Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
No results found
Show changes
Showing
with 1419 additions and 516 deletions
This diff is collapsed.
You can't use the standard diagnostic options with the current cycling period.
Choose the "Custom" option, copy the file_def*.xml files that
you want to use into the Rose app and adjust the meaning period
accordingly.
<?xml version="1.0"?>
<simulation>
<!-- ============================================================================================ -->
<!-- XIOS context -->
<!-- ============================================================================================ -->
<context id="xios" >
<variable_definition>
<variable id="info_level" type="int">-1</variable>
<variable id="using_server" type="bool">true</variable>
<variable id="using_oasis" type="bool">false</variable>
<variable id="oasis_codes_id" type="string" >oceanx</variable>
</variable_definition>
</context>
<!-- ============================================================================================ -->
<!-- NEMO CONTEXT add and suppress the components you need -->
<!-- ============================================================================================ -->
<context id="nemo" src="./context_nemo.xml"/> <!-- NEMO -->
</simulation>
<?xml version="1.0"?>
<simulation>
<!-- ============================================================================================ -->
<!-- XIOS context -->
<!-- ============================================================================================ -->
<context id="xios" >
<variable_definition>
<variable id="info_level" type="int">-1</variable>
<variable id="using_server" type="bool">true</variable>
<variable id="using_oasis" type="bool">true</variable>
<variable id="oasis_codes_id" type="string" >toyoce</variable>
</variable_definition>
</context>
<!-- ============================================================================================ -->
<!-- NEMO CONTEXT add and suppress the components you need -->
<!-- ============================================================================================ -->
<context id="nemo" src="./context_nemo.xml"/> <!-- NEMO -->
</simulation>
......@@ -189,12 +189,14 @@
<domain id="grid_F_inner" long_name="grid F inner"/>
<!-- zonal mean grid -->
<domain_group id="gznl">
<domain id="gznl" long_name="gznl"/>
<domain id="ptr" domain_ref="gznl" >
<zoom_domain id="ptr" ibegin="0000" jbegin="0" ni="1" nj="0000" />
</domain>
</domain_group>
<domain id="gznl" long_name="gznl"/>
<domain id="ptr" domain_ref="gznl" >
<zoom_domain id="ptr" ibegin="0000" jbegin="0" ni="1" nj="0000" />
</domain>
<domain id="znl_T" domain_ref="gznl" > <zoom_domain id="znl_T"/> </domain>
<domain id="znl_W" domain_ref="gznl" > <zoom_domain id="znl_W"/> </domain>
<!-- other grids -->
......
......@@ -50,10 +50,11 @@
<field id="icevpnd" long_name="melt pond volume" standard_name="sea_ice_meltpond_volume" unit="m" />
<field id="icehlid" long_name="melt pond lid depth" standard_name="sea_ice_meltpondlid_depth" unit="m" />
<field id="icevlid" long_name="melt pond lid volume" standard_name="sea_ice_meltpondlid_volume" unit="m" />
<field id="dvpn_mlt" long_name="pond volume tendency due to surface melt" standard_name="sea_ice_pondvolume_tendency_melt" unit="kg/m2/s" />
<field id="dvpn_lid" long_name="pond volume tendency due to exchanges with lid" standard_name="sea_ice_pondvolume_tendency_lids" unit="kg/m2/s" />
<field id="dvpn_rnf" long_name="pond volume tendency due to runoff" standard_name="sea_ice_pondvolume_tendency_runoff" unit="kg/m2/s" />
<field id="dvpn_drn" long_name="pond volume tendency due to drainage" standard_name="sea_ice_pondvolume_tendency_drainage" unit="kg/m2/s" />
<field id="iceepnd" long_name="melt pond effective concentration" standard_name="sea_ice_meltpond_effective_concentration" unit="" />
<field id="dvpn_mlt" long_name="pond volume tendency due to surface melt" standard_name="sea_ice_pondvolume_tendency_melt" unit="cm/d" />
<field id="dvpn_lid" long_name="pond volume tendency due to exchanges with lid" standard_name="sea_ice_pondvolume_tendency_lids" unit="cm/d" />
<field id="dvpn_rnf" long_name="pond volume tendency due to runoff" standard_name="sea_ice_pondvolume_tendency_runoff" unit="cm/d" />
<field id="dvpn_drn" long_name="pond volume tendency due to drainage" standard_name="sea_ice_pondvolume_tendency_drainage" unit="cm/d" />
<!-- heat -->
<field id="icetemp" long_name="Mean ice temperature" unit="degC" detect_missing_value="true" />
......@@ -95,6 +96,10 @@
<field id="yield12" long_name="yield surface tensor component 12" standard_name="yield12" unit="N/m" />
<field id="beta_evp" long_name="Relaxation parameter of ice rheology (beta)" standard_name="relaxation_parameter_of_ice_rheology" unit="" />
<field id="isig1" long_name="1st principal stress component for EVP rhg" unit="" />
<field id="isig2" long_name="2nd principal stress component for EVP rhg" unit="" />
<field id="isig3" long_name="convergence measure for EVP rheology (must be around 1)" unit="" />
<!-- surface heat fluxes -->
<field id="qt_ice" long_name="total heat flux at ice surface" standard_name="surface_downward_heat_flux_in_air" unit="W/m2" />
<field id="qsr_ice" long_name="solar heat flux at ice surface" standard_name="surface_downwelling_shortwave_flux_in_air" unit="W/m2" />
......@@ -189,8 +194,15 @@
<field id="icedrift_heat" long_name="Ice heat drift (conservation check)" unit="W/m2" />
<!-- sbcssm variables -->
<field id="sst_m" unit="degC" />
<field id="sss_m" unit="psu" />
<field id="sst_m_pot" unit="degC" />
<!-- EOS-80 -->
<field id="sss_m_pra" unit="psu" />
<!-- TEOS-10 -->
<field id="sss_m_abs" unit="g/kg" />
<!-- SEOS -->
<field id="sss_m_seos" unit="psu" />
<field id="ssu_m" unit="m/s" />
<field id="ssv_m" unit="m/s" />
<field id="ssh_m" unit="m" />
......@@ -407,9 +419,17 @@
<field field_ref="iceapnd" name="siapnd" />
<field field_ref="icehpnd" name="sihpnd" />
<field field_ref="icevpnd" name="sivpnd" />
<field field_ref="iceepnd" name="siepnd" />
<field field_ref="iceage" name="siage" />
<field field_ref="sst_m" name="sst_m" />
<field field_ref="sss_m" name="sss_m" />
<field id="sst_m_pot" unit="degC" />
<!-- EOS-80 -->
<field id="sss_m_pra" unit="psu" />
<!-- TEOS-10 -->
<field id="sss_m_abs" unit="g/kg" />
<!-- SEOS -->
<field id="sss_m_seos" unit="psu" />
<!-- heat -->
<field field_ref="icetemp" name="sitemp" />
......@@ -435,7 +455,7 @@
<field field_ref="sheastr" name="sheastr" />
<field field_ref="sig1_pnorm" name="sig1_pnorm"/>
<field field_ref="sig2_pnorm" name="sig2_pnorm"/>
<field field_ref="icedlt" name="sidelt" />
<field field_ref="icedlt" name="sidelta" />
<!-- heat fluxes -->
<field field_ref="qt_oce_ai" name="qt_oce_ai" />
......
This diff is collapsed.
......@@ -418,5 +418,43 @@
<duplicate_scalar />
</axis>
</grid>
<grid id="grid_EqT" >
<domain id="EqT" />
</grid>
<!-- -->
<grid id="gznl_T_2D">
<domain id="ptr" />
</grid>
<!-- -->
<grid id="gznl_T_3D">
<domain id="ptr" />
<axis axis_ref="deptht" />
</grid>
<!-- -->
<grid id="gznl_W_2D">
<domain id="ptr" />
</grid>
<!-- -->
<grid id="gznl_W_3D">
<domain id="ptr" />
<axis axis_ref="depthw" />
</grid>
<grid id="vert_sum">
<domain id="grid_T"/>
<scalar>
<reduce_axis operation="sum" />
</scalar>
</grid>
<grid id="zoom_300">
<domain id="grid_T" />
<axis axis_ref="deptht300"/>
</grid>
<grid id="zoom_300_sum">
<domain id="grid_T" />
<scalar>
<reduce_axis operation="sum" />
</scalar>
</grid>
</grid_definition>
......@@ -24,10 +24,10 @@
jpl = 5 ! number of ice categories
nlay_i = 2 ! number of ice layers
nlay_s = 2 ! number of snow layers
ln_virtual_itd = .false. ! virtual ITD mono-category parameterization (jpl=1 only)
! i.e. enhanced thermal conductivity & virtual thin ice melting
ln_icedyn = .true. ! ice dynamics (T) or not (F)
ln_icethd = .true. ! ice thermo (T) or not (F)
ln_virtual_itd = .false., ! virtual ITD mono-category parameterization (jpl=1 only)
! i.e. enhan.false.ced thermal conductivity & virtual thin ice melting
ln_icedyn = .true., ! ice dynamics (T) or not (F)
ln_icethd = .true., ! ice thermo (T) or not (F)
rn_amax_n = 0.997 ! maximum tolerated ice concentration NH
rn_amax_s = 0.997 ! maximum tolerated ice concentration SH
cn_icerst_in = "restart_ice" ! suffix of ice restart name (input)
......@@ -38,9 +38,9 @@
!------------------------------------------------------------------------------
&namitd ! Ice discretization
!------------------------------------------------------------------------------
ln_cat_hfn = .true. ! ice categories are defined by a function following rn_himean**(-0.05)
ln_cat_hfn = .true., ! ice categories are defined by a function following rn_himean**(-0.05)
rn_himean = 2.0 ! expected domain-average ice thickness (m)
ln_cat_usr = .false. ! ice categories are defined by rn_catbnd below (m)
ln_cat_usr = .false., ! ice categories are defined by rn_catbnd below (m)
rn_catbnd = 0.,0.45,1.1,2.1,3.7,6.0
rn_himin = 0.1 ! minimum ice thickness (m) allowed
rn_himax = 99.0 ! maximum ice thickness (m) allowed
......@@ -48,14 +48,14 @@
!------------------------------------------------------------------------------
&namdyn ! Ice dynamics
!------------------------------------------------------------------------------
ln_dynALL = .true. ! dyn.: full ice dynamics (rheology + advection + ridging/rafting + correction)
ln_dynRHGADV = .false. ! dyn.: no ridge/raft & no corrections (rheology + advection)
ln_dynADV1D = .false. ! dyn.: only advection 1D (Schar & Smolarkiewicz 1996 test case)
ln_dynADV2D = .false. ! dyn.: only advection 2D w prescribed vel.(rn_uvice + advection)
ln_dynALL = .true., ! dyn.: full ice dynamics (rheology + advection + ridging/rafting + correction)
ln_dynRHGADV = .false., ! dyn.: no ridge/raft & no corrections (rheology + advection)
ln_dynADV1D = .false., ! dyn.: only advection 1D (Schar & Smolarkiewicz 1996 test case)
ln_dynADV2D = .false., ! dyn.: only advection 2D w prescribed vel.(rn_uvice + advection)
rn_uice = 0.5 ! prescribed ice u-velocity
rn_vice = 0.5 ! prescribed ice v-velocity
rn_ishlat = 2. ! lbc : free slip (0) ; partial slip (0-2) ; no slip (2) ; strong slip (>2)
ln_landfast_L16 = .false. ! landfast: parameterization from Lemieux 2016
ln_landfast_L16 = .false., ! landfast: parameterization from Lemieux 2016
rn_lf_depfra = 0.125 ! fraction of ocean depth that ice must reach to initiate landfast
! recommended range: [0.1 ; 0.25]
rn_lf_bfr = 15. ! maximum bottom stress per unit volume [N/m3]
......@@ -72,30 +72,30 @@
&namdyn_rdgrft ! Ice ridging/rafting
!------------------------------------------------------------------------------
! -- ice_rdgrft_strength -- !
ln_str_H79 = .true. ! ice strength param.: Hibler_79 => P = pstar*<h>*exp(-c_rhg*A)
ln_str_H79 = .true., ! ice strength param.: Hibler_79 => P = pstar*<h>*exp(-c_rhg*A)
rn_pstar = 2.0e+04 ! ice strength thickness parameter [N/m2]
rn_crhg = 20.0 ! ice strength conc. parameter (-)
ln_str_R75 = .false. ! ice strength param.: Rothrock_75 => P = fn of potential energy
ln_str_R75 = .false., ! ice strength param.: Rothrock_75 => P = fn of potential energy
rn_pe_rdg = 17.0 ! coef accouting for frictional dissipation
ln_str_CST = .false. ! ice strength param.: Constant
ln_str_CST = .false., ! ice strength param.: Constant
rn_str = 0.0 ! ice strength value
ln_str_smooth = .true. ! spatial smoothing of the ice strength
ln_str_smooth = .true., ! spatial smoothing of the ice strength
! -- ice_rdgrft -- !
ln_distf_lin = .true. ! redistribution function of ridged ice: linear (Hibler 1980)
ln_distf_exp = .false. ! redistribution function of ridged ice: exponential => not coded yet
ln_distf_lin = .true., ! redistribution function of ridged ice: linear (Hibler, 1980)
ln_distf_exp = .false., ! redistribution function of ridged ice: exponential (Lipscomb et al., 2007)
rn_murdg = 3.0 ! e-folding scale of ridged ice (m**.5)
rn_csrdg = 0.5 ! fraction of shearing energy contributing to ridging
! -- ice_rdgrft_prep -- !
ln_partf_lin = .false. ! Linear ridging participation function (Thorndike et al, 1975)
ln_partf_lin = .false., ! Linear ridging participation function (Thorndike et al., 1975)
rn_gstar = 0.15 ! fractional area of thin ice being ridged
ln_partf_exp = .true. ! Exponential ridging participation function (Lipscomb, 2007)
ln_partf_exp = .true., ! Exponential ridging participation function (Lipscomb et al., 2007)
rn_astar = 0.03 ! exponential measure of ridging ice fraction [set to 0.05 if hstar=100]
ln_ridging = .true. ! ridging activated (T) or not (F)
ln_ridging = .true., ! ridging activated (T) or not (F)
rn_hstar = 25.0 ! determines the maximum thickness of ridged ice [m] (Hibler, 1980)
rn_porordg = 0.3 ! porosity of newly ridged ice (Lepparanta et al., 1995)
rn_fsnwrdg = 0.5 ! snow volume fraction that survives in ridging
rn_fpndrdg = 1.0 ! pond fraction that survives in ridging (small a priori)
ln_rafting = .true. ! rafting activated (T) or not (F)
ln_rafting = .true., ! rafting activated (T) or not (F)
rn_hraft = 0.75 ! threshold thickness for rafting [m]
rn_craft = 5.0 ! squeezing coefficient used in the rafting function
rn_fsnwrft = 0.5 ! snow volume fraction that survives in rafting
......@@ -104,9 +104,9 @@
!------------------------------------------------------------------------------
&namdyn_rhg ! Ice rheology
!------------------------------------------------------------------------------
ln_rhg_EVP = .true. ! EVP rheology
ln_rhg_EAP = .false. ! EAP rheology
ln_aEVP = .true. ! adaptive rheology (Kimmritz et al. 2016 & 2017)
ln_rhg_EVP = .true., ! EVP rheology
ln_rhg_EAP = .false., ! EAP rheology
ln_aEVP = .true., ! adaptive rheology (Kimmritz et al. 2016 & 2017)
rn_creepl = 2.0e-9 ! creep limit [1/s]
rn_ecc = 2.0 ! eccentricity of the elliptical yield curve
nn_nevp = 100 ! number of EVP subcycles
......@@ -117,7 +117,7 @@
! = 1 check at the main time step (output xml: uice_cvg)
! = 2 check at both main and rheology time steps (additional output: ice_cvg.nc)
! this option 2 asks a lot of communications between cpu
ln_rhg_VP = .false. ! VP rheology
ln_rhg_VP = .false., ! VP rheology
nn_vp_nout = 10 ! number of outer iterations
nn_vp_ninn = 1500 ! number of inner iterations
nn_vp_chkcvg = 5 ! iteration step for convergence check
......@@ -125,8 +125,8 @@
!------------------------------------------------------------------------------
&namdyn_adv ! Ice advection
!------------------------------------------------------------------------------
ln_adv_Pra = .true. ! Advection scheme (Prather)
ln_adv_UMx = .false. ! Advection scheme (Ultimate-Macho)
ln_adv_Pra = .true., ! Advection scheme (Prather)
ln_adv_UMx = .false., ! Advection scheme (Ultimate-Macho)
nn_UMx = 5 ! order of the scheme for UMx (1-5 ; 20=centered 2nd order)
/
!------------------------------------------------------------------------------
......@@ -144,8 +144,8 @@
! = 0 Average N(cat) fluxes then apply the average over the N(cat) ice
! = 1 Average N(cat) fluxes then redistribute over the N(cat) ice using T-ice and albedo sensitivity
! = 2 Redistribute a single flux over categories
ln_cndflx = .false. ! Use conduction flux as surface boundary conditions (i.e. for Jules coupling)
ln_cndemulate = .false. ! emulate conduction flux (if not provided in the inputs)
ln_cndflx = .false., ! Use conduction flux as surface boundary conditions (i.e. for Jules coupling)
ln_cndemulate = .false., ! emulate conduction flux (if not provided in the inputs)
nn_qtrice = 0 ! Solar flux transmitted thru the surface scattering layer:
! = 0 Grenfell and Maykut 1977 (depends on cloudiness and is 0 when there is snow)
! = 1 Lebrun 2019 (equals 0.3 anytime with different melting/dry snw conductivities)
......@@ -153,26 +153,26 @@
!------------------------------------------------------------------------------
&namthd ! Ice thermodynamics
!------------------------------------------------------------------------------
ln_icedH = .true. ! activate ice thickness change from growing/melting (T) or not (F)
ln_icedA = .true. ! activate lateral melting param. (T) or not (F)
ln_icedO = .true. ! activate ice growth in open-water (T) or not (F)
ln_icedS = .true. ! activate brine drainage (T) or not (F)
ln_icedH = .true., ! activate ice thickness change from growing/melting (T) or not (F)
ln_icedA = .true., ! activate lateral melting param. (T) or not (F)
ln_icedO = .true., ! activate ice growth in open-water (T) or not (F)
ln_icedS = .true., ! activate brine drainage (T) or not (F)
!
ln_leadhfx = .true. ! heat in the leads is used to melt sea-ice before warming the ocean
ln_leadhfx = .true., ! heat in the leads is used to melt sea-ice before warming the ocean
/
!------------------------------------------------------------------------------
&namthd_zdf ! Ice heat diffusion
!------------------------------------------------------------------------------
ln_zdf_BL99 = .true. ! Heat diffusion follows Bitz and Lipscomb 1999
ln_cndi_U64 = .false. ! sea ice thermal conductivity: k = k0 + beta.S/T (Untersteiner, 1964)
ln_cndi_P07 = .true. ! sea ice thermal conductivity: k = k0 + beta1.S/T - beta2.T (Pringle et al., 2007)
ln_zdf_BL99 = .true., ! Heat diffusion follows Bitz and Lipscomb 1999
ln_cndi_U64 = .false., ! sea ice thermal conductivity: k = k0 + beta.S/T (Untersteiner, 1964)
ln_cndi_P07 = .true., ! sea ice thermal conductivity: k = k0 + beta1.S/T - beta2.T (Pringle et al., 2007)
rn_cnd_s = 0.31 ! thermal conductivity of the snow (0.31 W/m/K, Maykut and Untersteiner, 1971)
! Obs: 0.1-0.5 (Lecomte et al, JAMES 2013)
rn_kappa_i = 1.0 ! radiation attenuation coefficient in sea ice [1/m]
rn_kappa_s = 10.0 ! nn_qtrice = 0: radiation attenuation coefficient in snow [1/m]
rn_kappa_smlt = 7.0 ! nn_qtrice = 1: radiation attenuation coefficient in melting snow [1/m]
rn_kappa_sdry = 10.0 ! radiation attenuation coefficient in dry snow [1/m]
ln_zdf_chkcvg = .false. ! check convergence of heat diffusion scheme (outputs: tice_cvgerr, tice_cvgstp)
ln_zdf_chkcvg = .false., ! check convergence of heat diffusion scheme (outputs: tice_cvgerr, tice_cvgstp)
/
!------------------------------------------------------------------------------
&namthd_da ! Ice lateral melting
......@@ -189,7 +189,7 @@
&namthd_do ! Ice growth in open water
!------------------------------------------------------------------------------
rn_hinew = 0.1 ! thickness for new ice formation in open water (m), must be larger than rn_himin
ln_frazil = .false. ! Frazil ice parameterization (ice collection as a function of wind)
ln_frazil = .false., ! Frazil ice parameterization (ice collection as a function of wind)
rn_maxfraz = 1.0 ! maximum fraction of frazil ice collecting at the ice base
rn_vfraz = 0.417 ! thresold drift speed for frazil ice collecting at the ice bottom (m/s)
rn_Cfraz = 5.0 ! squeezing coefficient for frazil ice collecting at the ice bottom
......@@ -212,22 +212,25 @@
!------------------------------------------------------------------------------
&namthd_pnd ! Melt ponds
!------------------------------------------------------------------------------
ln_pnd = .true. ! activate melt ponds or not
ln_pnd_TOPO = .false. ! topographic melt ponds
ln_pnd_LEV = .true. ! level ice melt ponds
ln_pnd = .true., ! activate melt ponds or not
ln_pnd_TOPO = .false., ! topographic melt ponds
ln_pnd_LEV = .true., ! level ice melt ponds
rn_apnd_min = 0.15 ! minimum meltwater fraction contributing to pond growth (TOPO and LEV)
rn_apnd_max = 0.85 ! maximum meltwater fraction contributing to pond growth (TOPO and LEV)
rn_pnd_flush= 0.1 ! pond flushing efficiency (tuning parameter) (LEV)
ln_pnd_CST = .false. ! constant melt ponds
ln_pnd_CST = .false., ! constant melt ponds
rn_apnd = 0.2 ! prescribed pond fraction, at Tsu=0 degC
rn_hpnd = 0.05 ! prescribed pond depth, at Tsu=0 degC
ln_pnd_lids = .true. ! frozen lids on top of the ponds (only for ln_pnd_LEV)
ln_pnd_alb = .true. ! effect of melt ponds on ice albedo
ln_pnd_lids = .true., ! frozen lids on top of the ponds (only for ln_pnd_LEV)
ln_pnd_alb = .true., ! effect of melt ponds on ice albedo
nn_pnd_brsal = 0 ! brine salinity formulation 0 = Consistent expression with SI3
! (linear liquidus)
! 1 = used in GOSI9
/
!------------------------------------------------------------------------------
&namini ! Ice initialization
!------------------------------------------------------------------------------
ln_iceini = .true. ! activate ice initialization (T) or not (F)
ln_iceini = .true., ! activate ice initialization (T) or not (F)
nn_iceini_file = 0 ! 0 = Initialise sea ice based on SSTs
! 1 = Initialise sea ice from single category netcdf file
! 2 = Initialise sea ice from multi category restart file
......@@ -280,12 +283,12 @@
!------------------------------------------------------------------------------
&namdia ! Diagnostics
!------------------------------------------------------------------------------
ln_icediachk = .false. ! check online heat, mass & salt budgets
ln_icediachk = .false., ! check online heat, mass & salt budgets
! ! rate of ice spuriously gained/lost at each time step => rn_icechk=1 <=> 1.e-6 m/hour
rn_icechk_cel = 1. ! check at each gridcell (1.e-06m/h)=> stops the code if violated (and writes a file)
rn_icechk_glo = 1.e-04 ! check over the entire ice cover (1.e-10m/h)=> only prints warnings
ln_icediahsb = .false. ! output the heat, mass & salt budgets (T) or not (F)
ln_icectl = .false. ! ice points output for debug (T or F)
ln_icediahsb = .false., ! output the heat, mass & salt budgets (T) or not (F)
ln_icectl = .false., ! ice points output for debug (T or F)
iiceprt = 10 ! i-index for debug
jiceprt = 10 ! j-index for debug
/
This diff is collapsed.
......@@ -13,8 +13,8 @@
!-----------------------------------------------------------------------
&namtrc_run ! run information
!-----------------------------------------------------------------------
ln_top_euler = .false. ! use Euler time-stepping for TOP
ln_rsttr = .false. ! start from a restart file (T) or not (F)
ln_top_euler = .false., ! use Euler time-stepping for TOP
ln_rsttr = .false., ! start from a restart file (T) or not (F)
nn_rsttr = 0 ! restart control = 0 initial time step is not compared to the restart file value
! = 1 do not use the value in the restart file
! = 2 calendar parameters read in the restart file
......@@ -28,19 +28,19 @@
!-----------------------------------------------------------------------
jp_bgc = 0 ! Number of passive tracers of the BGC model
!
ln_pisces = .false. ! Run PISCES BGC model
ln_my_trc = .false. ! Run MY_TRC BGC model
ln_age = .false. ! Run the sea water age tracer
ln_cfc11 = .false. ! Run the CFC11 passive tracer
ln_cfc12 = .false. ! Run the CFC12 passive tracer
ln_sf6 = .false. ! Run the SF6 passive tracer
ln_c14 = .false. ! Run the Radiocarbon passive tracer
ln_pisces = .false., ! Run PISCES BGC model
ln_my_trc = .false., ! Run MY_TRC BGC model
ln_age = .false., ! Run the sea water age tracer
ln_cfc11 = .false., ! Run the CFC11 passive tracer
ln_cfc12 = .false., ! Run the CFC12 passive tracer
ln_sf6 = .false., ! Run the SF6 passive tracer
ln_c14 = .false., ! Run the Radiocarbon passive tracer
!
ln_trcdta = .false. ! Initialisation from data input file (T) or not (F)
ln_trcdmp = .false. ! add a damping termn (T) or not (F)
ln_trcdmp_clo = .false. ! damping term (T) or not (F) on closed seas
ln_trcbc = .false. ! Surface, Lateral or Open Boundaries conditions
ln_trcais = .false. ! Antarctic Ice Sheet nutrient supply
ln_trcdta = .false., ! Initialisation from data input file (T) or not (F)
ln_trcdmp = .false., ! add a damping termn (T) or not (F)
ln_trcdmp_clo = .false., ! damping term (T) or not (F) on closed seas
ln_trcbc = .false., ! Surface, Lateral or Open Boundaries conditions
ln_trcais = .false., ! Antarctic Ice Sheet nutrient supply
!
jp_dia3d = 0 ! Number of 3D diagnostic variables
jp_dia2d = 0 ! Number of 2D diagnostic variables
......@@ -66,25 +66,25 @@
!-----------------------------------------------------------------------
&namtrc_adv ! advection scheme for passive tracer (default: NO selection)
!-----------------------------------------------------------------------
ln_trcadv_OFF = .false. ! No passive tracer advection
ln_trcadv_cen = .false. ! 2nd order centered scheme
ln_trcadv_OFF = .false., ! No passive tracer advection
ln_trcadv_cen = .false., ! 2nd order centered scheme
nn_cen_h = 4 ! =2/4, horizontal 2nd order CEN / 4th order CEN
nn_cen_v = 4 ! =2/4, vertical 2nd order CEN / 4th order COMPACT
ln_trcadv_fct = .false. ! FCT scheme
ln_trcadv_fct = .false., ! FCT scheme
nn_fct_h = 2 ! =2/4, horizontal 2nd / 4th order
nn_fct_v = 2 ! =2/4, vertical 2nd / COMPACT 4th order
ln_trcadv_mus = .false. ! MUSCL scheme
ln_mus_ups = .false. ! use upstream scheme near river mouths
ln_trcadv_ubs = .false. ! UBS scheme
ln_trcadv_mus = .false., ! MUSCL scheme
ln_mus_ups = .false., ! use upstream scheme near river mouths
ln_trcadv_ubs = .false., ! UBS scheme
nn_ubs_v = 2 ! =2 , vertical 2nd order FCT
ln_trcadv_qck = .false. ! QUICKEST scheme
ln_trcadv_qck = .false., ! QUICKEST scheme
/
!-----------------------------------------------------------------------
&namtrc_ldf ! lateral diffusion scheme for passive tracer (default: NO selection)
!-----------------------------------------------------------------------
! ! Type of the operator:
ln_trcldf_OFF = .false. ! No explicit diffusion
ln_trcldf_tra = .false. ! use active tracer setting
ln_trcldf_OFF = .false., ! No explicit diffusion
ln_trcldf_tra = .false., ! use active tracer setting
! ! Coefficient (defined with namtra_ldf coefficient)
rn_ldf_multi = 1. ! multiplier of aht for TRC mixing coefficient
rn_fact_lap = 1. ! Equatorial enhanced zonal eddy diffusivity (lap only)
......@@ -92,7 +92,7 @@
!-----------------------------------------------------------------------
&namtrc_rad ! treatment of negative concentrations
!-----------------------------------------------------------------------
ln_trcrad = .true. ! artificially correct negative concentrations (T) or not (F)
ln_trcrad = .true., ! artificially correct negative concentrations (T) or not (F)
/
!-----------------------------------------------------------------------
&namtrc_snk ! Sedimentation of particles
......@@ -102,7 +102,7 @@
!-----------------------------------------------------------------------
&namtrc_dcy ! Diurnal cycle
!-----------------------------------------------------------------------
ln_trcdc2dm = .false. ! Diurnal cycle for TOP
ln_trcdc2dm = .false., ! Diurnal cycle for TOP
/
!-----------------------------------------------------------------------
&namtrc_opt ! light availability in the water column
......@@ -111,7 +111,7 @@
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! 'monthly' ! filename ! pairing ! filename !
sn_par = 'par.orca' , 24 , 'fr_par' , .true. , .true. , 'yearly' , '' , '' , ''
cn_dir = './' ! root directory for the location of the dynamical files
ln_varpar = .true. ! Read PAR from file
ln_varpar = .true., ! Read PAR from file
parlux = 0.43 ! Fraction of shortwave as PAR
light_loc = 'center' ! Light location in the water cell ('center', 'integral')
/
......@@ -138,8 +138,8 @@
nn_trd_trc = 5475 ! time step frequency and tracers trends
nn_ctls_trc = 0 ! control surface type in mixed-layer trends (0,1 or n<jpk)
rn_ucf_trc = 1 ! unit conversion factor (=1 -> /seconds ; =86400. -> /day)
ln_trdmld_trc_restart = .false. ! restart for ML diagnostics
ln_trdmld_trc_instant = .true. ! flag to diagnose trends of instantantaneous or mean ML T/S
ln_trdmld_trc_restart = .false.,! restart for ML diagnostics
ln_trdmld_trc_instant = .true., ! flag to diagnose trends of instantantaneous or mean ML T/S
ln_trdtrc( 1) = .true.
ln_trdtrc( 2) = .true.
ln_trdtrc(23) = .true.
......@@ -158,7 +158,7 @@
cn_dir_sbc = './' ! root directory for the location of SURFACE data files
cn_dir_cbc = './' ! root directory for the location of COASTAL data files
cn_dir_obc = './' ! root directory for the location of OPEN data files
ln_rnf_ctl = .false. ! Remove runoff dilution on tracers with absent river load
ln_rnf_ctl = .false., ! Remove runoff dilution on tracers with absent river load
rn_sbc_time = 86400. ! Time scaling factor for SBC data (seconds in a day)
rn_cbc_time = 86400. ! Time scaling factor for CBC data (seconds in a day)
! cn_tronam(1) = 'var1' ! Tracer-name to variable-name translation
......@@ -173,7 +173,7 @@
! = 0 NO damping of tracers at open boudaries
! = 1 Only for tracers forced with external data
! = 2 Damping applied to all tracers
ln_zintobc = .false. ! T if a vertical interpolation is required. Variables gdep[t] and e3[t] must exist in the file
ln_zintobc = .false., ! T if a vertical interpolation is required. Variables gdep[t] and e3[t] must exist in the file
! automatically defined to T if the number of vertical levels in bdy dta /= jpk
/
!-----------------------------------------------------------------------
......
#!/bin/bash
#!
#BSUB -q p_short
#BSUB -n TOTAL_NPROCS
#BSUB -J NEMO_SETTE
#BSUB -o job_sette.out
#BSUB -e job_sette.out
#BSUB -P R000
#BSUB -x
###############################################################
# Test specific settings. Do not hand edit these lines; the fcm_job.sh script will set these
# (via sed operating on this template job file).
#
OCEANCORES=NPROCS
XIOS_NUMPROCS=NXIOPROCS
export SETTE_DIR=DEF_SETTE_DIR
###############################################################
#
# load sette functions (only post_test_tidyup needed)
#
. ${SETTE_DIR}/all_functions.sh
# Don't remove neither change the following line
# BODY
#
# These variables are needed by post_test_tidyup function in all_functions.sh
#
export EXE_DIR=DEF_EXE_DIR
export INPUT_DIR=DEF_INPUT_DIR
export CONFIG_DIR=DEF_CONFIG_DIR
export TOOLS_DIR=DEF_TOOLS_DIR
export NEMO_VALIDATION_DIR=DEF_NEMO_VALIDATION
export NEW_CONF=DEF_NEW_CONF
export CMP_NAM=DEF_CMP_NAM
export TEST_NAME=DEF_TEST_NAME
#
# end of set up
# Load environment if exists
env_file=`find ${TOOLS_DIR}/../arch -name arch-${CMP_NAM}.env`
if [ -f "${env_file}" ] ; then
echo "Load environment file arch-${CMP_NAM}.env"
. ${env_file}
fi
###############################################################
# Local settings for CMCC cluster
#
export I_MPI_HYDRA_BRANCH_COUNT=`cat $LSB_DJOB_HOSTFILE | uniq | wc -l`
export MPIRUN="mpiexec.hydra"
# local xios setting for MPMD
export LD_LIBRARY_PATH=${XIOS}/lib:${LD_LIBRARY_PATH}
XIOS_SERVER_PATHNAME="${XIOS}/bin/xios_server.exe"
echo "Start JOBID ${LSB_JOBID}"
###############################################################
#
# change to the working directory
#
cd ${EXE_DIR}
#
echo Running on host `hostname`
echo Time is `date`
echo Directory is `pwd`
#
# Run the parallel MPI executable
#
startTime=$(date +%s)
if [ MPI_FLAG == "yes" ]; then
if [ ${USING_MPMD} == "yes" ] && [ ${XIOS_NUMPROCS} -gt 0 ]; then
# XIOS detached mode
xioscmdfile="xioscmdfile"
#
echo "# Configuration file for mpiexec.hydra" > $xioscmdfile
echo "-n ${OCEANCORES} ./nemo" >> $xioscmdfile
echo "-n ${XIOS_NUMPROCS} ${XIOS_SERVER_PATHNAME}" >> $xioscmdfile
time ${MPIRUN} -configfile $xioscmdfile
else
# XIOS attached mode
time ${MPIRUN} ./nemo
fi
else
# Run the serial executable
time ./nemo
fi
endTime=$(date +%s)
totalTime=$(($endTime-$startTime))
echo "Model finished after $totalTime seconds for test $TEST_NAME"
#
post_test_tidyup
# END_BODY
# Don't remove neither change the previous line
exit
......@@ -241,6 +241,7 @@ MODULE ice
REAL(wp), PUBLIC :: rn_hpnd !: prescribed pond depth (0<rn_hpnd<1)
LOGICAL, PUBLIC :: ln_pnd_lids !: Allow ponds to have frozen lids
LOGICAL , PUBLIC :: ln_pnd_alb !: melt ponds affect albedo
INTEGER , PUBLIC :: nn_pnd_brsal !: brine salinity formulation 0 = Consistent expression with SI3 (linear liquidus) ; 1 = used in GOSI9
! !!** ice-diagnostics namelist (namdia) **
LOGICAL , PUBLIC :: ln_icediachk !: flag for ice diag (T) or not (F)
......@@ -452,6 +453,11 @@ MODULE ice
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: qcn_ice_top !: Surface conduction flux (W/m2)
!
!!----------------------------------------------------------------------
!! * Only for atmospheric coupling
!!----------------------------------------------------------------------
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: a_i_last_couple !: Ice fractional area at last coupling time
!
!!----------------------------------------------------------------------
!! NEMO/ICE 4.0 , NEMO Consortium (2018)
!! $Id: ice.F90 15388 2021-10-17 11:33:47Z clem $
!! Software governed by the CeCILL license (see ./LICENSE)
......@@ -550,6 +556,10 @@ CONTAINS
ii = ii + 1
ALLOCATE( t_si(jpi,jpj,jpl) , tm_si(jpi,jpj) , qcn_ice_bot(jpi,jpj,jpl) , qcn_ice_top(jpi,jpj,jpl) , STAT = ierr(ii) )
! * For atmospheric coupling
ii = ii + 1
ALLOCATE( a_i_last_couple(jpi,jpj,jpl) , STAT=ierr(ii) )
ice_alloc = MAXVAL( ierr(:) )
IF( ice_alloc /= 0 ) CALL ctl_stop( 'STOP', 'ice_alloc: failed to allocate arrays.' )
!
......
This diff is collapsed.
......@@ -26,6 +26,7 @@ MODULE icerst
!
USE in_out_manager ! I/O manager
USE iom ! I/O manager library
USE ioipsl , ONLY : ju2ymds ! for calendar
USE lib_mpp ! MPP library
USE lib_fortran ! fortran utilities (glob_sum + no signed zero)
......@@ -51,6 +52,9 @@ CONTAINS
!!----------------------------------------------------------------------
INTEGER, INTENT(in) :: kt ! number of iteration
!
INTEGER :: iyear, imonth, iday
REAL (wp) :: zsec
REAL (wp) :: zfjulday
CHARACTER(len=20) :: clkt ! ocean time-step define as a character
CHARACTER(len=50) :: clname ! ice output restart file name
CHARACTER(len=256) :: clpath ! full path to ice output restart file
......@@ -67,8 +71,15 @@ CONTAINS
& .OR. ( kt == nitend - nn_fsbc + 1 .AND. .NOT. lrst_ice ) ) THEN
IF( nitrst <= nitend .AND. nitrst > 0 ) THEN
! beware of the format used to write kt (default is i8.8, that should be large enough...)
IF( nitrst > 99999999 ) THEN ; WRITE(clkt, * ) nitrst
ELSE ; WRITE(clkt, '(i8.8)') nitrst
IF ( ln_rstdate ) THEN
zfjulday = fjulday + (2*nn_fsbc+1)*rdt / rday
IF( ABS(zfjulday - REAL(NINT(zfjulday),wp)) < 0.1 / rday ) zfjulday = REAL(NINT(zfjulday),wp) ! avoid truncation error
CALL ju2ymds( zfjulday, iyear, imonth, iday, zsec )
WRITE(clkt, '(i4.4,2i2.2)') iyear, imonth, iday
ELSE
IF( nitrst > 99999999 ) THEN ; WRITE(clkt, * ) nitrst
ELSE ; WRITE(clkt, '(i8.8)') nitrst
ENDIF
ENDIF
! create the file
clname = TRIM(cexper)//"_"//TRIM(ADJUSTL(clkt))//"_"//TRIM(cn_icerst_out)
......@@ -313,6 +324,11 @@ CONTAINS
ENDIF
ENDIF
! If this is a coupled model we need to pick up a_i for use as a_i_last_couple
IF (ln_cpl) then
a_i_last_couple = a_i
ENDIF
IF(.NOT.lrxios) CALL iom_delay_rst( 'READ', 'ICE', numrir ) ! read only ice delayed global communication variables
! ! ---------------------------------- !
ELSE ! == case of a simplified restart == !
......
......@@ -275,7 +275,7 @@ CONTAINS
CALL ice_istate( nit000, Kbb, Kmm, Kaa ) ! start from rest or read a file
ENDIF
CALL ice_var_glo2eqv
CALL ice_var_agg(1)
CALL ice_var_agg(2)
!
CALL ice_dyn_init ! set ice dynamics parameters
!
......
......@@ -32,14 +32,15 @@ MODULE icetab
!!----------------------------------------------------------------------
CONTAINS
SUBROUTINE tab_3d_2d( ndim1d, tab_ind, tab1d, tab2d )
SUBROUTINE tab_3d_2d( ndim1d, tab_ind, tab2d, tab3d )
!!----------------------------------------------------------------------
!! *** ROUTINE tab_2d_1d ***
!! *** ROUTINE tab_3d_2d ***
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: ndim1d ! 1d size
INTEGER , DIMENSION(ndim1d) , INTENT(in ) :: tab_ind ! input index
REAL(wp), DIMENSION(jpi,jpj,jpl), INTENT(in ) :: tab2d ! input 2D field
REAL(wp), DIMENSION(ndim1d,jpl) , INTENT(inout) :: tab1d ! output 1D field
REAL(wp), DIMENSION(jpi,jpj,jpl), INTENT(in ) :: tab3d ! input 3D field
REAL(wp), DIMENSION(ndim1d,jpl) , INTENT(inout) :: tab2d ! output 2D field
!
INTEGER :: jl, jn, jid, jjd
!!----------------------------------------------------------------------
......@@ -47,7 +48,7 @@ CONTAINS
DO jn = 1, ndim1d
jid = MOD( tab_ind(jn) - 1 , jpi ) + 1
jjd = ( tab_ind(jn) - 1 ) / jpi + 1
tab1d(jn,jl) = tab2d(jid,jjd,jl)
tab2d(jn,jl) = tab3d(jid,jjd,jl)
END DO
END DO
END SUBROUTINE tab_3d_2d
......@@ -72,14 +73,14 @@ CONTAINS
END SUBROUTINE tab_2d_1d
SUBROUTINE tab_2d_3d( ndim1d, tab_ind, tab1d, tab2d )
SUBROUTINE tab_2d_3d( ndim1d, tab_ind, tab2d, tab3d )
!!----------------------------------------------------------------------
!! *** ROUTINE tab_2d_1d ***
!! *** ROUTINE tab_2d_3d ***
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: ndim1d ! 1D size
INTEGER , DIMENSION(ndim1d) , INTENT(in ) :: tab_ind ! input index
REAL(wp), DIMENSION(ndim1d,jpl) , INTENT(in ) :: tab1d ! input 1D field
REAL(wp), DIMENSION(jpi,jpj,jpl), INTENT(inout) :: tab2d ! output 2D field
REAL(wp), DIMENSION(ndim1d,jpl) , INTENT(in ) :: tab2d ! input 2D field
REAL(wp), DIMENSION(jpi,jpj,jpl), INTENT(inout) :: tab3d ! output 3D field
!
INTEGER :: jl, jn, jid, jjd
!!----------------------------------------------------------------------
......@@ -87,7 +88,7 @@ CONTAINS
DO jn = 1, ndim1d
jid = MOD( tab_ind(jn) - 1 , jpi ) + 1
jjd = ( tab_ind(jn) - 1 ) / jpi + 1
tab2d(jid,jjd,jl) = tab1d(jn,jl)
tab3d(jid,jjd,jl) = tab2d(jn,jl)
END DO
END DO
END SUBROUTINE tab_2d_3d
......
......@@ -192,8 +192,8 @@ CONTAINS
! Snow melting
! ------------
! If heat still available (zq_top > 0)
! then all snw precip has been melted and we need to melt more snow
! Melt snow layers, starting with newly fallen snow layer 0
! and moving downward, until zq_top=0
DO jk = 0, nlay_s
DO ji = 1, npti
IF( zh_s(ji,jk) > 0._wp .AND. zq_top(ji) > 0._wp ) THEN
......@@ -216,10 +216,10 @@ CONTAINS
END DO
END DO
! Snow sublimation
!-----------------
! qla_ice is always >=0 (upwards), heat goes to the atmosphere, therefore snow sublimates
! comment: not counted in mass/heat exchange in iceupdate.F90 since this is an exchange with atm. (not ocean)
! Snow sublimation and deposition
!--------------------------------
! when evap_ice_1d > 0 (upwards) snow sublimates and snow thickness decreases
! when evap_ice_1d < 0 (downwards) deposition occurs and snow thickness increases
zdeltah (1:npti) = 0._wp ! total snow thickness that sublimates, < 0
zevap_rema(1:npti) = 0._wp
DO ji = 1, npti
......@@ -486,29 +486,6 @@ CONTAINS
END DO
END DO
! Snow load on ice
! -----------------
! When snow load exceeds Archimede's limit and sst is positive,
! snow-ice formation (next bloc) can lead to negative ice enthalpy.
! Therefore we consider here that this excess of snow falls into the ocean
zdeltah(1:npti) = h_s_1d(1:npti) + h_i_1d(1:npti) * (rhoi-rho0) * r1_rhos
DO jk = 0, nlay_s
DO ji = 1, npti
IF( zdeltah(ji) > 0._wp .AND. sst_1d(ji) > 0._wp ) THEN
! snow layer thickness that falls into the ocean
zdum = MIN( zdeltah(ji) , zh_s(ji,jk) )
! mass & energy loss to the ocean
hfx_res_1d(ji) = hfx_res_1d(ji) - ze_s(ji,jk) * zdum * a_i_1d(ji) * r1_Dt_ice ! heat flux to the ocean [W.m-2], < 0
wfx_res_1d(ji) = wfx_res_1d(ji) + rhos * zdum * a_i_1d(ji) * r1_Dt_ice ! mass flux
! update thickness and energy
h_s_1d(ji) = MAX( 0._wp, h_s_1d(ji) - zdum )
zh_s (ji,jk) = MAX( 0._wp, zh_s(ji,jk) - zdum )
! update snow thickness that still has to fall
zdeltah(ji) = MAX( 0._wp, zdeltah(ji) - zdum )
ENDIF
END DO
END DO
! Snow-Ice formation
! ------------------
! When snow load exceeds Archimede's limit, snow-ice interface goes down under sea-level,
......
......@@ -140,10 +140,10 @@ CONTAINS
!------------------------------------
! Diagnostics
!------------------------------------
CALL iom_put( 'dvpn_mlt', diag_dvpn_mlt ) ! input from melting
CALL iom_put( 'dvpn_lid', diag_dvpn_lid ) ! exchanges with lid
CALL iom_put( 'dvpn_drn', diag_dvpn_drn ) ! vertical drainage
CALL iom_put( 'dvpn_rnf', diag_dvpn_rnf ) ! runoff + overflow
IF( iom_use('dvpn_mlt' ) ) CALL iom_put( 'dvpn_mlt', diag_dvpn_mlt ) ! input from melting
IF( iom_use('dvpn_lid' ) ) CALL iom_put( 'dvpn_lid', diag_dvpn_lid ) ! exchanges with lid
IF( iom_use('dvpn_drn' ) ) CALL iom_put( 'dvpn_drn', diag_dvpn_drn ) ! vertical drainage
IF( iom_use('dvpn_rnf' ) ) CALL iom_put( 'dvpn_rnf', diag_dvpn_rnf ) ! runoff + overflow
!
DEALLOCATE( diag_dvpn_mlt , diag_dvpn_lid , diag_dvpn_drn , diag_dvpn_rnf )
DEALLOCATE( diag_dvpn_mlt_1d, diag_dvpn_lid_1d, diag_dvpn_drn_1d, diag_dvpn_rnf_1d )
......@@ -544,7 +544,7 @@ CONTAINS
! a_ip -> apond
! a_ip_frac -> apnd
CALL ctl_stop( 'STOP', 'icethd_pnd : topographic melt ponds are still an ongoing work' )
!CALL ctl_stop( 'STOP', 'icethd_pnd : topographic melt ponds are still an ongoing work' )
!---------------------------------------------------------------
! Initialise
......@@ -644,12 +644,6 @@ CONTAINS
!--------------------------
! Pond lid growth and melt
!--------------------------
! Mean surface temperature
zTavg = 0._wp
DO jl = 1, jpl
zTavg = zTavg + t_su(ji,jj,jl)*a_i(ji,jj,jl)
END DO
zTavg = zTavg / a_i(ji,jj,jl) !!! could get a division by zero here
DO jl = 1, jpl-1
......@@ -692,8 +686,8 @@ CONTAINS
! differential growth of base of surface floating ice layer
zdTice = MAX( - ( t_su(ji,jj,jl) - zTd ) , 0._wp ) ! > 0
zomega = rcnd_i * zdTice / zrhoi_L
zdHui = SQRT( 2._wp * zomega * rDt_ice + ( v_il(ji,jj,jl) / a_i(ji,jj,jl) )**2 ) &
- v_il(ji,jj,jl) / a_i(ji,jj,jl)
zdHui = SQRT( 2._wp * zomega * rDt_ice + ( v_il(ji,jj,jl) / a_ip(ji,jj,jl) )**2 ) &
- v_il(ji,jj,jl) / a_ip(ji,jj,jl)
zdvice = min( zdHui*a_ip(ji,jj,jl) , v_ip(ji,jj,jl) )
IF ( zdvice > epsi10 ) THEN
......@@ -1319,7 +1313,9 @@ CONTAINS
!-----------------------------------------------------------------
! brine salinity and liquid fraction
!-----------------------------------------------------------------
SELECT CASE( nn_pnd_brsal )
CASE( 0 )
DO k = 1, nlay_i
Sbr = - Tin(k) / rTmlt ! Consistent expression with SI3 (linear liquidus)
......@@ -1328,6 +1324,16 @@ CONTAINS
phi(k) = salin(k) / Sbr
END DO
CASE( 1 )
DO k = 1, nlay_i
Sbr = - 18.7 * Tin(k) - 0.519 * Tin(k)**2 - 0.00535 * Tin(k) **3
phi(k) = salin(k) / Sbr
END DO
END SELECT
!-----------------------------------------------------------------
! permeability
......@@ -1354,7 +1360,7 @@ CONTAINS
NAMELIST/namthd_pnd/ ln_pnd, ln_pnd_LEV , rn_apnd_min, rn_apnd_max, rn_pnd_flush, &
& ln_pnd_CST , rn_apnd, rn_hpnd, &
& ln_pnd_TOPO, &
& ln_pnd_lids, ln_pnd_alb
& ln_pnd_lids, ln_pnd_alb, nn_pnd_brsal
!!-------------------------------------------------------------------
!
READ ( numnam_ice_ref, namthd_pnd, IOSTAT = ios, ERR = 901)
......@@ -1379,6 +1385,7 @@ CONTAINS
WRITE(numout,*) ' Prescribed pond depth rn_hpnd = ', rn_hpnd
WRITE(numout,*) ' Frozen lids on top of melt ponds ln_pnd_lids = ', ln_pnd_lids
WRITE(numout,*) ' Melt ponds affect albedo or not ln_pnd_alb = ', ln_pnd_alb
WRITE(numout,*) ' Brine salinity formulation nn_pnd_brsal = ', nn_pnd_brsal
ENDIF
!
! !== set the choice of ice pond scheme ==!
......
......@@ -939,7 +939,7 @@ CONTAINS
ELSE
cnd_ice_1d(ji) = 2._wp * ztcond_i(ji,0) / zhi_ssl ! cnd_ice is capped by: cond_i/zhi_ssl
ENDIF
t1_ice_1d(ji) = isnow(ji) * t_s_1d(ji,1) + ( 1._wp - isnow(ji) ) * t_i_1d(ji,1)
t1_ice_1d(ji) = isnow_comb(ji) * t_s_1d(ji,1) + ( 1._wp - isnow_comb(ji) ) * t_i_1d(ji,1)
END DO
!
IF( k_cnd == np_cnd_EMU ) THEN
......