Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
No results found
Show changes
Showing
with 1100 additions and 1013 deletions
......@@ -113,8 +113,8 @@
sn_trcsbc(7) = 'dust.orca.new' , -1 , 'dustsi' , .true. , .true. , 'yearly' , '' , '' , ''
sn_trcsbc(14) = 'dust.orca.new' , -1 , 'dustfer' , .true. , .true. , 'yearly' , '' , '' , ''
sn_trcsbc(23) = 'ndeposition.orca', -12 , 'ndep' , .false. , .true. , 'yearly' , '' , '' , ''
rn_trsfac(5) = 7.9258065e-02 ! ( 0.021 / 31. * 117 )
rn_trsfac(7) = 3.1316726e-01 ! ( 8.8 / 28.1 )
rn_trsfac(5) = 3.774194e-02 ! ( 1E-3 / 31. * 117 )
rn_trsfac(7) = 9.572954e-03 ! ( 0.269 / 28.1 )
rn_trsfac(14) = 6.2667860e-04 ! ( 0.035 / 55.85 )
rn_trsfac(23) = 5.2232143e-01 ! ( From kgN m-2 s-1 to molC l-1 ====> zfact = 7.3125/14 )
rn_sbc_time = 1. ! Time scaling factor for SBC and CBC data (seconds in a day)
......
!!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
!! NEMO/TOP1 : Configuration namelist : used to overwrite defaults values defined in SHARED/namelist_top_ref
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
!-----------------------------------------------------------------------
&namtrc_run ! run information
!-----------------------------------------------------------------------
ln_top_euler = .true.
/
!-----------------------------------------------------------------------
&namtrc ! tracers definition
!-----------------------------------------------------------------------
jp_bgc = 9
!
ln_pisces = .true.
ln_my_trc = .false.
ln_age = .false.
ln_cfc11 = .false.
ln_cfc12 = .false.
ln_c14 = .false.
!
ln_trcdta = .true. ! Initialisation from data input file (T) or not (F)
ln_trcbc = .true. ! Enables Boundary conditions
! ! ! ! ! !
! ! name ! title of the field ! units ! init ! sbc ! cbc ! obc ! ais
sn_tracer(1) = 'DIC ' , 'Dissolved inorganic Concentration ', 'mol-C/L' , .true. , .false., .true. , .false. , .false.
sn_tracer(2) = 'Alkalini' , 'Total Alkalinity Concentration ', 'eq/L ' , .true. , .false., .true. , .false. , .false.
sn_tracer(3) = 'O2 ' , 'Dissolved Oxygen Concentration ', 'mol-C/L' , .true. , .false., .false., .false. , .false.
sn_tracer(4) = 'POC ' , 'Small organic carbon Concentration ', 'mol-C/L' , .false. , .false., .false., .false. , .false.
sn_tracer(5) = 'PHY ' , 'Nanophytoplankton Concentration ', 'mol-C/L' , .false. , .false., .false., .false. , .false.
sn_tracer(6) = 'ZOO ' , 'Microzooplankton Concentration ', 'mol-C/L' , .false. , .false., .false., .false. , .false.
sn_tracer(7) = 'DOC ' , 'Dissolved organic Concentration ', 'mol-C/L' , .true. , .false., .true. , .false. , .false.
sn_tracer(8) = 'NO3 ' , 'Nitrates Concentration ', 'mol-C/L' , .true. , .true. , .true. , .false. , .false.
sn_tracer(9) = 'Fer ' , 'Dissolved Iron Concentration ', 'mol-C/L' , .true. , .true. , .true. , .false. , .true.
/
!-----------------------------------------------------------------------
&namage ! AGE
!-----------------------------------------------------------------------
/
!-----------------------------------------------------------------------
&namtrc_dta ! Initialisation from data input file
!-----------------------------------------------------------------------
! ! file name ! frequency (hours) ! variable ! time interp. ! clim ! 'yearly'/ ! weights ! rotation ! land/sea mask !
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! 'monthly' ! filename ! pairing ! filename !
sn_trcdta(1) = 'data_DIC_nomask.nc', -12 , 'PiDIC' , .false. , .true. , 'yearly' , 'weights_3D_r360x180_bilin.nc' , '' , ''
sn_trcdta(2) = 'data_ALK_nomask.nc', -12 , 'TALK' , .false. , .true. , 'yearly' , 'weights_3D_r360x180_bilin.nc' , '' , ''
sn_trcdta(3) = 'data_OXY_nomask.nc', -1 , 'O2' , .true. , .true. , 'yearly' , 'weights_3D_r360x180_bilin.nc' , '' , ''
sn_trcdta(7) = 'data_DOC_nomask.nc', -1 , 'DOC' , .true. , .true. , 'yearly' , 'weights_3D_r360x180_bilin.nc' , '' , ''
sn_trcdta(8) = 'data_FER_nomask.nc', -1 , 'Fer' , .true. , .true. , 'yearly' , 'weights_3D_r360x180_bilin.nc' , '' , ''
sn_trcdta(9) = 'data_NO3_nomask.nc', -1 , 'NO3' , .true. , .true. , 'yearly' , 'weights_3D_r360x180_bilin.nc' , '' , ''
rn_trfac(1) = 1.028e-06 ! multiplicative factor
rn_trfac(2) = 1.028e-06 ! - - - -
rn_trfac(3) = 44.6e-06 ! - - - -
rn_trfac(7) = 1.0e-06 ! - - - -
rn_trfac(8) = 7.3125e-06 ! - - - -
rn_trfac(9) = 1.0e-06 ! - - - -
/
!-----------------------------------------------------------------------
&namtrc_adv ! advection scheme for passive tracer (default: NO selection)
!-----------------------------------------------------------------------
ln_trcadv_mus = .true. ! MUSCL scheme
ln_mus_ups = .false. ! use upstream scheme near river mouths
/
!-----------------------------------------------------------------------
&namtrc_ldf ! lateral diffusion scheme for passive tracer (default: NO selection)
!-----------------------------------------------------------------------
ln_trcldf_tra = .true. ! use active tracer setting
/
!-----------------------------------------------------------------------
&namtrc_rad ! treatment of negative concentrations
!-----------------------------------------------------------------------
/
!-----------------------------------------------------------------------
&namtrc_snk ! sedimentation of particles
!-----------------------------------------------------------------------
/
!-----------------------------------------------------------------------
&namtrc_dmp ! passive tracer newtonian damping
!-----------------------------------------------------------------------
/
!-----------------------------------------------------------------------
&namtrc_ice ! Representation of sea ice growth & melt effects
!-----------------------------------------------------------------------
/
!-----------------------------------------------------------------------
&namtrc_trd ! diagnostics on tracer trends ('key_trdtrc')
!----------------------------------------------------------------------
/
!----------------------------------------------------------------------
&namtrc_bc ! data for boundary conditions
!-----------------------------------------------------------------------
! ! file name ! frequency (hours) ! variable ! time interp. ! clim ! 'yearly'/ ! weights ! rotation ! land/sea mask !
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! 'monthly' ! filename ! pairing ! filename !
sn_trcsbc(8) = 'ndeposition.orca', -12 , 'ndep' , .false. , .true. , 'yearly' , '' , '' , ''
sn_trcsbc(9) = 'dust.orca.new' , -1 , 'dustfer' , .true. , .true. , 'yearly' , '' , '' , ''
rn_trsfac(8) = 5.2232143e-01 ! ( From kgN m-2 s-1 to molC l-1 ====> zfact = 7.3125/14 )
rn_trsfac(9) = 6.2667860e-04 ! ( 0.035 / 55.85 )
rn_sbc_time = 1. ! Time scaling factor for SBC and CBC data (seconds in a day)
!
sn_trccbc(1) = 'river.orca' , 120 , 'riverdic' , .true. , .true. , 'yearly' , '' , '' , ''
sn_trccbc(2) = 'river.orca' , 120 , 'riverdic' , .true. , .true. , 'yearly' , '' , '' , ''
sn_trccbc(7) = 'river.orca' , 120 , 'riverdoc' , .true. , .true. , 'yearly' , '' , '' , ''
sn_trccbc(8) = 'river.orca' , 120 , 'riverdin' , .true. , .true. , 'yearly' , '' , '' , ''
sn_trccbc(9) = 'river.orca' , 120 , 'riverdic' , .true. , .true. , 'yearly' , '' , '' , ''
rn_trcfac(1) = 8.333333e+01 ! ( data in Mg/m2/yr : 1e3/12/ryyss)
rn_trcfac(2) = 8.333333e+01 ! ( 1e3 /12 )
rn_trcfac(7) = 8.333333e+01 ! ( 1e3 / 12
rn_trcfac(8) = 5.223214e+02 ! ( 1e3 / 14 * 7.3125 )
rn_trcfac(9) = 4.166667e-03 ! ( 1e3 / 12 * 5e-5 )
rn_cbc_time = 3.1536e+7 ! Time scaling factor for CBC data (seconds in a year)
/
!----------------------------------------------------------------------
&namtrc_bdy ! Setup of tracer boundary conditions
!-----------------------------------------------------------------------
/
!-----------------------------------------------------------------------
&namtrc_ais ! Representation of Antarctic Ice Sheet tracers supply
!-----------------------------------------------------------------------
/
!!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
!! NEMO/TOP1 : Configuration namelist : used to overwrite defaults values defined in SHARED/namelist_top_ref
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
!-----------------------------------------------------------------------
&namtrc_run ! run information
!-----------------------------------------------------------------------
ln_top_euler = .true.
/
!-----------------------------------------------------------------------
&namtrc ! tracers definition
!-----------------------------------------------------------------------
jp_bgc = 40
!
ln_pisces = .true.
ln_my_trc = .false.
ln_age = .false.
ln_cfc11 = .false.
ln_cfc12 = .false.
ln_c14 = .false.
!
ln_trcdta = .true. ! Initialisation from data input file (T) or not (F)
ln_trcbc = .true. ! Enables Boundary conditions
! ! ! ! ! !
! ! name ! title of the field ! units ! init ! sbc ! cbc ! obc ! ais
sn_tracer(1) = 'DIC ' , 'Dissolved inorganic Concentration ', 'mol-C/L' , .true. , .false., .true. , .false. , .false.
sn_tracer(2) = 'Alkalini' , 'Total Alkalinity Concentration ', 'eq/L ' , .true. , .false., .true. , .false. , .false.
sn_tracer(3) = 'O2 ' , 'Dissolved Oxygen Concentration ', 'mol-C/L' , .true. , .false., .false., .false. , .false.
sn_tracer(4) = 'CaCO3 ' , 'Calcite Concentration ', 'mol-C/L' , .false. , .false., .false., .false. , .false.
sn_tracer(5) = 'PO4 ' , 'Phosphate Concentration ', 'mol-C/L' , .true. , .true. , .true. , .false. , .false.
sn_tracer(6) = 'POC ' , 'Small organic carbon Concentration ', 'mol-C/L' , .false. , .false., .false., .false. , .false.
sn_tracer(7) = 'Si ' , 'Silicate Concentration ', 'mol-C/L' , .true. , .true. , .true. , .false. , .false.
sn_tracer(8) = 'PHY ' , 'Nanophytoplankton Concentration ', 'mol-C/L' , .false. , .false., .false., .false. , .false.
sn_tracer(9) = 'ZOO ' , 'Microzooplankton Concentration ', 'mol-C/L' , .false. , .false., .false., .false. , .false.
sn_tracer(10) = 'DOC ' , 'Dissolved organic Concentration ', 'mol-C/L' , .true. , .false., .true. , .false. , .false.
sn_tracer(11) = 'PHY2 ' , 'Diatoms Concentration ', 'mol-C/L' , .false. , .false., .false., .false. , .false.
sn_tracer(12) = 'ZOO2 ' , 'Mesozooplankton Concentration ', 'mol-C/L' , .false. , .false., .false., .false. , .false.
sn_tracer(13) = 'DSi ' , 'Diatoms Silicate Concentration ', 'mol-C/L' , .false. , .false., .false., .false. , .false.
sn_tracer(14) = 'Fer ' , 'Dissolved Iron Concentration ', 'mol-C/L' , .true. , .true. , .true. , .false. , .true.
sn_tracer(15) = 'BFe ' , 'Big iron particles Concentration ', 'mol-C/L' , .false. , .false., .false., .false. , .false.
sn_tracer(16) = 'GOC ' , 'Big organic carbon Concentration ', 'mol-C/L' , .false. , .false., .false., .false. , .false.
sn_tracer(17) = 'SFe ' , 'Small iron particles Concentration ', 'mol-C/L' , .false. , .false., .false., .false. , .false.
sn_tracer(18) = 'DFe ' , 'Diatoms iron Concentration ', 'mol-C/L' , .false. , .false., .false., .false. , .false.
sn_tracer(19) = 'GSi ' , 'Sinking biogenic Silicate Concentration', 'mol-C/L' , .false. , .false., .false., .false. , .false.
sn_tracer(20) = 'NFe ' , 'Nano iron Concentration ', 'mol-C/L' , .false. , .false., .false., .false. , .false.
sn_tracer(21) = 'NCHL ' , 'Nano chlorophyl Concentration ', 'mol-C/L' , .false. , .false., .false., .false. , .false.
sn_tracer(22) = 'DCHL ' , 'Diatoms chlorophyl Concentration ', 'mol-C/L' , .false. , .false., .false., .false. , .false.
sn_tracer(23) = 'NO3 ' , 'Nitrates Concentration ', 'mol-C/L' , .true. , .true. , .true. , .false. , .false.
sn_tracer(24) = 'NH4 ' , 'Ammonium Concentration ', 'mol-C/L' , .false. , .false., .false., .false. , .false.
sn_tracer(25) = 'DON ' , 'Dissolved Organic N Concentration ', 'mol-C/L' , .true. , .false., .true. , .false. , .false.
sn_tracer(26) = 'DOP ' , 'Dissolved organic P Concentration ', 'mol-C/L' , .true. , .false., .true. , .false. , .false.
sn_tracer(27) = 'PON ' , 'Small PON Concentration ', 'mol-C/L' , .false. , .false., .false., .false. , .false.
sn_tracer(28) = 'POP ' , 'Small POP Concentration ', 'mol-C/L' , .false. , .false., .false., .false. , .false.
sn_tracer(29) = 'PHYN ' , 'PHYN Concentration ', 'mol-C/L' , .false. , .false., .false., .false. , .false.
sn_tracer(30) = 'PHYP ' , 'PHYP Concentration ', 'mol-C/L' , .false. , .false., .false., .false. , .false.
sn_tracer(31) = 'DIAN ' , 'DIAN Concentration ', 'mol-C/L' , .false. , .false., .false., .false. , .false.
sn_tracer(32) = 'DIAP ' , 'DIAP Concentration ', 'mol-C/L' , .false. , .false., .false., .false. , .false.
sn_tracer(33) = 'PIC ' , 'PICO Concentration ', 'mol-C/L' , .false. , .false., .false., .false. , .false.
sn_tracer(34) = 'PICN ' , 'PICO N Concentration ', 'mol-C/L' , .false. , .false., .false., .false. , .false.
sn_tracer(35) = 'PICP ' , 'PICO P Concentration ', 'mol-C/L' , .false. , .false., .false., .false. , .false.
sn_tracer(36) = 'PFe ' , 'PICO Fe Concentration ', 'mol-C/L' , .false. , .false., .false., .false. , .false.
sn_tracer(37) = 'PCHL ' , 'PICO Chl Concentration ', 'mol-C/L' , .false. , .false., .false., .false. , .false.
sn_tracer(38) = 'GON ' , 'Big PON Concentration ', 'mol-C/L' , .false. , .false., .false., .false. , .false.
sn_tracer(39) = 'GOP ' , 'Big POP Concentration ', 'mol-C/L' , .false. , .false., .false., .false. , .false.
sn_tracer(40) = 'LGW ' , 'Weak ligands Concentration ', 'mol-C/L' , .false. , .false., .false., .false. , .false
/
!-----------------------------------------------------------------------
&namage ! AGE
!-----------------------------------------------------------------------
/
!-----------------------------------------------------------------------
&namtrc_dta ! Initialisation from data input file
!-----------------------------------------------------------------------
! ! file name ! frequency (hours) ! variable ! time interp. ! clim ! 'yearly'/ ! weights ! rotation ! land/sea mask !
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! 'monthly' ! filename ! pairing ! filename !
sn_trcdta(1) = 'data_DIC_nomask.nc', -12 , 'PiDIC' , .false. , .true. , 'yearly' , 'weights_3D_r360x180_bilin.nc' , '' , ''
sn_trcdta(2) = 'data_ALK_nomask.nc', -12 , 'TALK' , .false. , .true. , 'yearly' , 'weights_3D_r360x180_bilin.nc' , '' , ''
sn_trcdta(3) = 'data_OXY_nomask.nc', -1 , 'O2' , .true. , .true. , 'yearly' , 'weights_3D_r360x180_bilin.nc' , '' , ''
sn_trcdta(5) = 'data_PO4_nomask.nc', -1 , 'PO4' , .true. , .true. , 'yearly' , 'weights_3D_r360x180_bilin.nc' , '' , ''
sn_trcdta(7) = 'data_SIL_nomask.nc', -1 , 'Si' , .true. , .true. , 'yearly' , 'weights_3D_r360x180_bilin.nc' , '' , ''
sn_trcdta(10) = 'data_DOC_nomask.nc', -1 , 'DOC' , .true. , .true. , 'yearly' , 'weights_3D_r360x180_bilin.nc' , '' , ''
sn_trcdta(14) = 'data_FER_nomask.nc', -1 , 'Fer' , .true. , .true. , 'yearly' , 'weights_3D_r360x180_bilin.nc' , '' , ''
sn_trcdta(23) = 'data_NO3_nomask.nc', -1 , 'NO3' , .true. , .true. , 'yearly' , 'weights_3D_r360x180_bilin.nc' , '' , ''
sn_trcdta(25) = 'data_DOC_nomask.nc', -1 , 'DOC' , .true. , .true. , 'yearly' , 'weights_3D_r360x180_bilin.nc' , '' , ''
sn_trcdta(26) = 'data_DOC_nomask.nc', -1 , 'DOC' , .true. , .true. , 'yearly' , 'weights_3D_r360x180_bilin.nc' , '' , ''
rn_trfac(1) = 1.028e-06 ! multiplicative factor
rn_trfac(2) = 1.028e-06 ! - - - -
rn_trfac(3) = 44.6e-06 ! - - - -
rn_trfac(5) = 117.0e-06 ! - - - -
rn_trfac(7) = 1.0e-06 ! - - - -
rn_trfac(10) = 1.0e-06 ! - - - -
rn_trfac(14) = 1.0e-06 ! - - - -
rn_trfac(23) = 7.3125e-06 ! - - - -
rn_trfac(25) = 1.0e-06 ! - - - -
rn_trfac(26) = 1.0e-06 ! - - - -
/
!-----------------------------------------------------------------------
&namtrc_adv ! advection scheme for passive tracer (default: NO selection)
!-----------------------------------------------------------------------
ln_trcadv_mus = .true. ! MUSCL scheme
ln_mus_ups = .false. ! use upstream scheme near river mouths
/
!-----------------------------------------------------------------------
&namtrc_ldf ! lateral diffusion scheme for passive tracer (default: NO selection)
!-----------------------------------------------------------------------
ln_trcldf_tra = .true. ! use active tracer setting
/
!-----------------------------------------------------------------------
&namtrc_rad ! treatment of negative concentrations
!-----------------------------------------------------------------------
/
!-----------------------------------------------------------------------
&namtrc_snk ! sedimentation of particles
!-----------------------------------------------------------------------
/
!-----------------------------------------------------------------------
&namtrc_dmp ! passive tracer newtonian damping
!-----------------------------------------------------------------------
/
!-----------------------------------------------------------------------
&namtrc_ice ! Representation of sea ice growth & melt effects
!-----------------------------------------------------------------------
/
!-----------------------------------------------------------------------
&namtrc_trd ! diagnostics on tracer trends ('key_trdtrc')
!----------------------------------------------------------------------
/
!----------------------------------------------------------------------
&namtrc_bc ! data for boundary conditions
!-----------------------------------------------------------------------
! ! file name ! frequency (hours) ! variable ! time interp. ! clim ! 'yearly'/ ! weights ! rotation ! land/sea mask !
! ! ! (if <0 months) ! name ! (logical) ! (T/F) ! 'monthly' ! filename ! pairing ! filename !
sn_trcsbc(5) = 'dust.orca.new' , -1 , 'dustpo4' , .true. , .true. , 'yearly' , '' , '' , ''
sn_trcsbc(7) = 'dust.orca.new' , -1 , 'dustsi' , .true. , .true. , 'yearly' , '' , '' , ''
sn_trcsbc(14) = 'dust.orca.new' , -1 , 'dustfer' , .true. , .true. , 'yearly' , '' , '' , ''
sn_trcsbc(23) = 'ndeposition.orca', -12 , 'ndep' , .false. , .true. , 'yearly' , '' , '' , ''
rn_trsfac(5) = 3.774194e-02 ! ( 1E-3 / 31. * 117 )
rn_trsfac(7) = 9.572954e-03 ! ( 8.8 / 28.1 )
rn_trsfac(14) = 6.2667860e-04 ! ( 0.035 / 55.85 )
rn_trsfac(23) = 5.2232143e-01 ! ( From kgN m-2 s-1 to molC l-1 ====> zfact = 7.3125/14 )
rn_sbc_time = 1. ! Time scaling factor for SBC and CBC data (seconds in a day)
!
sn_trccbc(1) = 'river.orca' , 120 , 'riverdic' , .true. , .true. , 'yearly' , '' , '' , ''
sn_trccbc(2) = 'river.orca' , 120 , 'riverdic' , .true. , .true. , 'yearly' , '' , '' , ''
sn_trccbc(5) = 'river.orca' , 120 , 'riverdip' , .true. , .true. , 'yearly' , '' , '' , ''
sn_trccbc(7) = 'river.orca' , 120 , 'riverdsi' , .true. , .true. , 'yearly' , '' , '' , ''
sn_trccbc(10) = 'river.orca' , 120 , 'riverdoc' , .true. , .true. , 'yearly' , '' , '' , ''
sn_trccbc(14) = 'river.orca' , 120 , 'riverdic' , .true. , .true. , 'yearly' , '' , '' , ''
sn_trccbc(23) = 'river.orca' , 120 , 'riverdin' , .true. , .true. , 'yearly' , '' , '' , ''
sn_trccbc(25) = 'river.orca' , 120 , 'riverdon' , .true. , .true. , 'yearly' , '' , '' , ''
sn_trccbc(26) = 'river.orca' , 120 , 'riverdop' , .true. , .true. , 'yearly' , '' , '' , ''
rn_trcfac(1) = 8.333333e+01 ! ( data in Mg/m2/yr : 1e3/12/ryyss)
rn_trcfac(2) = 8.333333e+01 ! ( 1e3 /12 )
rn_trcfac(5) = 3.774193e+03 ! ( 1e3 / 31. * 117 )
rn_trcfac(7) = 3.558719e+01 ! ( 1e3 / 28.1 )
rn_trcfac(10) = 8.333333e+01 ! ( 1e3 / 12
rn_trcfac(14) = 4.166667e-03 ! ( 1e3 / 12 * 5e-5 )
rn_trcfac(23) = 5.223214e+02 ! ( 1e3 / 14 * 7.3125 )
rn_trcfac(25) = 8.333333e+01 ! ( 1e3 / 12 )
rn_trcfac(26) = 8.333333e+01 ! ( 1e3 / 12 )
rn_cbc_time = 3.1536e+7 ! Time scaling factor for CBC data (seconds in a year)
/
!----------------------------------------------------------------------
&namtrc_bdy ! Setup of tracer boundary conditions
!-----------------------------------------------------------------------
/
!-----------------------------------------------------------------------
&namtrc_ais ! Representation of Antarctic Ice Sheet tracers supply
!-----------------------------------------------------------------------
/
bld::tool::fppkeys key_top key_xios
bld::tool::fppkeys key_top key_xios key_linssh key_vco_1d3d
......@@ -36,12 +36,23 @@
<field field_ref="ssh" name="zos" />
</file>
<file id="file1" name_suffix="_trc" description="passive tracers variables" >
<file id="file2" name_suffix="_trc" description="passive tracers variables" >
<field field_ref="Age" name="Age" operation="average" freq_op="1y" > @Age_e3t / @e3t </field>
<field field_ref="CFC11" name="CFC11" operation="average" freq_op="1y" > @CFC11_e3t / @e3t </field>
<field field_ref="CFC12" name="CFC12" operation="average" freq_op="1y" > @CFC12_e3t / @e3t </field>
<field field_ref="SF6" name="SF6" operation="average" freq_op="1y" > @SF6_e3t / @e3t </field>
<field field_ref="RC14" name="RC14" operation="average" freq_op="1y" > @RC14_e3t / @e3t </field>
<field field_ref="RC14" name="RC14" operation="average" freq_op="1y" > @RC14_e3t / @e3t </field>
<field field_ref="qtr_CFC11" />
<field field_ref="qint_CFC11" />
<field field_ref="qtr_CFC12" />
<field field_ref="qint_CFC12" />
<field field_ref="qtr_SF6" />
<field field_ref="qint_SF6" />
<field field_ref="qtr_c14" />
<field field_ref="qint_c14" />
<field field_ref="DeltaC14" />
<field field_ref="C14Age" />
<field field_ref="RAge" />
</file>
</file_group>
......
......@@ -324,7 +324,7 @@
sn_mld = 'dyna_grid_T' , 120. , 'mldr10_1' , .true. , .true. , 'yearly' , '' , '' , ''
sn_emp = 'dyna_grid_T' , 120. , 'wfo' , .true. , .true. , 'yearly' , '' , '' , ''
sn_empb = 'dyna_grid_T' , 120. , 'wfob' , .true. , .true. , 'yearly' , '' , '' , ''
sn_fmf = 'dyna_grid_T' , 120. , 'fmmflx' , .true. , .true. , 'yearly' , '' , '' , ''
sn_fwf = 'dyna_grid_T' , 120. , 'iowaflup' , .true. , .true. , 'yearly' , '' , '' , ''
sn_rnf = 'dyna_grid_T' , 120. , 'runoffs' , .true. , .true. , 'yearly' , '' , '' , ''
sn_ice = 'dyna_grid_T' , 120. , 'siconc' , .true. , .true. , 'yearly' , '' , '' , ''
sn_qsr = 'dyna_grid_T' , 120. , 'rsntds' , .true. , .true. , 'yearly' , '' , '' , ''
......
bld::tool::fppkeys key_top key_xios key_qco
bld::tool::fppkeys key_top key_xios key_qco key_vco_1d3d
......@@ -34,6 +34,8 @@
<field field_ref="qt_oce" name="qt_oce" />
<field field_ref="saltflx" name="sfx" />
<field field_ref="taum" name="taum" />
<field field_ref="utau" name="tauuo" />
<field field_ref="vtau" name="tauvo" />
<field field_ref="wspd" name="windsp" />
<field field_ref="precip" name="precip" />
<!-- ice and snow -->
......@@ -44,7 +46,6 @@
<field field_ref="e3u" />
<field field_ref="ssu" name="uos" />
<field field_ref="uoce" name="uo" operation="instant" freq_op="5d" > @uoce_e3u / @e3u </field>
<field field_ref="utau" name="tauuo" />
<field field_ref="uocetr_eff" name="uocetr_eff" />
<!-- available with diaar5 -->
<field field_ref="u_masstr" name="vozomatr" />
......@@ -56,7 +57,6 @@
<field field_ref="e3v" />
<field field_ref="ssv" name="vos" />
<field field_ref="voce" name="vo" operation="instant" freq_op="5d" > @voce_e3v / @e3v </field>
<field field_ref="vtau" name="tauvo" />
<field field_ref="vocetr_eff" name="vocetr_eff" />
<!-- available with diaar5 -->
<field field_ref="v_masstr" name="vomematr" />
......
bld::tool::fppkeys key_si3 key_linssh key_xios
bld::tool::fppkeys key_si3 key_linssh key_vco_1d3d key_xios
......@@ -4,328 +4,16 @@ Run the Reference configurations
.. todo::
Lack of illustrations for ref. cfgs, and more generally in the guide.
NEMO is distributed with a set of reference configurations allowing both
the user to set up his own first applications and
the developer to test/validate his NEMO developments (using SETTE package).
NEMO is distributed with a set of "Reference Configurations" allowing
the user to easily get hands on NEMO, to set up his own first application.
and
These configurations are also used by developers for validation purposes.
.. contents::
:local:
:depth: 1
**List and description of the Reference Configurations:** `here <https://sites.nemo-ocean.io/user-guide/cfgs.html#list-of-configurations>`_.
.. attention::
**Steps and detailed information to set up and run a Reference Configuration**
in the same document: `NEMO Users guide <https://sites.nemo-ocean.io/user-guide/>`_
Concerning the configurations,
the NEMO System Team is only in charge of the so-called reference configurations described below.
.. hint::
Configurations developed by external research projects or initiatives that
make use of NEMO are welcome to be publicized through the website by
filling up the form :website:`to add an associated project<projects/add>`.
How to compile an experiment from a reference configuration
===========================================================
To compile the ORCA2_ICE_PISCES_ reference configuration using :file:`makenemo`,
one should use the following, by selecting among available architecture file or
providing a user defined one:
.. code-block:: console
$ ./makenemo -r 'ORCA2_ICE_PISCES' -m 'my_arch' -j '4'
A new ``EXP00`` folder will be created within the selected reference configurations,
namely ``./cfgs/ORCA2_ICE_PISCES/EXP00``.
It will be necessary to uncompress the archives listed in the above table for
the given reference configuration that includes input & forcing files.
Then it will be possible to launch the execution of the model through a runscript
(opportunely adapted to the user system).
List of Configurations
======================
All forcing files listed below in the table are available from |DOI data|_
=================== === === === === === ==================================
Configuration Component(s) Archives (input & forcing files)
------------------- ------------------- ----------------------------------
Name O S T P A
=================== === === === === === ==================================
AGRIF_DEMO_ X X X AGRIF_DEMO_v4.0.tar,
ORCA2_ICE_v4.0.tar
AMM12_ X AMM12_v4.0.tar
C1D_PAPA_ X INPUTS_C1D_PAPA_v4.0.tar
GYRE_BFM_ X X *none*
GYRE_PISCES_ X X X *none*
ORCA2_ICE_PISCES_ X X X X ORCA2_ICE_v4.0.tar,
INPUTS_PISCES_v4.0.tar
ORCA2_OFF_PISCES_ X X ORCA2_OFF_v4.0.tar,
INPUTS_PISCES_v4.0.tar
ORCA2_OFF_TRC_ X ORCA2_OFF_v4.0.tar
ORCA2_SAS_ICE_ X ORCA2_ICE_v4.0.tar,
INPUTS_SAS_v4.0.tar
SPITZ12_ X X SPITZ12_v4.0.tar
=================== === === === === === ==================================
.. admonition:: Legend for component combination
O for OCE, S for SI\ :sup:`3`, T for TOP, P for PISCES and A for AGRIF
AGRIF_DEMO
----------
``AGRIF_DEMO`` is based on the ``ORCA2_ICE_PISCES`` global configuration at 2° of resolution with
the inclusion of 3 online nested grids to demonstrate the overall capabilities of AGRIF in
a realistic context (including the nesting of sea ice models).
The configuration includes a 1:1 grid in the Pacific and two successively nested grids with
odd and even refinement ratios over the Arctic ocean,
with the finest grid spanning the whole Svalbard archipelago that is of
particular interest to test sea ice coupling.
.. image:: _static/AGRIF_DEMO_no_cap.jpg
:scale: 66%
:align: center
The 1:1 grid can be used alone as a benchmark to check that
the model solution is not corrupted by grid exchanges.
Note that since grids interact only at the baroclinic time level,
numerically exact results can not be achieved in the 1:1 case.
Perfect reproducibility is obtained only by switching to a fully explicit setup instead of
a split explicit free surface scheme.
AMM12
-----
``AMM12`` stands for *Atlantic Margin Model at 12 km* that is
a regional configuration covering the Northwest European Shelf domain on
a regular horizontal grid of ~12 km of resolution (see :cite:`ODEA2012`).
.. image:: _static/AMM_domain.png
:align: center
This configuration allows to tests several features of NEMO specifically addressed to the shelf seas.
In particular, ``AMM12`` accounts for vertical s-coordinates system, GLS turbulence scheme,
tidal lateral boundary conditions using a flather scheme (see more in ``BDY``).
Boundaries may be completely omitted by setting ``ln_bdy = .false.`` in ``nambdy``.
Sample surface fluxes, river forcing and an initial restart file are included to test a realistic model run
(``AMM12_v4.0.tar``).
Note that, the Baltic boundary is included within the river input file and is specified as a river source,
but unlike ordinary river points the Baltic inputs also include salinity and temperature data.
C1D_PAPA
--------
.. figure:: _static/Papa2015.jpg
:height: 225px
:align: left
``C1D_PAPA`` is a 1D configuration for the `PAPA station`_ located in
the northern-eastern Pacific Ocean at 50.1°N, 144.9°W.
See :gmd:`Reffray et al. (2015) <8/69/2015>` for the description of
its physical and numerical turbulent-mixing behaviour.
| The water column setup, called NEMO1D, is activated by
setting ``ln_c1d = .true.`` in ``namdom`` and
has a horizontal domain of 1x1 grid point.
| This reference configuration uses 75 vertical levels grid (1m at the surface),
GLS turbulence scheme with K-epsilon closure and the NCAR bulk formulae.
Data provided with ``INPUTS_C1D_PAPA_v4.2.tar`` file account for:
- :file:`forcing_PAPASTATION_1h_y201[0-1].nc`:
ECMWF operational analysis atmospheric forcing rescaled to 1h
(with long and short waves flux correction) for years 2010 and 2011
- :file:`init_PAPASTATION_m06d15.nc`: Initial Conditions from
observed data and Levitus 2009 climatology
- :file:`chlorophyll_PAPASTATION.nc`: surface chlorophyll file from Seawifs data
GYRE_BFM
--------
``GYRE_BFM`` shares the same physical setup of GYRE_PISCES_,
but NEMO is coupled with the `BFM`_ biogeochemical model as described in ``./cfgs/GYRE_BFM/README``.
GYRE_PISCES
-----------
``GYRE_PISCES`` is an idealized configuration representing a Northern hemisphere double gyres system,
in the Beta-plane approximation with a regular 1° horizontal resolution and 31 vertical levels,
with PISCES BGC model :cite:`gmd-8-2465-2015`.
Analytical forcing for heat, freshwater and wind-stress fields are applied.
This configuration acts also as demonstrator of the **user defined setup**
(``ln_read_cfg = .false.``) and grid setting are handled through
the ``&namusr_def`` controls in :file:`namelist_cfg`:
.. literalinclude:: ../../../cfgs/GYRE_PISCES/EXPREF/namelist_cfg
:language: fortran
:lines: 35-41
Note that, the default grid size is 30x20 grid points (with ``nn_GYRE = 1``) and
vertical levels are set by ``jpkglo``.
The specific code changes can be inspected in :file:`./src/OCE/USR`.
.. rubric:: Running GYRE as a benchmark
| This simple configuration can be used as a benchmark since it is easy to increase resolution,
with the drawback of getting results that have a very limited physical meaning.
| GYRE grid resolution can be increased at runtime by setting a different value of ``nn_GYRE``
(integer multiplier scaling factor), as described in the following table:
=========== ============ ============ ============ ===============
``nn_GYRE`` ``jpiglo`` ``jpjglo`` ``jpkglo`` Equivalent to
=========== ============ ============ ============ ===============
1 30 20 31 GYRE 1°
25 750 500 101 ORCA 1/2°
50 1500 1000 101 ORCA 1/4°
150 4500 3000 101 ORCA 1/12°
200 6000 4000 101 ORCA 1/16°
=========== ============ ============ ============ ===============
| Note that, it is necessary to set ``ln_bench = .true.`` in ``&namusr_def`` to
avoid problems in the physics computation and that
the model timestep should be adequately rescaled.
| For example if ``nn_GYRE = 150``, equivalent to an ORCA 1/12° grid,
the timestep ``rn_rdt`` should be set to 1200 seconds
Differently from previous versions of NEMO, the code uses by default the time-splitting scheme and
internally computes the number of sub-steps.
ORCA2_ICE_PISCES
----------------
``ORCA2_ICE_PISCES`` is a reference configuration for the global ocean with
a 2°x2° curvilinear horizontal mesh and 31 vertical levels,
distributed using z-coordinate system and with 10 levels in the top 100m.
ORCA is the generic name given to global ocean Mercator mesh,
(i.e. variation of meridian scale factor as cosinus of the latitude),
with two poles in the northern hemisphere so that
the ratio of anisotropy is nearly one everywhere
This configuration uses the three components
- |OCE|, the ocean dynamical core
- |ICE|, the thermodynamic-dynamic sea ice model.
- |MBG|, passive tracer transport module and PISCES BGC model :cite:`gmd-8-2465-2015`
All components share the same grid.
The model is forced with CORE-II normal year atmospheric forcing and
it uses the NCAR bulk formulae.
.. rubric:: Ocean Physics
:horizontal diffusion on momentum:
the eddy viscosity coefficient depends on the geographical position.
It is taken as 40000 m\ :sup:`2`/s, reduced in the equator regions (2000 m\ :sup:`2`/s)
excepted near the western boundaries.
:isopycnal diffusion on tracers:
the diffusion acts along the isopycnal surfaces (neutral surface) with
an eddy diffusivity coefficient of 2000 m\ :sup:`2`/s.
:Eddy induced velocity parametrization:
With a coefficient that depends on the growth rate of baroclinic instabilities
(it usually varies from 15 m\ :sup:`2`/s to 3000 m\ :sup:`2`/s).
:lateral boundary conditions:
Zero fluxes of heat and salt and no-slip conditions are applied through lateral solid boundaries.
:bottom boundary condition:
Zero fluxes of heat and salt are applied through the ocean bottom.
The Beckmann [19XX] simple bottom boundary layer parameterization is applied along
continental slopes.
A linear friction is applied on momentum.
:convection:
The vertical eddy viscosity and diffusivity coefficients are increased to 1 m\ :sup:`2`/s in
case of static instability.
:time step: is 5400sec (1h30') so that there is 16 time steps in one day.
ORCA2_OFF_PISCES
----------------
``ORCA2_OFF_PISCES`` shares the same general offline configuration of ``ORCA2_ICE_TRC``,
but only PISCES model is an active component of TOP.
ORCA2_OFF_TRC
-------------
| ``ORCA2_OFF_TRC`` is based on the ORCA2 global ocean configuration
(see ORCA2_ICE_PISCES_ for general description) along with
the tracer passive transport module (TOP),
but dynamical fields are pre-calculated and read with specific time frequency.
| This enables for an offline coupling of TOP components,
here specifically inorganic carbon compounds (CFC11, CFC12, SF6, C14) and water age module (age).
See :file:`namelist_top_cfg` to inspect the selection of
each component with the dedicated logical keys.
Pre-calculated dynamical fields are provided to NEMO using
the namelist ``&namdta_dyn`` in :file:`namelist_cfg`,
in this case with a 5 days frequency (120 hours):
.. literalinclude:: ../../namelists/namdta_dyn
:language: fortran
Input dynamical fields for this configuration (:file:`ORCA2_OFF_v4.0.tar`) comes from
a 2000 years long climatological simulation of ORCA2_ICE using ERA40 atmospheric forcing.
| Note that,
this configuration default uses linear free surface (``ln_linssh = .true.``) assuming that
model mesh is not varying in time and
it includes the bottom boundary layer parameterization (``ln_trabbl = .true.``) that
requires the provision of BBL coefficients through ``sn_ubl`` and ``sn_vbl`` fields.
| It is also possible to activate PISCES model (see ``ORCA2_OFF_PISCES``) or
a user defined set of tracers and source-sink terms with ``ln_my_trc = .true.``
(and adaptation of ``./src/TOP/MY_TRC`` routines).
In addition, the offline module (OFF) allows for the provision of further fields:
1. **River runoff** can be provided to TOP components by setting ``ln_dynrnf = .true.`` and
by including an input datastream similarly to the following:
.. code-block:: fortran
sn_rnf = 'dyna_grid_T', 120, 'sorunoff' , .true., .true., 'yearly', '', '', ''
2. **VVL dynamical fields**, in the case input data were produced by a dyamical core using
variable volume (``ln_linssh = .false.``)
it is necessary to provide also diverce and E-P at before timestep by
including input datastreams similarly to the following
.. code-block:: fortran
sn_div = 'dyna_grid_T', 120, 'e3t' , .true., .true., 'yearly', '', '', ''
sn_empb = 'dyna_grid_T', 120, 'sowaflupb', .true., .true., 'yearly', '', '', ''
More details can be found by inspecting the offline data manager in
the routine :file:`./src/OFF/dtadyn.F90`.
ORCA2_SAS_ICE
-------------
| ORCA2_SAS_ICE is a demonstrator of the Stand-Alone Surface (SAS) module and
it relies on ORCA2 global ocean configuration (see ORCA2_ICE_PISCES_ for general description).
| The standalone surface module allows surface elements such as sea-ice, iceberg drift, and
surface fluxes to be run using prescribed model state fields.
It can profitably be used to compare different bulk formulae or
adjust the parameters of a given bulk formula.
More informations about SAS can be found in :doc:`NEMO manual <cite>`.
SPITZ12
-------
``SPITZ12`` is a regional configuration around the Svalbard archipelago
at 1/12° of horizontal resolution and 75 vertical levels.
See :gmd:`Rousset et al. (2015) <8/2991/2015>` for more details.
This configuration references to year 2002,
with atmospheric forcing provided every 2 hours using NCAR bulk formulae,
while lateral boundary conditions for dynamical fields have 3 days time frequency.
.. rubric:: References
.. bibliography:: cfgs.bib
:all:
:style: unsrt
:labelprefix: C
......@@ -6,22 +6,23 @@
<axis_definition>
<axis id="deptht" long_name="Vertical T levels" unit="m" positive="down" />
<!-- Vertical zoom for a 31-levels ORCA2 grid for eORCA1 300m corresponds to n=35 -->
<!-- Vertical zoom for a 31-levels ORCA2 grid. For eORCA1 300m corresponds to n=35 -->
<axis id="deptht300" axis_ref="deptht" >
<zoom_axis begin="0" n="19" />
</axis>
<axis id="depthu" long_name="Vertical U levels" unit="m" positive="down" />
<axis id="depthv" long_name="Vertical V levels" unit="m" positive="down" />
<axis id="depthw" long_name="Vertical W levels" unit="m" positive="down" />
<axis id="depthf" long_name="Vertical F levels" unit="m" positive="down" />
<axis id="nfloat" long_name="Float number" unit="-" />
<axis id="icbcla" long_name="Iceberg class" unit="1" />
<axis id="ncatice" long_name="Ice category" unit="1" />
<axis id="iax_20C" long_name="20 degC isotherm" unit="degC" />
<axis id="iax_26C" long_name="26 degC isotherm" unit="degC" />
<axis id="iax_28C" long_name="28 degC isotherm" unit="degC" />
<axis id="depthu" long_name="Vertical U levels" unit="m" positive="down" />
<axis id="depthv" long_name="Vertical V levels" unit="m" positive="down" />
<axis id="depthw" long_name="Vertical W levels" unit="m" positive="down" />
<axis id="depthf" long_name="Vertical F levels" unit="m" positive="down" />
<axis id="nfloat" long_name="Float number" unit="-" />
<axis id="icbcla" long_name="Iceberg class" unit="1" />
<axis id="ncatice" long_name="Ice category" unit="1" />
<axis id="nlayice" long_name="Ice layer" unit="1" />
<axis id="iax_20C" long_name="20 degC isotherm" unit="degC" />
<axis id="iax_26C" long_name="26 degC isotherm" unit="degC" />
<axis id="iax_28C" long_name="28 degC isotherm" unit="degC" />
<axis id="basin" long_name="Sub-basin mask (1=Global 2=Atlantic 3=Indo-Pacific 4=Indian, 5=Pacific)" unit="1" />
<axis id="nstrait" long_name="Number of straits" unit="1" />
<axis id="nstrait" long_name="Number of straits" unit="1" />
<!-- ABL vertical axis definition -->
<axis id="ght_abl" long_name="ABL Vertical T levels" unit="m" positive="up" />
<axis id="ghw_abl" long_name="ABL Vertical W levels" unit="m" positive="up" />
......
......@@ -18,7 +18,7 @@
<field_group id="SBC" > <!-- time step automaticaly defined based on nn_fsbc -->
<!-- 2D variables -->
<field_group id="SBC_2D" grid_ref="grid_T_2D" >
<field_group id="SBC_2D" grid_ref="grid_T_2D_inner" >
<!-- =================== -->
<!-- standard ice fields -->
......@@ -69,8 +69,8 @@
<field id="icesalm" long_name="Mass of salt in sea ice per area" standard_name="sea_ice_salt_mass" unit="kg/m2" />
<!-- momentum (rheology) -->
<field id="uice" long_name="X-component of sea ice velocity" standard_name="sea_ice_x_velocity" unit="m/s" />
<field id="vice" long_name="Y-component of sea ice velocity" standard_name="sea_ice_y_velocity" unit="m/s" />
<field id="uice" long_name="X-component of sea ice velocity" standard_name="sea_ice_x_velocity" unit="m/s" grid_ref="grid_T_2D" />
<field id="vice" long_name="Y-component of sea ice velocity" standard_name="sea_ice_y_velocity" unit="m/s" grid_ref="grid_T_2D" />
<field id="icevel" long_name="Sea-ice speed" standard_name="sea_ice_speed" unit="m/s" />
<field id="utau_ai" long_name="X-component of atmospheric stress on sea ice" standard_name="surface_downward_x_stress" unit="N/m2" />
<field id="vtau_ai" long_name="Y-component of atmospheric stress on sea ice" standard_name="surface_downward_y_stress" unit="N/m2" />
......@@ -93,7 +93,7 @@
<field id="yield11" long_name="yield surface tensor component 11" standard_name="yield11" unit="N/m" />
<field id="yield22" long_name="yield surface tensor component 22" standard_name="yield22" unit="N/m" />
<field id="yield12" long_name="yield surface tensor component 12" standard_name="yield12" unit="N/m" />
<field id="beta_evp" long_name="Relaxation parameter of ice rheology (beta)" standard_name="relaxation_parameter_of_ice_rheology" unit="" />
<field id="beta_evp" long_name="Relaxation parameter of ice rheology (beta)" standard_name="relaxation_parameter_of_ice_rheology" unit="" grid_ref="grid_T_2D" />
<!-- surface heat fluxes -->
<field id="qt_ice" long_name="total heat flux at ice surface" standard_name="surface_downward_heat_flux_in_air" unit="W/m2" />
......@@ -311,7 +311,7 @@
</field_group> <!-- SBC_2D -->
<!-- categories -->
<field_group id="SBC_3D" grid_ref="grid_T_ncatice" >
<field_group id="SBC_3D" grid_ref="grid_T_ncatice_inner" >
<!-- standard ice fields -->
<field id="iceconc_cat" long_name="Sea-ice concentration per category" unit="" />
......@@ -342,8 +342,31 @@
<field id="tice_cvgerr" long_name="sea ice temperature convergence error" standard_name="sea_ice_temperature_convergence_err" unit="K" />
<field id="tice_cvgstp" long_name="sea ice temperature convergence iterations" standard_name="sea_ice_temperature_convergence_stp" unit="" />
<!-- salt drainage and flushing sanity checks -->
<field id="cfl_flush" long_name="max CFL during flushing" unit="" />
<field id="cfl_drain" long_name="max CFL during drainage" unit="" />
<field id="sice_flush_dserr" long_name="positive sea ice salinity derivative during flushing" detect_missing_value="true" unit="g/kg" />
<field id="sice_drain_dserr" long_name="positive sea ice salinity derivative during drainage" detect_missing_value="true" unit="g/kg" />
<field id="sice_flush_serr" long_name="negative sea ice salinity during flushing" detect_missing_value="true" unit="g/kg" />
<field id="sice_drain_serr" long_name="negative sea ice salinity during drainage" detect_missing_value="true" unit="g/kg" />
</field_group> <!-- SBC_3D -->
<!-- layers -->
<field_group id="SBC_4D" grid_ref="grid_T_nlayice_inner" >
<!-- standard ice fields -->
<field id="icesalt_lay" long_name="Sea-Ice salinity per layer" unit="g/kg" detect_missing_value="true" />
<field id="icetemp_lay" long_name="Ice temperature per layer" unit="degC" detect_missing_value="true" />
<!-- salt drainage and flushing sanity checks -->
<field id="tice_flush_dserr" long_name="temperature when positive sea ice salinity derivative during flushing" detect_missing_value="true" unit="degC" />
<field id="tice_drain_dserr" long_name="temperature when positive sea ice salinity derivative during drainage" detect_missing_value="true" unit="degC" />
<field id="tice_flush_serr" long_name="temperature when negative sea ice salinity during flushing" detect_missing_value="true" unit="degC" />
<field id="tice_drain_serr" long_name="temperature when negative sea ice salinity during drainage" detect_missing_value="true" unit="degC" />
</field_group> <!-- SBC_4D -->
<!-- scalar variables -->
<field_group id="SBC_scalar" grid_ref="grid_scalar" >
<field id="NH_iceextt" long_name="Sea ice extent North" standard_name="sea_ice_extent_n" unit="1e6_km2" />
......@@ -386,7 +409,7 @@
-->
<!-- output variables for my configuration (example) -->
<field_group id="myvarICE" grid_ref="grid_T_2D" >
<field_group id="myvarICE" >
<!-- ice mask -->
<field field_ref="icemask" name="simsk" />
<field field_ref="icemask05" name="simsk05" />
......@@ -495,7 +518,7 @@
</field_group>
<field_group id="myvarICE_cat" grid_ref="grid_T_ncatice" >
<field_group id="myvarICE_cat" >
<!-- categories -->
<field field_ref="icemask_cat" name="simskcat"/>
......@@ -524,7 +547,7 @@
<field field_ref="ilbgvol_tot" name="ilbgvol_tot" />
</field_group>
<field_group id="ICE_budget" grid_ref="grid_T_2D" >
<field_group id="ICE_budget" >
<!-- general -->
<field field_ref="icemask" name="simsk" />
<field field_ref="iceconc" name="siconc" />
......@@ -579,7 +602,7 @@
</field_group>
<!-- SIMIP daily fields -->
<field_group id="SIday_fields" grid_ref="grid_T_2D" >
<field_group id="SIday_fields" >
<field field_ref="icepres" name="sitimefrac" />
<field field_ref="iceconc_pct" name="siconc" />
<field field_ref="icethic_cmip" name="sithick" />
......@@ -591,7 +614,7 @@
</field_group>
<!-- SIMIP monthly fields -->
<field_group id="SImon_fields" grid_ref="grid_T_2D" >
<field_group id="SImon_fields" >
<!-- Sea-ice state variables -->
<field field_ref="icepres" name="sitimefrac" />
<field field_ref="iceconc_pct" name="siconc" />
......
......@@ -16,7 +16,7 @@
-->
<field_group id="inerttrc" grid_ref="grid_T_2D">
<field_group id="inerttrc" grid_ref="grid_T_2D_inner">
<!-- CFC11 : variables available with ln_cfc11 -->
<field id="CFC11" long_name="Chlorofluoro carbon11 Concentration" unit="umol/m3" grid_ref="grid_T_3D" />
......@@ -39,8 +39,8 @@
<!-- C14 : variables available with ln_c14 -->
<field id="RC14" long_name="Radiocarbon ratio" unit="-" grid_ref="grid_T_3D" />
<field id="RC14_e3t" long_name="RC14 * e3t" unit="m" grid_ref="grid_T_3D" > RC14 * e3t </field >
<field id="DeltaC14" long_name="Delta C14" unit="permil" grid_ref="grid_T_3D" />
<field id="C14Age" long_name="Radiocarbon age" unit="yr" grid_ref="grid_T_3D" />
<field id="DeltaC14" long_name="Delta C14" unit="permil" grid_ref="grid_T_3D_inner" />
<field id="C14Age" long_name="Radiocarbon age" unit="yr" grid_ref="grid_T_3D_inner" />
<field id="RAge" long_name="Reservoir Age" unit="yr" />
<field id="qtr_c14" long_name="Air-sea flux of C14" unit="1/m2/s" />
<field id="qint_c14" long_name="Cumulative air-sea flux of C14" unit="1/m2" />
......@@ -52,7 +52,7 @@
<!-- AGE : variables available with ln_age -->
<field id="Age" long_name="Sea water age since surface contact" unit="yr" grid_ref="grid_T_3D" />
<field id="Age_e3t" long_name="Age * e3t" unit="yr * m" grid_ref="grid_T_3D" > Age * e3t </field >
<field id="Age_e3t" long_name="Age * e3t" unit="yr * m" grid_ref="grid_T_3D" > Age * e3t </field >
</field_group>
......
This diff is collapsed.
This diff is collapsed.
......@@ -12,7 +12,7 @@
<domain domain_ref="grid_T" />
</grid>
<grid id="grid_T_2D_inner" >
<domain domain_ref="grid_T_inner" />
<domain domain_ref="grid_T_inner" name="grid_T" />
</grid>
<!-- -->
<grid id="grid_T_ncatice" >
......@@ -20,7 +20,18 @@
<axis axis_ref="ncatice" />
</grid>
<grid id="grid_T_ncatice_inner" >
<domain domain_ref="grid_T_inner" />
<domain domain_ref="grid_T_inner" name="grid_T" />
<axis axis_ref="ncatice" />
</grid>
<!-- -->
<grid id="grid_T_nlayice" >
<domain domain_ref="grid_T" />
<axis axis_ref="nlayice" />
<axis axis_ref="ncatice" />
</grid>
<grid id="grid_T_nlayice_inner" >
<domain domain_ref="grid_T_inner" name="grid_T" />
<axis axis_ref="nlayice" />
<axis axis_ref="ncatice" />
</grid>
<!-- -->
......@@ -29,7 +40,7 @@
<axis axis_ref="deptht" />
</grid>
<grid id="grid_T_3D_inner" >
<domain domain_ref="grid_T_inner" />
<domain domain_ref="grid_T_inner" name="grid_T" />
<axis axis_ref="deptht" />
</grid>
<!-- -->
......@@ -38,7 +49,7 @@
<axis axis_ref="profsed" />
</grid>
<grid id="grid_T_3DS_inner" >
<domain domain_ref="grid_T_inner" />
<domain domain_ref="grid_T_inner" name="grid_T" />
<axis axis_ref="profsed" />
</grid>
<!-- -->
......@@ -46,7 +57,7 @@
<domain domain_ref="grid_U" />
</grid>
<grid id="grid_U_2D_inner" >
<domain domain_ref="grid_U_inner" />
<domain domain_ref="grid_U_inner" name="grid_U" />
</grid>
<!-- -->
<grid id="grid_U_3D" >
......@@ -54,7 +65,7 @@
<axis axis_ref="depthu" />
</grid>
<grid id="grid_U_3D_inner" >
<domain domain_ref="grid_U_inner" />
<domain domain_ref="grid_U_inner" name="grid_U" />
<axis axis_ref="depthu" />
</grid>
<!-- -->
......@@ -62,7 +73,7 @@
<domain domain_ref="grid_V" />
</grid>
<grid id="grid_V_2D_inner" >
<domain domain_ref="grid_V_inner" />
<domain domain_ref="grid_V_inner" name="grid_V" />
</grid>
<!-- -->
<grid id="grid_V_3D" >
......@@ -70,7 +81,7 @@
<axis axis_ref="depthv" />
</grid>
<grid id="grid_V_3D_inner" >
<domain domain_ref="grid_V_inner" />
<domain domain_ref="grid_V_inner" name="grid_V" />
<axis axis_ref="depthv" />
</grid>
<!-- -->
......@@ -78,7 +89,7 @@
<domain domain_ref="grid_W" />
</grid>
<grid id="grid_W_2D_inner" >
<domain domain_ref="grid_W_inner" />
<domain domain_ref="grid_W_inner" name="grid_W" />
</grid>
<!-- -->
<grid id="grid_W_3D" >
......@@ -86,7 +97,7 @@
<axis axis_ref="depthw" />
</grid>
<grid id="grid_W_3D_inner" >
<domain domain_ref="grid_W_inner" />
<domain domain_ref="grid_W_inner" name="grid_W" />
<axis axis_ref="depthw" />
</grid>
<!-- -->
......@@ -94,7 +105,7 @@
<domain domain_ref="grid_F" />
</grid>
<grid id="grid_F_2D_inner" >
<domain domain_ref="grid_F_inner" />
<domain domain_ref="grid_F_inner" name="grid_F" />
</grid>
<!-- -->
<grid id="grid_F_3D" >
......@@ -102,7 +113,7 @@
<axis axis_ref="depthf" />
</grid>
<grid id="grid_F_3D_inner" >
<domain domain_ref="grid_F_inner" />
<domain domain_ref="grid_F_inner" name="grid_F" />
<axis axis_ref="depthf" />
</grid>
<!-- -->
......@@ -184,6 +195,12 @@
<extract_axis position="0" />
</scalar>
</grid>
<grid id="grid_T_SFC_inner">
<domain domain_ref="grid_T_inner" name="grid_T" />
<scalar>
<extract_axis position="0" />
</scalar>
</grid>
<grid id="grid_T_vsum">
<domain domain_ref="grid_T"/>
......@@ -191,6 +208,12 @@
<reduce_axis operation="sum" />
</scalar>
</grid>
<grid id="grid_T_vsum_inner">
<domain domain_ref="grid_T_inner" name="grid_T"/>
<scalar>
<reduce_axis operation="sum" />
</scalar>
</grid>
<grid id="grid_U_vsum">
<domain domain_ref="grid_U"/>
......@@ -232,6 +255,10 @@
<domain domain_ref="grid_T" />
<axis axis_ref="deptht300" />
</grid>
<grid id="grid_T_zoom_300_inner">
<domain domain_ref="grid_T_inner" name="grid_T" />
<axis axis_ref="deptht300" />
</grid>
<grid id="grid_U_scalar" >
<domain domain_ref="grid_U" />
......@@ -318,14 +345,14 @@
<!-- ABL grid definition -->
<grid id="grid_TA_2D">
<domain domain_ref="grid_T" />
<domain domain_ref="grid_T_inner" name="grid_T" />
</grid>
<grid id="grid_TA_3D">
<domain domain_ref="grid_T" />
<domain domain_ref="grid_T_inner" name="grid_T" />
<axis id="ght_abl" />
</grid>
<grid id="grid_WA_3D">
<domain domain_ref="grid_T" />
<domain domain_ref="grid_T_inner" name="grid_T" />
<axis id="ghw_abl" />
</grid>
<!-- -->
......@@ -336,41 +363,44 @@
<scalar />
</grid>
<grid id="diamlr_grid_T_2D" >
<domain domain_ref="grid_T" />
<domain domain_ref="grid_T_inner" name="grid_T" />
<scalar />
</grid>
<grid id="diamlr_grid_T_2D_inner" >
<domain domain_ref="grid_T_inner" name="grid_T" />
</grid>
<grid id="diamlr_grid_U_2D" >
<domain domain_ref="grid_U" />
<domain domain_ref="grid_U_inner" name="grid_U" />
<scalar />
</grid>
<grid id="diamlr_grid_V_2D" >
<domain domain_ref="grid_V" />
<domain domain_ref="grid_V_inner" name="grid_V" />
<scalar />
</grid>
<grid id="diamlr_grid_W_2D" >
<domain domain_ref="grid_W" />
<domain domain_ref="grid_W_inner" name="grid_W" />
<scalar />
</grid>
<grid id="diamlr_grid_2D_to_grid_T_3D" >
<domain domain_ref="grid_T" />
<domain domain_ref="grid_T_inner" name="grid_T" />
<axis axis_ref="deptht">
<duplicate_scalar />
</axis>
</grid>
<grid id="diamlr_grid_2D_to_grid_U_3D" >
<domain domain_ref="grid_U" />
<domain domain_ref="grid_U_inner" name="grid_U" />
<axis axis_ref="depthu">
<duplicate_scalar />
</axis>
</grid>
<grid id="diamlr_grid_2D_to_grid_V_3D" >
<domain domain_ref="grid_V" />
<domain domain_ref="grid_V_inner" name="grid_V" />
<axis axis_ref="depthv">
<duplicate_scalar />
</axis>
</grid>
<grid id="diamlr_grid_2D_to_grid_W_3D" >
<domain domain_ref="grid_W" />
<domain domain_ref="grid_W_inner" name="grid_W" />
<axis axis_ref="depthw">
<duplicate_scalar />
</axis>
......@@ -383,37 +413,37 @@
</grid>
<!-- grid definitions for the computation of daily detided model diagnostics (diadetide) -->
<grid id="diadetide_grid_T_2D" >
<domain domain_ref="grid_T" />
<domain domain_ref="grid_T_inner" name="grid_T" />
<scalar />
</grid>
<grid id="diadetide_grid_U_2D" >
<domain domain_ref="grid_U" />
<domain domain_ref="grid_U_inner" name="grid_U" />
<scalar />
</grid>
<grid id="diadetide_grid_V_2D" >
<domain domain_ref="grid_V" />
<domain domain_ref="grid_V_inner" name="grid_V" />
<scalar />
</grid>
<grid id="diadetide_grid_2D_to_grid_T_3D" >
<domain domain_ref="grid_T" />
<domain domain_ref="grid_T_inner" name="grid_T" />
<axis axis_ref="deptht">
<duplicate_scalar />
</axis>
</grid>
<grid id="diadetide_grid_2D_to_grid_U_3D" >
<domain domain_ref="grid_U" />
<domain domain_ref="grid_U_inner" name="grid_U" />
<axis axis_ref="depthu">
<duplicate_scalar />
</axis>
</grid>
<grid id="diadetide_grid_2D_to_grid_V_3D" >
<domain domain_ref="grid_V" />
<domain domain_ref="grid_V_inner" name="grid_V" />
<axis axis_ref="depthv">
<duplicate_scalar />
</axis>
</grid>
<grid id="diadetide_grid_2D_to_grid_W_3D" >
<domain domain_ref="grid_W" />
<domain domain_ref="grid_W_inner" name="grid_W" />
<axis axis_ref="depthw">
<duplicate_scalar />
</axis>
......
......@@ -22,8 +22,8 @@
&nampar ! Generic parameters
!------------------------------------------------------------------------------
jpl = 5 ! number of ice categories
nlay_i = 2 ! number of ice layers
nlay_s = 2 ! number of snow layers
nlay_i = 5 ! number of ice layers
nlay_s = 3 ! number of snow layers
ln_virtual_itd = .false. ! virtual ITD mono-category parameterization (jpl=1 only)
! i.e. enhanced thermal conductivity & virtual thin ice melting
ln_icedyn = .true. ! ice dynamics (T) or not (F)
......@@ -156,8 +156,6 @@
ln_icedH = .true. ! activate ice thickness change from growing/melting (T) or not (F)
ln_icedA = .true. ! activate lateral melting param. (T) or not (F)
ln_icedO = .true. ! activate ice growth in open-water (T) or not (F)
ln_icedS = .true. ! activate brine drainage (T) or not (F)
!
ln_leadhfx = .true. ! heat in the leads is used to melt sea-ice before warming the ocean
/
!------------------------------------------------------------------------------
......@@ -201,13 +199,46 @@
! 1: constant ice salinity (S=rn_icesal)
! 2: varying salinity parameterization S(z,t)
! 3: prescribed salinity profile S(z) (Schwarzacher 1959)
rn_icesal = 4. ! (nn_icesal=1) ice salinity (g/kg)
rn_sal_gd = 5. ! (nn_icesal=2) restoring ice salinity, gravity drainage (g/kg)
rn_time_gd = 1.73e+6 ! (nn_icesal=2) restoring time scale, gravity drainage (s)
rn_sal_fl = 2. ! (nn_icesal=2) restoring ice salinity, flushing (g/kg)
rn_time_fl = 8.64e+5 ! (nn_icesal=2) restoring time scale, flushing (s)
rn_simax = 20. ! maximum tolerated ice salinity (g/kg)
! 4: Gravity Drainage and Flushing
ln_flushing = .true. ! activate ice salt flushing
ln_drainage = .true. ! activate ice salt gravity drainage
rn_simin = 0.1 ! minimum tolerated ice salinity (g/kg)
rn_sinew = 0.75 ! fraction of sss that is entrapped in new ice
! -- nn_icesal=1 -- !
rn_icesal = 4. ! ice salinity (g/kg)
! -- nn_icesal=2 -- !
rn_sal_gd = 5. ! restoring ice salinity, gravity drainage (g/kg)
rn_time_gd = 1.73e+6 ! restoring time scale, gravity drainage (s)
rn_sal_fl = 2. ! restoring ice salinity, flushing (g/kg)
rn_time_fl = 8.64e+5 ! restoring time scale, flushing (s)
! -- nn_icesal=4 -- !
rn_sal_himin = 0.1 ! min ice thickness for gravity drainage and flushing calculation
nn_liquidus = 2 ! formulation of liquidus (also used for outputs)
! 1 = linear liquidus
! 2 = Vancopenolle et al (2019) formulation
! 3 = Weast 71 (used in RJW2014)
nn_drainage = 20 ! number of subcycles for gravity drainage
nn_flushing = 2 ! number of subcycles for flushing
rn_flushrate = 0.3 ! rate of flushing (fraction of melt water used for flushing)
rn_vbrc = 0.05 ! critical brines volume above which flushing can occur
! ** drainage convection scheme **
nn_sal_scheme = 2 ! 1 = Rees Jones and Worster (2014) => RJW2014 !!! be carfeul: this one gives wrong results for now
! 2 = Griewank and Notz (2013) => GN2013
! 3 = Cox and Weeks (1988) => CW1988
! ** parameters for each scheme **
rn_alpha_RJW = 0.037 ! 1: Intensity of the Brine flow ==> 0.13 from Thomas 2020
! ==> 0.037 from Martin pers. com.
rn_Rc_RJW = 2.7 ! 1: Critical Rayleigh number ==> 2.9 from Thomas 2020
! ==> 2.7 from Martin pers. com.
rn_alpha_GN = 0.681e-3 ! 2: Intensity of the Brine flow ==> 6.7e-3 from Thomas 2020
! ==> [0.510e-3 ; 0.681e-3] from Griewank and Notz 2015
! ==> 1.56e-3 from Martin pers. com.
rn_Rc_GN = 3.23 ! 2: Critical Rayleigh number ==> 2.4 from Thomas 2020
! ! ==> [7.10 ; 3.23] from Griewank and Notz 2015
! ! ==> 1.01 from Martin pers. com.
rn_alpha_CW = 7.2e-7 ! 3: Intensity of the Brine flow
!
ln_sal_chk = .FALSE. ! sanity checks for drainage and flushing
/
!------------------------------------------------------------------------------
&namthd_pnd ! Melt ponds
......
This diff is collapsed.
This diff is collapsed.
......@@ -146,6 +146,14 @@
/
!----------------------------------------------------------------------
&namtrc_bc ! data for boundary conditions
!----------------------------------------------------------------------
! Surface and coastal input data must be specified individually for each tracer.
! Lateral open boundary inputs are specified for each BDY segment and related inputfiles
! must contain data for the variables with active open boundary (set through &namtrc).
! By default, variable names of BDY inputfiles are the same as in &namtrc, but using
! cn_tronam it is possible to specify alternative variable names to match with inputfiles.
! ! file name ! freq ! variable ! time interp. ! clim !'yearly' ! weights ! rotation | land/sea
! sn_trcobc(1) = 'bdy_dta_trc_North_y1980', -1 , 'dummy' , .false. , .true. ,'yearly' , '', '', ''
!-----------------------------------------------------------------------
cn_dir_sbc = './' ! root directory for the location of SURFACE data files
cn_dir_cbc = './' ! root directory for the location of COASTAL data files
......@@ -153,6 +161,7 @@
ln_rnf_ctl = .false. ! Remove runoff dilution on tracers with absent river load
rn_sbc_time = 86400. ! Time scaling factor for SBC data (seconds in a day)
rn_cbc_time = 86400. ! Time scaling factor for CBC data (seconds in a day)
! cn_tronam(1) = 'var1' ! Tracer-name to variable-name translation
/
!----------------------------------------------------------------------
&namtrc_bdy ! Setup of tracer boundary conditions
......@@ -164,6 +173,8 @@
! = 0 NO damping of tracers at open boudaries
! = 1 Only for tracers forced with external data
! = 2 Damping applied to all tracers
ln_zintobc = .false. ! T if a vertical interpolation is required. Variables gdep[t] and e3[t] must exist in the file
! automatically defined to T if the number of vertical levels in bdy dta /= jpk
/
!-----------------------------------------------------------------------
&namtrc_ais ! Representation of Antarctic Ice Sheet tracers supply
......