id="sst_m_pot" unit="degC" />
<!-- EOS-80 -->
<field id="sss_m_pra" unit="psu" />
<!-- TEOS-10 -->
<field id="sss_m_abs" unit="g/kg" />
<!-- SEOS -->
<field id="sss_m_seos" unit="psu" />
<!-- heat -->
<field field_ref="icetemp" name="sitemp" />
......@@ -435,7 +455,7 @@
<field field_ref="sheastr" name="sheastr" />
<field field_ref="sig1_pnorm" name="sig1_pnorm"/>
<field field_ref="sig2_pnorm" name="sig2_pnorm"/>
<field field_ref="icedlt" name="sidelt" />
<field field_ref="icedlt" name="sidelta" />
<!-- heat fluxes -->
<field field_ref="qt_oce_ai" name="qt_oce_ai" />
......
......@@ -109,19 +109,35 @@ that are available in the tidal-forcing implementation (see
<!-- T grid -->
<field_group id="grid_T" grid_ref="grid_T_2D" >
<field id="e3t" long_name="T-cell thickness" standard_name="cell_thickness" unit="m" grid_ref="grid_T_3D" />
<field id="e3t" long_name="T-cell thickness" standard_name="cell_thickness" unit="m" grid_ref="grid_T_3D" />
<field id="e3ts" long_name="T-cell thickness" field_ref="e3t" standard_name="cell_thickness" unit="m" grid_ref="grid_T_SFC"/>
<field id="e3t_0" long_name="Initial T-cell thickness" standard_name="ref_cell_thickness" unit="m" grid_ref="grid_T_3D" />
<field id="e3tb" long_name="bottom T-cell thickness" standard_name="bottom_cell_thickness" unit="m" grid_ref="grid_T_2D"/>
<field id="e3t_300" field_ref="e3t" grid_ref="grid_T_zoom_300" detect_missing_value="true" />
<field id="e3t_vsum300" field_ref="e3t_300" grid_ref="grid_T_vsum" detect_missing_value="true" />
<field id="masscello" long_name="Sea Water Mass per unit area" standard_name="sea_water_mass_per_unit_area" unit="kg/m2" grid_ref="grid_T_3D"/>
<field id="volcello" long_name="Ocean Volume" standard_name="ocean_volume" unit="m3" grid_ref="grid_T_3D"/>
<field id="volcello" long_name="Ocean Volume" standard_name="ocean_volume" unit="m3" grid_ref="grid_T_3D" />
<field id="toce" long_name="temperature" standard_name="sea_water_potential_temperature" unit="degC" grid_ref="grid_T_3D"/>
<field id="toce_e3t" long_name="temperature (thickness weighted)" unit="degC" grid_ref="grid_T_3D" > toce * e3t </field >
<field id="soce" long_name="salinity" standard_name="sea_water_practical_salinity" unit="1e-3" grid_ref="grid_T_3D"/>
<field id="soce_e3t" long_name="salinity (thickness weighted)" unit="1e-3" grid_ref="grid_T_3D" > soce * e3t </field >
<!-- EOS80 -->
<field id="toce_pot" long_name="potential temperature" standard_name="sea_water_potential_temperature" unit="degC" grid_ref="grid_T_3D"/>
<field id="toce_pot_e3t" long_name="potential temperature (thickness weighted)" unit="degC" grid_ref="grid_T_3D" > toce_pot * e3t </field >
<field id="soce_pra" long_name="practical salinity" standard_name="sea_water_practical_salinity" unit="1e-3" grid_ref="grid_T_3D"/>
<field id="soce_pra_e3t" long_name="practical salinity (thickness weighted)" unit="1e-3" grid_ref="grid_T_3D" > soce_pra * e3t </field >
<!-- TEOS10 -->
<field id="toce_con" long_name="conservative temperature" standard_name="sea_water_conservative_temperature" unit="degC" grid_ref="grid_T_3D"/>
<field id="toce_con_e3t" long_name="conservative temperature (thickness weighted)" unit="degC" grid_ref="grid_T_3D" > toce_con * e3t </field >
<field id="soce_abs" long_name="absolute salinity" standard_name="sea_water_absolute_salinity" unit="g/kg" grid_ref="grid_T_3D"/>
<field id="soce_abs_e3t" long_name="absolute salinity (thickness weighted)" unit="g/kg" grid_ref="grid_T_3D" > soce_abs * e3t </field >
<!-- SEOS -->
<field id="toce_seos" long_name="temperature" standard_name="sea_water_temperature" unit="degC" grid_ref="grid_T_3D"/>
<field id="toce_seos_e3t" long_name="temperature (thickness weighted)" unit="degC" grid_ref="grid_T_3D" > toce_seos * e3t </field >
<field id="soce_seos" long_name="salinity" standard_name="sea_water_salinity" unit="1e-3" grid_ref="grid_T_3D"/>
<field id="soce_seos_e3t" long_name="salinity (thickness weighted)" unit="1e-3" grid_ref="grid_T_3D" > soce_seos * e3t </field >
<field id="toce_e3t_300" field_ref="toce_e3t" unit="degree_C" grid_ref="grid_T_zoom_300" detect_missing_value="true" />
<field id="toce_e3t_vsum300" field_ref="toce_e3t_300" unit="degress_C*m" grid_ref="grid_T_vsum" detect_missing_value="true" />
<field id="toce_vmean300" field_ref="toce_e3t_vsum300" unit="degree_C" grid_ref="grid_T_vsum" detect_missing_value="true" > toce_e3t_vsum300/e3t_vsum300 </field>
......@@ -159,8 +175,72 @@ that are available in the tidal-forcing implementation (see
<field id="sbs" long_name="sea bottom salinity" unit="0.001" grid_ref="grid_T_2D_inner" />
<field id="somint" long_name="vertical integral of salinity times density" standard_name="integral_wrt_depth_of_product_of_density_and_salinity" unit="(kg m2) x (1e-3)" grid_ref="grid_T_2D_inner" />
<field id="taubot" long_name="bottom stress module" unit="N/m2" grid_ref="grid_T_2D_inner" />
<!-- EOS80 -->
<field id="sst_pot" long_name="sea surface potential temperature" standard_name="sea_surface_temperature" unit="degC" />
<field id="sst2_pot" long_name="square of sea surface potential temperature" standard_name="square_of_sea_surface_temperature" unit="degC2" > sst_pot * sst_pot </field >
<field id="sstmax_pot" long_name="max of sea surface potential temperature" field_ref="sst_pot" operation="maximum" />
<field id="sstmin_pot" long_name="min of sea surface potential temperature" field_ref="sst_pot" operation="minimum" />
<field id="sstgrad_pot" long_name="module of potential sst gradient" unit="degC/m" grid_ref="grid_T_2D_inner" />
<field id="sstgrad2_pot" long_name="square of module of potential sst gradient" unit="degC2/m2" grid_ref="grid_T_2D_inner" />
<field id="sbt_pot" long_name="sea bottom potential temperature" unit="degC" grid_ref="grid_T_2D_inner" />
<field id="tosmint_pot" long_name="vertical integral of potential temperature times density" standard_name="integral_wrt_depth_of_product_of_density_and_potential_temperature" unit="(kg m2) degree_C" grid_ref="grid_T_2D_inner" />
<field id="sst_wl_pot" long_name="Delta potential SST of warm layer" unit="degC" />
<field id="sst_cs_pot" long_name="Delta potential SST of cool skin" unit="degC" />
<field id="temp_3m_pot" long_name="potential temperature at 3m" unit="degC" />
<field id="sss_pra" long_name="sea surface practical salinity" standard_name="sea_surface_practical_salinity" unit="1e-3" />
<field id="sss2_pra" long_name="square of sea surface practical salinity" unit="1e-6" > sss_pra * sss_pra </field >
<field id="sssmax_pra" long_name="max of sea surface practical salinity" field_ref="sss_pra" operation="maximum" />
<field id="sssmin_pra" long_name="min of sea surface practical salinity" field_ref="sss_pra" operation="minimum" />
<field id="sbs_pra" long_name="sea bottom practical salinity" unit="0.001" grid_ref="grid_T_2D_inner" />
<field id="somint_pra" long_name="vertical integral of practical salinity times density" standard_name="integral_wrt_depth_of_product_of_density_and_practical_salinity" unit="(kg m2) x (1e-3)" grid_ref="grid_T_2D_inner" />
<!-- TEOS10 -->
<field id="sst_con" long_name="sea surface conservative temperature" standard_name="sea_surface_conservative_temperature" unit="degC" />
<field id="sst2_con" long_name="square of sea surface conservative temperature" standard_name="square_of_sea_surface_temperature" unit="degC2" > sst_con * sst_con </field >
<field id="sstmax_con" long_name="max of sea surface conservative temperature" field_ref="sst_con" operation="maximum" />
<field id="sstmin_con" long_name="min of sea surface conservative temperature" field_ref="sst_con" operation="minimum" />
<field id="sstgrad_con" long_name="module of conservative sst gradient" unit="degC/m" grid_ref="grid_T_2D_inner" />
<field id="sstgrad2_con" long_name="square of module of conservative sst gradient" unit="degC2/m2" grid_ref="grid_T_2D_inner" />
<field id="sbt_con" long_name="sea bottom conservative temperature" unit="degC" grid_ref="grid_T_2D_inner" />
<field id="tosmint_con" long_name="vertical integral of conservative temperature times density" standard_name="integral_wrt_depth_of_product_of_density_and_conservative_temperature" unit="(kg m2) degree_C" grid_ref="grid_T_2D_inner" />
<field id="sst_wl_con" long_name="Delta conservative SST of warm layer" unit="degC" />
<field id="sst_cs_con" long_name="Delta conservative SST of cool skin" unit="degC" />
<field id="temp_3m_con" long_name="conservative temperature at 3m" unit="degC" />
<field id="sss_abs" long_name="sea surface absolute salinity" standard_name="sea_surface_absolute_salinity" unit="g/kg" />
<field id="sss2_abs" long_name="square of sea surface absolute salinity" unit="1e-6" > sss_abs * sss_abs </field >
<field id="sssmax_abs" long_name="max of sea surface absolute salinity" field_ref="sss_abs" operation="maximum" />
<field id="sssmin_abs" long_name="min of sea surface absolute salinity" field_ref="sss_abs" operation="minimum" />
<field id="sbs_abs" long_name="sea bottom absolute salinity" unit="g/kg" grid_ref="grid_T_2D_inner" />
<field id="somint_abs" long_name="vertical integral of absolute salinity times density" standard_name="integral_wrt_depth_of_product_of_density_and_absolute_salinity" unit="(kg m2) x (1e-3)" grid_ref="grid_T_2D_inner" />
<!-- SEOS -->
<field id="sst_seos" long_name="sea surface temperature" standard_name="sea_surface_temperature" unit="degC" />
<field id="sst2_seos" long_name="square of sea surface temperature" standard_name="square_of_sea_surface_temperature" unit="degC2" > sst_seos * sst_seos </field >
<field id="sstmax_seos" long_name="max of sea surface temperature" field_ref="sst_seos" operation="maximum" />
<field id="sstmin_seos" long_name="min of sea surface temperature" field_ref="sst_seos" operation="minimum" />
<field id="sstgrad_seos" long_name="module of sst gradient" unit="degC/m" grid_ref="grid_T_2D_inner" />
<field id="sstgrad2_seos" long_name="square of module of sst gradient" unit="degC2/m2" grid_ref="grid_T_2D_inner" />
<field id="sbt_seos" long_name="sea bottom temperature" unit="degC" grid_ref="grid_T_2D_inner" />
<field id="tosmint_seos" long_name="vertical integral of temperature times density" standard_name="integral_wrt_depth_of_product_of_density_and_temperature" unit="(kg m2) degree_C" grid_ref="grid_T_2D_inner" />
<field id="sst_wl_seos" long_name="Delta SST of warm layer" unit="degC" />
<field id="sst_cs_seos" long_name="Delta SST of cool skin" unit="degC" />
<field id="temp_3m_seos" long_name="temperature at 3m" unit="degC" />
<field id="sss_seos" long_name="sea surface salinity" standard_name="sea_surface_salinity" unit="1e-3" />
<field id="sss2_seos" long_name="square of sea surface salinity" unit="1e-6" > sss_seos * sss_seos </field >
<field id="sssmax_seos" long_name="max of sea surface salinity" field_ref="sss_seos" operation="maximum" />
<field id="sssmin_seos" long_name="min of sea surface salinity" field_ref="sss_seos" operation="minimum" />
<field id="sbs_seos" long_name="sea bottom salinity" unit="0.001" grid_ref="grid_T_2D_inner" />
<field id="somint_seos" long_name="vertical integral of salinity times density" standard_name="integral_wrt_depth_of_product_of_density_and_salinity" unit="(kg m2) x (1e-3)" grid_ref="grid_T_2D_inner" />
<field id="taubot" long_name="bottom stress module" unit="N/m2" grid_ref="grid_T_2D_inner" />
<field id="htau" long_name="htau length scale" unit="m"/>
<!-- Case EOS = TEOS-10 : output potential temperature -->
<field id="toce_pot" long_name="Sea Water Potential Temperature" standard_name="sea_water_potential_temperature" unit="degC" grid_ref="grid_T_3D"/>
<field id="sst_pot" long_name="potential sea surface temperature" standard_name="sea_surface_temperature" unit="degC" />
......@@ -176,16 +256,34 @@ that are available in the tidal-forcing implementation (see
<field id="mldr10_1" long_name="Mixed Layer Depth (dsigma = 0.01 wrt 10m)" standard_name="ocean_mixed_layer_thickness_defined_by_sigma_theta" unit="m" />
<field id="mldr10_1max" long_name="Max of Mixed Layer Depth (dsigma = 0.01 wrt 10m)" field_ref="mldr10_1" operation="maximum" />
<field id="mldr10_1min" long_name="Min of Mixed Layer Depth (dsigma = 0.01 wrt 10m)" field_ref="mldr10_1" operation="minimum" />
<field id="heatc" long_name="Heat content vertically integrated" standard_name="integral_of_sea_water_potential_temperature_wrt_depth_expressed_as_heat_content" unit="J/m2" grid_ref="grid_T_2D_inner" />
<field id="saltc" long_name="Salt content vertically integrated" unit="PSU*kg/m2" grid_ref="grid_T_2D_inner" />
<field id="salt2c" long_name="square of Salt content vertically integrated" unit="PSU2*kg/m2" grid_ref="grid_T_2D_inner" />
<field id="mldzint_1" long_name="Mixed Layer Depth interpolated" standard_name="ocean_mixed_layer_thickness" unit="m" grid_ref="grid_T_2D" />
<field id="mldzint_2" long_name="Mixed Layer Depth interpolated" standard_name="ocean_mixed_layer_thickness" unit="m" grid_ref="grid_T_2D" />
<field id="mldzint_3" long_name="Mixed Layer Depth interpolated" standard_name="ocean_mixed_layer_thickness" unit="m" grid_ref="grid_T_2D" />
<field id="mldzint_4" long_name="Mixed Layer Depth interpolated" standard_name="ocean_mixed_layer_thickness" unit="m" grid_ref="grid_T_2D" />
<field id="mldzint_5" long_name="Mixed Layer Depth interpolated" standard_name="ocean_mixed_layer_thickness" unit="m" grid_ref="grid_T_2D" />
<field id="mldhtc_1" long_name="Mixed Layer Depth integrated heat content" standard_name="integral_of_sea_water_potential_temperature_wrt_depth_expressed_as_heat_content" unit="J/m2" grid_ref="grid_T_2D" />
<field id="mldhtc_2" long_name="Mixed Layer Depth integrated heat content" standard_name="integral_of_sea_water_potential_temperature_wrt_depth_expressed_as_heat_content" unit="J/m2" grid_ref="grid_T_2D" />
<field id="mldhtc_3" long_name="Mixed Layer Depth integrated heat content" standard_name="integral_of_sea_water_potential_temperature_wrt_depth_expressed_as_heat_content" unit="J/m2" grid_ref="grid_T_2D" />
<field id="mldhtc_4" long_name="Mixed Layer Depth integrated heat content" standard_name="integral_of_sea_water_potential_temperature_wrt_depth_expressed_as_heat_content" unit="J/m2" grid_ref="grid_T_2D" />
<field id="mldhtc_5" long_name="Mixed Layer Depth integrated heat content" standard_name="integral_of_sea_water_potential_temperature_wrt_depth_expressed_as_heat_content" unit="J/m2" grid_ref="grid_T_2D" />
<field id="heatc" long_name="Heat content vertically integrated" standard_name="integral_of_sea_water_potential_temperature_wrt_depth_expressed_as_heat_content" unit="J/m2" grid_ref="grid_T_2D_inner" />
<field id="saltc" long_name="Salt content vertically integrated" unit="1e-3.m" grid_ref="grid_T_2D_inner" />
<field id="salt2c" long_name="square of Salt content vertically integrated" unit="1e-6.m2" grid_ref="grid_T_2D_inner" />
<!-- EOS -->
<field id="alpha" long_name="thermal expansion" unit="degC-1" grid_ref="grid_T_3D" />
<field id="beta" long_name="haline contraction" unit="1e3" grid_ref="grid_T_3D" />
<field id="rhop" long_name="potential density (sigma0)" standard_name="sea_water_sigma_theta" unit="kg/m3" grid_ref="grid_T_3D" />
<field id="rhop_e3t" long_name="potential density (sigma0) thickness weighted" standard_name="sea_water_sigma_theta" unit="kg/m3" grid_ref="grid_T_3D"> rhop * e3t </field>
<field id="N_2d" long_name="Depth-mean N" unit="m/s" />
<field id="modslp" long_name="sqrt( slpi^2 + slpj^2 )" unit="1" grid_ref="grid_T_3D" />
<field id="RossRad" long_name="Rossby radius" unit="m" />
<field id="RossRadlim" long_name="Rossby radius (limited)" unit="m" />
<field id="Tclinic_recip" long_name="recip of baroclinic timescale" unit="s-1" />
<field id="RR_GS" long_name="Rossby radius / min(dx,dy)" unit="1" />
<!-- Energy - horizontal divergence -->
<field id="eken" long_name="kinetic energy" standard_name="specific_kinetic_energy_of_sea_water" unit="m2/s2" grid_ref="grid_T_3D" />
<field id="sKE" long_name="surface kinetic energy" standard_name="specific_kinetic_energy_of_sea_water" unit="m2/s2" grid_ref="grid_T_2D_inner" />
<field id="hdiv" long_name="horizontal divergence" unit="s-1" grid_ref="grid_T_3D" />
......@@ -263,6 +361,10 @@ that are available in the tidal-forcing implementation (see
<field id="qhcisf3d_par" long_name="Ice shelf heat content flux of injected water ( from isf to oce )" unit="W/m2" grid_ref="grid_T_3D" />
<field id="qconisf" long_name="Conductive heat flux through the ice shelf ( from isf to oce )" unit="W/m2" />
<field id="qlatisf" long_name="Ice shelf latent heat flux" unit="W/m2" />
<field id="qhcisf" long_name="Ice shelf heat content flux" unit="W/m2" />
<field id="fwfisf" long_name="Ice shelf melting" unit="kg/m2/s" />
<!-- top boundary layer properties -->
<field id="isftfrz_cav" long_name="freezing point temperature at ocean/isf interface" unit="degC" />
<field id="isftfrz_par" long_name="freezing point temperature in the parametrization boundary layer" unit="degC" />
......@@ -431,7 +533,7 @@ that are available in the tidal-forcing implementation (see
<field id="qt" long_name="Net Downward Heat Flux" standard_name="surface_downward_heat_flux_in_sea_water" unit="W/m2" />
<field id="qns" long_name="non solar Downward Heat Flux" unit="W/m2" />
<field id="qsr" long_name="Shortwave Radiation" standard_name="net_downward_shortwave_flux_at_sea_water_surface" unit="W/m2" />
<field id="qsr3d" long_name="Shortwave Radiation 3D distribution" standard_name="downwelling_shortwave_flux_in_sea_water" unit="W/m2" grid_ref="grid_T_3D" />
<field id="qsr3d" long_name="Shortwave Radiation 3D distribution" standard_name="downwelling_shortwave_flux_in_sea_water" unit="W/m2" grid_ref="grid_T_3D_inner" />
<field id="qrp" long_name="Surface Heat Flux: Damping" standard_name="heat_flux_into_sea_water_due_to_newtonian_relaxation" unit="W/m2" />
<field id="qclosea" long_name="closed sea heat content flux" standard_name="closea_heat_content_downward_flux" unit="W/m2" />
<field id="erp" long_name="Surface Water Flux: Damping" standard_name="water_flux_out_of_sea_water_due_to_newtonian_relaxation" unit="kg/m2/s" />
......@@ -526,6 +628,15 @@ that are available in the tidal-forcing implementation (see
<!-- sbcssm variables -->
<field id="sst_m" unit="degC" />
<field id="sss_m" unit="psu" />
<field id="sst_m_pot" unit="degC" />
<!-- EOS-80 -->
<field id="sss_m_pra" unit="psu" />
<!-- TEOS-10 -->
<field id="sss_m_abs" unit="g/kg" />
<!-- SEOS -->
<field id="sss_m_seos" unit="psu" />
<field id="ssu_m" unit="m/s" />
<field id="ssv_m" unit="m/s" />
<field id="ssh_m" unit="m" />
......@@ -597,8 +708,8 @@ that are available in the tidal-forcing implementation (see
<field id="uocetr_vsum_op" long_name="ocean current along i-axis * e3u * e2u summed on the vertical" read_access="true" freq_op="1mo" field_ref="e2u" unit="m3/s"> @uocetr_vsum </field>
<field id="uocetr_vsum_cumul" long_name="ocean current along i-axis * e3u * e2u cumulated from southwest point" freq_offset="_reset_" operation="instant" freq_op="1mo" unit="m3/s" />
<field id="msftbarot" long_name="ocean_barotropic_mass_streamfunction" unit="kg s-1" > uocetr_vsum_cumul * $rho0 </field>
<field id="uoce2_e3u" long_name="ocean current along i-axis squared (thickness weighted)" unit="m3/s2" grid_ref="grid_U_3D" > uoce * uoce * e3u </field>
<field id="ssu" long_name="ocean surface current along i-axis" unit="m/s" />
<field id="sbu" long_name="ocean bottom current along i-axis" unit="m/s" grid_ref="grid_U_2D_inner" />
<field id="ubar" long_name="ocean barotropic current along i-axis" unit="m/s" />
......@@ -659,6 +770,8 @@ that are available in the tidal-forcing implementation (see
<field id="vtau" long_name="Wind Stress along j-axis" standard_name="surface_downward_y_stress" unit="N/m2" />
<field id="voce" long_name="ocean current along j-axis" standard_name="sea_water_y_velocity" unit="m/s" grid_ref="grid_V_3D" />
<field id="voce_e3v" long_name="ocean current along j-axis (thickness weighted)" unit="m/s" grid_ref="grid_V_3D" > voce * e3v </field>
<field id="voce2_e3v" long_name="ocean current along j-axis squared (thickness weighted)" unit="m3/s2" grid_ref="grid_V_3D" > voce * voce * e3v </field>
<field id="ssv" long_name="ocean surface current along j-axis" unit="m/s" />
<field id="sbv" long_name="ocean bottom current along j-axis" unit="m/s" grid_ref="grid_V_2D_inner" />
<field id="vbar" long_name="ocean barotropic current along j-axis" unit="m/s" />
......@@ -743,6 +856,8 @@ that are available in the tidal-forcing implementation (see
<field id="mf_app" long_name="convective area" standard_name="mf_convective_area" unit="%" grid_ref="grid_W_3D" />
<field id="mf_wp" long_name="convective velocity" standard_name="mf_convective_velo" unit="m/s" grid_ref="grid_W_3D" />
<!-- av_tmx: available with ln_zdftmx -->
<field id="av_tmx" long_name="vertical diffusivity due to tidal mixing" unit="m2/s" />
<!-- avt_tide: available with ln_zdfiwm=T -->
<field id="av_ratio" long_name="S over T diffusivity ratio" standard_name="salinity_over_temperature_diffusivity_ratio" unit="1" />
......@@ -765,7 +880,7 @@ that are available in the tidal-forcing implementation (see
<field id="avt_k" long_name="vertical eddy diffusivity from closure schemes" standard_name="ocean_vertical_eddy_diffusivity" unit="m2/s" />
<field id="avm_k" long_name="vertical eddy viscosity from closure schemes" standard_name="ocean_vertical_eddy_viscosity" unit="m2/s" />
<field id="ediss_k" long_name="Kolmogorov energy dissipation (tke scheme)" standard_name="Kolmogorov_energy_dissipation" unit="W/kg" />
<field id="eshear_k" long_name="energy source from vertical shear" standard_name="energy_source_from_shear" unit="W/kg" />
<field id="eshear_k" long_name="energy source from vertical shear" standard_name="energy_source_from_shear" unit="W/kg" grid_ref="grid_W_3D_inner" />
<field id="estrat_k" long_name="energy sink from stratification" standard_name="energy_sink_from_stratification" unit="W/kg" />
</field_group>
......@@ -788,6 +903,31 @@ that are available in the tidal-forcing implementation (see
<!-- f-eddy viscosity coefficients (ldfdyn) -->
<field id="ahmf_2d" long_name=" surface f-eddy viscosity coefficient" unit="m2/s or m4/s" />
<field id="ahmf_3d" long_name=" 3D f-eddy viscosity coefficient" unit="m2/s or m4/s" grid_ref="grid_T_3D"/>
<!-- product fields -->
<field_group id="diaprod">
<field id="ut" long_name="product_of_sea_water_x_velocity_and_potential_temperature" unit="degree_C m/s" grid_ref="grid_U_3D" />
<field id="ut_e3u" long_name="product_of_sea_water_x_velocity_and_potential_temperature * e3u" unit="degree_C m2/s" grid_ref="grid_U_3D" > ut * e3u </field >
<field id="us" long_name="product_of_sea_water_x_velocity_and_salinity" unit="PSU m/s" grid_ref="grid_U_3D" />
<field id="us_e3u" long_name="product_of_sea_water_x_velocity_and_salinity * e3u" unit="PSU m2/s" grid_ref="grid_U_3D" > us * e3u </field >
<field id="urhop" long_name="product_of_sea_water_x_velocity_and_potential_density" unit="(kg/m3).(m/s)" grid_ref="grid_U_3D" />
<field id="urhop_e3u" long_name="product_of_sea_water_x_velocity_and_potential_density * e3u" unit="(kg/m3).(m2/s)" grid_ref="grid_U_3D" > urhop * e3u </field >
<field id="vt" long_name="product_of_sea_water_y_velocity_and_potential_temperature" unit="degree_C m/s" grid_ref="grid_V_3D" />
<field id="vt_e3v" long_name="product_of_sea_water_y_velocity_and_potential_temperature * e3v" unit="degree_C m2/s" grid_ref="grid_V_3D" > vt * e3v </field >
<field id="vs" long_name="product_of_sea_water_y_velocity_and_salinity" unit="PSU m/s" grid_ref="grid_V_3D" />
<field id="vs_e3v" long_name="product_of_sea_water_y_velocity_and_salinity * e3t" unit="PSU m2/s" grid_ref="grid_V_3D" > vs * e3v </field >
<field id="vrhop" long_name="product_of_sea_water_y_velocity_and_potential_density" unit="(kg/m3).(m/s)" grid_ref="grid_V_3D" />
<field id="vrhop_e3v" long_name="product_of_sea_water_y_velocity_and_potential_density * e3t" unit="(kg/m3).(m2/s)" grid_ref="grid_V_3D" > vrhop * e3v </field >
<field id="wt" long_name="product_of_upward_sea_water_velocity_and_potential_temperature" unit="degree_C m/s" grid_ref="grid_W_3D" />
<field id="ws" long_name="product_of_upward_sea_water_velocity_and_salinity" unit="PSU m/s" grid_ref="grid_W_3D" />
<field id="wrhop" long_name="product_of_upward_sea_water_velocity_and_potential_density" unit="(kg/m3).(m/s)" grid_ref="grid_W_3D" />
<field id="uv" long_name="product_of_sea_water_x_velocity_and_sea_water_y_velocity" unit="m2/s2 " grid_ref="grid_T_3D" />
<field id="uw" long_name="product_of_upward_sea_water_velocity_and_sea_water_x_velocity" unit="m2/s2 " grid_ref="grid_W_3D" />
<field id="vw" long_name="product_of_upward_sea_water_velocity_and_sea_water_y_velocity" unit="m2/s2" grid_ref="grid_W_3D" />
</field_group>
<field_group id="scalar" grid_ref="grid_scalar" >
<!-- Need to have a salinity reference climatological file : sali_ref_clim_monthly -->
......@@ -1152,6 +1292,17 @@ that are available in the tidal-forcing implementation (see
<field_group id="mooring" >
<field field_ref="toce" name="thetao" long_name="sea_water_potential_temperature" />
<field field_ref="soce" name="so" long_name="sea_water_salinity" />
<!-- EOS80 -->
<field field_ref="toce_pot" name="thetao_pot" long_name="sea_water_potential_temperature" />
<field field_ref="soce_pra" name="so_pra" long_name="sea_water_practical_salinity" />
<!-- TEOS10 -->
<field field_ref="toce_con" name="thetao_con" long_name="sea_water_conservative_temperature" />
<field field_ref="soce_abs" name="so_con" long_name="sea_water_absolute_salinity" />
<!-- SEOS -->
<field field_ref="toce_seos" name="thetao_seos" long_name="sea_water_temperature" />
<field field_ref="soce_seos" name="so_seos" long_name="sea_water_salinity" />
<field field_ref="uoce" name="uo" long_name="sea_water_x_velocity" />
<field field_ref="voce" name="vo" long_name="sea_water_y_velocity" />
<field field_ref="woce" name="wo" long_name="sea_water_z_velocity" />
......@@ -1162,6 +1313,22 @@ that are available in the tidal-forcing implementation (see
<field field_ref="sst2" name="tossq" long_name="square_of_sea_surface_temperature" />
<field field_ref="sstgrad" name="tosgrad" long_name="module_of_sea_surface_temperature_gradient" />
<field field_ref="sss" name="sos" long_name="sea_surface_salinity" />
<!-- EOS80 -->
<field field_ref="sst_pot" name="tos_pot" long_name="sea_surface_potential_temperature" />
<field field_ref="sst2_pot" name="tossq_pot" long_name="square_of_sea_surface_potential_temperature" />
<field field_ref="sstgrad_pot" name="tosgrad_pot" long_name="module_of_sea_surface_potential_temperature_gradient" />
<field field_ref="sss_pra" name="sos_pra" long_name="sea_surface_absolute_salinity" />
<!-- TEOS10 -->
<field field_ref="sst_con" name="tos_con" long_name="sea_surface_conservative_temperature" />
<field field_ref="sst2_con" name="tossq_con" long_name="square_of_sea_surface_conservative_temperature" /> <field field_ref="sstgrad_con" name="tosgrad_con" long_name="module_of_sea_surface_conservative_temperature_gradient" />
<field field_ref="sss_abs" name="sos_abs" long_name="sea_surface_absolute_salinity" />
<!-- SEOS -->
<field field_ref="sst_seos" name="tos_seos" long_name="sea_surface_temperature" />
<field field_ref="sst2_seos" name="tossq_seos" long_name="square_of_sea_surface_temperature" />
<field field_ref="sstgrad_seos" name="tosgrad_seos" long_name="module_of_sea_surface_temperature_gradient" />
<field field_ref="sss_seos" name="sos_seos" long_name="sea_surface_salinity" />
<field field_ref="ssh" name="zos" long_name="sea_surface_height_above_geoid" />
<field field_ref="empmr" name="wfo" long_name="water_flux_into_sea_water" />
<field field_ref="qsr" name="rsntds" long_name="surface_net_downward_shortwave_flux" />
......@@ -1189,6 +1356,27 @@ that are available in the tidal-forcing implementation (see
<field field_ref="sst" name="tos" long_name="sea_surface_temperature" />
<field field_ref="sst2" name="tossq" long_name="square_of_sea_surface_temperature" />
<field field_ref="sss" name="sos" long_name="sea_surface_salinity" />
<!-- EOS80 -->
<field id="toce_pot" long_name="sea_water_potential_temperature" grid_ref="grid_T_3D" />
<field id="soce_pra" long_name="sea_water_practical_salinity" grid_ref="grid_T_3D" />
<field id="sst_pot" long_name="sea_surface_potential_temperature" grid_ref="grid_T_2D" />
<field id="sst2_pot" long_name="square_of_sea_surface_potential_temperature" grid_ref="grid_T_2D" />
<field id="sss_pra" long_name="sea_surface_practical_salinity" grid_ref="grid_T_2D" />
<!-- TEOS10 -->
<field id="toce_con" long_name="sea_water_conservative_temperature" grid_ref="grid_T_3D" />
<field id="soce_abs" long_name="sea_water_absolute_salinity" grid_ref="grid_T_3D" />
<field id="sst_con" long_name="sea_surface_conservative_temperature" grid_ref="grid_T_2D" unit="degC" />
<field id="sst2_con" long_name="square_of_sea_surface_conservative_temperature" grid_ref="grid_T_2D" />
<field id="sss_abs" long_name="sea_surface_absolute_salinity" grid_ref="grid_T_2D" />
<!-- SEOS -->
<field id="toce_seos" long_name="sea_water_temperature" grid_ref="grid_T_3D" />
<field id="soce_seos" long_name="sea_water_salinity" grid_ref="grid_T_3D" />
<field id="sst_seos" long_name="sea_surface_temperature" grid_ref="grid_T_2D" />
<field id="sst2_seos" long_name="square_of_sea_surface_temperature" grid_ref="grid_T_2D" />
<field id="sss_seos" long_name="sea_surface_salinity" grid_ref="grid_T_2D" />
<field field_ref="rhop" name="sigma0" long_name="potential density" />
<field field_ref="ssh" name="zos" long_name="sea_surface_height_above_geoid" />
<field field_ref="empmr" name="wfo" long_name="water_flux_into_sea_water" />
<field field_ref="qsr" name="rsntds" long_name="surface_net_downward_shortwave_flux" />
......@@ -1222,6 +1410,30 @@ that are available in the tidal-forcing implementation (see
<!-- TMB diagnostic output -->
<field_group id="1h_grid_T_tmb" grid_ref="grid_T_2D" operation="instant">
<!-- EOS80 -->
<field id="top_temp_pot" name="votemper_top_pot" unit="degC" />
<field id="mid_temp_pot" name="votemper_mid_pot" unit="degC" />
<field id="bot_temp_pot" name="votemper_bot_pot" unit="degC" />
<field id="top_sal_pra" name="vosaline_top_pra" unit="psu" />
<field id="mid_sal_pra" name="vosaline_mid_pra" unit="psu" />
<field id="bot_sal_pra" name="vosaline_bot_pra" unit="psu" />
<!-- TEOS10 -->
<field id="top_temp_con" name="votemper_top_con" unit="degC" />
<field id="mid_temp_con" name="votemper_mid_con" unit="degC" />
<field id="bot_temp_con" name="votemper_bot_con" unit="degC" />
<field id="top_sal_abs" name="vosaline_top_abs" unit="g/kg" />
<field id="mid_sal_abs" name="vosaline_mid_abs" unit="g/kg" />
<field id="bot_sal_abs" name="vosaline_bot_abs" unit="g/kg" />
<!-- SEOS -->
<field id="top_temp_seos" name="votemper_top_seos" unit="degC" />
<field id="mid_temp_seos" name="votemper_mid_seos" unit="degC" />
<field id="bot_temp_seos" name="votemper_bot_seos" unit="degC" />
<field id="top_sal_seos" name="vosaline_top_seos" unit="psu" />
<field id="mid_sal_seos" name="vosaline_mid_seos" unit="psu" />
<field id="bot_sal_seos" name="vosaline_bot_seos" unit="psu" />
<field id="top_temp" name="votemper_top" unit="degC" />
<field id="mid_temp" name="votemper_mid" unit="degC" />
<field id="bot_temp" name="votemper_bot" unit="degC" />
......@@ -1251,6 +1463,16 @@ that are available in the tidal-forcing implementation (see
<field id="tempis25h" name="insitu temperature 25h mean" unit="degC" />
<field id="salin25h" name="salinity 25h mean" unit="psu" />
<field id="ssh25h" name="sea surface height 25h mean" grid_ref="grid_T_2D_inner" unit="m" />
<!-- EOS80 -->
<field id="temper25h_pot" name="potential temperature 25h mean" unit="degC" />
<field id="salin25h_pra" name="practical salinity 25h mean" unit="psu" />
<!-- TEOS10 -->
<field id="temper25h_con" name="conservative temperature 25h mean" unit="degC" />
<field id="salin25h_abs" name="absolute salinity 25h mean" unit="g/kg" />
<!-- SEOS -->
<field id="temper25h_seos" name="temperature 25h mean" unit="degC" />
<field id="salin25h_seos" name="salinity 25h mean" unit="psu" />
</field_group>
<field_group id="25h_grid_U" grid_ref="grid_U_3D_inner" operation="instant" >
......
......@@ -183,6 +183,9 @@
<field id="PPNEWN" long_name="New Primary production of nanophyto" unit="molC/m3/s" grid_ref="grid_T_3D" />
<field id="PPNEWP" long_name="New Primary production of picophyto" unit="molC/m3/s" grid_ref="grid_T_3D" />
<field id="PPNEWD" long_name="New Primary production of diatoms" unit="molC/m3/s" grid_ref="grid_T_3D" />
<field id="GPPHYN" long_name="Gross Primary production of nanophyto" unit="molC/m3/s" grid_ref="grid_T_3D" />
<field id="GPPHYP" long_name="Gross Primary production of picophyto" unit="molC/m3/s" grid_ref="grid_T_3D" />
<field id="GPPHYD" long_name="Gross Primary production of diatoms" unit="molC/m3/s" grid_ref="grid_T_3D" />
<field id="PBSi" long_name="Primary production of Si diatoms" unit="molC/m3/s" grid_ref="grid_T_3D" />
<field id="PFeN" long_name="Primary production of nano iron" unit="molC/m3/s" grid_ref="grid_T_3D" />
<field id="PFeP" long_name="Primary production of pico iron" unit="molC/m3/s" grid_ref="grid_T_3D" />
......
......@@ -418,5 +418,43 @@
<duplicate_scalar />
</axis>
</grid>
<grid id="grid_EqT" >
<domain id="EqT" />
</grid>
<!-- -->
<grid id="gznl_T_2D">
<domain id="ptr" />
</grid>
<!-- -->
<grid id="gznl_T_3D">
<domain id="ptr" />
<axis axis_ref="deptht" />
</grid>
<!-- -->
<grid id="gznl_W_2D">
<domain id="ptr" />
</grid>
<!-- -->
<grid id="gznl_W_3D">
<domain id="ptr" />
<axis axis_ref="depthw" />
</grid>
<grid id="vert_sum">
<domain id="grid_T"/>
<scalar>
<reduce_axis operation="sum" />
</scalar>
</grid>
<grid id="zoom_300">
<domain id="grid_T" />
<axis axis_ref="deptht300"/>
</grid>
<grid id="zoom_300_sum">
<domain id="grid_T" />
<scalar>
<reduce_axis operation="sum" />
</scalar>
</grid>
</grid_definition>
......@@ -24,10 +24,10 @@
jpl = 5 ! number of ice categories
nlay_i = 2 ! number of ice layers
nlay_s = 2 ! number of snow layers
ln_virtual_itd = .false. ! virtual ITD mono-category parameterization (jpl=1 only)
! i.e. enhanced thermal conductivity & virtual thin ice melting
ln_icedyn = .true. ! ice dynamics (T) or not (F)
ln_icethd = .true. ! ice thermo (T) or not (F)
ln_virtual_itd = .false., ! virtual ITD mono-category parameterization (jpl=1 only)
! i.e. enhan.false.ced thermal conductivity & virtual thin ice melting
ln_icedyn = .true., ! ice dynamics (T) or not (F)
ln_icethd = .true., ! ice thermo (T) or not (F)
rn_amax_n = 0.997 ! maximum tolerated ice concentration NH
rn_amax_s = 0.997 ! maximum tolerated ice concentration SH
cn_icerst_in = "restart_ice" ! suffix of ice restart name (input)
......@@ -38,9 +38,9 @@
!------------------------------------------------------------------------------
&namitd ! Ice discretization
!------------------------------------------------------------------------------
ln_cat_hfn = .true. ! ice categories are defined by a function following rn_himean**(-0.05)
ln_cat_hfn = .true., ! ice categories are defined by a function following rn_himean**(-0.05)
rn_himean = 2.0 ! expected domain-average ice thickness (m)
ln_cat_usr = .false. ! ice categories are defined by rn_catbnd below (m)
ln_cat_usr = .false., ! ice categories are defined by rn_catbnd below (m)
rn_catbnd = 0.,0.45,1.1,2.1,3.7,6.0
rn_himin = 0.1 ! minimum ice thickness (m) allowed
rn_himax = 99.0 ! maximum ice thickness (m) allowed
......@@ -48,14 +48,14 @@
!------------------------------------------------------------------------------
&namdyn ! Ice dynamics
!------------------------------------------------------------------------------
ln_dynALL = .true. ! dyn.: full ice dynamics (rheology + advection + ridging/rafting + correction)
ln_dynRHGADV = .false. ! dyn.: no ridge/raft & no corrections (rheology + advection)
ln_dynADV1D = .false. ! dyn.: only advection 1D (Schar & Smolarkiewicz 1996 test case)
ln_dynADV2D = .false. ! dyn.: only advection 2D w prescribed vel.(rn_uvice + advection)
ln_dynALL = .true., ! dyn.: full ice dynamics (rheology + advection + ridging/rafting + correction)
ln_dynRHGADV = .false., ! dyn.: no ridge/raft & no corrections (rheology + advection)
ln_dynADV1D = .false., ! dyn.: only advection 1D (Schar & Smolarkiewicz 1996 test case)
ln_dynADV2D = .false., ! dyn.: only advection 2D w prescribed vel.(rn_uvice + advection)
rn_uice = 0.5 ! prescribed ice u-velocity
rn_vice = 0.5 ! prescribed ice v-velocity
rn_ishlat = 2. ! lbc : free slip (0) ; partial slip (0-2) ; no slip (2) ; strong slip (>2)
ln_landfast_L16 = .false. ! landfast: parameterization from Lemieux 2016
ln_landfast_L16 = .false., ! landfast: parameterization from Lemieux 2016
rn_lf_depfra = 0.125 ! fraction of ocean depth that ice must reach to initiate landfast
! recommended range: [0.1 ; 0.25]
rn_lf_bfr = 15. ! maximum bottom stress per unit volume [N/m3]
......@@ -72,30 +72,30 @@
&namdyn_rdgrft ! Ice ridging/rafting
!------------------------------------------------------------------------------
! -- ice_rdgrft_strength -- !
ln_str_H79 = .true. ! ice strength param.: Hibler_79 => P = pstar*<h>*exp(-c_rhg*A)
ln_str_H79 = .true., ! ice strength param.: Hibler_79 => P = pstar*<h>*exp(-c_rhg*A)
rn_pstar = 2.0e+04 ! ice strength thickness parameter [N/m2]
rn_crhg = 20.0 ! ice strength conc. parameter (-)
ln_str_R75 = .false. ! ice strength param.: Rothrock_75 => P = fn of potential energy
ln_str_R75 = .false., ! ice strength param.: Rothrock_75 => P = fn of potential energy
rn_pe_rdg = 17.0 ! coef accouting for frictional dissipation
ln_str_CST = .false. ! ice strength param.: Constant
ln_str_CST = .false., ! ice strength param.: Constant
rn_str = 0.0 ! ice strength value
ln_str_smooth = .true. ! spatial smoothing of the ice strength
ln_str_smooth = .true., ! spatial smoothing of the ice strength
! -- ice_rdgrft -- !
ln_distf_lin = .true. ! redistribution function of ridged ice: linear (Hibler 1980)
ln_distf_exp = .false. ! redistribution function of ridged ice: exponential => not coded yet
ln_distf_lin = .true., ! redistribution function of ridged ice: linear (Hibler, 1980)
ln_distf_exp = .false., ! redistribution function of ridged ice: exponential (Lipscomb et al., 2007)
rn_murdg = 3.0 ! e-folding scale of ridged ice (m**.5)
rn_csrdg = 0.5 ! fraction of shearing energy contributing to ridging
! -- ice_rdgrft_prep -- !
ln_partf_lin = .false. ! Linear ridging participation function (Thorndike et al, 1975)
ln_partf_lin = .false., ! Linear ridging participation function (Thorndike et al., 1975)
rn_gstar = 0.15 ! fractional area of thin ice being ridged
ln_partf_exp = .true. ! Exponential ridging participation function (Lipscomb, 2007)
ln_partf_exp = .true., ! Exponential ridging participation function (Lipscomb et al., 2007)
rn_astar = 0.03 ! exponential measure of ridging ice fraction [set to 0.05 if hstar=100]
ln_ridging = .true. ! ridging activated (T) or not (F)
ln_ridging = .true., ! ridging activated (T) or not (F)
rn_hstar = 25.0 ! determines the maximum thickness of ridged ice [m] (Hibler, 1980)
rn_porordg = 0.3 ! porosity of newly ridged ice (Lepparanta et al., 1995)
rn_fsnwrdg = 0.5 ! snow volume fraction that survives in ridging
rn_fpndrdg = 1.0 ! pond fraction that survives in ridging (small a priori)
ln_rafting = .true. ! rafting activated (T) or not (F)
ln_rafting = .true., ! rafting activated (T) or not (F)
rn_hraft = 0.75 ! threshold thickness for rafting [m]
rn_craft = 5.0 ! squeezing coefficient used in the rafting function
rn_fsnwrft = 0.5 ! snow volume fraction that survives in rafting
......@@ -104,9 +104,9 @@
!------------------------------------------------------------------------------
&namdyn_rhg ! Ice rheology
!------------------------------------------------------------------------------
ln_rhg_EVP = .true. ! EVP rheology
ln_rhg_EAP = .false. ! EAP rheology
ln_aEVP = .true. ! adaptive rheology (Kimmritz et al. 2016 & 2017)
ln_rhg_EVP = .true., ! EVP rheology
ln_rhg_EAP = .false., ! EAP rheology
ln_aEVP = .true., ! adaptive rheology (Kimmritz et al. 2016 & 2017)
rn_creepl = 2.0e-9 ! creep limit [1/s]
rn_ecc = 2.0 ! eccentricity of the elliptical yield curve
nn_nevp = 100 ! number of EVP subcycles
......@@ -117,7 +117,7 @@
! = 1 check at the main time step (output xml: uice_cvg)
! = 2 check at both main and rheology time steps (additional output: ice_cvg.nc)
! this option 2 asks a lot of communications between cpu
ln_rhg_VP = .false. ! VP rheology
ln_rhg_VP = .false., ! VP rheology
nn_vp_nout = 10 ! number of outer iterations
nn_vp_ninn = 1500 ! number of inner iterations
nn_vp_chkcvg = 5 ! iteration step for convergence check
......@@ -125,8 +125,8 @@
!------------------------------------------------------------------------------
&namdyn_adv ! Ice advection
!------------------------------------------------------------------------------
ln_adv_Pra = .true. ! Advection scheme (Prather)
ln_adv_UMx = .false. ! Advection scheme (Ultimate-Macho)
ln_adv_Pra = .true., ! Advection scheme (Prather)
ln_adv_UMx = .false., ! Advection scheme (Ultimate-Macho)
nn_UMx = 5 ! order of the scheme for UMx (1-5 ; 20=centered 2nd order)
/
!------------------------------------------------------------------------------
......@@ -144,8 +144,8 @@
! = 0 Average N(cat) fluxes then apply the average over the N(cat) ice
! = 1 Average N(cat) fluxes then redistribute over the N(cat) ice using T-ice and albedo sensitivity
! = 2 Redistribute a single flux over categories
ln_cndflx = .false. ! Use conduction flux as surface boundary conditions (i.e. for Jules coupling)
ln_cndemulate = .false. ! emulate conduction flux (if not provided in the inputs)
ln_cndflx = .false., ! Use conduction flux as surface boundary conditions (i.e. for Jules coupling)
ln_cndemulate = .false., ! emulate conduction flux (if not provided in the inputs)
nn_qtrice = 0 ! Solar flux transmitted thru the surface scattering layer:
! = 0 Grenfell and Maykut 1977 (depends on cloudiness and is 0 when there is snow)
! = 1 Lebrun 2019 (equals 0.3 anytime with different melting/dry snw conductivities)
......@@ -153,26 +153,26 @@
!------------------------------------------------------------------------------
&namthd ! Ice thermodynamics
!------------------------------------------------------------------------------
ln_icedH = .true. ! activate ice thickness change from growing/melting (T) or not (F)
ln_icedA = .true. ! activate lateral melting param. (T) or not (F)
ln_icedO = .true. ! activate ice growth in open-water (T) or not (F)
ln_icedS = .true. ! activate brine drainage (T) or not (F)
ln_icedH = .true., ! activate ice thickness change from growing/melting (T) or not (F)
ln_icedA = .true., ! activate lateral melting param. (T) or not (F)
ln_icedO = .true., ! activate ice growth in open-water (T) or not (F)
ln_icedS = .true., ! activate brine drainage (T) or not (F)
!
ln_leadhfx = .true. ! heat in the leads is used to melt sea-ice before warming the ocean
ln_leadhfx = .true., ! heat in the leads is used to melt sea-ice before warming the ocean
/
!------------------------------------------------------------------------------
&namthd_zdf ! Ice heat diffusion
!------------------------------------------------------------------------------
ln_zdf_BL99 = .true. ! Heat diffusion follows Bitz and Lipscomb 1999
ln_cndi_U64 = .false. ! sea ice thermal conductivity: k = k0 + beta.S/T (Untersteiner, 1964)
ln_cndi_P07 = .true. ! sea ice thermal conductivity: k = k0 + beta1.S/T - beta2.T (Pringle et al., 2007)
ln_zdf_BL99 = .true., ! Heat diffusion follows Bitz and Lipscomb 1999
ln_cndi_U64 = .false., ! sea ice thermal conductivity: k = k0 + beta.S/T (Untersteiner, 1964)
ln_cndi_P07 = .true., ! sea ice thermal conductivity: k = k0 + beta1.S/T - beta2.T (Pringle et al., 2007)
rn_cnd_s = 0.31 ! thermal conductivity of the snow (0.31 W/m/K, Maykut and Untersteiner, 1971)
! Obs: 0.1-0.5 (Lecomte et al, JAMES 2013)
rn_kappa_i = 1.0 ! radiation attenuation coefficient in sea ice [1/m]
rn_kappa_s = 10.0 ! nn_qtrice = 0: radiation attenuation coefficient in snow [1/m]
rn_kappa_smlt = 7.0 ! nn_qtrice = 1: radiation attenuation coefficient in melting snow [1/m]
rn_kappa_sdry = 10.0 ! radiation attenuation coefficient in dry snow [1/m]
ln_zdf_chkcvg = .false. ! check convergence of heat diffusion scheme (outputs: tice_cvgerr, tice_cvgstp)
ln_zdf_chkcvg = .false., ! check convergence of heat diffusion scheme (outputs: tice_cvgerr, tice_cvgstp)
/
!------------------------------------------------------------------------------
&namthd_da ! Ice lateral melting
......@@ -189,7 +189,7 @@
&namthd_do ! Ice growth in open water
!------------------------------------------------------------------------------
rn_hinew = 0.1 ! thickness for new ice formation in open water (m), must be larger than rn_himin
ln_frazil = .false. ! Frazil ice parameterization (ice collection as a function of wind)
ln_frazil = .false., ! Frazil ice parameterization (ice collection as a function of wind)
rn_maxfraz = 1.0 ! maximum fraction of frazil ice collecting at the ice base
rn_vfraz = 0.417 ! thresold drift speed for frazil ice collecting at the ice bottom (m/s)
rn_Cfraz = 5.0 ! squeezing coefficient for frazil ice collecting at the ice bottom
......@@ -212,22 +212,25 @@
!------------------------------------------------------------------------------
&namthd_pnd ! Melt ponds
!------------------------------------------------------------------------------
ln_pnd = .true. ! activate melt ponds or not
ln_pnd_TOPO = .false. ! topographic melt ponds
ln_pnd_LEV = .true. ! level ice melt ponds
ln_pnd = .true., ! activate melt ponds or not
ln_pnd_TOPO = .false., ! topographic melt ponds
ln_pnd_LEV = .true., ! level ice melt ponds
rn_apnd_min = 0.15 ! minimum meltwater fraction contributing to pond growth (TOPO and LEV)
rn_apnd_max = 0.85 ! maximum meltwater fraction contributing to pond growth (TOPO and LEV)
rn_pnd_flush= 0.1 ! pond flushing efficiency (tuning parameter) (LEV)
ln_pnd_CST = .false. ! constant melt ponds
ln_pnd_CST = .false., ! constant melt ponds
rn_apnd = 0.2 ! prescribed pond fraction, at Tsu=0 degC
rn_hpnd = 0.05 ! prescribed pond depth, at Tsu=0 degC
ln_pnd_lids = .true. ! frozen lids on top of the ponds (only for ln_pnd_LEV)
ln_pnd_alb = .true. ! effect of melt ponds on ice albedo
ln_pnd_lids = .true., ! frozen lids on top of the ponds (only for ln_pnd_LEV)
ln_pnd_alb = .true., ! effect of melt ponds on ice albedo
nn_pnd_brsal = 0 ! brine salinity formulation 0 = Consistent expression with SI3
! (linear liquidus)
! 1 = used in GOSI9
/
!------------------------------------------------------------------------------
&namini ! Ice initialization
!------------------------------------------------------------------------------
ln_iceini = .true. ! activate ice initialization (T) or not (F)
ln_iceini = .true., ! activate ice initialization (T) or not (F)
nn_iceini_file = 0 ! 0 = Initialise sea ice based on SSTs
! 1 = Initialise sea ice from single category netcdf file
! 2 = Initialise sea ice from multi category restart file
......@@ -280,12 +283,12 @@
!------------------------------------------------------------------------------
&namdia ! Diagnostics
!------------------------------------------------------------------------------
ln_icediachk = .false. ! check online heat, mass & salt budgets
ln_icediachk = .false., ! check online heat, mass & salt budgets
! ! rate of ice spuriously gained/lost at each time step => rn_icechk=1 <=> 1.e-6 m/hour
rn_icechk_cel = 1. ! check at each gridcell (1.e-06m/h)=> stops the code if violated (and writes a file)
rn_icechk_glo = 1.e-04 ! check over the entire ice cover (1.e-10m/h)=> only prints warnings
ln_icediahsb = .false. ! output the heat, mass & salt budgets (T) or not (F)
ln_icectl = .false. ! ice points output for debug (T or F)
ln_icediahsb = .false., ! output the heat, mass & salt budgets (T) or not (F)
ln_icectl = .false., ! ice points output for debug (T or F)
iiceprt = 10 ! i-index for debug
jiceprt = 10 ! j-index for debug
/
......@@ -152,7 +152,6 @@
!-----------------------------------------------------------------------
pislopen = 2. ! P-I slope
pisloped = 2. ! P-I slope for diatoms
xadap = 0. ! Adaptation factor to low light
excretn = 0.05 ! excretion ratio of phytoplankton
excretd = 0.05 ! excretion ratio of diatoms
bresp = 0.033 ! Basal respiration rate
......@@ -172,7 +171,6 @@
excretn = 0.05 ! excretion ratio of phytoplankton
excretp = 0.05 ! excretion ratio of picophytoplankton
excretd = 0.05 ! excretion ratio of diatoms
xadap = 0. ! Adaptation factor to low light
bresp = 0.02 ! Basal respiration rate
thetannm = 0.3 ! Maximum Chl/N in nanophytoplankton
thetanpm = 0.3 ! Maximum Chl/N in picophytoplankton
......
......@@ -40,8 +40,9 @@
nn_date0 = 010101 ! date at nit_0000 (format yyyymmdd) used if ln_rstart=F or (ln_rstart=T and nn_rstctl=0 or 1)
nn_time0 = 0 ! initial time of day in hhmm
nn_leapy = 0 ! Leap year calendar (1) or not (0)
ln_rstart = .false. ! start from rest (F) or from a restart file (T)
ln_1st_euler = .false. ! =T force a start with forward time step (ln_rstart=T)
ln_rstart = .false., ! start from rest (F) or from a restart file (T)
ln_rstdate = .false., ! restart file name contains timestep number (F) or date (T)
ln_1st_euler = .false., ! =T force a start with forward time step (ln_rstart=T)
nn_rstctl = 0 ! restart control ==> activated only if ln_rstart=T
! ! = 0 nn_date0 read in namelist ; nn_it000 : read in namelist
! ! = 1 nn_date0 read in namelist ; nn_it000 : check consistancy between namelist and restart
......@@ -51,7 +52,7 @@
cn_ocerst_out = "restart" ! suffix of ocean restart name (output)
cn_ocerst_outdir = "." ! directory in which to write output ocean restarts
nn_istate = 0 ! output the initial state (1) or not (0)
ln_rst_list = .false. ! output restarts at list of times using nn_stocklist (T) or at set frequency with nn_stock (F)
ln_rst_list = .false., ! output restarts at list of times using nn_stocklist (T) or at set frequency with nn_stock (F)
nn_stock = 0 ! used only if ln_rst_list = F: output restart freqeuncy (modulo referenced to 1)
! ! = 0 force to write restart files only at the end of the run
! ! = -1 do not do any restart
......@@ -59,69 +60,70 @@
nn_write = 0 ! used only if key_xios is not defined: output frequency (modulo referenced to nn_it000)
! ! = 0 force to write output files only at the end of the run
! ! = -1 do not do any output file
ln_mskland = .false. ! mask land points in NetCDF outputs
ln_cfmeta = .false. ! output additional data to netCDF files required for compliance with the CF metadata standard
ln_clobber = .true. ! clobber (overwrite) an existing file
ln_mskland = .false., ! mask land points in NetCDF outputs
ln_cfmeta = .false., ! output additional data to netCDF files required for compliance with the CF metadata standard
ln_clobber = .true., ! clobber (overwrite) an existing file
nn_chunksz = 0 ! chunksize (bytes) for NetCDF file (works only with iom_nf90 routines)
ln_xios_read = .false. ! use XIOS to read restart file (only for a single file restart)
ln_xios_read = .false., ! use XIOS to read restart file (only for a single file restart)
nn_wxios = 0 ! use XIOS to write restart file 0 - no, 1 - single file output, 2 - multiple file output
ln_rst_eos = .false., ! check if the equation of state used to produce the restart is consistent with model
/
!-----------------------------------------------------------------------
&namdom ! time and space domain
!-----------------------------------------------------------------------
ln_linssh = .false. ! =T linear free surface ==>> model level are fixed in time
ln_linssh = .false., ! =T linear free surface ==>> model level are fixed in time
!
rn_Dt = 5400. ! time step for the dynamics and tracer
rn_atfp = 0.1 ! asselin time filter parameter
!
ln_crs = .false. ! Logical switch for coarsening module (T => fill namcrs)
ln_c1d = .false. ! Single column domain (1x1pt) (T => fill namc1d)
ln_crs = .false., ! Logical switch for coarsening module (T => fill namcrs)
ln_c1d = .false., ! Single column domain (1x1pt) (T => fill namc1d)
!
ln_meshmask = .true. ! =T create a mesh file
ln_meshmask = .true., ! =T create a mesh file
/
!-----------------------------------------------------------------------
&namcfg ! parameters of the configuration (default: use namusr_def in namelist_cfg)
!-----------------------------------------------------------------------
ln_read_cfg = .false. ! (=T) read the domain configuration file
ln_read_cfg = .false., ! (=T) read the domain configuration file
! ! (=F) user defined configuration (F => create/check namusr_def)
cn_domcfg = "domain_cfg" ! domain configuration filename
!
ln_closea = .false. ! (=T => fill namclo)
ln_closea = .false., ! (=T => fill namclo)
! ! (=F) no control of net precip/evap over closed sea
!
ln_write_cfg = .false. ! (=T) create the domain configuration file
ln_write_cfg = .false., ! (=T) create the domain configuration file
cn_domcfg_out = "domain_cfg_out" ! newly created domain configuration filename
!
ln_use_jattr = .false. ! use (T) the file attribute: open_ocean_jstart, if present
ln_use_jattr = .false., ! use (T) the file attribute: open_ocean_jstart, if present
! ! in netcdf input files, as the start j-row for reading
/
!-----------------------------------------------------------------------
&namtile ! parameters of the tiling
!-----------------------------------------------------------------------
ln_tile = .false. ! Use tiling (T) or not (F)
ln_tile = .false., ! Use tiling (T) or not (F)
nn_ltile_i = 99999 ! Length of tiles in i
nn_ltile_j = 10 ! Length of tiles in j
/
!-----------------------------------------------------------------------
&namclo ! parameters of the closed sea (cs) behavior (default: OFF)
!-----------------------------------------------------------------------
ln_maskcs = .false. ! (=T) cs are masked ; So, in this case ln_mask_csundef and ln_clo_rnf have no effect.
ln_maskcs = .false., ! (=T) cs are masked ; So, in this case ln_mask_csundef and ln_clo_rnf have no effect.
! ! (=F => set ln_mask_csundef and ln_clo_rnf)
! ! cs masks are read and net evap/precip over closed sea spread out depending on domain_cfg.nc masks.
! ! See ln_mask_csundef and ln_clo_rnf for specific option related to this case
!
ln_mask_csundef = .true. ! (=T) undefined closed seas are masked ;
ln_mask_csundef = .true., ! (=T) undefined closed seas are masked ;
! ! (=F) undefined closed seas are kept and no specific treatment is done for these closed seas
!
ln_clo_rnf = .true. ! (=T) river mouth specified in domain_cfg.nc masks (rnf and emp case) are added to the runoff mask.
ln_clo_rnf = .true., ! (=T) river mouth specified in domain_cfg.nc masks (rnf and emp case) are added to the runoff mask.
! ! allow the treatment of closed sea outflow grid-points to be the same as river mouth grid-points
/
!-----------------------------------------------------------------------
&namtsd ! Temperature & Salinity Data (init/dmp) (default: OFF)
!-----------------------------------------------------------------------
! ! =T read T-S fields for:
ln_tsd_init = .false. ! ocean initialisation
ln_tsd_dmp = .false. ! T-S restoring (see namtra_dmp)
ln_tsd_init = .false., ! ocean initialisation
ln_tsd_dmp = .false., ! T-S restoring (see namtra_dmp)
cn_dir = './' ! root directory for the T-S data location
!___________!_________________________!___________________!___________!_____________!________!___________!__________________!__________!_______________!
......@@ -133,15 +135,13 @@
!-----------------------------------------------------------------------
&namwad ! Wetting and Drying (WaD) (default: OFF)
!-----------------------------------------------------------------------
ln_wd_il = .false. ! T/F activation of iterative limiter
ln_wd_dl = .false. ! T/F activation of directional limiter
ln_wd_dl_bc = .false. ! T/F Directional limiteer Baroclinic option
ln_wd_dl_rmp = .false. ! T/F Turn on directional limiter ramp
ln_wd_dl = .false., ! T/F activation of directional limiter
ln_wd_dl_bc = .false., ! T/F Directional limiter Baroclinic option
ln_wd_dl_rmp = .false., ! T/F Turn on directional limiter ramp
rn_wdmin0 = 0.30 ! depth at which WaD starts
rn_wdmin1 = 0.2 ! Minimum wet depth on dried cells
rn_wdmin2 = 0.0001 ! Tolerance of min wet depth on dried cells
rn_wdld = 2.5 ! Land elevation below which WaD is allowed
nn_wdit = 20 ! Max iterations for WaD limiter
rn_wd_sbcdep = 5.0 ! Depth at which to taper sbc fluxes
rn_wd_sbcfra = 0.999 ! Fraction of SBC fluxes at taper depth (Must be <1)
/
......@@ -154,11 +154,11 @@
! ! 0, coarse grid is binned with preferential treatment of the north fold
! ! 1, coarse grid is binned with centering at the equator
! ! Symmetry with nn_facty being odd-numbered. Asymmetry with even-numbered nn_facty.
ln_msh_crs = .false. ! =T create a mesh & mask file
ln_msh_crs = .false., ! =T create a mesh & mask file
nn_crs_kz = 0 ! 0, MEAN of volume boxes
! ! 1, MAX of boxes
! ! 2, MIN of boxes
ln_crs_wn = .true. ! wn coarsened (T) or computed using horizontal divergence ( F )
ln_crs_wn = .true., ! wn coarsened (T) or computed using horizontal divergence ( F )
/
!-----------------------------------------------------------------------
&namc1d ! 1D configuration options (ln_c1d =T default: PAPA station)
......@@ -169,14 +169,14 @@
!-----------------------------------------------------------------------
&namc1d_dyndmp ! U & V newtonian damping (ln_c1d =T default: OFF)
!-----------------------------------------------------------------------
ln_dyndmp = .false. ! add a damping term (T) or not (F)
ln_dyndmp = .false., ! add a damping term (T) or not (F)
/
!-----------------------------------------------------------------------
&namc1d_uvd ! data: U & V currents (ln_c1d =T default: OFF)
!-----------------------------------------------------------------------
! ! =T read U-V fields for:
ln_uvd_init = .false. ! ocean initialisation
ln_uvd_dyndmp = .false. ! U-V restoring
ln_uvd_init = .false., ! ocean initialisation
ln_uvd_dyndmp = .false., ! U-V restoring
cn_dir = './' ! root directory for the U-V data location
!___________!_________________________!___________________!___________!_____________!________!___________!__________________!__________!_______________!
......@@ -210,13 +210,13 @@
nn_fsbc = 2 ! frequency of SBC module call
! ! (control sea-ice & iceberg model call)
! Type of air-sea fluxes
ln_usr = .false. ! user defined formulation (T => check usrdef_sbc)
ln_flx = .false. ! flux formulation (T => fill namsbc_flx )
ln_blk = .false. ! Bulk formulation (T => fill namsbc_blk )
ln_abl = .false. ! ABL formulation (T => fill namsbc_abl )
ln_usr = .false., ! user defined formulation (T => check usrdef_sbc)
ln_flx = .false., ! flux formulation (T => fill namsbc_flx )
ln_blk = .false., ! Bulk formulation (T => fill namsbc_blk )
ln_abl = .false., ! ABL formulation (T => fill namsbc_abl )
! ! Type of coupling (Ocean/Ice/Atmosphere) :
ln_cpl = .false. ! atmosphere coupled formulation ( requires key_oasis3 )
ln_mixcpl = .false. ! forced-coupled mixed formulation ( requires key_oasis3 )
ln_cpl = .false., ! atmosphere coupled formulation ( requires key_oasis3 )
ln_mixcpl = .false., ! forced-coupled mixed formulation ( requires key_oasis3 )
nn_components = 0 ! configuration of the opa-sas OASIS coupling
! ! =0 no opa-sas OASIS coupling: default single executable config.
! ! =1 opa-sas OASIS coupling: multi executable config., OCE component
......@@ -225,18 +225,18 @@
nn_ice = 0 ! =0 no ice boundary condition
! ! =1 use observed ice-cover ( => fill namsbc_iif )
! ! =2 or 3 for SI3 and CICE, respectively
ln_ice_embd = .false. ! =T embedded sea-ice (pressure + mass and salt exchanges)
ln_ice_embd = .false., ! =T embedded sea-ice (pressure + mass and salt exchanges)
! ! =F levitating ice (no pressure, mass and salt exchanges)
! Misc. options of sbc :
ln_traqsr = .false. ! Light penetration in the ocean (T => fill namtra_qsr)
ln_dm2dc = .false. ! daily mean to diurnal cycle on short wave
ln_ssr = .false. ! Sea Surface Restoring on T and/or S (T => fill namsbc_ssr)
ln_traqsr = .false., ! Light penetration in the ocean (T => fill namtra_qsr)
ln_dm2dc = .false., ! daily mean to diurnal cycle on short wave
ln_ssr = .false., ! Sea Surface Restoring on T and/or S (T => fill namsbc_ssr)
nn_fwb = 0 ! FreshWater Budget: =0 unchecked
! ! =1 global mean of e-p-r set to zero at each time step
! ! =2 annual global mean of e-p-r set to zero
ln_rnf = .false. ! runoffs (T => fill namsbc_rnf)
ln_apr_dyn = .false. ! Patm gradient added in ocean & ice Eqs. (T => fill namsbc_apr )
ln_wave = .false. ! Activate coupling with wave (T => fill namsbc_wave)
ln_rnf = .false., ! runoffs (T => fill namsbc_rnf)
ln_apr_dyn = .false., ! Patm gradient added in ocean & ice Eqs. (T => fill namsbc_apr )
ln_wave = .false., ! Activate coupling with wave (T => fill namsbc_wave)
nn_lsm = 0 ! =0 land/sea mask for input fields is not applied (keep empty land/sea mask filename field) ,
! =1:n number of iterations of land/sea mask application for input fields (fill land/sea mask filename field)
/
......@@ -257,37 +257,38 @@
&namsbc_blk ! namsbc_blk generic Bulk formula (ln_blk =T)
!-----------------------------------------------------------------------
! ! bulk algorithm :
ln_NCAR = .true. ! "NCAR" algorithm (Large and Yeager 2008)
ln_COARE_3p0 = .false. ! "COARE 3.0" algorithm (Fairall et al. 2003)
ln_COARE_3p6 = .false. ! "COARE 3.6" algorithm (Edson et al. 2013)
ln_ECMWF = .false. ! "ECMWF" algorithm (IFS cycle 45r1)
ln_ANDREAS = .false. ! "ANDREAS" algorithm (Andreas et al. 2015)
ln_NCAR = .true., ! "NCAR" algorithm (Large and Yeager 2008)
ln_COARE_3p0 = .false., ! "COARE 3.0" algorithm (Fairall et al. 2003)
ln_COARE_3p6 = .false., ! "COARE 3.6" algorithm (Edson et al. 2013)
ln_ECMWF = .false., ! "ECMWF" algorithm (IFS cycle 45r1)
ln_ANDREAS = .false., ! "ANDREAS" algorithm (Andreas et al. 2015)
rn_zqt = 10. ! Air temperature & humidity reference height (m)
rn_zu = 10. ! Wind vector reference height (m)
nn_iter_algo = 5 ! Number of iterations in bulk param. algo ("stable ABL + weak wind" requires more)
ln_skin_cs = .false. ! use the cool-skin parameterization => use at least nn_iter_algo > 10
ln_skin_wl = .false. ! use the warm-layer parameterization => use at least nn_iter_algo > 10
ln_skin_cs = .false., ! use the cool-skin parameterization => use at least nn_iter_algo > 10
ln_skin_wl = .false., ! use the warm-layer parameterization => use at least nn_iter_algo > 10
!
rn_pfac = 1. ! multipl. factor for precipitation (total & snow)
rn_efac = 1. ! multipl. factor for evaporation (0. or 1.)
rn_vfac = 0. !
!
ln_crt_fbk = .false. ! Add surface current feedback to the wind stress (Renault et al. 2020, doi: 10.1029/2019MS001715)
ln_crt_fbk = .false., ! Add surface current feedback to the wind stress (Renault et al. 2020, doi: 10.1029/2019MS001715)
rn_stau_a = -2.9e-3 ! Alpha from eq. 10: Stau = Alpha * Wnd + Beta
rn_stau_b = 8.0e-3 ! Beta
!
ln_humi_sph = .true. ! humidity "sn_humi" is specific humidity [kg/kg]
ln_humi_dpt = .false. ! humidity "sn_humi" is dew-point temperature [K]
ln_humi_rlh = .false. ! humidity "sn_humi" is relative humidity [%]
ln_tair_pot = .false. ! air temperature read in "sn_tair" is already POTENTIAL TEMPERATURE, NOT ABSOLUTE (ECMWF => ln_tair_pot=.false.)
ln_humi_sph = .true., ! humidity "sn_humi" is specific humidity [kg/kg]
ln_humi_dpt = .false., ! humidity "sn_humi" is dew-point temperature [K]
ln_humi_rlh = .false., ! humidity "sn_humi" is relative humidity [%]
ln_tair_pot = .false., ! air temperature read in "sn_tair" is already POTENTIAL TEMPERATURE, NOT ABSOLUTE (ECMWF => ln_tair_pot=.false.)
!!
!! Bulk transfer coefficients over sea-ice: (relevant IF: nn_ice >=1 )
ln_Cx_ice_cst = .true. ! use constant ice-air bulk transfer coefficients (value given below)
ln_Cx_ice_cst = .true., ! use constant ice-air bulk transfer coefficients (value given below)
rn_Cd_i = 1.4e-3 ! sea-ice drag coefficient
rn_Ce_i = 1.4e-3 ! " sublimation coefficient
rn_Ch_i = 1.4e-3 ! " sensible heat flux coefficient
ln_Cx_ice_AN05 = .false. ! (Andreas et al. 2005)
ln_Cx_ice_LU12 = .false. ! (Lupkes et al. 2012)
ln_Cx_ice_LG15 = .false. ! (Lupkes & Gryanik 2015)
ln_Cx_ice_AN05 = .false., ! (Andreas et al. 2005)
ln_Cx_ice_LU12 = .false., ! (Lupkes et al. 2012)
ln_Cx_ice_LG15 = .false., ! (Lupkes & Gryanik 2015)
!
cn_dir = './' ! root directory for the bulk data location
!___________!_________________________!___________________!___________!_____________!________!___________!______________________________________!__________!_______________!
......@@ -319,13 +320,14 @@
cn_ablrst_indir = "." ! directory to read input abl restarts
cn_ablrst_outdir = "." ! directory to write output abl restarts
ln_rstart_abl = .false.
ln_hpgls_frc = .false.
ln_geos_winds = .false.
ln_smth_pblh = .false.
ln_rstart_abl = .false.,
ln_hpgls_frc = .false.,
ln_geos_winds = .false.,
ln_smth_pblh = .false.,
nn_dyn_restore = 0 ! restoring option for dynamical ABL variables: = 0 no restoring
! = 1 equatorial restoring
! = 2 global restoring
rn_vfac = 0.
rn_ldyn_min = 4.5 ! dynamics nudging magnitude inside the ABL [hour] (~3 rn_Dt)
rn_ldyn_max = 1.5 ! dynamics nudging magnitude above the ABL [hour] (~1 rn_Dt)
rn_ltra_min = 4.5 ! tracers nudging magnitude inside the ABL [hour] (~3 rn_Dt)
......@@ -345,9 +347,9 @@
&namsbc_cpl ! coupled ocean/atmosphere model ("key_oasis3")
!-----------------------------------------------------------------------
nn_cplmodel = 1 ! Maximum number of models to/from which NEMO is potentially sending/receiving data
ln_usecplmask = .false. ! use a coupling mask file to merge data received from several models
ln_usecplmask = .false., ! use a coupling mask file to merge data received from several models
! ! -> file cplmask.nc with the float variable called cplmask (jpi,jpj,nn_cplmodel)
ln_scale_ice_flux = .false. ! use ice fluxes that are already "ice weighted" ( i.e. multiplied ice concentration)
ln_scale_ice_flux = .false., ! use ice fluxes that are already "ice weighted" ( i.e. multiplied ice concentration)
nn_cats_cpl = 5 ! Number of sea ice categories over which coupling is to be carried out (if not 1)
!_____________!__________________________!____________!_____________!______________________!________!
! ! description ! multiple ! vector ! vector ! vector !
......@@ -399,9 +401,9 @@
!-----------------------------------------------------------------------
&namsbc_sas ! Stand-Alone Surface module: ocean data (SAS_SRC only)
!-----------------------------------------------------------------------
l_sasread = .true. ! =T Read in file ; =F set all to 0. (see sbcssm)
ln_3d_uve = .false. ! specify whether we are supplying a 3D u,v and e3 field
ln_read_frq = .false. ! specify whether we must read frq or not
l_sasread = .true., ! =T Read in file ; =F set all to 0. (see sbcssm)
ln_3d_uve = .false., ! specify whether we are supplying a 3D u,v and e3 field
ln_read_frq = .false., ! specify whether we must read frq or not
cn_dir = './' ! root directory for the ocean data location
!___________!_________________________!___________________!___________!_____________!________!___________!__________________!__________!_______________!
......@@ -433,13 +435,14 @@
&namtra_qsr ! penetrative solar radiation (ln_traqsr =T)
!-----------------------------------------------------------------------
! ! type of penetration (default: NO selection)
ln_qsr_rgb = .false. ! RGB light penetration (Red-Green-Blue)
ln_qsr_2bd = .false. ! 2BD light penetration (two bands)
ln_qsr_bio = .false. ! bio-model light penetration
ln_qsr_rgb = .false., ! RGB light penetration (Red-Green-Blue)
ln_qsr_2bd = .false., ! 2BD light penetration (two bands)
ln_qsr_bio = .false., ! bio-model light penetration
! ! RGB & 2BD choices:
rn_abs = 0.58 ! RGB & 2BD: fraction absorbed in the very near surface
rn_si0 = 0.35 ! RGB & 2BD: shortess depth of extinction
nn_chldta = 0 ! RGB : Chl data (=1) or cst value (=0)
rn_chl_conc = 0.05 ! Chlorophyll concentration (for nn_chldta=0)
rn_si1 = 23.0 ! 2BD : longest depth of extinction
cn_dir = './' ! root directory for the chlorophyl data location
......@@ -456,7 +459,7 @@
nn_sssr = 0 ! add a damping term to the surface freshwater flux (=2)
! ! or to SSS only (=1) or no damping term (=0)
rn_deds = -166.67 ! magnitude of the damping on salinity [mm/day]
ln_sssr_bnd = .true. ! flag to bound erp term (associated with nn_sssr=2)
ln_sssr_bnd = .true., ! flag to bound erp term (associated with nn_sssr=2)
rn_sssr_bnd = 4.e0 ! ABS(Max/Min) value of the damping erp term [mm/day]
nn_sssr_ice = 1 ! control of sea surface restoring under sea-ice
! 0 = no restoration under ice : * (1-icefrac)
......@@ -473,15 +476,15 @@
!-----------------------------------------------------------------------
&namsbc_rnf ! runoffs (ln_rnf =T)
!-----------------------------------------------------------------------
ln_rnf_mouth = .false. ! specific treatment at rivers mouths
ln_rnf_mouth = .false., ! specific treatment at rivers mouths
rn_hrnf = 15.e0 ! depth over which enhanced vertical mixing is used (ln_rnf_mouth=T)
rn_avt_rnf = 1.e-3 ! value of the additional vertical mixing coef. [m2/s] (ln_rnf_mouth=T)
rn_rfact = 1.e0 ! multiplicative factor for runoff
ln_rnf_depth = .false. ! read in depth information for runoff
ln_rnf_tem = .false. ! read in temperature information for runoff
ln_rnf_sal = .false. ! read in salinity information for runoff
ln_rnf_icb = .false. ! read iceberg flux
ln_rnf_depth_ini = .false. ! compute depth at initialisation from runoff file
ln_rnf_depth = .false., ! read in depth information for runoff
ln_rnf_tem = .false., ! read in temperature information for runoff
ln_rnf_sal = .false., ! read in salinity information for runoff
ln_rnf_icb = .false., ! read iceberg flux
ln_rnf_depth_ini = .false., ! compute depth at initialisation from runoff file
rn_rnf_max = 5.735e-4 ! max value of the runoff climatologie over global domain ( ln_rnf_depth_ini = .true )
rn_dep_max = 150. ! depth over which runoffs is spread ( ln_rnf_depth_ini = .true )
nn_rnf_depth_file = 0 ! create (=1) a runoff depth file or not (=0)
......@@ -501,8 +504,8 @@
&namsbc_apr ! Atmospheric pressure used as ocean forcing (ln_apr_dyn =T)
!-----------------------------------------------------------------------
rn_pref = 101000. ! reference atmospheric pressure [N/m2]/
ln_ref_apr = .false. ! ref. pressure: global mean Patm (T) or a constant (F)
ln_apr_obc = .false. ! inverse barometer added to OBC ssh data
ln_ref_apr = .false., ! ref. pressure: global mean Patm (T) or a constant (F)
ln_apr_obc = .false., ! inverse barometer added to OBC ssh data
cn_dir = './' ! root directory for the Patm data location
!___________!_________________________!___________________!___________!_____________!________!___________!__________________!__________!_______________!
......@@ -522,13 +525,13 @@
!
! ---------------- ice shelf melt formulation -------------------------------
!
ln_isf = .false. ! activate ice shelf module
ln_isfdebug = .false. ! add debug print in ISF code (global min/max/sum of specific variable)
ln_isf = .false., ! activate ice shelf module
ln_isfdebug = .false., ! add debug print in ISF code (global min/max/sum of specific variable)
cn_isfdir = './' ! directory for all ice shelf input file
!
! ---------------- cavities opened -------------------------------
!
ln_isfcav_mlt = .false. ! ice shelf melting into the cavity (need ln_isfcav = .true. in domain_cfg.nc)
ln_isfcav_mlt = .false., ! ice shelf melting into the cavity (need ln_isfcav = .true. in domain_cfg.nc)
cn_isfcav_mlt = '3eq' ! ice shelf melting formulation (spe/2eq/3eq/oasis)
! ! spe = fwfisf is read from a forcing field ( melt > 0; freezing < 0 )
! ! 2eq = ISOMIP like: 2 equations formulation (Hunter et al., 2006 for a short description)
......@@ -553,7 +556,7 @@
!
! ---------------- cavities parametrised -------------------------------
!
ln_isfpar_mlt = .false. ! ice shelf melting parametrised
ln_isfpar_mlt = .false., ! ice shelf melting parametrised
cn_isfpar_mlt = 'spe' ! ice shelf melting parametrisation (spe/bg03/oasis)
! ! spe = fwfisf is read from a forcing field ( melt > 0; freezing < 0 )
! ! bg03 = melt computed using Beckmann and Goosse parametrisation
......@@ -580,26 +583,26 @@
!
! ---------------- ice sheet coupling -------------------------------
!
ln_isfcpl = .false.
ln_isfcpl = .false.,
nn_drown = 10 ! number of iteration of the extrapolation loop (fill the new wet cells)
ln_isfcpl_cons = .false.
ln_isfcpl_cons = .false.,
/
!-----------------------------------------------------------------------
&namsbc_wave ! External fields from wave model (ln_wave=T)
!-----------------------------------------------------------------------
ln_sdw = .false. ! get the 2D Surf Stokes Drift & Compute the 3D stokes drift
ln_stcor = .false. ! add Stokes Coriolis and tracer advection terms
ln_cdgw = .false. ! Neutral drag coefficient read from wave model
ln_tauoc = .false. ! ocean stress is modified by wave induced stress
ln_wave_test= .false. ! Test case with constant wave fields
ln_sdw = .false., ! get the 2D Surf Stokes Drift & Compute the 3D stokes drift
ln_stcor = .false., ! add Stokes Coriolis and tracer advection terms
ln_cdgw = .false., ! Neutral drag coefficient read from wave model
ln_tauoc = .false., ! ocean stress is modified by wave induced stress
ln_wave_test= .false., ! Test case with constant wave fields
!
ln_charn = .false. ! Charnock coefficient read from wave model (IFS only)
ln_taw = .false. ! ocean stress is modified by wave induced stress (coupled mode)
ln_phioc = .false. ! TKE flux from wave model
ln_bern_srfc= .false. ! wave induced pressure. Bernoulli head J term
ln_breivikFV_2016 = .false. ! breivik 2016 vertical stokes profile
ln_vortex_force = .false. ! Vortex Force term
ln_stshear = .false. ! include stokes shear in EKE computation
ln_charn = .false., ! Charnock coefficient read from wave model (IFS only)
ln_taw = .false., ! ocean stress is modified by wave induced stress (coupled mode)
ln_phioc = .false., ! TKE flux from wave model
ln_bern_srfc= .false., ! wave induced pressure. Bernoulli head J term
ln_breivikFV_2016 = .false., ! breivik 2016 vertical stokes profile
ln_vortex_force = .false., ! Vortex Force term
ln_stshear = .false., ! include stokes shear in EKE computation
!
cn_dir = './' ! root directory for the waves data location
!___________!_________________________!___________________!___________!_____________!________!___________!__________________!__________!_______________!
......@@ -616,7 +619,7 @@
!-----------------------------------------------------------------------
&namberg ! iceberg parameters (default: OFF)
!-----------------------------------------------------------------------
ln_icebergs = .false. ! activate iceberg floats (force =F with "key_agrif")
ln_icebergs = .false., ! activate iceberg floats (force =F with "key_agrif")
!
! ! restart
cn_icbrst_in = "restart_icb" ! suffix of iceberg restart name (input)
......@@ -625,10 +628,12 @@
cn_icbrst_outdir = "./" ! directory from which to read output ocean restarts
!
! ! diagnostics:
ln_bergdia = .true. ! Calculate budgets
ln_bergdia = .true., ! Calculate budgets
nn_verbose_level = 0 ! Turn on more verbose output if level > 0
nn_verbose_write = 15 ! Timesteps between verbose messages
nn_sample_rate = 1 ! Timesteps between sampling for trajectory storage
!
! nn_verbose_write and nn_sample_rate need to be a multiple of nn_fsbc
nn_verbose_write = 16 ! Timesteps between verbose messages
nn_sample_rate = 16 ! Timesteps between sampling for trajectory storage
!
! ! iceberg setting:
! ! Initial mass required for an iceberg of each class
......@@ -643,18 +648,18 @@
!
rn_rho_bergs = 850. ! Density of icebergs
rn_LoW_ratio = 1.5 ! Initial ratio L/W for newly calved icebergs
ln_operator_splitting = .true. ! Use first order operator splitting for thermodynamics
ln_operator_splitting = .true., ! Use first order operator splitting for thermodynamics
rn_bits_erosion_fraction = 0. ! Fraction of erosion melt flux to divert to bergy bits
rn_sicn_shift = 0. ! Shift of sea-ice concn in erosion flux (0<sicn_shift<1)
ln_passive_mode = .false. ! iceberg - ocean decoupling
ln_passive_mode = .false., ! iceberg - ocean decoupling
nn_test_icebergs = 10 ! Create test icebergs of this class (-1 = no)
! ! Put a test iceberg at each gridpoint in box (lon1,lon2,lat1,lat2)
rn_test_box = 108.0, 116.0, -66.0, -58.0
ln_use_calving = .false. ! Use calving data even when nn_test_icebergs > 0
ln_use_calving = .false., ! Use calving data even when nn_test_icebergs > 0
rn_speed_limit = 0. ! CFL speed limit for a berg (safe value is 0.4, see #2581)
!
ln_M2016 = .false. ! use Merino et al. (2016) modification (use of 3d ocean data instead of only sea surface data)
ln_icb_grd = .false. ! ground icb when icb bottom level hit oce bottom level (need ln_M2016 to be activated)
ln_M2016 = .false., ! use Merino et al. (2016) modification (use of 3d ocean data instead of only sea surface data)
ln_icb_grd = .false., ! ground icb when icb bottom level hit oce bottom level (need ln_M2016 to be activated)
!
cn_dir = './' ! root directory for the calving data location
!___________!_________________________!___________________!___________!_____________!________!___________!__________________!__________!_______________!
......@@ -684,16 +689,17 @@
!-----------------------------------------------------------------------
! ! free slip ! partial slip ! no slip ! strong slip
rn_shlat = -9999. ! shlat = 0 ! 0 < shlat < 2 ! shlat = 2 ! 2 < shlat
ln_vorlat = .false. ! consistency of vorticity boundary condition with analytical Eqs.
ln_vorlat = .false., ! consistency of vorticity boundary condition with analytical Eqs.
ln_shlat2d = .false., !
/
!-----------------------------------------------------------------------
&namagrif ! AGRIF zoom ("key_agrif")
!-----------------------------------------------------------------------
ln_agrif_2way = .true. ! activate two way nesting
ln_init_chfrpar = .false. ! initialize child grids from parent
ln_vert_remap = .false. ! use vertical remapping
ln_spc_dyn = .false. ! use 0 as special value for dynamics
ln_chk_bathy = .true. ! =T check the parent bathymetry
ln_agrif_2way = .true., ! activate two way nesting
ln_init_chfrpar = .false., ! initialize child grids from parent
ln_vert_remap = .false., ! use vertical remapping
ln_spc_dyn = .false., ! use 0 as special value for dynamics
ln_chk_bathy = .true., ! =T check the parent bathymetry
rn_sponge_tra = 0.002 ! coefficient for tracer sponge layer []
rn_sponge_dyn = 0.002 ! coefficient for dynamics sponge layer []
rn_trelax_tra = 0.01 ! inverse of relaxation time (in steps) for tracers []
......@@ -702,29 +708,29 @@
!-----------------------------------------------------------------------
&nam_tide ! tide parameters (default: OFF)
!-----------------------------------------------------------------------
ln_tide = .false. ! Activate tides
ln_tide = .false., ! Activate tides
nn_tide_var = 1 ! Variant of tidal parameter set and tide-potential computation
! ! (1: default; 0: compatibility with previous versions)
ln_tide_dia = .false. ! Enable tidal diagnostic output
ln_tide_pot = .false. ! use tidal potential forcing
ln_tide_dia = .false., ! Enable tidal diagnostic output
ln_tide_pot = .false., ! use tidal potential forcing
rn_tide_gamma = 0.7 ! Tidal tilt factor
ln_scal_load = .false. ! Use scalar approximation for
ln_scal_load = .false., ! Use scalar approximation for
rn_scal_load = 0.094 ! load potential
ln_read_load = .false. ! Or read load potential from file
ln_read_load = .false., ! Or read load potential from file
cn_tide_load = 'tide_LOAD_grid_T.nc' ! filename for load potential
!
ln_tide_ramp = .false. ! Use linear ramp for tides at startup
ln_tide_ramp = .false., ! Use linear ramp for tides at startup
rn_tide_ramp_dt = 0. ! ramp duration in days
sn_tide_cnames(1) = 'DUMMY' ! name of constituent - all tidal components must be set in namelist_cfg
/
!-----------------------------------------------------------------------
&nambdy ! unstructured open boundaries (default: OFF)
!-----------------------------------------------------------------------
ln_bdy = .false. ! Use unstructured open boundaries
ln_bdy = .false., ! Use unstructured open boundaries
nb_bdy = 0 ! number of open boundary sets
ln_coords_file = .true. ! =T : read bdy coordinates from file
ln_coords_file = .true., ! =T : read bdy coordinates from file
cn_coords_file = 'coordinates.bdy.nc' ! bdy coordinates files
ln_mask_file = .false. ! =T : read mask from file
ln_mask_file = .false., ! =T : read mask from file
cn_mask_file = '' ! name of mask file (if ln_mask_file=.TRUE.)
cn_dyn2d = 'none' !
nn_dyn2d_dta = 0 ! = 0, bdy data are equal to the initial state
......@@ -741,20 +747,20 @@
nn_ice_dta = 0 ! = 0, bdy data are equal to the initial state
! ! = 1, bdy data are read in 'bdydata .nc' files
!
ln_tra_dmp =.false. ! open boudaries conditions for tracers
ln_dyn3d_dmp =.false. ! open boundary condition for baroclinic velocities
ln_tra_dmp =.false., ! open boudaries conditions for tracers
ln_dyn3d_dmp =.false., ! open boundary condition for baroclinic velocities
rn_time_dmp = 1. ! Damping time scale in days
rn_time_dmp_out = 1. ! Outflow damping time scale
nn_rimwidth = 10 ! width of the relaxation zone
ln_vol = .false. ! total volume correction (see nn_volctl parameter)
ln_vol = .false., ! total volume correction (see nn_volctl parameter)
nn_volctl = 1 ! = 0, the total water flux across open boundaries is zero
/
!-----------------------------------------------------------------------
&nambdy_dta ! open boundaries - external data (see nam_bdy)
!-----------------------------------------------------------------------
ln_zinterp = .false. ! T if a vertical interpolation is required. Variables gdep[tuv] and e3[tuv] must exist in the file
ln_zinterp = .false., ! T if a vertical interpolation is required. Variables gdep[tuv] and e3[tuv] must exist in the file
! ! automatically defined to T if the number of vertical levels in bdy dta /= jpk
ln_full_vel = .false. ! T if [uv]3d are "full" velocities and not only its baroclinic components
ln_full_vel = .false., ! T if [uv]3d are "full" velocities and not only its baroclinic components
! ! in this case, baroclinic and barotropic velocities will be recomputed -> [uv]2d not needed
!
cn_dir = 'bdydta/' ! root directory for the BDY data location
......@@ -792,7 +798,7 @@
&nambdy_tide ! tidal forcing at open boundaries (default: OFF)
!-----------------------------------------------------------------------
filtide = 'bdydta/amm12_bdytide_' ! file name root of tidal forcing files
ln_bdytide_2ddta = .false. !
ln_bdytide_2ddta = .false., !
/
!!======================================================================
......@@ -808,13 +814,13 @@
!-----------------------------------------------------------------------
&namdrg ! top/bottom drag coefficient (default: NO selection)
!-----------------------------------------------------------------------
ln_drg_OFF = .false. ! free-slip : Cd = 0 (F => fill namdrg_bot
ln_lin = .false. ! linear drag: Cd = Cd0 Uc0 & namdrg_top)
ln_non_lin = .false. ! non-linear drag: Cd = Cd0 |U|
ln_loglayer = .false. ! logarithmic drag: Cd = vkarmn/log(z/z0) |U|
ln_drg_OFF = .false., ! free-slip : Cd = 0 (F => fill namdrg_bot
ln_lin = .false., ! linear drag: Cd = Cd0 Uc0 & namdrg_top)
ln_non_lin = .false., ! non-linear drag: Cd = Cd0 |U|
ln_loglayer = .false., ! logarithmic drag: Cd = vkarmn/log(z/z0) |U|
!
ln_drgimp = .true. ! implicit top/bottom friction flag
ln_drgice_imp = .true. ! implicit ice-ocean drag
ln_drgimp = .true., ! implicit top/bottom friction flag
ln_drgice_imp = .true., ! implicit ice-ocean drag
/
!-----------------------------------------------------------------------
&namdrg_top ! TOP friction (ln_drg_OFF =F & ln_isfcav=T)
......@@ -824,7 +830,7 @@
rn_Cdmax = 0.1 ! drag value maximum [-] (logarithmic drag)
rn_ke0 = 2.5e-3 ! background kinetic energy [m2/s2] (non-linear cases)
rn_z0 = 3.0e-3 ! roughness [m] (ln_loglayer=T)
ln_boost = .false. ! =T regional boost of Cd0 ; =F constant
ln_boost = .false., ! =T regional boost of Cd0 ; =F constant
rn_boost = 50. ! local boost factor [-]
/
!-----------------------------------------------------------------------
......@@ -835,13 +841,13 @@
rn_Cdmax = 0.1 ! drag value maximum [-] (logarithmic drag)
rn_ke0 = 2.5e-3 ! background kinetic energy [m2/s2] (non-linear cases)
rn_z0 = 3.e-3 ! roughness [m] (ln_loglayer=T)
ln_boost = .false. ! =T regional boost of Cd0 ; =F constant
ln_boost = .false., ! =T regional boost of Cd0 ; =F constant
rn_boost = 50. ! local boost factor [-]
/
!-----------------------------------------------------------------------
&nambbc ! bottom temperature boundary condition (default: OFF)
!-----------------------------------------------------------------------
ln_trabbc = .false. ! Apply a geothermal heating at the ocean bottom
ln_trabbc = .false., ! Apply a geothermal heating at the ocean bottom
nn_geoflx = 2 ! geothermal heat flux: = 1 constant flux
! ! = 2 read variable flux [mW/m2]
rn_geoflx_cst = 86.4e-3 ! Constant value of geothermal heat flux [mW/m2]
......@@ -855,7 +861,7 @@
!-----------------------------------------------------------------------
&nambbl ! bottom boundary layer scheme (default: OFF)
!-----------------------------------------------------------------------
ln_trabbl = .false. ! Bottom Boundary Layer parameterisation flag
ln_trabbl = .false., ! Bottom Boundary Layer parameterisation flag
nn_bbl_ldf = 1 ! diffusive bbl (=1) or not (=0)
nn_bbl_adv = 0 ! advective bbl (=1/2) or not (=0)
rn_ahtbbl = 1000. ! lateral mixing coefficient in the bbl [m2/s]
......@@ -876,9 +882,9 @@
!-----------------------------------------------------------------------
&nameos ! ocean Equation Of Seawater (default: NO selection)
!-----------------------------------------------------------------------
ln_teos10 = .false. ! = Use TEOS-10
ln_eos80 = .false. ! = Use EOS80
ln_seos = .false. ! = Use S-EOS (simplified Eq.)
ln_teos10 = .false., ! = Use TEOS-10
ln_eos80 = .false., ! = Use EOS80
ln_seos = .false., ! = Use S-EOS (simplified Eq.)
!
! ! S-EOS coefficients (ln_seos=T):
! ! rd(T,S,Z)*rho0 = -a0*(1+.5*lambda*dT+mu*Z+nu*dS)*dT+b0*dS
......@@ -893,39 +899,39 @@
!-----------------------------------------------------------------------
&namtra_adv ! advection scheme for tracer (default: NO selection)
!-----------------------------------------------------------------------
ln_traadv_OFF = .false. ! No tracer advection
ln_traadv_cen = .false. ! 2nd order centered scheme
ln_traadv_OFF = .false., ! No tracer advection
ln_traadv_cen = .false., ! 2nd order centered scheme
nn_cen_h = 4 ! =2/4, horizontal 2nd order CEN / 4th order CEN
nn_cen_v = 4 ! =2/4, vertical 2nd order CEN / 4th order COMPACT
ln_traadv_fct = .false. ! FCT scheme
ln_traadv_fct = .false., ! FCT scheme
nn_fct_h = 2 ! =2/4, horizontal 2nd / 4th order
nn_fct_v = 2 ! =2/4, vertical 2nd / COMPACT 4th order
ln_traadv_mus = .false. ! MUSCL scheme
ln_mus_ups = .false. ! use upstream scheme near river mouths
ln_traadv_ubs = .false. ! UBS scheme
ln_traadv_mus = .false., ! MUSCL scheme
ln_mus_ups = .false., ! use upstream scheme near river mouths
ln_traadv_ubs = .false., ! UBS scheme
nn_ubs_v = 2 ! =2 , vertical 2nd order FCT / COMPACT 4th order
ln_traadv_qck = .false. ! QUICKEST scheme
ln_traadv_qck = .false., ! QUICKEST scheme
/
!-----------------------------------------------------------------------
&namtra_ldf ! lateral diffusion scheme for tracers (default: NO selection)
!-----------------------------------------------------------------------
! ! Operator type:
ln_traldf_OFF = .false. ! No explicit diffusion
ln_traldf_lap = .false. ! laplacian operator
ln_traldf_blp = .false. ! bilaplacian operator
ln_traldf_OFF = .false., ! No explicit diffusion
ln_traldf_lap = .false., ! laplacian operator
ln_traldf_blp = .false., ! bilaplacian operator
!
! ! Direction of action:
ln_traldf_lev = .false. ! iso-level
ln_traldf_hor = .false. ! horizontal (geopotential)
ln_traldf_iso = .false. ! iso-neutral (standard operator)
ln_traldf_triad = .false. ! iso-neutral (triad operator)
ln_traldf_lev = .false., ! iso-level
ln_traldf_hor = .false., ! horizontal (geopotential)
ln_traldf_iso = .false., ! iso-neutral (standard operator)
ln_traldf_triad = .false., ! iso-neutral (triad operator)
!
! ! iso-neutral options:
ln_traldf_msc = .false. ! Method of Stabilizing Correction (both operators)
ln_traldf_msc = .false., ! Method of Stabilizing Correction (both operators)
rn_slpmax = 0.01 ! slope limit (both operators)
ln_triad_iso = .false. ! pure horizontal mixing in ML (triad only)
ln_triad_iso = .false., ! pure horizontal mixing in ML (triad only)
rn_sw_triad = 1 ! =1 switching triad ; =0 all 4 triads used (triad only)
ln_botmix_triad = .false. ! lateral mixing on bottom (triad only)
ln_botmix_triad = .false., ! lateral mixing on bottom (triad only)
!
! ! Coefficients:
nn_aht_ijk_t = 0 ! space/time variation of eddy coefficient:
......@@ -944,7 +950,7 @@
!-----------------------------------------------------------------------
&namtra_mle ! mixed layer eddy parametrisation (Fox-Kemper) (default: OFF)
!-----------------------------------------------------------------------
ln_mle = .false. ! (T) use the Mixed Layer Eddy (MLE) parameterisation
ln_mle = .false., ! (T) use the Mixed Layer Eddy (MLE) parameterisation
rn_ce = 0.06 ! magnitude of the MLE (typical value: 0.06 to 0.08)
nn_mle = 1 ! MLE type: =0 standard Fox-Kemper ; =1 new formulation
rn_lf = 5.e+3 ! typical scale of mixed layer front (meters) (case rn_mle=0)
......@@ -957,7 +963,7 @@
!-----------------------------------------------------------------------
&namtra_eiv ! eddy induced velocity param. (default: OFF)
!-----------------------------------------------------------------------
ln_ldfeiv = .false. ! use eddy induced velocity parameterization
ln_ldfeiv = .false., ! use eddy induced velocity parameterization
!
! ! Coefficients:
nn_aei_ijk_t = 0 ! space/time variation of eddy coefficient:
......@@ -971,12 +977,13 @@
rn_Ue = 0.02 ! lateral diffusive velocity [m/s] (nn_aht_ijk_t= 0, 10, 20, 30)
rn_Le = 200.e+3 ! lateral diffusive length [m] (nn_aht_ijk_t= 0, 10)
!
ln_ldfeiv_dia =.false. ! diagnose eiv stream function and velocities
nn_ldfeiv_shape = 0 !
ln_ldfeiv_dia =.false., ! diagnose eiv stream function and velocities
/
!-----------------------------------------------------------------------
&namtra_dmp ! tracer: T & S newtonian damping (default: OFF)
!-----------------------------------------------------------------------
ln_tradmp = .false. ! add a damping term (using resto.nc coef.)
ln_tradmp = .false., ! add a damping term (using resto.nc coef.)
nn_zdmp = 0 ! vertical shape =0 damping throughout the water column
! ! =1 no damping in the mixing layer (kz criteria)
! ! =2 no damping in the mixed layer (rho crieria)
......@@ -998,16 +1005,16 @@
!-----------------------------------------------------------------------
&nam_vvl ! vertical coordinate options (default: z-star)
!-----------------------------------------------------------------------
ln_vvl_zstar = .true. ! z-star vertical coordinate
ln_vvl_ztilde = .false. ! z-tilde vertical coordinate: only high frequency variations
ln_vvl_layer = .false. ! full layer vertical coordinate
ln_vvl_ztilde_as_zstar = .false. ! ztilde vertical coordinate emulating zstar
ln_vvl_zstar_at_eqtor = .false. ! ztilde near the equator
ln_vvl_zstar = .true., ! z-star vertical coordinate
ln_vvl_ztilde = .false., ! z-tilde vertical coordinate: only high frequency variations
ln_vvl_layer = .false., ! full layer vertical coordinate
ln_vvl_ztilde_as_zstar = .false., ! ztilde vertical coordinate emulating zstar
ln_vvl_zstar_at_eqtor = .false., ! ztilde near the equator
rn_ahe3 = 0.0 ! thickness diffusion coefficient
rn_rst_e3t = 30.0 ! ztilde to zstar restoration timescale [days]
rn_lf_cutoff = 5.0 ! cutoff frequency for low-pass filter [days]
rn_zdef_max = 0.9 ! maximum fractional e3t deformation
ln_vvl_dbg = .false. ! debug prints (T/F)
ln_vvl_dbg = .false., ! debug prints (T/F)
nn_vvl_interp = 2 ! interpolation method of scale factor anomalies at U/V/F points
! =0 linear even at the bottom (old)
! =1 linear with bottom correction
......@@ -1016,23 +1023,24 @@
!-----------------------------------------------------------------------
&namdyn_adv ! formulation of the momentum advection (default: NO selection)
!-----------------------------------------------------------------------
ln_dynadv_OFF = .false. ! linear dynamics (no momentum advection)
ln_dynadv_vec = .false. ! vector form - 2nd centered scheme
ln_dynadv_OFF = .false., ! linear dynamics (no momentum advection)
ln_dynadv_vec = .false., ! vector form - 2nd centered scheme
nn_dynkeg = 0 ! grad(KE) scheme: =0 C2 ; =1 Hollingsworth correction
ln_dynadv_cen2 = .false. ! flux form - 2nd order centered scheme
ln_dynadv_ubs = .false. ! flux form - 3rd order UBS scheme
ln_dynadv_cen2 = .false., ! flux form - 2nd order centered scheme
ln_dynadv_ubs = .false., ! flux form - 3rd order UBS OLD scheme
ln_dynadv_up3 = .false., ! flux form - 3rd order UBS NEW scheme
/
!-----------------------------------------------------------------------
&namdyn_vor ! Vorticity / Coriolis scheme (default: NO selection)
!-----------------------------------------------------------------------
ln_dynvor_ene = .false. ! energy conserving scheme
ln_dynvor_ens = .false. ! enstrophy conserving scheme
ln_dynvor_mix = .false. ! mixed scheme
ln_dynvor_enT = .false. ! energy conserving scheme (T-point)
ln_dynvor_eeT = .false. ! energy conserving scheme (een using e3t)
ln_dynvor_een = .false. ! energy & enstrophy scheme
ln_dynvor_ene = .false., ! energy conserving scheme
ln_dynvor_ens = .false., ! enstrophy conserving scheme
ln_dynvor_mix = .false., ! mixed scheme
ln_dynvor_enT = .false., ! energy conserving scheme (T-point)
ln_dynvor_eeT = .false., ! energy conserving scheme (een using e3t)
ln_dynvor_een = .false., ! energy & enstrophy scheme
!
ln_dynvor_msk = .false. ! vorticity multiplied by fmask (=T) ==>>> PLEASE DO NOT ACTIVATE
ln_dynvor_msk = .false., ! vorticity multiplied by fmask (=T) ==>>> PLEASE DO NOT ACTIVATE
! ! (f-point vorticity schemes only)
!
nn_e3f_typ = 0 ! type of e3f (EEN, ENE, ENS, MIX only) =0 e3f = mi(mj(e3t))/4
......@@ -1041,26 +1049,26 @@
!-----------------------------------------------------------------------
&namdyn_hpg ! Hydrostatic pressure gradient option (default: NO selection)
!-----------------------------------------------------------------------
ln_hpg_zco = .false. ! z-coordinate - full steps
ln_hpg_zps = .false. ! z-coordinate - partial steps (interpolation)
ln_hpg_sco = .false. ! s-coordinate (standard jacobian formulation)
ln_hpg_isf = .false. ! s-coordinate (sco ) adapted to isf
ln_hpg_djc = .false. ! s-coordinate (Density Jacobian with Cubic polynomial)
ln_hpg_djc_vnh = .true. ! hor. bc type for djc scheme (T=von Neumann, F=linear extrapolation)
ln_hpg_djc_vnv = .true. ! vert. bc type for djc scheme (T=von Neumann, F=linear extrapolation)
ln_hpg_prj = .false. ! s-coordinate (Pressure Jacobian scheme)
ln_hpg_zco = .false., ! z-coordinate - full steps
ln_hpg_zps = .false., ! z-coordinate - partial steps (interpolation)
ln_hpg_sco = .false., ! s-coordinate (standard jacobian formulation)
ln_hpg_isf = .false., ! s-coordinate (sco ) adapted to isf
ln_hpg_djc = .false., ! s-coordinate (Density Jacobian with Cubic polynomial)
ln_hpg_djc_vnh = .true., ! hor. bc type for djc scheme (T=von Neumann, F=linear extrapolation)
ln_hpg_djc_vnv = .true., ! vert. bc type for djc scheme (T=von Neumann, F=linear extrapolation)
ln_hpg_prj = .false., ! s-coordinate (Pressure Jacobian scheme)
/
!-----------------------------------------------------------------------
&namdyn_spg ! surface pressure gradient (default: NO selection)
!-----------------------------------------------------------------------
ln_dynspg_exp = .false. ! explicit free surface
ln_dynspg_ts = .false. ! split-explicit free surface
ln_bt_fw = .true. ! Forward integration of barotropic Eqs.
ln_bt_av = .true. ! Time filtering of barotropic variables
ln_dynspg_exp = .false., ! explicit free surface
ln_dynspg_ts = .false., ! split-explicit free surface
ln_bt_fw = .true., ! Forward integration of barotropic Eqs.
ln_bt_av = .true., ! Time filtering of barotropic variables
nn_bt_flt = 1 ! Time filter choice = 0 None
! ! = 1 Boxcar over nn_e sub-steps
! ! = 2 Boxcar over 2*nn_e " "
ln_bt_auto = .true. ! Number of sub-step defined from:
ln_bt_auto = .true., ! Number of sub-step defined from:
rn_bt_cmax = 0.8 ! =T : the Maximum Courant Number allowed
nn_e = 30 ! =F : the number of sub-step in rn_Dt seconds
rn_bt_alpha = 0. ! Temporal diffusion parameter (if ln_bt_av=F)
......@@ -1069,14 +1077,14 @@
&namdyn_ldf ! lateral diffusion on momentum (default: NO selection)
!-----------------------------------------------------------------------
! ! Type of the operator :
ln_dynldf_OFF = .false. ! No operator (i.e. no explicit diffusion)
ln_dynldf_OFF = .false., ! No operator (i.e. no explicit diffusion)
nn_dynldf_typ = 0 ! =0 div-rot (default) ; =1 symmetric
ln_dynldf_lap = .false. ! laplacian operator
ln_dynldf_blp = .false. ! bilaplacian operator
ln_dynldf_lap = .false., ! laplacian operator
ln_dynldf_blp = .false., ! bilaplacian operator
! ! Direction of action :
ln_dynldf_lev = .false. ! iso-level
ln_dynldf_hor = .false. ! horizontal (geopotential)
ln_dynldf_iso = .false. ! iso-neutral (lap only)
ln_dynldf_lev = .false., ! iso-level
ln_dynldf_hor = .false., ! horizontal (geopotential)
ln_dynldf_iso = .false., ! iso-neutral (lap only)
! ! Coefficient
nn_ahm_ijk_t = 0 ! space/time variation of eddy coefficient :
! ! =-30 read in eddy_viscosity_3D.nc file
......@@ -1101,8 +1109,8 @@
!-----------------------------------------------------------------------
&namdta_dyn ! offline ocean input files (OFF_SRC only)
!-----------------------------------------------------------------------
ln_dynrnf = .false. ! runoffs option enabled (T) or not (F)
ln_dynrnf_depth = .false. ! runoffs is spread in vertical (T) or not (F)
ln_dynrnf = .false., ! runoffs option enabled (T) or not (F)
ln_dynrnf_depth = .false., ! runoffs is spread in vertical (T) or not (F)
!
cn_dir = './' ! root directory for the ocean data location
!___________!_________________________!___________________!___________!_____________!________!___________!__________________!__________!_______________!
......@@ -1139,31 +1147,32 @@
&namzdf ! vertical physics manager (default: NO selection)
!-----------------------------------------------------------------------
! ! adaptive-implicit vertical advection
ln_zad_Aimp = .false. ! Courant number dependent scheme (Shchepetkin 2015)
ln_zad_Aimp = .false., ! Courant number dependent scheme (Shchepetkin 2015)
!
! ! type of vertical closure (required)
ln_zdfcst = .false. ! constant mixing
ln_zdfric = .false. ! local Richardson dependent formulation (T => fill namzdf_ric)
ln_zdftke = .false. ! Turbulent Kinetic Energy closure (T => fill namzdf_tke)
ln_zdfgls = .false. ! Generic Length Scale closure (T => fill namzdf_gls)
ln_zdfosm = .false. ! OSMOSIS BL closure (T => fill namzdf_osm)
ln_zdfcst = .false., ! constant mixing
ln_zdfric = .false., ! local Richardson dependent formulation (T => fill namzdf_ric)
ln_zdftke = .false., ! Turbulent Kinetic Energy closure (T => fill namzdf_tke)
ln_zdfgls = .false., ! Generic Length Scale closure (T => fill namzdf_gls)
ln_zdfosm = .false., ! OSMOSIS BL closure (T => fill namzdf_osm)
!
! ! convection
ln_zdfevd = .false. ! enhanced vertical diffusion
ln_zdfevd = .false., ! enhanced vertical diffusion
nn_evdm = 0 ! apply on tracer (=0) or on tracer and momentum (=1)
rn_evd = 100. ! mixing coefficient [m2/s]
ln_zdfnpc = .false. ! Non-Penetrative Convective algorithm
ln_zdfnpc = .false., ! Non-Penetrative Convective algorithm
nn_npc = 1 ! frequency of application of npc
nn_npcp = 365 ! npc control print frequency
ln_zdfmfc = .false. ! Mass Flux Convection
ln_zdfmfc = .false., ! Mass Flux Convection
!
ln_zdfddm = .false. ! double diffusive mixing
ln_zdfddm = .false., ! double diffusive mixing
rn_avts = 1.e-4 ! maximum avs (vertical mixing on salinity)
rn_hsbfr = 1.6 ! heat/salt buoyancy flux ratio
!
! ! gravity wave-driven vertical mixing
ln_zdfiwm = .false. ! internal wave-induced mixing (T => fill namzdf_iwm)
ln_zdfswm = .false. ! surface wave-induced mixing (T => ln_wave=ln_sdw=T )
ln_zdfiwm = .false., ! internal wave-induced mixing (T => fill namzdf_iwm)
ln_zdfswm = .false., ! surface wave-induced mixing (T => ln_wave=ln_sdw=T )
ln_zdftmx = .false., !
!
! ! coefficients
rn_avm0 = 1.2e-4 ! vertical eddy viscosity [m2/s] (background Kz if ln_zdfcst=F)
......@@ -1177,7 +1186,7 @@
rn_avmri = 100.e-4 ! maximum value of the vertical viscosity
rn_alp = 5. ! coefficient of the parameterization
nn_ric = 2 ! coefficient of the parameterization
ln_mldw = .false. ! enhanced mixing in the Ekman layer
ln_mldw = .false., ! enhanced mixing in the Ekman layer
rn_ekmfc = 0.7 ! Factor in the Ekman depth Equation
rn_mldmin = 1.0 ! minimum allowable mixed-layer depth estimate (m)
rn_mldmax = 1000.0 ! maximum allowable mixed-layer depth estimate (m)
......@@ -1198,7 +1207,7 @@
! ! = 1 bounded by the local vertical scale factor
! ! = 2 first vertical derivative of mixing length bounded by 1
! ! = 3 as =2 with distinct dissipative an mixing length scale
ln_mxl0 = .true. ! surface mixing length scale = F(wind stress) (T) or not (F)
ln_mxl0 = .true., ! surface mixing length scale = F(wind stress) (T) or not (F)
nn_mxlice = 0 ! type of scaling under sea-ice
! ! = 0 no scaling under sea-ice
! ! = 1 scaling with constant sea-ice thickness
......@@ -1206,8 +1215,8 @@
! ! = 3 scaling with maximum sea-ice thickness
rn_mxlice = 10. ! max constant ice thickness value when scaling under sea-ice ( nn_mxlice=1)
rn_mxl0 = 0.04 ! surface buoyancy lenght scale minimum value
ln_mxhsw = .false. ! surface mixing length scale = F(wave height)
ln_lc = .true. ! Langmuir cell parameterisation (Axell 2002)
ln_mxhsw = .false., ! surface mixing length scale = F(wave height)
ln_lc = .true., ! Langmuir cell parameterisation (Axell 2002)
rn_lc = 0.15 ! coef. associated to Langmuir cells
nn_etau = 1 ! penetration of tke below the mixed layer (ML) due to NIWs
! ! = 0 none ; = 1 add a tke source below the ML
......@@ -1217,6 +1226,7 @@
nn_htau = 1 ! type of exponential decrease of tke penetration below the ML
! ! = 0 constant 10 m length scale
! ! = 1 0.5m at the equator to 30m poleward of 40 degrees
rn_htau_scaling = 1.0 ! scaling factor to apply to depth of TKE penetration
nn_eice = 1 ! attenutaion of langmuir & surface wave breaking under ice
! ! = 0 no impact of ice cover on langmuir & surface wave breaking
! ! = 1 weigthed by 1-TANH(10*fr_i)
......@@ -1230,9 +1240,9 @@
!-----------------------------------------------------------------------
rn_emin = 1.e-7 ! minimum value of e [m2/s2]
rn_epsmin = 1.e-12 ! minimum value of eps [m2/s3]
ln_length_lim = .true. ! limit on the dissipation rate under stable stratification (Galperin et al., 1988)
ln_length_lim = .true., ! limit on the dissipation rate under stable stratification (Galperin et al., 1988)
rn_clim_galp = 0.267 ! galperin limit
ln_sigpsi = .true. ! Activate or not Burchard 2001 mods on psi schmidt number in the wb case
ln_sigpsi = .true., ! Activate or not Burchard 2001 mods on psi schmidt number in the wb case
rn_crban = 100. ! Craig and Banner 1994 constant for wb tke flux
rn_charn = 70000. ! Charnock constant for wb induced roughness length
rn_hsro = 0.02 ! Minimum surface roughness
......@@ -1258,18 +1268,18 @@
!-----------------------------------------------------------------------
&namzdf_osm ! OSM vertical diffusion (ln_zdfosm =T)
!-----------------------------------------------------------------------
ln_use_osm_la = .false. ! Use rn_osm_la
ln_use_osm_la = .false., ! Use rn_osm_la
rn_osm_la = 0.3 ! Turbulent Langmuir number
rn_zdfosm_adjust_sd = 1.0 ! Stokes drift reduction factor
rn_osm_hblfrac = 0.1 ! specify top part of hbl for nn_osm_wave = 3 or 4
rn_osm_bl_thresh = 5.e-5 !Threshold buoyancy for deepening of OSBL base
nn_ave = 0 ! choice of horizontal averaging on avt, avmu, avmv
ln_dia_osm = .true. ! output OSMOSIS-OBL variables
ln_dia_osm = .true., ! output OSMOSIS-OBL variables
rn_osm_hbl0 = 10. ! initial hbl value
ln_kpprimix = .true. ! Use KPP-style Ri# mixing below BL
ln_kpprimix = .true., ! Use KPP-style Ri# mixing below BL
rn_riinfty = 0.7 ! Highest local Ri_g permitting shear instability
rn_difri = 0.005 ! max Ri# diffusivity at Ri_g = 0 (m^2/s)
ln_convmix = .true. ! Use convective instability mixing below BL
ln_convmix = .true., ! Use convective instability mixing below BL
rn_difconv = 1. !0.01 !1. ! diffusivity when unstable below BL (m2/s)
rn_osm_dstokes = 5. ! Depth scale of Stokes drift (m)
nn_osm_wave = 0 ! Method used to calculate Stokes drift
......@@ -1280,8 +1290,8 @@
! ! = 0: No reduction
! = 1: use SD avged over top 10% hbl
! = 2:use surface value of SD fit to slope at rn_osm_hblfrac*hbl below surface
ln_zdfosm_ice_shelter = .true. ! reduce surface SD and depth scale under ice
ln_osm_mle = .true. ! Use integrated FK-OSM model
ln_zdfosm_ice_shelter = .true., ! reduce surface SD and depth scale under ice
ln_osm_mle = .true., ! Use integrated FK-OSM model
/
!-----------------------------------------------------------------------
&namosm_mle ! mixed layer eddy parametrisation (Fox-Kemper) (default: OFF)
......@@ -1294,13 +1304,13 @@
rn_osm_mle_rho_c = 0.03 ! delta rho criterion used to calculate MLD for FK
rn_osm_mle_thresh = 0.0001 ! delta b criterion used for FK MLE criterion
rn_osm_mle_tau = 172800. ! time scale for FK-OSM (seconds) (case rn_osm_mle=0)
ln_osm_hmle_limit = .true. ! If true, limit hmle to rn_osm_hmle_limit*hbl
ln_osm_hmle_limit = .true., ! If true, limit hmle to rn_osm_hmle_limit*hbl
rn_osm_hmle_limit = 1.5
/
!-----------------------------------------------------------------------
&namzdf_mfc ! Mass Flux Convection
!-----------------------------------------------------------------------
ln_edmfuv = .false. ! Activate on velocity fields (Not available yet)
ln_edmfuv = .false., ! Activate on velocity fields (Not available yet)
rn_cemf = 1. ! entrain/detrain coef. (<0 => cte; >0 % depending on dW/dz
rn_cwmf = -0. ! entrain/detrain coef. (<0 => cte; >0 % depending on dW/dz
rn_cent = 2.e-5 ! entrain of convective area
......@@ -1311,8 +1321,8 @@
!-----------------------------------------------------------------------
&namzdf_iwm ! internal wave-driven mixing parameterization (ln_zdfiwm =T)
!-----------------------------------------------------------------------
ln_mevar = .false. ! variable (T) or constant (F) mixing efficiency
ln_tsdiff = .true. ! account for differential T/S mixing (T) or not (F)
ln_mevar = .false., ! variable (T) or constant (F) mixing efficiency
ln_tsdiff = .true., ! account for differential T/S mixing (T) or not (F)
cn_dir = './' ! root directory for the iwm data location
!___________!_________________________!___________________!___________!_____________!________!___________!__________________!__________!_______________!
......@@ -1341,53 +1351,53 @@
!-----------------------------------------------------------------------
&namtrd ! trend diagnostics (default: OFF)
!-----------------------------------------------------------------------
ln_glo_trd = .false. ! (T) global domain averaged diag for T, T^2, KE, and PE
ln_dyn_trd = .false. ! (T) 3D momentum trend output
ln_dyn_mxl = .false. ! (T) 2D momentum trends averaged over the mixed layer (not coded yet)
ln_vor_trd = .false. ! (T) 2D barotropic vorticity trends (not coded yet)
ln_KE_trd = .false. ! (T) 3D Kinetic Energy trends
ln_PE_trd = .false. ! (T) 3D Potential Energy trends
ln_tra_trd = .false. ! (T) 3D tracer trend output
ln_tra_mxl = .false. ! (T) 2D tracer trends averaged over the mixed layer (not coded yet)
ln_glo_trd = .false., ! (T) global domain averaged diag for T, T^2, KE, and PE
ln_dyn_trd = .false., ! (T) 3D momentum trend output
ln_dyn_mxl = .false., ! (T) 2D momentum trends averaged over the mixed layer (not coded yet)
ln_vor_trd = .false., ! (T) 2D barotropic vorticity trends (not coded yet)
ln_KE_trd = .false., ! (T) 3D Kinetic Energy trends
ln_PE_trd = .false., ! (T) 3D Potential Energy trends
ln_tra_trd = .false., ! (T) 3D tracer trend output
ln_tra_mxl = .false., ! (T) 2D tracer trends averaged over the mixed layer (not coded yet)
nn_trd = 365 ! print frequency (ln_glo_trd=T) (unit=time step)
/
!!gm nn_ctls = 0 ! control surface type in mixed-layer trends (0,1 or n<jpk)
!!gm rn_ucf = 1. ! unit conversion factor (=1 -> /seconds ; =86400. -> /day)
!!gm cn_trdrst_in = "restart_mld" ! suffix of ocean restart name (input)
!!gm cn_trdrst_out = "restart_mld" ! suffix of ocean restart name (output)
!!gm ln_trdmld_restart = .false. ! restart for ML diagnostics
!!gm ln_trdmld_instant = .false. ! flag to diagnose trends of instantantaneous or mean ML T/S
!!gm ln_trdmld_restart = .false., ! restart for ML diagnostics
!!gm ln_trdmld_instant = .false., ! flag to diagnose trends of instantantaneous or mean ML T/S
!!gm
!-----------------------------------------------------------------------
&namhsb ! Heat and salt budgets (default: OFF)
!-----------------------------------------------------------------------
ln_diahsb = .false. ! output the heat and salt budgets (T) or not (F)
ln_diahsb = .false., ! output the heat and salt budgets (T) or not (F)
/
!-----------------------------------------------------------------------
&namdiu ! Cool skin and warm layer models (default: OFF)
!-----------------------------------------------------------------------
ln_diurnal = .false. !
ln_diurnal_only = .false. !
ln_diurnal = .false., !
ln_diurnal_only = .false., !
/
!-----------------------------------------------------------------------
&namflo ! float parameters (default: OFF)
!-----------------------------------------------------------------------
ln_floats = .false. ! activate floats or not
ln_floats = .false., ! activate floats or not
jpnfl = 1 ! total number of floats during the run
jpnnewflo = 0 ! number of floats for the restart
ln_rstflo = .false. ! float restart (T) or not (F)
ln_rstflo = .false., ! float restart (T) or not (F)
nn_writefl = 75 ! frequency of writing in float output file
nn_stockfl = 5475 ! frequency of creation of the float restart file
ln_argo = .false. ! Argo type floats (stay at the surface each 10 days)
ln_flork4 = .false. ! trajectories computed with a 4th order Runge-Kutta (T)
ln_argo = .false., ! Argo type floats (stay at the surface each 10 days)
ln_flork4 = .false., ! trajectories computed with a 4th order Runge-Kutta (T)
! ! or computed with Blanke' scheme (F)
ln_ariane = .true. ! Input with Ariane tool convention(T)
ln_flo_ascii= .true. ! Output with Ariane tool netcdf convention(F) or ascii file (T)
ln_ariane = .true., ! Input with Ariane tool convention(T)
ln_flo_ascii= .true., ! Output with Ariane tool netcdf convention(F) or ascii file (T)
/
!-----------------------------------------------------------------------
&nam_diadct ! transports through some sections (default: OFF)
!-----------------------------------------------------------------------
ln_diadct = .false. ! Calculate transport thru sections or not
ln_diadct = .false., ! Calculate transport thru sections or not
nn_dct = 15 ! time step frequency for transports computing
nn_dctwri = 15 ! time step frequency for transports writing
nn_secdebug = 112 ! 0 : no section to debug
......@@ -1397,7 +1407,7 @@
!-----------------------------------------------------------------------
&nam_dia25h ! 25h Mean Output (default: OFF)
!-----------------------------------------------------------------------
ln_dia25h = .false. ! Choose 25h mean output or not
ln_dia25h = .false., ! Choose 25h mean output or not
/
!-----------------------------------------------------------------------
&namnc4 ! netcdf4 chunking and compression settings ("key_netcdf4")
......@@ -1407,7 +1417,7 @@
nn_nchunks_k = 31 ! number of chunks in k-dimension
! ! setting nn_nchunks_k = jpk will give a chunk size of 1 in the vertical which
! ! is optimal for postprocessing which works exclusively with horizontal slabs
ln_nc4zip = .true. ! (T) use netcdf4 chunking and compression
ln_nc4zip = .true., ! (T) use netcdf4 chunking and compression
! ! (F) ignore chunking information and produce netcdf3-compatible files
/
......@@ -1421,29 +1431,29 @@
!-----------------------------------------------------------------------
&namobs ! observation usage switch (default: OFF)
!-----------------------------------------------------------------------
ln_diaobs = .false. ! Logical switch for the observation operator
ln_diaobs = .false., ! Logical switch for the observation operator
!
ln_t3d = .false. ! Logical switch for T profile observations
ln_s3d = .false. ! Logical switch for S profile observations
ln_sla = .false. ! Logical switch for SLA observations
ln_sst = .false. ! Logical switch for SST observations
ln_sss = .false. ! Logical swithc for SSS observations
ln_sic = .false. ! Logical switch for Sea Ice observations
ln_vel3d = .false. ! Logical switch for velocity observations
ln_altbias = .false. ! Logical switch for altimeter bias correction
ln_sstbias = .false. ! Logical switch for SST bias correction
ln_nea = .false. ! Logical switch for rejection of observations near land
ln_grid_global = .true. ! Logical switch for global distribution of observations
ln_grid_search_lookup = .false. ! Logical switch for obs grid search w/lookup table
ln_ignmis = .true. ! Logical switch for ignoring missing files
ln_s_at_t = .false. ! Logical switch for computing model S at T obs if not there
ln_sstnight = .false. ! Logical switch for calculating night-time average for SST obs
ln_bound_reject = .false. ! Logical to remove obs near boundaries in LAMs.
ln_default_fp_indegs = .true. ! Logical: T=> averaging footprint is in degrees, F=> in metres
ln_sla_fp_indegs = .true. ! Logical for SLA: T=> averaging footprint is in degrees, F=> in metres
ln_sst_fp_indegs = .true. ! Logical for SST: T=> averaging footprint is in degrees, F=> in metres
ln_sss_fp_indegs = .true. ! Logical for SSS: T=> averaging footprint is in degrees, F=> in metres
ln_sic_fp_indegs = .true. ! Logical for SIC: T=> averaging footprint is in degrees, F=> in metres
ln_t3d = .false., ! Logical switch for T profile observations
ln_s3d = .false., ! Logical switch for S profile observations
ln_sla = .false., ! Logical switch for SLA observations
ln_sst = .false., ! Logical switch for SST observations
ln_sss = .false., ! Logical swithc for SSS observations
ln_sic = .false., ! Logical switch for Sea Ice observations
ln_vel3d = .false., ! Logical switch for velocity observations
ln_altbias = .false., ! Logical switch for altimeter bias correction
ln_sstbias = .false., ! Logical switch for SST bias correction
ln_nea = .false., ! Logical switch for rejection of observations near land
ln_grid_global = .true., ! Logical switch for global distribution of observations
ln_grid_search_lookup = .false., ! Logical switch for obs grid search w/lookup table
ln_ignmis = .true., ! Logical switch for ignoring missing files
ln_s_at_t = .false., ! Logical switch for computing model S at T obs if not there
ln_sstnight = .false., ! Logical switch for calculating night-time average for SST obs
ln_bound_reject = .false., ! Logical to remove obs near boundaries in LAMs.
ln_default_fp_indegs = .true., ! Logical: T=> averaging footprint is in degrees, F=> in metres
ln_sla_fp_indegs = .true., ! Logical for SLA: T=> averaging footprint is in degrees, F=> in metres
ln_sst_fp_indegs = .true., ! Logical for SST: T=> averaging footprint is in degrees, F=> in metres
ln_sss_fp_indegs = .true., ! Logical for SSS: T=> averaging footprint is in degrees, F=> in metres
ln_sic_fp_indegs = .true., ! Logical for SIC: T=> averaging footprint is in degrees, F=> in metres
! All of the *files* variables below are arrays. Use namelist_cfg to add more files
cn_profbfiles = 'profiles_01.nc' ! Profile feedback input observation file names
cn_slafbfiles = 'sla_01.nc' ! SLA feedback input observation file names
......@@ -1481,19 +1491,21 @@
!-----------------------------------------------------------------------
&nam_asminc ! assimilation increments ('key_asminc')
!-----------------------------------------------------------------------
ln_bkgwri = .false. ! Logical switch for writing out background state
ln_trainc = .false. ! Logical switch for applying tracer increments
ln_dyninc = .false. ! Logical switch for applying velocity increments
ln_sshinc = .false. ! Logical switch for applying SSH increments
ln_asmdin = .false. ! Logical switch for Direct Initialization (DI)
ln_asmiau = .false. ! Logical switch for Incremental Analysis Updating (IAU)
ln_bkgwri = .false., ! Logical switch for writing out background state
ln_trainc = .false., ! Logical switch for applying tracer increments
ln_dyninc = .false., ! Logical switch for applying velocity increments
ln_sshinc = .false., ! Logical switch for applying SSH increments
ln_seaiceinc = .false., ! Logical switch for applying Sea ice concentration increments
ln_asmdin = .false., ! Logical switch for Direct Initialization (DI)
ln_asmiau = .false., ! Logical switch for Incremental Analysis Updating (IAU)
nitbkg = 0 ! Timestep of background in [0,nitend-nit000-1]
nitdin = 0 ! Timestep of background for DI in [0,nitend-nit000-1]
nitiaustr = 1 ! Timestep of start of IAU interval in [0,nitend-nit000-1]
nitiaufin = 15 ! Timestep of end of IAU interval in [0,nitend-nit000-1]
niaufn = 0 ! Type of IAU weighting function
ln_salfix = .false. ! Logical switch for ensuring that the sa > salfixmin
ln_salfix = .false., ! Logical switch for ensuring that the sa > salfixmin
salfixmin = -9999 ! Minimum salinity after applying the increments
ln_temnofreeze=.false., ! Don't allow the temperature to drop below freezing
nn_divdmp = 0 ! Number of iterations of divergence damping operator
/
......@@ -1508,9 +1520,9 @@
!-----------------------------------------------------------------------
&nammpp ! Massively Parallel Processing
!-----------------------------------------------------------------------
ln_listonly = .false. ! do nothing else than listing the best domain decompositions (with land domains suppression)
ln_listonly = .false., ! do nothing else than listing the best domain decompositions (with land domains suppression)
! ! if T: the largest number of cores tested is defined by max(mppsize, jpni*jpnj)
ln_nnogather = .true. ! activate code to avoid mpi_allgather use at the northfold
ln_nnogather = .true., ! activate code to avoid mpi_allgather use at the northfold
jpni = 0 ! number of processors following i (set automatically if < 1), see also ln_listonly = T
jpnj = 0 ! number of processors following j (set automatically if < 1), see also ln_listonly = T
nn_hls = 1 ! halo width (applies to both rows and columns)
......@@ -1519,13 +1531,13 @@
!-----------------------------------------------------------------------
&namctl ! Control prints (default: OFF)
!-----------------------------------------------------------------------
sn_cfctl%l_runstat = .TRUE. ! switches and which areas produce reports with the proc integer settings.
sn_cfctl%l_trcstat = .FALSE. ! The default settings for the proc integers should ensure
sn_cfctl%l_oceout = .FALSE. ! that all areas report.
sn_cfctl%l_layout = .FALSE. !
sn_cfctl%l_prtctl = .FALSE. !
sn_cfctl%l_prttrc = .FALSE. !
sn_cfctl%l_oasout = .FALSE. !
sn_cfctl%l_runstat = .TRUE., ! switches and which areas produce reports with the proc integer settings.
sn_cfctl%l_trcstat = .false., ! The default settings for the proc integers should ensure
sn_cfctl%l_oceout = .false., ! that all areas report.
sn_cfctl%l_layout = .false., !
sn_cfctl%l_prtctl = .false., !
sn_cfctl%l_prttrc = .false., !
sn_cfctl%l_oasout = .false., !
sn_cfctl%procmin = 0 ! Minimum area number for reporting [default:0]
sn_cfctl%procmax = 1000000 ! Maximum area number for reporting [default:1000000]
sn_cfctl%procincr = 1 ! Increment for optional subsetting of areas [default:1]
......@@ -1536,27 +1548,27 @@
nn_jctle = 0 ! end j indice of control
nn_isplt = 1 ! number of processors in i-direction
nn_jsplt = 1 ! number of processors in j-direction
ln_timing = .false. ! timing by routine write out in timing.output file
ln_diacfl = .false. ! CFL diagnostics write out in cfl_diagnostics.ascii
ln_timing = .false., ! timing by routine write out in timing.output file
ln_diacfl = .false., ! CFL diagnostics write out in cfl_diagnostics.ascii
/
!-----------------------------------------------------------------------
&namsto ! Stochastic parametrization of EOS (default: OFF)
!-----------------------------------------------------------------------
ln_sto_ldf = .false. ! stochastic lateral diffusion
ln_sto_ldf = .false., ! stochastic lateral diffusion
rn_ldf_std = 0.1 ! lateral diffusion standard deviation (in percent)
rn_ldf_tcor = 1440. ! lateral diffusion correlation timescale (in timesteps)
ln_sto_hpg = .false. ! stochastic pressure gradient
ln_sto_hpg = .false., ! stochastic pressure gradient
rn_hpg_std = 0.1 ! density gradient standard deviation (in percent)
rn_hpg_tcor = 1440. ! density gradient correlation timescale (in timesteps)
ln_sto_pstar = .false. ! stochastic ice strength
ln_sto_pstar = .false., ! stochastic ice strength
rn_pstar_std = 0.1 ! ice strength standard deviation (in percent)
rn_pstar_tcor = 1440. ! ice strength correlation timescale (in timesteps)
nn_pstar_ord = 1 ! order of autoregressive processes
nn_pstar_flt = 0 ! passes of Laplacian filter
ln_sto_trd = .false. ! stochastic model trend
ln_sto_trd = .false., ! stochastic model trend
rn_trd_std = 0.1 ! trend standard deviation (in percent)
rn_trd_tcor = 1440. ! trend correlation timescale (in timesteps)
ln_sto_eos = .false. ! stochastic equation of state
ln_sto_eos = .false., ! stochastic equation of state
nn_sto_eos = 1 ! number of independent random walks
rn_eos_stdxy = 1.4 ! random walk horz. standard deviation (in grid points)
rn_eos_stdz = 0.7 ! random walk vert. standard deviation (in grid points)
......@@ -1564,7 +1576,7 @@
nn_eos_ord = 1 ! order of autoregressive processes
nn_eos_flt = 0 ! passes of Laplacian filter
rn_eos_lim = 2.0 ! limitation factor (default = 3.0)
ln_sto_trc = .false. ! stochastic tracer dynamics
ln_sto_trc = .false., ! stochastic tracer dynamics
nn_sto_trc = 1 ! number of independent random walks
rn_trc_stdxy = 1.4 ! random walk horz. standard deviation (in grid points)
rn_trc_stdz = 0.7 ! random walk vert. standard deviation (in grid points)
......@@ -1572,8 +1584,10 @@
nn_trc_ord = 1 ! order of autoregressive processes
nn_trc_flt = 0 ! passes of Laplacian filter
rn_trc_lim = 3.0 ! limitation factor (default = 3.0)
ln_rststo = .false. ! start from mean parameter (F) or from restart file (T)
ln_rstseed = .true. ! read seed of RNG from restart file
ln_rststo = .false., ! start from mean parameter (F) or from restart file (T)
ln_rstseed = .true., ! read seed of RNG from restart file
cn_storst_in = "restart_sto" ! suffix of stochastic parameter restart file (input)
cn_storst_out = "restart_sto" ! suffix of stochastic parameter restart file (output)
/
&namzdf_mldzint
/
......@@ -13,8 +13,8 @@
!-----------------------------------------------------------------------
&namtrc_run ! run information
!-----------------------------------------------------------------------
ln_top_euler = .false. ! use Euler time-stepping for TOP
ln_rsttr = .false. ! start from a restart file (T) or not (F)
ln_top_euler = .false., ! use Euler time-stepping for TOP
ln_rsttr = .false., ! start from a restart file (T) or not (F)
nn_rsttr = 0 ! restart control = 0 initial time step is not compared to the restart file value
! = 1 do not use the value in the restart file
! = 2 calendar parameters read in the restart file
......@@ -28,19 +28,19 @@
!-----------------------------------------------------------------------
jp_bgc = 0 ! Number of passive tracers of the BGC model
!
ln_pisces = .false. ! Run PISCES BGC model
ln_my_trc = .false. ! Run MY_TRC BGC model
ln_age = .false. ! Run the sea water age tracer
ln_cfc11 = .false. ! Run the CFC11 passive tracer
ln_cfc12 = .false. ! Run the CFC12 passive tracer
ln_sf6 = .false. ! Run the SF6 passive tracer
ln_c14 = .false. ! Run the Radiocarbon passive tracer
ln_pisces = .false., ! Run PISCES BGC model
ln_my_trc = .false., ! Run MY_TRC BGC model
ln_age = .false., ! Run the sea water age tracer
ln_cfc11 = .false., ! Run the CFC11 passive tracer
ln_cfc12 = .false., ! Run the CFC12 passive tracer
ln_sf6 = .false., ! Run the SF6 passive tracer
ln_c14 = .false., ! Run the Radiocarbon passive tracer
!
ln_trcdta = .false. ! Initialisation from data input file (T) or not (F)
ln_trcdmp = .false. ! add a damping termn (T) or not (F)
ln_trcdmp_clo = .false. ! damping term (T) or not (F) on closed seas
ln_trcbc = .false. ! Surface, Lateral or Open Boundaries conditions
ln_trcais = .false. ! Antarctic Ice Sheet nutrient supply
ln_trcdta = .false., ! Initialisation from data input file (T) or not (F)
ln_trcdmp = .false., ! add a damping termn (T) or not (F)
ln_trcdmp_clo = .false., ! damping term (T) or not (F) on closed seas
ln_trcbc = .false., ! Surface, Lateral or Open Boundaries conditions
ln_trcais = .false., ! Antarctic Ice Sheet nutrient supply
!
jp_dia3d = 0 ! Number of 3D diagnostic variables
jp_dia2d = 0 ! Number of 2D diagnostic variables
......@@ -66,25 +66,25 @@
!-----------------------------------------------------------------------
&namtrc_adv ! advection scheme for passive tracer (default: NO selection)
!-----------------------------------------------------------------------
ln_trcadv_OFF = .false. ! No passive tracer advection
ln_trcadv_cen = .false. ! 2nd order centered scheme
ln_trcadv_OFF = .false., ! No passive tracer advection
ln_trcadv_cen = .false., ! 2nd order centered scheme
nn_cen_h = 4 ! =2/4, horizontal 2nd order CEN / 4th order CEN
nn_cen_v = 4 ! =2/4, vertical 2nd order CEN / 4th order COMPACT
ln_trcadv_fct = .false. ! FCT scheme
ln_trcadv_fct = .false., ! FCT scheme
nn_fct_h = 2 ! =2/4, horizontal 2nd / 4th order
nn_fct_v = 2 ! =2/4, vertical 2nd / COMPACT 4th order
ln_trcadv_mus = .false. ! MUSCL scheme
ln_mus_ups = .false. ! use upstream scheme near river mouths
ln_trcadv_ubs = .false. ! UBS scheme
ln_trcadv_mus = .false., ! MUSCL scheme
ln_mus_ups = .false., ! use upstream scheme near river mouths
ln_trcadv_ubs = .false., ! UBS scheme
nn_ubs_v = 2 ! =2 , vertical 2nd order FCT
ln_trcadv_qck = .false. ! QUICKEST scheme
ln_trcadv_qck = .false., ! QUICKEST scheme
/
!-----------------------------------------------------------------------
&namtrc_ldf ! lateral diffusion scheme for passive tracer (default: NO selection)
!-----------------------------------------------------------------------
! ! Type of the operator:
ln_trcldf_OFF = .false. ! No explicit diffusion
ln_trcldf_tra = .false. ! use active tracer setting
ln_trcldf_OFF = .false., ! No explicit diffusion
ln_trcldf_tra = .false., ! use active tracer setting
! ! Coefficient (defined with namtra_ldf coefficient)
rn_ldf_multi = 1. ! multiplier of aht for TRC mixing coefficient
rn_fact_lap = 1. ! Equatorial enhanced zonal eddy diffusivity (lap only)
......@@ -92,7 +92,7 @@
!-----------------------------------------------------------------------
&namtrc_rad ! treatment of negative concentrations
!-----------------------------------------------------------------------
ln_trcrad = .true. ! artificially correct negative concentrations (T) or not (F)
ln_trcrad = .true., ! artificially correct negative concentrations (T) or not (F)
/
!-----------------------------------------------------------------------
&namtrc_snk ! Sedimentation of particles
......@@ -102,7 +102,7 @@
!-----------------------------------------------------------------------
&namtrc_dcy ! Diurnal cycle
!-----------------------------------------------------------------------
ln_trcdc2dm = .false. ! Diurnal cycle for TOP
ln_trcdc2dm = .false., ! Diurnal cycle for TOP
/
!-----------------------------------------------------------------------
&namtrc_opt ! light availability in the water column
......@@ -111,7 +111,7 @@
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! 'monthly' ! filename ! pairing ! filename !
sn_par = 'par.orca' , 24 , 'fr_par' , .true. , .true. , 'yearly' , '' , '' , ''
cn_dir = './' ! root directory for the location of the dynamical files
ln_varpar = .true. ! Read PAR from file
ln_varpar = .true., ! Read PAR from file
parlux = 0.43 ! Fraction of shortwave as PAR
light_loc = 'center' ! Light location in the water cell ('center', 'integral')
/
......@@ -138,21 +138,30 @@
nn_trd_trc = 5475 ! time step frequency and tracers trends
nn_ctls_trc = 0 ! control surface type in mixed-layer trends (0,1 or n<jpk)
rn_ucf_trc = 1 ! unit conversion factor (=1 -> /seconds ; =86400. -> /day)
ln_trdmld_trc_restart = .false. ! restart for ML diagnostics
ln_trdmld_trc_instant = .true. ! flag to diagnose trends of instantantaneous or mean ML T/S
ln_trdmld_trc_restart = .false.,! restart for ML diagnostics
ln_trdmld_trc_instant = .true., ! flag to diagnose trends of instantantaneous or mean ML T/S
ln_trdtrc( 1) = .true.
ln_trdtrc( 2) = .true.
ln_trdtrc(23) = .true.
/
!----------------------------------------------------------------------
&namtrc_bc ! data for boundary conditions
!----------------------------------------------------------------------
! Surface and coastal input data must be specified individually for each tracer.
! Lateral open boundary inputs are specified for each BDY segment and related inputfiles
! must contain data for the variables with active open boundary (set through &namtrc).
! By default, variable names of BDY inputfiles are the same as in &namtrc, but using
! cn_tronam it is possible to specify alternative variable names to match with inputfiles.
! ! file name ! freq ! variable ! time interp. ! clim !'yearly' ! weights ! rotation | land/sea
! sn_trcobc(1) = 'bdy_dta_trc_North_y1980', -1 , 'dummy' , .false. , .true. ,'yearly' , '', '', ''
!-----------------------------------------------------------------------
cn_dir_sbc = './' ! root directory for the location of SURFACE data files
cn_dir_cbc = './' ! root directory for the location of COASTAL data files
cn_dir_obc = './' ! root directory for the location of OPEN data files
ln_rnf_ctl = .false. ! Remove runoff dilution on tracers with absent river load
ln_rnf_ctl = .false., ! Remove runoff dilution on tracers with absent river load
rn_sbc_time = 86400. ! Time scaling factor for SBC data (seconds in a day)
rn_cbc_time = 86400. ! Time scaling factor for CBC data (seconds in a day)
! cn_tronam(1) = 'var1' ! Tracer-name to variable-name translation
/
!----------------------------------------------------------------------
&namtrc_bdy ! Setup of tracer boundary conditions
......@@ -164,6 +173,8 @@
! = 0 NO damping of tracers at open boudaries
! = 1 Only for tracers forced with external data
! = 2 Damping applied to all tracers
ln_zintobc = .false., ! T if a vertical interpolation is required. Variables gdep[t] and e3[t] must exist in the file
! automatically defined to T if the number of vertical levels in bdy dta /= jpk
/
!-----------------------------------------------------------------------
&namtrc_ais ! Representation of Antarctic Ice Sheet tracers supply
......
......@@ -7,6 +7,5 @@ ORCA2_OFF_PISCES OCE TOP OFF
ORCA2_OFF_TRC OCE TOP OFF
ORCA2_SAS_ICE OCE ICE NST SAS
ORCA2_ICE_PISCES OCE TOP ICE NST ABL
ORCA2_ICE_ABL OCE ICE ABL
SPITZ12 OCE ICE
WED025 OCE ICE
......@@ -447,14 +447,14 @@ subroutine Agrif_Find_Nearest ( tabvarsindic, fineloc, parentloc )
type(Agrif_Variable), pointer :: parent_var
type(Agrif_Variable), pointer :: child_var
integer :: i
integer, dimension(6) :: nb_child !< Number of cells on the child grid
integer, dimension(6) :: ub_child !< Upper bound on the child grid
integer, dimension(6) :: lb_child !< Lower bound on the child grid
integer, dimension(6) :: lb_parent !< Lower bound on the parent grid
real, dimension(6) :: s_child !< Child grid position (s_root = 0)
real, dimension(6) :: s_parent !< Parent grid position (s_root = 0)
real, dimension(6) :: ds_child !< Child grid dx (ds_root = 1)
real, dimension(6) :: ds_parent !< Parent grid dx (ds_root = 1)
integer, dimension(6) :: nb_child !< Number of cells on the child grid
integer, dimension(6) :: ub_child !< Upper bound on the child grid
integer, dimension(6) :: lb_child !< Lower bound on the child grid
integer, dimension(6) :: lb_parent !< Lower bound on the parent grid
real(kind=8), dimension(6) :: s_child !< Child grid position (s_root = 0)
real(kind=8), dimension(6) :: s_parent !< Parent grid position (s_root = 0)
real(kind=8), dimension(6) :: ds_child !< Child grid dx (ds_root = 1)
real(kind=8), dimension(6) :: ds_parent !< Parent grid dx (ds_root = 1)
integer :: nbdim !< Number of dimensions
real, dimension(6) :: xfineloc
!
......
......@@ -1904,8 +1904,8 @@ subroutine Agrif_Update_1D_Recursive ( type_update, &
integer, intent(in) :: type_update !< Type of update (copy or average)
integer, intent(in) :: indmin, indmax
integer, intent(in) :: lb_child, ub_child
real(kind=8), intent(in) :: s_child, s_parent
real(kind=8), intent(in) :: ds_child, ds_parent
real(kind=8), intent(in) :: s_child, s_parent
real(kind=8), intent(in) :: ds_child, ds_parent
real, dimension(indmin:indmax), intent(out) :: tempP
real, dimension(lb_child:ub_child), intent(in) :: tempC
!---------------------------------------------------------------------------------------------------
......@@ -1933,11 +1933,11 @@ subroutine Agrif_Update_2D_Recursive ( type_update, &
s_child, s_parent, &
ds_child, ds_parent )
!---------------------------------------------------------------------------------------------------
integer, dimension(2), intent(in) :: type_update !< Type of update (copy or average)
integer, dimension(2), intent(in) :: indmin, indmax
integer, dimension(2), intent(in) :: lb_child, ub_child
real(kind=8), dimension(2), intent(in) :: s_child, s_parent
real(kind=8), dimension(2), intent(in) :: ds_child, ds_parent
integer, dimension(2), intent(in) :: type_update !< Type of update (copy or average)
integer, dimension(2), intent(in) :: indmin, indmax
integer, dimension(2), intent(in) :: lb_child, ub_child
real(kind=8),dimension(2), intent(in) :: s_child, s_parent
real(kind=8),dimension(2), intent(in) :: ds_child, ds_parent
real, dimension( &
indmin(1):indmax(1), &
indmin(2):indmax(2)), intent(out) :: tempP
......@@ -2047,11 +2047,11 @@ subroutine Agrif_Update_2D_Recursive_ok ( type_update, &
lb_child, ub_child, &
s_child, s_parent, ds_child, ds_parent )
!---------------------------------------------------------------------------------------------------
INTEGER, DIMENSION(2), intent(in) :: type_update !< Type of update (copy or average)
INTEGER, DIMENSION(2), intent(in) :: indmin, indmax
INTEGER, DIMENSION(2), intent(in) :: lb_child, ub_child
REAL, DIMENSION(2), intent(in) :: s_child, s_parent
REAL, DIMENSION(2), intent(in) :: ds_child, ds_parent
INTEGER, DIMENSION(2), intent(in) :: type_update !< Type of update (copy or average)
INTEGER, DIMENSION(2), intent(in) :: indmin, indmax
INTEGER, DIMENSION(2), intent(in) :: lb_child, ub_child
REAL(kind=8),DIMENSION(2), intent(in) :: s_child, s_parent
REAL(kind=8),DIMENSION(2), intent(in) :: ds_child, ds_parent
REAL, DIMENSION( &
indmin(1):indmax(1), &
indmin(2):indmax(2)), intent(out) :: tempP
......@@ -2101,11 +2101,11 @@ subroutine Agrif_Update_3D_Recursive ( type_update, &
s_child, s_parent, &
ds_child, ds_parent )
!---------------------------------------------------------------------------------------------------
integer, dimension(3), intent(in) :: type_update !< Type of update (copy or average)
integer, dimension(3), intent(in) :: indmin, indmax
integer, dimension(3), intent(in) :: lb_child, ub_child
real, dimension(3), intent(in) :: s_child, s_parent
real, dimension(3), intent(in) :: ds_child, ds_parent
integer, dimension(3), intent(in) :: type_update !< Type of update (copy or average)
integer, dimension(3), intent(in) :: indmin, indmax
integer, dimension(3), intent(in) :: lb_child, ub_child
real(kind=8),dimension(3), intent(in) :: s_child, s_parent
real(kind=8),dimension(3), intent(in) :: ds_child, ds_parent
real, dimension( &
indmin(1):indmax(1), &
indmin(2):indmax(2), &
......@@ -2213,11 +2213,11 @@ subroutine Agrif_Update_4D_Recursive ( type_update, &
s_child, s_parent, &
ds_child, ds_parent )
!---------------------------------------------------------------------------------------------------
integer, dimension(4), intent(in) :: type_update !< Type of update (copy or average)
integer, dimension(4), intent(in) :: indmin, indmax
integer, dimension(4), intent(in) :: lb_child, ub_child
real, dimension(4), intent(in) :: s_child, s_parent
real, dimension(4), intent(in) :: ds_child, ds_parent
integer, dimension(4), intent(in) :: type_update !< Type of update (copy or average)
integer, dimension(4), intent(in) :: indmin, indmax
integer, dimension(4), intent(in) :: lb_child, ub_child
real(kind=8),dimension(4), intent(in) :: s_child, s_parent
real(kind=8),dimension(4), intent(in) :: ds_child, ds_parent
real, dimension( &
indmin(1):indmax(1), &
indmin(2):indmax(2), &
......@@ -2285,11 +2285,11 @@ subroutine Agrif_Update_5D_Recursive ( type_update, &
s_child, s_parent, &
ds_child, ds_parent )
!---------------------------------------------------------------------------------------------------
integer, dimension(5), intent(in) :: type_update !< Type of update (copy or average)
integer, dimension(5), intent(in) :: indmin, indmax
integer, dimension(5), intent(in) :: lb_child, ub_child
real, dimension(5), intent(in) :: s_child, s_parent
real, dimension(5), intent(in) :: ds_child, ds_parent
integer, dimension(5), intent(in) :: type_update !< Type of update (copy or average)
integer, dimension(5), intent(in) :: indmin, indmax
integer, dimension(5), intent(in) :: lb_child, ub_child
real(kind=8),dimension(5), intent(in) :: s_child, s_parent
real(kind=8),dimension(5), intent(in) :: ds_child, ds_parent
real, dimension( &
indmin(1):indmax(1), &
indmin(2):indmax(2), &
......@@ -2364,11 +2364,11 @@ subroutine Agrif_Update_6D_Recursive ( type_update, &
s_child, s_parent, &
ds_child, ds_parent )
!---------------------------------------------------------------------------------------------------
integer, dimension(6), intent(in) :: type_update !< Type of update (copy or average)
integer, dimension(6), intent(in) :: indmin, indmax
integer, dimension(6), intent(in) :: lb_child, ub_child
real, dimension(6), intent(in) :: s_child, s_parent
real, dimension(6), intent(in) :: ds_child, ds_parent
integer, dimension(6), intent(in) :: type_update !< Type of update (copy or average)
integer, dimension(6), intent(in) :: indmin, indmax
integer, dimension(6), intent(in) :: lb_child, ub_child
real(kind=8),dimension(6), intent(in) :: s_child, s_parent
real(kind=8),dimension(6), intent(in) :: ds_child, ds_parent
real, dimension( &
indmin(1):indmax(1), &
indmin(2):indmax(2), &
......@@ -2454,8 +2454,8 @@ subroutine Agrif_UpdateBase ( type_update, &
integer, intent(in) :: lb_child, ub_child
real, dimension(indmin:indmax), intent(out):: parent_tab
real, dimension(lb_child:ub_child), intent(in) :: child_tab
real, intent(in) :: s_parent, s_child
real, intent(in) :: ds_parent, ds_child
real(kind=8), intent(in) :: s_parent, s_child
real(kind=8), intent(in) :: ds_parent, ds_child
!---------------------------------------------------------------------------------------------------
integer :: np ! Length of parent array
integer :: nc ! Length of child array
......
......@@ -231,16 +231,15 @@ subroutine Agrif_basicupdate_max1d ( x, y, np, nc, s_parent, s_child, ds_parent,
REAL, DIMENSION(np), intent(out) :: x
REAL, DIMENSION(nc), intent(in) :: y
INTEGER, intent(in) :: np,nc
REAL, intent(in) :: s_parent, s_child
REAL, intent(in) :: ds_parent, ds_child
REAL(kind=8), intent(in) :: s_parent, s_child
REAL(kind=8), intent(in) :: ds_parent, ds_child
!
INTEGER :: i, ii, locind_child_left, coeffraf
REAL :: xpos, invcoeffraf
REAL(kind=8) :: xpos
INTEGER :: nbnonnuls
INTEGER :: diffmod
!
coeffraf = nint(ds_parent/ds_child)
invcoeffraf = 1./coeffraf
!
if (coeffraf == 1) then
locind_child_left = 1 + nint((s_parent - s_child)/ds_child)
......
......@@ -520,7 +520,7 @@ sub catfile {
my $path = shift @names;
for my $name (@names) {
$path .= '/' . $name if $name;
$path .= '/' . $name if (length $name);
}
return $path;
......