Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • nemo/nemo
  • sparonuz/nemo
  • hatfield/nemo
  • extdevs/nemo
4 results
Show changes
Showing
with 668 additions and 824 deletions
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
......@@ -119,8 +119,8 @@ CONTAINS
END DO
! ! fill sf with slf_i and control print
CALL fld_fill( sf, slf_i, cn_dir, 'sbc_flx', 'flux formulation for ocean surface boundary condition', 'namsbc_flx' )
sf(jp_utau)%cltype = 'U' ; sf(jp_utau)%zsgn = -1._wp ! vector field at U point: overwrite default definition of cltype and zsgn
sf(jp_vtau)%cltype = 'V' ; sf(jp_vtau)%zsgn = -1._wp ! vector field at V point: overwrite default definition of cltype and zsgn
sf(jp_utau)%cltype = 'T' ; sf(jp_utau)%zsgn = -1._wp ! vector field at T point: overwrite default definition of cltype and zsgn
sf(jp_vtau)%cltype = 'T' ; sf(jp_vtau)%zsgn = -1._wp ! vector field at T point: overwrite default definition of cltype and zsgn
!
ENDIF
......@@ -147,8 +147,8 @@ CONTAINS
ENDIF
#endif
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) ! set the ocean fluxes from read fields
utau(ji,jj) = sf(jp_utau)%fnow(ji,jj,1) * umask(ji,jj,1)
vtau(ji,jj) = sf(jp_vtau)%fnow(ji,jj,1) * vmask(ji,jj,1)
utau(ji,jj) = sf(jp_utau)%fnow(ji,jj,1) * tmask(ji,jj,1)
vtau(ji,jj) = sf(jp_vtau)%fnow(ji,jj,1) * tmask(ji,jj,1)
qns (ji,jj) = ( sf(jp_qtot)%fnow(ji,jj,1) - sf(jp_qsr)%fnow(ji,jj,1) ) * tmask(ji,jj,1)
emp (ji,jj) = sf(jp_emp )%fnow(ji,jj,1) * tmask(ji,jj,1)
!!sfx (ji,jj) = sf(jp_sfx )%fnow(ji,jj,1) * tmask(ji,jj,1)
......@@ -170,19 +170,15 @@ CONTAINS
ENDIF
!
ENDIF
! ! module of wind stress and wind speed at T-point
! Note the use of 0.5*(2-umask) in order to unmask the stress along coastlines
!
! module of wind stress and wind speed at T-point
zcoef = 1. / ( zrhoa * zcdrag )
DO_2D( 0, 0, 0, 0 )
ztx = ( utau(ji-1,jj ) + utau(ji,jj) ) * 0.5_wp * ( 2._wp - MIN( umask(ji-1,jj ,1), umask(ji,jj,1) ) )
zty = ( vtau(ji ,jj-1) + vtau(ji,jj) ) * 0.5_wp * ( 2._wp - MIN( vmask(ji ,jj-1,1), vmask(ji,jj,1) ) )
zmod = SQRT( ztx * ztx + zty * zty ) * tmask(ji,jj,1)
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
zmod = SQRT( utau(ji,jj) * utau(ji,jj) + vtau(ji,jj) * vtau(ji,jj) ) * tmask(ji,jj,1)
taum(ji,jj) = zmod
wndm(ji,jj) = SQRT( zmod * zcoef ) !!clem: not used?
END_2D
!
CALL lbc_lnk( 'sbcflx', taum, 'T', 1._wp, wndm, 'T', 1._wp )
!
END SUBROUTINE sbc_flx
!!======================================================================
......
This diff is collapsed.
This diff is collapsed.
......@@ -178,7 +178,7 @@ CONTAINS
!
!!gm ???
! TEMP: [tiling] This copy-in not necessary after all lbc_lnks removed in the nn_hls = 2 case in tra_adv_fct
IF( l_diaptr ) CALL dia_ptr( kt, Kmm, zvv(A2D(nn_hls),:) ) ! diagnose the effective MSF
IF( l_diaptr ) CALL dia_ptr( kt, Kmm, zvv(A2D(0),:) ) ! diagnose the effective MSF
!!gm ???
!
......
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.