Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
No results found
Show changes
Showing
with 763 additions and 1014 deletions
bld::tool::fppkeys key_si3 key_xios key_qco
......@@ -114,7 +114,7 @@
sn_trcsbc(14) = 'dust.orca.new' , -1 , 'dustfer' , .true. , .true. , 'yearly' , '' , '' , ''
sn_trcsbc(23) = 'ndeposition.orca', -12 , 'ndep' , .false. , .true. , 'yearly' , '' , '' , ''
rn_trsfac(5) = 3.774194e-02 ! ( 1E-3 / 31. * 117 )
rn_trsfac(7) = 9.572954e-03 ! ( 8.8 / 28.1 )
rn_trsfac(7) = 9.572954e-03 ! ( 0.269 / 28.1 )
rn_trsfac(14) = 6.2667860e-04 ! ( 0.035 / 55.85 )
rn_trsfac(23) = 5.2232143e-01 ! ( From kgN m-2 s-1 to molC l-1 ====> zfact = 7.3125/14 )
rn_sbc_time = 1. ! Time scaling factor for SBC and CBC data (seconds in a day)
......
......@@ -114,7 +114,7 @@
sn_trcsbc(14) = 'dust.orca.new' , -1 , 'dustfer' , .true. , .true. , 'yearly' , '' , '' , ''
sn_trcsbc(23) = 'ndeposition.orca', -12 , 'ndep' , .false. , .true. , 'yearly' , '' , '' , ''
rn_trsfac(5) = 3.774194e-02 ! ( 1E-3 / 31. * 117 )
rn_trsfac(7) = 9.572954e-03 ! ( 8.8 / 28.1 )
rn_trsfac(7) = 9.572954e-03 ! ( 0.269 / 28.1 )
rn_trsfac(14) = 6.2667860e-04 ! ( 0.035 / 55.85 )
rn_trsfac(23) = 5.2232143e-01 ! ( From kgN m-2 s-1 to molC l-1 ====> zfact = 7.3125/14 )
rn_sbc_time = 1. ! Time scaling factor for SBC and CBC data (seconds in a day)
......
********************************
Run the Reference configurations
********************************
.. todo::
Lack of illustrations for ref. cfgs, and more generally in the guide.
NEMO is distributed with a set of reference configurations allowing both
the user to set up his own first applications and
the developer to test/validate his NEMO developments (using SETTE package).
.. contents::
:local:
:depth: 1
.. attention::
Concerning the configurations,
the NEMO System Team is only in charge of the so-called reference configurations described below.
.. hint::
Configurations developed by external research projects or initiatives that
make use of NEMO are welcome to be publicized through the website by
filling up the form :website:`to add an associated project<projects/add>`.
How to compile an experiment from a reference configuration
===========================================================
To compile the ORCA2_ICE_PISCES_ reference configuration using :file:`makenemo`,
one should use the following, by selecting among available architecture file or
providing a user defined one:
.. code-block:: console
$ ./makenemo -r 'ORCA2_ICE_PISCES' -m 'my_arch' -j '4'
A new ``EXP00`` folder will be created within the selected reference configurations,
namely ``./cfgs/ORCA2_ICE_PISCES/EXP00``.
It will be necessary to uncompress the archives listed in the above table for
the given reference configuration that includes input & forcing files.
Then it will be possible to launch the execution of the model through a runscript
(opportunely adapted to the user system).
List of Configurations
======================
All forcing files listed below in the table are available from |DOI data|_
=================== === === === === === ==================================
Configuration Component(s) Archives (input & forcing files)
------------------- ------------------- ----------------------------------
Name O S T P A
=================== === === === === === ==================================
AGRIF_DEMO_ X X X AGRIF_DEMO_v4.0.tar,
ORCA2_ICE_v4.0.tar
AMM12_ X AMM12_v4.0.tar
C1D_PAPA_ X INPUTS_C1D_PAPA_v4.0.tar
GYRE_BFM_ X X *none*
GYRE_PISCES_ X X X *none*
ORCA2_ICE_PISCES_ X X X X ORCA2_ICE_v4.0.tar,
INPUTS_PISCES_v4.0.tar
ORCA2_OFF_PISCES_ X X ORCA2_OFF_v4.0.tar,
INPUTS_PISCES_v4.0.tar
ORCA2_OFF_TRC_ X ORCA2_OFF_v4.0.tar
ORCA2_SAS_ICE_ X ORCA2_ICE_v4.0.tar,
INPUTS_SAS_v4.0.tar
SPITZ12_ X X SPITZ12_v4.0.tar
=================== === === === === === ==================================
.. admonition:: Legend for component combination
O for OCE, S for SI\ :sup:`3`, T for TOP, P for PISCES and A for AGRIF
AGRIF_DEMO
----------
``AGRIF_DEMO`` is based on the ``ORCA2_ICE_PISCES`` global configuration at 2° of resolution with
the inclusion of 3 online nested grids to demonstrate the overall capabilities of AGRIF in
a realistic context (including the nesting of sea ice models).
The configuration includes a 1:1 grid in the Pacific and two successively nested grids with
odd and even refinement ratios over the Arctic ocean,
with the finest grid spanning the whole Svalbard archipelago that is of
particular interest to test sea ice coupling.
.. image:: _static/AGRIF_DEMO_no_cap.jpg
:scale: 66%
:align: center
The 1:1 grid can be used alone as a benchmark to check that
the model solution is not corrupted by grid exchanges.
Note that since grids interact only at the baroclinic time level,
numerically exact results can not be achieved in the 1:1 case.
Perfect reproducibility is obtained only by switching to a fully explicit setup instead of
a split explicit free surface scheme.
AMM12
-----
``AMM12`` stands for *Atlantic Margin Model at 12 km* that is
a regional configuration covering the Northwest European Shelf domain on
a regular horizontal grid of ~12 km of resolution (see :cite:`ODEA2012`).
.. image:: _static/AMM_domain.png
:align: center
This configuration allows to tests several features of NEMO specifically addressed to the shelf seas.
In particular, ``AMM12`` accounts for vertical s-coordinates system, GLS turbulence scheme,
tidal lateral boundary conditions using a flather scheme (see more in ``BDY``).
Boundaries may be completely omitted by setting ``ln_bdy = .false.`` in ``nambdy``.
Sample surface fluxes, river forcing and an initial restart file are included to test a realistic model run
(``AMM12_v4.0.tar``).
Note that, the Baltic boundary is included within the river input file and is specified as a river source,
but unlike ordinary river points the Baltic inputs also include salinity and temperature data.
C1D_PAPA
--------
.. figure:: _static/Papa2015.jpg
:height: 225px
:align: left
``C1D_PAPA`` is a 1D configuration for the `PAPA station`_ located in
the northern-eastern Pacific Ocean at 50.1°N, 144.9°W.
See :gmd:`Reffray et al. (2015) <8/69/2015>` for the description of
its physical and numerical turbulent-mixing behaviour.
| The water column setup, called NEMO1D, is activated by
setting ``ln_c1d = .true.`` in ``namdom`` and
has a horizontal domain of 1x1 grid point.
| This reference configuration uses 75 vertical levels grid (1m at the surface),
GLS turbulence scheme with K-epsilon closure and the NCAR bulk formulae.
Data provided with ``INPUTS_C1D_PAPA_v4.2.tar`` file account for:
- :file:`forcing_PAPASTATION_1h_y201[0-1].nc`:
ECMWF operational analysis atmospheric forcing rescaled to 1h
(with long and short waves flux correction) for years 2010 and 2011
- :file:`init_PAPASTATION_m06d15.nc`: Initial Conditions from
observed data and Levitus 2009 climatology
- :file:`chlorophyll_PAPASTATION.nc`: surface chlorophyll file from Seawifs data
GYRE_BFM
--------
``GYRE_BFM`` shares the same physical setup of GYRE_PISCES_,
but NEMO is coupled with the `BFM`_ biogeochemical model as described in ``./cfgs/GYRE_BFM/README``.
GYRE_PISCES
-----------
``GYRE_PISCES`` is an idealized configuration representing a Northern hemisphere double gyres system,
in the Beta-plane approximation with a regular 1° horizontal resolution and 31 vertical levels,
with PISCES BGC model :cite:`gmd-8-2465-2015`.
Analytical forcing for heat, freshwater and wind-stress fields are applied.
This configuration acts also as demonstrator of the **user defined setup**
(``ln_read_cfg = .false.``) and grid setting are handled through
the ``&namusr_def`` controls in :file:`namelist_cfg`:
.. literalinclude:: ../../../cfgs/GYRE_PISCES/EXPREF/namelist_cfg
:language: fortran
:lines: 35-41
Note that, the default grid size is 30x20 grid points (with ``nn_GYRE = 1``) and
vertical levels are set by ``jpkglo``.
The specific code changes can be inspected in :file:`./src/OCE/USR`.
.. rubric:: Running GYRE as a benchmark
| This simple configuration can be used as a benchmark since it is easy to increase resolution,
with the drawback of getting results that have a very limited physical meaning.
| GYRE grid resolution can be increased at runtime by setting a different value of ``nn_GYRE``
(integer multiplier scaling factor), as described in the following table:
=========== ============ ============ ============ ===============
``nn_GYRE`` ``jpiglo`` ``jpjglo`` ``jpkglo`` Equivalent to
=========== ============ ============ ============ ===============
1 30 20 31 GYRE 1°
25 750 500 101 ORCA 1/2°
50 1500 1000 101 ORCA 1/4°
150 4500 3000 101 ORCA 1/12°
200 6000 4000 101 ORCA 1/16°
=========== ============ ============ ============ ===============
| Note that, it is necessary to set ``ln_bench = .true.`` in ``&namusr_def`` to
avoid problems in the physics computation and that
the model timestep should be adequately rescaled.
| For example if ``nn_GYRE = 150``, equivalent to an ORCA 1/12° grid,
the timestep ``rn_rdt`` should be set to 1200 seconds
Differently from previous versions of NEMO, the code uses by default the time-splitting scheme and
internally computes the number of sub-steps.
ORCA2_ICE_PISCES
----------------
``ORCA2_ICE_PISCES`` is a reference configuration for the global ocean with
a 2°x2° curvilinear horizontal mesh and 31 vertical levels,
distributed using z-coordinate system and with 10 levels in the top 100m.
ORCA is the generic name given to global ocean Mercator mesh,
(i.e. variation of meridian scale factor as cosinus of the latitude),
with two poles in the northern hemisphere so that
the ratio of anisotropy is nearly one everywhere
This configuration uses the three components
- |OCE|, the ocean dynamical core
- |ICE|, the thermodynamic-dynamic sea ice model.
- |MBG|, passive tracer transport module and PISCES BGC model :cite:`gmd-8-2465-2015`
All components share the same grid.
The model is forced with CORE-II normal year atmospheric forcing and
it uses the NCAR bulk formulae.
.. rubric:: Ocean Physics
:horizontal diffusion on momentum:
the eddy viscosity coefficient depends on the geographical position.
It is taken as 40000 m\ :sup:`2`/s, reduced in the equator regions (2000 m\ :sup:`2`/s)
excepted near the western boundaries.
:isopycnal diffusion on tracers:
the diffusion acts along the isopycnal surfaces (neutral surface) with
an eddy diffusivity coefficient of 2000 m\ :sup:`2`/s.
:Eddy induced velocity parametrization:
With a coefficient that depends on the growth rate of baroclinic instabilities
(it usually varies from 15 m\ :sup:`2`/s to 3000 m\ :sup:`2`/s).
:lateral boundary conditions:
Zero fluxes of heat and salt and no-slip conditions are applied through lateral solid boundaries.
:bottom boundary condition:
Zero fluxes of heat and salt are applied through the ocean bottom.
The Beckmann [19XX] simple bottom boundary layer parameterization is applied along
continental slopes.
A linear friction is applied on momentum.
:convection:
The vertical eddy viscosity and diffusivity coefficients are increased to 1 m\ :sup:`2`/s in
case of static instability.
:time step: is 5400sec (1h30') so that there is 16 time steps in one day.
ORCA2_OFF_PISCES
----------------
``ORCA2_OFF_PISCES`` shares the same general offline configuration of ``ORCA2_ICE_TRC``,
but only PISCES model is an active component of TOP.
ORCA2_OFF_TRC
-------------
| ``ORCA2_OFF_TRC`` is based on the ORCA2 global ocean configuration
(see ORCA2_ICE_PISCES_ for general description) along with
the tracer passive transport module (TOP),
but dynamical fields are pre-calculated and read with specific time frequency.
| This enables for an offline coupling of TOP components,
here specifically inorganic carbon compounds (CFC11, CFC12, SF6, C14) and water age module (age).
See :file:`namelist_top_cfg` to inspect the selection of
each component with the dedicated logical keys.
Pre-calculated dynamical fields are provided to NEMO using
the namelist ``&namdta_dyn`` in :file:`namelist_cfg`,
in this case with a 5 days frequency (120 hours):
.. literalinclude:: ../../namelists/namdta_dyn
:language: fortran
Input dynamical fields for this configuration (:file:`ORCA2_OFF_v4.0.tar`) comes from
a 2000 years long climatological simulation of ORCA2_ICE using ERA40 atmospheric forcing.
| Note that,
this configuration default uses linear free surface (``ln_linssh = .true.``) assuming that
model mesh is not varying in time and
it includes the bottom boundary layer parameterization (``ln_trabbl = .true.``) that
requires the provision of BBL coefficients through ``sn_ubl`` and ``sn_vbl`` fields.
| It is also possible to activate PISCES model (see ``ORCA2_OFF_PISCES``) or
a user defined set of tracers and source-sink terms with ``ln_my_trc = .true.``
(and adaptation of ``./src/TOP/MY_TRC`` routines).
In addition, the offline module (OFF) allows for the provision of further fields:
1. **River runoff** can be provided to TOP components by setting ``ln_dynrnf = .true.`` and
by including an input datastream similarly to the following:
.. code-block:: fortran
sn_rnf = 'dyna_grid_T', 120, 'sorunoff' , .true., .true., 'yearly', '', '', ''
2. **VVL dynamical fields**, in the case input data were produced by a dyamical core using
variable volume (``ln_linssh = .false.``)
it is necessary to provide also diverce and E-P at before timestep by
including input datastreams similarly to the following
.. code-block:: fortran
sn_div = 'dyna_grid_T', 120, 'e3t' , .true., .true., 'yearly', '', '', ''
sn_empb = 'dyna_grid_T', 120, 'sowaflupb', .true., .true., 'yearly', '', '', ''
More details can be found by inspecting the offline data manager in
the routine :file:`./src/OFF/dtadyn.F90`.
ORCA2_SAS_ICE
-------------
| ORCA2_SAS_ICE is a demonstrator of the Stand-Alone Surface (SAS) module and
it relies on ORCA2 global ocean configuration (see ORCA2_ICE_PISCES_ for general description).
| The standalone surface module allows surface elements such as sea-ice, iceberg drift, and
surface fluxes to be run using prescribed model state fields.
It can profitably be used to compare different bulk formulae or
adjust the parameters of a given bulk formula.
More informations about SAS can be found in :doc:`NEMO manual <cite>`.
SPITZ12
-------
``SPITZ12`` is a regional configuration around the Svalbard archipelago
at 1/12° of horizontal resolution and 75 vertical levels.
See :gmd:`Rousset et al. (2015) <8/2991/2015>` for more details.
This configuration references to year 2002,
with atmospheric forcing provided every 2 hours using NCAR bulk formulae,
while lateral boundary conditions for dynamical fields have 3 days time frequency.
.. rubric:: References
.. bibliography:: cfgs.bib
:all:
:style: unsrt
:labelprefix: C
Simple style rules for namelists
--------------------------------
NEMO reference namelists should adhere to the following simple style rules:
1. Comments outside a namelist block start with !! in column 1
2. Each namelist block starts with 3 lines of the form:
!-----------------------------------------------------------------------
&namblockname ! short description of block
!-----------------------------------------------------------------------
with all ! and & 's starting in column 1
3. The closing / for each namelist block is in column 1
4. Comments within namelist blocks never start with !- . Use ! followed
by space or != etc.
These conventions make it possible to construct empty configuration namelists.
For example, a namelist_cfg template can be produced from namelist_ref with
the following grep command; e.g.:
grep -E '^!-|^&|^/' namelist_ref > namelist_cfg.template
head namelist_cfg.template
!-----------------------------------------------------------------------
&namrun ! parameters of the run
!-----------------------------------------------------------------------
/
!-----------------------------------------------------------------------
&namcfg ! parameters of the configuration
!-----------------------------------------------------------------------
/
!-----------------------------------------------------------------------
&namdom ! time and space domain
!-----------------------------------------------------------------------
/
.
.
If all configuration namelists are produced and maintained using this
strategy then standard, side-by-side comaparators, such as vimdiff or xxdiff,
can be used to compare and transfer lines from the reference namelist to a
configuration namelist when setting up a new configuration.
Tips and tricks
---------------
1. The following bash function is useful when checking which namelist blocks
are in active use in a configuration namelist:
function list_used_nl(){ grep -n -E '^&|^/' "$1" | sed -e 's/:/ /' \
| awk ' BEGIN { x = 0 } \
{if ( NR % 2 == 0 && $1 - x > 2 ) printf("%3d %s\n", $1 - x , n) ; \
else x = $1; n = $2}' \
| sort -k 2;}
which (assuming the namelist adheres to the conventions) will list the number
of entries in each non-empty namelist block. The list is sorted on the block
name to ease comparisons. For example:
list_used_nl ORCA2_LIM3_PISCES/EXP00/namelist_cfg
1 &nambbc
5 &nambbl
30 &namberg
10 &namcfg
4 &namctl
3 &namdom
1 &namdrg
5 &namdyn_adv
1 &namdyn_hpg
22 &namdyn_ldf
1 &namdyn_spg
5 &namdyn_vor
3 &nameos
1 &namhsb
4 &namrun
1 &namsbc
1 &namsbc_blk
3 &namtra_adv
28 &namtra_ldf
10 &namtra_ldfeiv
25 &namzdf
3 &namzdf_iwm
2. vimdiff can give garish colours in some terminals. Usually this is because
vim assumes, incorrectly, that the terminal only supports 8 colours. Try forcing
256 colours with:
:set t_Co=256
to produce more pastel shades (add this to ~/.vimrc if successful).
3. Switching between vsplit panes in vim is a multi-key sequence. The tool is
much easier to use if the sequence is mapped to a spare key. Here I use the
§ and ± key on my Mac keyboard (add to ~/.vimrc):
map § ^Wl
map ± ^Wh
4. With easy switching between panes, constructing namelists in vimdiff just
requires the following commands in addition to normal editing:
]c - Go to next block of the diff
dp - Push version of the block under cursor into the other pane
do - Pull version of the block under cursor from the other pane
***********
Diagnostics
***********
.. todo::
.. contents::
:local:
Output of diagnostics in NEMO is usually done using XIOS.
This is an efficient way of writing diagnostics because
the time averaging, file writing and even some simple arithmetic or regridding is carried out in
parallel to the NEMO model run.
This page gives a basic introduction to using XIOS with NEMO.
Much more information is available from the :xios:`XIOS homepage<>` above and from the NEMO manual.
Use of XIOS for diagnostics is activated using the pre-compiler key ``key_xios``.
Extracting and installing XIOS
==============================
1. Install the NetCDF4 library.
If you want to use single file output you will need to compile the HDF & NetCDF libraries to
allow parallel IO.
2. Download the version of XIOS that you wish to use.
The recommended version is now XIOS 2.5:
.. code-block:: console
$ svn co http://forge.ipsl.jussieu.fr/ioserver/svn/XIOS/branchs/xios-2.5
and follow the instructions in :xios:`XIOS documentation <wiki/documentation>` to compile it.
If you find problems at this stage, support can be found by subscribing to
the :xios:`XIOS mailing list <../mailman/listinfo.cgi/xios-users>` and sending a mail message to it.
XIOS Configuration files
------------------------
XIOS is controlled using XML input files that should be copied to
your model run directory before running the model.
Examples of these files can be found in the reference configurations (:file:`./cfgs`).
The XIOS executable expects to find a file called :file:`iodef.xml` in the model run directory.
In NEMO we have made the decision to use include statements in the :file:`iodef.xml` file to include:
- :file:`field_def_nemo-oce.xml` (for physics),
- :file:`field_def_nemo-ice.xml` (for ice),
- :file:`field_def_nemo-pisces.xml` (for biogeochemistry) and
- :file:`domain_def.xml` from the :file:`./cfgs/SHARED` directory.
Most users will not need to modify :file:`domain_def.xml` or :file:`field_def_nemo-???.xml` unless
they want to add new diagnostics to the NEMO code.
The definition of the output files is organized into separate :file:`file_definition.xml` files which
are included in the :file:`iodef.xml` file.
Modes
=====
Detached Mode
-------------
In detached mode the XIOS executable is executed on separate cores from the NEMO model.
This is the recommended method for using XIOS for realistic model runs.
To use this mode set ``using_server`` to ``true`` at the bottom of the :file:`iodef.xml` file:
.. code-block:: xml
<variable id="using_server" type="boolean">true</variable>
Make sure there is a copy (or link to) your XIOS executable in the working directory and
in your job submission script allocate processors to XIOS.
Attached Mode
-------------
In attached mode XIOS runs on each of the cores used by NEMO.
This method is less efficient than the detached mode but can be more convenient for testing or
with small configurations.
To activate this mode simply set ``using_server`` to false in the :file:`iodef.xml` file
.. code-block:: xml
<variable id="using_server" type="boolean">false</variable>
and don't allocate any cores to XIOS.
.. note::
Due to the different domain decompositions between XIOS and NEMO,
if the total number of cores is larger than the number of grid points in the ``j`` direction then
the model run will fail.
Adding new diagnostics
======================
If you want to add a NEMO diagnostic to the NEMO code you will need to do the following:
1. Add any necessary code to calculate you new diagnostic in NEMO
2. Send the field to XIOS using ``CALL iom_put( 'field_id', variable )`` where
``field_id`` is a unique id for your new diagnostics and
variable is the fortran variable containing the data.
This should be called at every model timestep regardless of how often you want to output the field.
No time averaging should be done in the model code.
3. If it is computationally expensive to calculate your new diagnostic
you should also use "iom_use" to determine if it is requested in the current model run.
For example,
.. code-block:: fortran
IF iom_use('field_id') THEN
!Some expensive computation
!...
!...
iom_put('field_id', variable)
ENDIF
4. Add a variable definition to the :file:`field_def_nemo-???.xml` file.
5. Add the variable to the :file:`iodef.xml` or :file:`file_definition.xml` file.
......@@ -189,12 +189,14 @@
<domain id="grid_F_inner" long_name="grid F inner"/>
<!-- zonal mean grid -->
<domain_group id="gznl">
<domain id="gznl" long_name="gznl"/>
<domain id="ptr" domain_ref="gznl" >
<zoom_domain id="ptr" ibegin="0000" jbegin="0" ni="1" nj="0000" />
</domain>
</domain_group>
<domain id="gznl" long_name="gznl"/>
<domain id="ptr" domain_ref="gznl" >
<zoom_domain id="ptr" ibegin="0000" jbegin="0" ni="1" nj="0000" />
</domain>
<domain id="znl_T" domain_ref="gznl" > <zoom_domain id="znl_T"/> </domain>
<domain id="znl_W" domain_ref="gznl" > <zoom_domain id="znl_W"/> </domain>
<!-- other grids -->
......
......@@ -50,10 +50,11 @@
<field id="icevpnd" long_name="melt pond volume" standard_name="sea_ice_meltpond_volume" unit="m" />
<field id="icehlid" long_name="melt pond lid depth" standard_name="sea_ice_meltpondlid_depth" unit="m" />
<field id="icevlid" long_name="melt pond lid volume" standard_name="sea_ice_meltpondlid_volume" unit="m" />
<field id="dvpn_mlt" long_name="pond volume tendency due to surface melt" standard_name="sea_ice_pondvolume_tendency_melt" unit="kg/m2/s" />
<field id="dvpn_lid" long_name="pond volume tendency due to exchanges with lid" standard_name="sea_ice_pondvolume_tendency_lids" unit="kg/m2/s" />
<field id="dvpn_rnf" long_name="pond volume tendency due to runoff" standard_name="sea_ice_pondvolume_tendency_runoff" unit="kg/m2/s" />
<field id="dvpn_drn" long_name="pond volume tendency due to drainage" standard_name="sea_ice_pondvolume_tendency_drainage" unit="kg/m2/s" />
<field id="iceepnd" long_name="melt pond effective concentration" standard_name="sea_ice_meltpond_effective_concentration" unit="" />
<field id="dvpn_mlt" long_name="pond volume tendency due to surface melt" standard_name="sea_ice_pondvolume_tendency_melt" unit="cm/d" />
<field id="dvpn_lid" long_name="pond volume tendency due to exchanges with lid" standard_name="sea_ice_pondvolume_tendency_lids" unit="cm/d" />
<field id="dvpn_rnf" long_name="pond volume tendency due to runoff" standard_name="sea_ice_pondvolume_tendency_runoff" unit="cm/d" />
<field id="dvpn_drn" long_name="pond volume tendency due to drainage" standard_name="sea_ice_pondvolume_tendency_drainage" unit="cm/d" />
<!-- heat -->
<field id="icetemp" long_name="Mean ice temperature" unit="degC" detect_missing_value="true" />
......@@ -95,6 +96,10 @@
<field id="yield12" long_name="yield surface tensor component 12" standard_name="yield12" unit="N/m" />
<field id="beta_evp" long_name="Relaxation parameter of ice rheology (beta)" standard_name="relaxation_parameter_of_ice_rheology" unit="" />
<field id="isig1" long_name="1st principal stress component for EVP rhg" unit="" />
<field id="isig2" long_name="2nd principal stress component for EVP rhg" unit="" />
<field id="isig3" long_name="convergence measure for EVP rheology (must be around 1)" unit="" />
<!-- surface heat fluxes -->
<field id="qt_ice" long_name="total heat flux at ice surface" standard_name="surface_downward_heat_flux_in_air" unit="W/m2" />
<field id="qsr_ice" long_name="solar heat flux at ice surface" standard_name="surface_downwelling_shortwave_flux_in_air" unit="W/m2" />
......@@ -189,8 +194,15 @@
<field id="icedrift_heat" long_name="Ice heat drift (conservation check)" unit="W/m2" />
<!-- sbcssm variables -->
<field id="sst_m" unit="degC" />
<field id="sss_m" unit="psu" />
<field id="sst_m_pot" unit="degC" />
<!-- EOS-80 -->
<field id="sss_m_pra" unit="psu" />
<!-- TEOS-10 -->
<field id="sss_m_abs" unit="g/kg" />
<!-- SEOS -->
<field id="sss_m_seos" unit="psu" />
<field id="ssu_m" unit="m/s" />
<field id="ssv_m" unit="m/s" />
<field id="ssh_m" unit="m" />
......@@ -407,9 +419,17 @@
<field field_ref="iceapnd" name="siapnd" />
<field field_ref="icehpnd" name="sihpnd" />
<field field_ref="icevpnd" name="sivpnd" />
<field field_ref="iceepnd" name="siepnd" />
<field field_ref="iceage" name="siage" />
<field field_ref="sst_m" name="sst_m" />
<field field_ref="sss_m" name="sss_m" />
<field id="sst_m_pot" unit="degC" />
<!-- EOS-80 -->
<field id="sss_m_pra" unit="psu" />
<!-- TEOS-10 -->
<field id="sss_m_abs" unit="g/kg" />
<!-- SEOS -->
<field id="sss_m_seos" unit="psu" />
<!-- heat -->
<field field_ref="icetemp" name="sitemp" />
......@@ -435,7 +455,7 @@
<field field_ref="sheastr" name="sheastr" />
<field field_ref="sig1_pnorm" name="sig1_pnorm"/>
<field field_ref="sig2_pnorm" name="sig2_pnorm"/>
<field field_ref="icedlt" name="sidelt" />
<field field_ref="icedlt" name="sidelta" />
<!-- heat fluxes -->
<field field_ref="qt_oce_ai" name="qt_oce_ai" />
......
This diff is collapsed.
......@@ -183,6 +183,9 @@
<field id="PPNEWN" long_name="New Primary production of nanophyto" unit="molC/m3/s" grid_ref="grid_T_3D" />
<field id="PPNEWP" long_name="New Primary production of picophyto" unit="molC/m3/s" grid_ref="grid_T_3D" />
<field id="PPNEWD" long_name="New Primary production of diatoms" unit="molC/m3/s" grid_ref="grid_T_3D" />
<field id="GPPHYN" long_name="Gross Primary production of nanophyto" unit="molC/m3/s" grid_ref="grid_T_3D" />
<field id="GPPHYP" long_name="Gross Primary production of picophyto" unit="molC/m3/s" grid_ref="grid_T_3D" />
<field id="GPPHYD" long_name="Gross Primary production of diatoms" unit="molC/m3/s" grid_ref="grid_T_3D" />
<field id="PBSi" long_name="Primary production of Si diatoms" unit="molC/m3/s" grid_ref="grid_T_3D" />
<field id="PFeN" long_name="Primary production of nano iron" unit="molC/m3/s" grid_ref="grid_T_3D" />
<field id="PFeP" long_name="Primary production of pico iron" unit="molC/m3/s" grid_ref="grid_T_3D" />
......
......@@ -418,5 +418,43 @@
<duplicate_scalar />
</axis>
</grid>
<grid id="grid_EqT" >
<domain id="EqT" />
</grid>
<!-- -->
<grid id="gznl_T_2D">
<domain id="ptr" />
</grid>
<!-- -->
<grid id="gznl_T_3D">
<domain id="ptr" />
<axis axis_ref="deptht" />
</grid>
<!-- -->
<grid id="gznl_W_2D">
<domain id="ptr" />
</grid>
<!-- -->
<grid id="gznl_W_3D">
<domain id="ptr" />
<axis axis_ref="depthw" />
</grid>
<grid id="vert_sum">
<domain id="grid_T"/>
<scalar>
<reduce_axis operation="sum" />
</scalar>
</grid>
<grid id="zoom_300">
<domain id="grid_T" />
<axis axis_ref="deptht300"/>
</grid>
<grid id="zoom_300_sum">
<domain id="grid_T" />
<scalar>
<reduce_axis operation="sum" />
</scalar>
</grid>
</grid_definition>
......@@ -24,10 +24,10 @@
jpl = 5 ! number of ice categories
nlay_i = 2 ! number of ice layers
nlay_s = 2 ! number of snow layers
ln_virtual_itd = .false. ! virtual ITD mono-category parameterization (jpl=1 only)
! i.e. enhanced thermal conductivity & virtual thin ice melting
ln_icedyn = .true. ! ice dynamics (T) or not (F)
ln_icethd = .true. ! ice thermo (T) or not (F)
ln_virtual_itd = .false., ! virtual ITD mono-category parameterization (jpl=1 only)
! i.e. enhan.false.ced thermal conductivity & virtual thin ice melting
ln_icedyn = .true., ! ice dynamics (T) or not (F)
ln_icethd = .true., ! ice thermo (T) or not (F)
rn_amax_n = 0.997 ! maximum tolerated ice concentration NH
rn_amax_s = 0.997 ! maximum tolerated ice concentration SH
cn_icerst_in = "restart_ice" ! suffix of ice restart name (input)
......@@ -38,9 +38,9 @@
!------------------------------------------------------------------------------
&namitd ! Ice discretization
!------------------------------------------------------------------------------
ln_cat_hfn = .true. ! ice categories are defined by a function following rn_himean**(-0.05)
ln_cat_hfn = .true., ! ice categories are defined by a function following rn_himean**(-0.05)
rn_himean = 2.0 ! expected domain-average ice thickness (m)
ln_cat_usr = .false. ! ice categories are defined by rn_catbnd below (m)
ln_cat_usr = .false., ! ice categories are defined by rn_catbnd below (m)
rn_catbnd = 0.,0.45,1.1,2.1,3.7,6.0
rn_himin = 0.1 ! minimum ice thickness (m) allowed
rn_himax = 99.0 ! maximum ice thickness (m) allowed
......@@ -48,14 +48,14 @@
!------------------------------------------------------------------------------
&namdyn ! Ice dynamics
!------------------------------------------------------------------------------
ln_dynALL = .true. ! dyn.: full ice dynamics (rheology + advection + ridging/rafting + correction)
ln_dynRHGADV = .false. ! dyn.: no ridge/raft & no corrections (rheology + advection)
ln_dynADV1D = .false. ! dyn.: only advection 1D (Schar & Smolarkiewicz 1996 test case)
ln_dynADV2D = .false. ! dyn.: only advection 2D w prescribed vel.(rn_uvice + advection)
ln_dynALL = .true., ! dyn.: full ice dynamics (rheology + advection + ridging/rafting + correction)
ln_dynRHGADV = .false., ! dyn.: no ridge/raft & no corrections (rheology + advection)
ln_dynADV1D = .false., ! dyn.: only advection 1D (Schar & Smolarkiewicz 1996 test case)
ln_dynADV2D = .false., ! dyn.: only advection 2D w prescribed vel.(rn_uvice + advection)
rn_uice = 0.5 ! prescribed ice u-velocity
rn_vice = 0.5 ! prescribed ice v-velocity
rn_ishlat = 2. ! lbc : free slip (0) ; partial slip (0-2) ; no slip (2) ; strong slip (>2)
ln_landfast_L16 = .false. ! landfast: parameterization from Lemieux 2016
ln_landfast_L16 = .false., ! landfast: parameterization from Lemieux 2016
rn_lf_depfra = 0.125 ! fraction of ocean depth that ice must reach to initiate landfast
! recommended range: [0.1 ; 0.25]
rn_lf_bfr = 15. ! maximum bottom stress per unit volume [N/m3]
......@@ -72,30 +72,30 @@
&namdyn_rdgrft ! Ice ridging/rafting
!------------------------------------------------------------------------------
! -- ice_rdgrft_strength -- !
ln_str_H79 = .true. ! ice strength param.: Hibler_79 => P = pstar*<h>*exp(-c_rhg*A)
ln_str_H79 = .true., ! ice strength param.: Hibler_79 => P = pstar*<h>*exp(-c_rhg*A)
rn_pstar = 2.0e+04 ! ice strength thickness parameter [N/m2]
rn_crhg = 20.0 ! ice strength conc. parameter (-)
ln_str_R75 = .false. ! ice strength param.: Rothrock_75 => P = fn of potential energy
ln_str_R75 = .false., ! ice strength param.: Rothrock_75 => P = fn of potential energy
rn_pe_rdg = 17.0 ! coef accouting for frictional dissipation
ln_str_CST = .false. ! ice strength param.: Constant
ln_str_CST = .false., ! ice strength param.: Constant
rn_str = 0.0 ! ice strength value
ln_str_smooth = .true. ! spatial smoothing of the ice strength
ln_str_smooth = .true., ! spatial smoothing of the ice strength
! -- ice_rdgrft -- !
ln_distf_lin = .true. ! redistribution function of ridged ice: linear (Hibler 1980)
ln_distf_exp = .false. ! redistribution function of ridged ice: exponential => not coded yet
ln_distf_lin = .true., ! redistribution function of ridged ice: linear (Hibler, 1980)
ln_distf_exp = .false., ! redistribution function of ridged ice: exponential (Lipscomb et al., 2007)
rn_murdg = 3.0 ! e-folding scale of ridged ice (m**.5)
rn_csrdg = 0.5 ! fraction of shearing energy contributing to ridging
! -- ice_rdgrft_prep -- !
ln_partf_lin = .false. ! Linear ridging participation function (Thorndike et al, 1975)
ln_partf_lin = .false., ! Linear ridging participation function (Thorndike et al., 1975)
rn_gstar = 0.15 ! fractional area of thin ice being ridged
ln_partf_exp = .true. ! Exponential ridging participation function (Lipscomb, 2007)
ln_partf_exp = .true., ! Exponential ridging participation function (Lipscomb et al., 2007)
rn_astar = 0.03 ! exponential measure of ridging ice fraction [set to 0.05 if hstar=100]
ln_ridging = .true. ! ridging activated (T) or not (F)
ln_ridging = .true., ! ridging activated (T) or not (F)
rn_hstar = 25.0 ! determines the maximum thickness of ridged ice [m] (Hibler, 1980)
rn_porordg = 0.3 ! porosity of newly ridged ice (Lepparanta et al., 1995)
rn_fsnwrdg = 0.5 ! snow volume fraction that survives in ridging
rn_fpndrdg = 1.0 ! pond fraction that survives in ridging (small a priori)
ln_rafting = .true. ! rafting activated (T) or not (F)
ln_rafting = .true., ! rafting activated (T) or not (F)
rn_hraft = 0.75 ! threshold thickness for rafting [m]
rn_craft = 5.0 ! squeezing coefficient used in the rafting function
rn_fsnwrft = 0.5 ! snow volume fraction that survives in rafting
......@@ -104,9 +104,9 @@
!------------------------------------------------------------------------------
&namdyn_rhg ! Ice rheology
!------------------------------------------------------------------------------
ln_rhg_EVP = .true. ! EVP rheology
ln_rhg_EAP = .false. ! EAP rheology
ln_aEVP = .true. ! adaptive rheology (Kimmritz et al. 2016 & 2017)
ln_rhg_EVP = .true., ! EVP rheology
ln_rhg_EAP = .false., ! EAP rheology
ln_aEVP = .true., ! adaptive rheology (Kimmritz et al. 2016 & 2017)
rn_creepl = 2.0e-9 ! creep limit [1/s]
rn_ecc = 2.0 ! eccentricity of the elliptical yield curve
nn_nevp = 100 ! number of EVP subcycles
......@@ -117,7 +117,7 @@
! = 1 check at the main time step (output xml: uice_cvg)
! = 2 check at both main and rheology time steps (additional output: ice_cvg.nc)
! this option 2 asks a lot of communications between cpu
ln_rhg_VP = .false. ! VP rheology
ln_rhg_VP = .false., ! VP rheology
nn_vp_nout = 10 ! number of outer iterations
nn_vp_ninn = 1500 ! number of inner iterations
nn_vp_chkcvg = 5 ! iteration step for convergence check
......@@ -125,8 +125,8 @@
!------------------------------------------------------------------------------
&namdyn_adv ! Ice advection
!------------------------------------------------------------------------------
ln_adv_Pra = .true. ! Advection scheme (Prather)
ln_adv_UMx = .false. ! Advection scheme (Ultimate-Macho)
ln_adv_Pra = .true., ! Advection scheme (Prather)
ln_adv_UMx = .false., ! Advection scheme (Ultimate-Macho)
nn_UMx = 5 ! order of the scheme for UMx (1-5 ; 20=centered 2nd order)
/
!------------------------------------------------------------------------------
......@@ -144,8 +144,8 @@
! = 0 Average N(cat) fluxes then apply the average over the N(cat) ice
! = 1 Average N(cat) fluxes then redistribute over the N(cat) ice using T-ice and albedo sensitivity
! = 2 Redistribute a single flux over categories
ln_cndflx = .false. ! Use conduction flux as surface boundary conditions (i.e. for Jules coupling)
ln_cndemulate = .false. ! emulate conduction flux (if not provided in the inputs)
ln_cndflx = .false., ! Use conduction flux as surface boundary conditions (i.e. for Jules coupling)
ln_cndemulate = .false., ! emulate conduction flux (if not provided in the inputs)
nn_qtrice = 0 ! Solar flux transmitted thru the surface scattering layer:
! = 0 Grenfell and Maykut 1977 (depends on cloudiness and is 0 when there is snow)
! = 1 Lebrun 2019 (equals 0.3 anytime with different melting/dry snw conductivities)
......@@ -153,26 +153,26 @@
!------------------------------------------------------------------------------
&namthd ! Ice thermodynamics
!------------------------------------------------------------------------------
ln_icedH = .true. ! activate ice thickness change from growing/melting (T) or not (F)
ln_icedA = .true. ! activate lateral melting param. (T) or not (F)
ln_icedO = .true. ! activate ice growth in open-water (T) or not (F)
ln_icedS = .true. ! activate brine drainage (T) or not (F)
ln_icedH = .true., ! activate ice thickness change from growing/melting (T) or not (F)
ln_icedA = .true., ! activate lateral melting param. (T) or not (F)
ln_icedO = .true., ! activate ice growth in open-water (T) or not (F)
ln_icedS = .true., ! activate brine drainage (T) or not (F)
!
ln_leadhfx = .true. ! heat in the leads is used to melt sea-ice before warming the ocean
ln_leadhfx = .true., ! heat in the leads is used to melt sea-ice before warming the ocean
/
!------------------------------------------------------------------------------
&namthd_zdf ! Ice heat diffusion
!------------------------------------------------------------------------------
ln_zdf_BL99 = .true. ! Heat diffusion follows Bitz and Lipscomb 1999
ln_cndi_U64 = .false. ! sea ice thermal conductivity: k = k0 + beta.S/T (Untersteiner, 1964)
ln_cndi_P07 = .true. ! sea ice thermal conductivity: k = k0 + beta1.S/T - beta2.T (Pringle et al., 2007)
ln_zdf_BL99 = .true., ! Heat diffusion follows Bitz and Lipscomb 1999
ln_cndi_U64 = .false., ! sea ice thermal conductivity: k = k0 + beta.S/T (Untersteiner, 1964)
ln_cndi_P07 = .true., ! sea ice thermal conductivity: k = k0 + beta1.S/T - beta2.T (Pringle et al., 2007)
rn_cnd_s = 0.31 ! thermal conductivity of the snow (0.31 W/m/K, Maykut and Untersteiner, 1971)
! Obs: 0.1-0.5 (Lecomte et al, JAMES 2013)
rn_kappa_i = 1.0 ! radiation attenuation coefficient in sea ice [1/m]
rn_kappa_s = 10.0 ! nn_qtrice = 0: radiation attenuation coefficient in snow [1/m]
rn_kappa_smlt = 7.0 ! nn_qtrice = 1: radiation attenuation coefficient in melting snow [1/m]
rn_kappa_sdry = 10.0 ! radiation attenuation coefficient in dry snow [1/m]
ln_zdf_chkcvg = .false. ! check convergence of heat diffusion scheme (outputs: tice_cvgerr, tice_cvgstp)
ln_zdf_chkcvg = .false., ! check convergence of heat diffusion scheme (outputs: tice_cvgerr, tice_cvgstp)
/
!------------------------------------------------------------------------------
&namthd_da ! Ice lateral melting
......@@ -189,7 +189,7 @@
&namthd_do ! Ice growth in open water
!------------------------------------------------------------------------------
rn_hinew = 0.1 ! thickness for new ice formation in open water (m), must be larger than rn_himin
ln_frazil = .false. ! Frazil ice parameterization (ice collection as a function of wind)
ln_frazil = .false., ! Frazil ice parameterization (ice collection as a function of wind)
rn_maxfraz = 1.0 ! maximum fraction of frazil ice collecting at the ice base
rn_vfraz = 0.417 ! thresold drift speed for frazil ice collecting at the ice bottom (m/s)
rn_Cfraz = 5.0 ! squeezing coefficient for frazil ice collecting at the ice bottom
......@@ -212,22 +212,25 @@
!------------------------------------------------------------------------------
&namthd_pnd ! Melt ponds
!------------------------------------------------------------------------------
ln_pnd = .true. ! activate melt ponds or not
ln_pnd_TOPO = .false. ! topographic melt ponds
ln_pnd_LEV = .true. ! level ice melt ponds
ln_pnd = .true., ! activate melt ponds or not
ln_pnd_TOPO = .false., ! topographic melt ponds
ln_pnd_LEV = .true., ! level ice melt ponds
rn_apnd_min = 0.15 ! minimum meltwater fraction contributing to pond growth (TOPO and LEV)
rn_apnd_max = 0.85 ! maximum meltwater fraction contributing to pond growth (TOPO and LEV)
rn_pnd_flush= 0.1 ! pond flushing efficiency (tuning parameter) (LEV)
ln_pnd_CST = .false. ! constant melt ponds
ln_pnd_CST = .false., ! constant melt ponds
rn_apnd = 0.2 ! prescribed pond fraction, at Tsu=0 degC
rn_hpnd = 0.05 ! prescribed pond depth, at Tsu=0 degC
ln_pnd_lids = .true. ! frozen lids on top of the ponds (only for ln_pnd_LEV)
ln_pnd_alb = .true. ! effect of melt ponds on ice albedo
ln_pnd_lids = .true., ! frozen lids on top of the ponds (only for ln_pnd_LEV)
ln_pnd_alb = .true., ! effect of melt ponds on ice albedo
nn_pnd_brsal = 0 ! brine salinity formulation 0 = Consistent expression with SI3
! (linear liquidus)
! 1 = used in GOSI9
/
!------------------------------------------------------------------------------
&namini ! Ice initialization
!------------------------------------------------------------------------------
ln_iceini = .true. ! activate ice initialization (T) or not (F)
ln_iceini = .true., ! activate ice initialization (T) or not (F)
nn_iceini_file = 0 ! 0 = Initialise sea ice based on SSTs
! 1 = Initialise sea ice from single category netcdf file
! 2 = Initialise sea ice from multi category restart file
......@@ -280,12 +283,12 @@
!------------------------------------------------------------------------------
&namdia ! Diagnostics
!------------------------------------------------------------------------------
ln_icediachk = .false. ! check online heat, mass & salt budgets
ln_icediachk = .false., ! check online heat, mass & salt budgets
! ! rate of ice spuriously gained/lost at each time step => rn_icechk=1 <=> 1.e-6 m/hour
rn_icechk_cel = 1. ! check at each gridcell (1.e-06m/h)=> stops the code if violated (and writes a file)
rn_icechk_glo = 1.e-04 ! check over the entire ice cover (1.e-10m/h)=> only prints warnings
ln_icediahsb = .false. ! output the heat, mass & salt budgets (T) or not (F)
ln_icectl = .false. ! ice points output for debug (T or F)
ln_icediahsb = .false., ! output the heat, mass & salt budgets (T) or not (F)
ln_icectl = .false., ! ice points output for debug (T or F)
iiceprt = 10 ! i-index for debug
jiceprt = 10 ! j-index for debug
/
......@@ -152,7 +152,6 @@
!-----------------------------------------------------------------------
pislopen = 2. ! P-I slope
pisloped = 2. ! P-I slope for diatoms
xadap = 0. ! Adaptation factor to low light
excretn = 0.05 ! excretion ratio of phytoplankton
excretd = 0.05 ! excretion ratio of diatoms
bresp = 0.033 ! Basal respiration rate
......@@ -172,7 +171,6 @@
excretn = 0.05 ! excretion ratio of phytoplankton
excretp = 0.05 ! excretion ratio of picophytoplankton
excretd = 0.05 ! excretion ratio of diatoms
xadap = 0. ! Adaptation factor to low light
bresp = 0.02 ! Basal respiration rate
thetannm = 0.3 ! Maximum Chl/N in nanophytoplankton
thetanpm = 0.3 ! Maximum Chl/N in picophytoplankton
......
This diff is collapsed.
......@@ -13,8 +13,8 @@
!-----------------------------------------------------------------------
&namtrc_run ! run information
!-----------------------------------------------------------------------
ln_top_euler = .false. ! use Euler time-stepping for TOP
ln_rsttr = .false. ! start from a restart file (T) or not (F)
ln_top_euler = .false., ! use Euler time-stepping for TOP
ln_rsttr = .false., ! start from a restart file (T) or not (F)
nn_rsttr = 0 ! restart control = 0 initial time step is not compared to the restart file value
! = 1 do not use the value in the restart file
! = 2 calendar parameters read in the restart file
......@@ -28,19 +28,19 @@
!-----------------------------------------------------------------------
jp_bgc = 0 ! Number of passive tracers of the BGC model
!
ln_pisces = .false. ! Run PISCES BGC model
ln_my_trc = .false. ! Run MY_TRC BGC model
ln_age = .false. ! Run the sea water age tracer
ln_cfc11 = .false. ! Run the CFC11 passive tracer
ln_cfc12 = .false. ! Run the CFC12 passive tracer
ln_sf6 = .false. ! Run the SF6 passive tracer
ln_c14 = .false. ! Run the Radiocarbon passive tracer
ln_pisces = .false., ! Run PISCES BGC model
ln_my_trc = .false., ! Run MY_TRC BGC model
ln_age = .false., ! Run the sea water age tracer
ln_cfc11 = .false., ! Run the CFC11 passive tracer
ln_cfc12 = .false., ! Run the CFC12 passive tracer
ln_sf6 = .false., ! Run the SF6 passive tracer
ln_c14 = .false., ! Run the Radiocarbon passive tracer
!
ln_trcdta = .false. ! Initialisation from data input file (T) or not (F)
ln_trcdmp = .false. ! add a damping termn (T) or not (F)
ln_trcdmp_clo = .false. ! damping term (T) or not (F) on closed seas
ln_trcbc = .false. ! Surface, Lateral or Open Boundaries conditions
ln_trcais = .false. ! Antarctic Ice Sheet nutrient supply
ln_trcdta = .false., ! Initialisation from data input file (T) or not (F)
ln_trcdmp = .false., ! add a damping termn (T) or not (F)
ln_trcdmp_clo = .false., ! damping term (T) or not (F) on closed seas
ln_trcbc = .false., ! Surface, Lateral or Open Boundaries conditions
ln_trcais = .false., ! Antarctic Ice Sheet nutrient supply
!
jp_dia3d = 0 ! Number of 3D diagnostic variables
jp_dia2d = 0 ! Number of 2D diagnostic variables
......@@ -66,25 +66,25 @@
!-----------------------------------------------------------------------
&namtrc_adv ! advection scheme for passive tracer (default: NO selection)
!-----------------------------------------------------------------------
ln_trcadv_OFF = .false. ! No passive tracer advection
ln_trcadv_cen = .false. ! 2nd order centered scheme
ln_trcadv_OFF = .false., ! No passive tracer advection
ln_trcadv_cen = .false., ! 2nd order centered scheme
nn_cen_h = 4 ! =2/4, horizontal 2nd order CEN / 4th order CEN
nn_cen_v = 4 ! =2/4, vertical 2nd order CEN / 4th order COMPACT
ln_trcadv_fct = .false. ! FCT scheme
ln_trcadv_fct = .false., ! FCT scheme
nn_fct_h = 2 ! =2/4, horizontal 2nd / 4th order
nn_fct_v = 2 ! =2/4, vertical 2nd / COMPACT 4th order
ln_trcadv_mus = .false. ! MUSCL scheme
ln_mus_ups = .false. ! use upstream scheme near river mouths
ln_trcadv_ubs = .false. ! UBS scheme
ln_trcadv_mus = .false., ! MUSCL scheme
ln_mus_ups = .false., ! use upstream scheme near river mouths
ln_trcadv_ubs = .false., ! UBS scheme
nn_ubs_v = 2 ! =2 , vertical 2nd order FCT
ln_trcadv_qck = .false. ! QUICKEST scheme
ln_trcadv_qck = .false., ! QUICKEST scheme
/
!-----------------------------------------------------------------------
&namtrc_ldf ! lateral diffusion scheme for passive tracer (default: NO selection)
!-----------------------------------------------------------------------
! ! Type of the operator:
ln_trcldf_OFF = .false. ! No explicit diffusion
ln_trcldf_tra = .false. ! use active tracer setting
ln_trcldf_OFF = .false., ! No explicit diffusion
ln_trcldf_tra = .false., ! use active tracer setting
! ! Coefficient (defined with namtra_ldf coefficient)
rn_ldf_multi = 1. ! multiplier of aht for TRC mixing coefficient
rn_fact_lap = 1. ! Equatorial enhanced zonal eddy diffusivity (lap only)
......@@ -92,7 +92,7 @@
!-----------------------------------------------------------------------
&namtrc_rad ! treatment of negative concentrations
!-----------------------------------------------------------------------
ln_trcrad = .true. ! artificially correct negative concentrations (T) or not (F)
ln_trcrad = .true., ! artificially correct negative concentrations (T) or not (F)
/
!-----------------------------------------------------------------------
&namtrc_snk ! Sedimentation of particles
......@@ -102,7 +102,7 @@
!-----------------------------------------------------------------------
&namtrc_dcy ! Diurnal cycle
!-----------------------------------------------------------------------
ln_trcdc2dm = .false. ! Diurnal cycle for TOP
ln_trcdc2dm = .false., ! Diurnal cycle for TOP
/
!-----------------------------------------------------------------------
&namtrc_opt ! light availability in the water column
......@@ -111,7 +111,7 @@
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! 'monthly' ! filename ! pairing ! filename !
sn_par = 'par.orca' , 24 , 'fr_par' , .true. , .true. , 'yearly' , '' , '' , ''
cn_dir = './' ! root directory for the location of the dynamical files
ln_varpar = .true. ! Read PAR from file
ln_varpar = .true., ! Read PAR from file
parlux = 0.43 ! Fraction of shortwave as PAR
light_loc = 'center' ! Light location in the water cell ('center', 'integral')
/
......@@ -138,21 +138,30 @@
nn_trd_trc = 5475 ! time step frequency and tracers trends
nn_ctls_trc = 0 ! control surface type in mixed-layer trends (0,1 or n<jpk)
rn_ucf_trc = 1 ! unit conversion factor (=1 -> /seconds ; =86400. -> /day)
ln_trdmld_trc_restart = .false. ! restart for ML diagnostics
ln_trdmld_trc_instant = .true. ! flag to diagnose trends of instantantaneous or mean ML T/S
ln_trdmld_trc_restart = .false.,! restart for ML diagnostics
ln_trdmld_trc_instant = .true., ! flag to diagnose trends of instantantaneous or mean ML T/S
ln_trdtrc( 1) = .true.
ln_trdtrc( 2) = .true.
ln_trdtrc(23) = .true.
/
!----------------------------------------------------------------------
&namtrc_bc ! data for boundary conditions
!----------------------------------------------------------------------
! Surface and coastal input data must be specified individually for each tracer.
! Lateral open boundary inputs are specified for each BDY segment and related inputfiles
! must contain data for the variables with active open boundary (set through &namtrc).
! By default, variable names of BDY inputfiles are the same as in &namtrc, but using
! cn_tronam it is possible to specify alternative variable names to match with inputfiles.
! ! file name ! freq ! variable ! time interp. ! clim !'yearly' ! weights ! rotation | land/sea
! sn_trcobc(1) = 'bdy_dta_trc_North_y1980', -1 , 'dummy' , .false. , .true. ,'yearly' , '', '', ''
!-----------------------------------------------------------------------
cn_dir_sbc = './' ! root directory for the location of SURFACE data files
cn_dir_cbc = './' ! root directory for the location of COASTAL data files
cn_dir_obc = './' ! root directory for the location of OPEN data files
ln_rnf_ctl = .false. ! Remove runoff dilution on tracers with absent river load
ln_rnf_ctl = .false., ! Remove runoff dilution on tracers with absent river load
rn_sbc_time = 86400. ! Time scaling factor for SBC data (seconds in a day)
rn_cbc_time = 86400. ! Time scaling factor for CBC data (seconds in a day)
! cn_tronam(1) = 'var1' ! Tracer-name to variable-name translation
/
!----------------------------------------------------------------------
&namtrc_bdy ! Setup of tracer boundary conditions
......@@ -164,6 +173,8 @@
! = 0 NO damping of tracers at open boudaries
! = 1 Only for tracers forced with external data
! = 2 Damping applied to all tracers
ln_zintobc = .false., ! T if a vertical interpolation is required. Variables gdep[t] and e3[t] must exist in the file
! automatically defined to T if the number of vertical levels in bdy dta /= jpk
/
!-----------------------------------------------------------------------
&namtrc_ais ! Representation of Antarctic Ice Sheet tracers supply
......
......@@ -7,6 +7,5 @@ ORCA2_OFF_PISCES OCE TOP OFF
ORCA2_OFF_TRC OCE TOP OFF
ORCA2_SAS_ICE OCE ICE NST SAS
ORCA2_ICE_PISCES OCE TOP ICE NST ABL
ORCA2_ICE_ABL OCE ICE ABL
SPITZ12 OCE ICE
WED025 OCE ICE
......@@ -447,14 +447,14 @@ subroutine Agrif_Find_Nearest ( tabvarsindic, fineloc, parentloc )
type(Agrif_Variable), pointer :: parent_var
type(Agrif_Variable), pointer :: child_var
integer :: i
integer, dimension(6) :: nb_child !< Number of cells on the child grid
integer, dimension(6) :: ub_child !< Upper bound on the child grid
integer, dimension(6) :: lb_child !< Lower bound on the child grid
integer, dimension(6) :: lb_parent !< Lower bound on the parent grid
real, dimension(6) :: s_child !< Child grid position (s_root = 0)
real, dimension(6) :: s_parent !< Parent grid position (s_root = 0)
real, dimension(6) :: ds_child !< Child grid dx (ds_root = 1)
real, dimension(6) :: ds_parent !< Parent grid dx (ds_root = 1)
integer, dimension(6) :: nb_child !< Number of cells on the child grid
integer, dimension(6) :: ub_child !< Upper bound on the child grid
integer, dimension(6) :: lb_child !< Lower bound on the child grid
integer, dimension(6) :: lb_parent !< Lower bound on the parent grid
real(kind=8), dimension(6) :: s_child !< Child grid position (s_root = 0)
real(kind=8), dimension(6) :: s_parent !< Parent grid position (s_root = 0)
real(kind=8), dimension(6) :: ds_child !< Child grid dx (ds_root = 1)
real(kind=8), dimension(6) :: ds_parent !< Parent grid dx (ds_root = 1)
integer :: nbdim !< Number of dimensions
real, dimension(6) :: xfineloc
!
......
This diff is collapsed.
......@@ -231,16 +231,15 @@ subroutine Agrif_basicupdate_max1d ( x, y, np, nc, s_parent, s_child, ds_parent,
REAL, DIMENSION(np), intent(out) :: x
REAL, DIMENSION(nc), intent(in) :: y
INTEGER, intent(in) :: np,nc
REAL, intent(in) :: s_parent, s_child
REAL, intent(in) :: ds_parent, ds_child
REAL(kind=8), intent(in) :: s_parent, s_child
REAL(kind=8), intent(in) :: ds_parent, ds_child
!
INTEGER :: i, ii, locind_child_left, coeffraf
REAL :: xpos, invcoeffraf
REAL(kind=8) :: xpos
INTEGER :: nbnonnuls
INTEGER :: diffmod
!
coeffraf = nint(ds_parent/ds_child)
invcoeffraf = 1./coeffraf
!
if (coeffraf == 1) then
locind_child_left = 1 + nint((s_parent - s_child)/ds_child)
......
......@@ -520,7 +520,7 @@ sub catfile {
my $path = shift @names;
for my $name (@names) {
$path .= '/' . $name if $name;
$path .= '/' . $name if (length $name);
}
return $path;
......