Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • nemo/nemo
  • sparonuz/nemo
  • hatfield/nemo
  • extdevs/nemo
4 results
Show changes
Showing
with 1355 additions and 907 deletions
......@@ -419,6 +419,7 @@ CONTAINS
IF( .NOT. ll_1st ) THEN
CALL lbc_lnk( 'cpl_oasis3', pdata(:,:,jc), srcv(kid)%clgrid, srcv(kid)%nsgn )
ENDIF
!!clem: mettre T instead of clgrid
ENDDO
!
......
......@@ -50,8 +50,8 @@ MODULE sbc_ice
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: qcn_ice !: heat conduction flux in the layer below surface [W/m2]
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: qtr_ice_top !: solar flux transmitted below the ice surface [W/m2]
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: utau_ice !: atmos-ice u-stress. VP: I-pt ; EVP: U,V-pts [N/m2]
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: vtau_ice !: atmos-ice v-stress. VP: I-pt ; EVP: U,V-pts [N/m2]
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: utau_ice !: atmos-ice u-stress. T-pts [N/m2]
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: vtau_ice !: atmos-ice v-stress. T-pts [N/m2]
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: emp_ice !: sublimation - precip over sea ice [kg/m2/s]
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: topmelt !: category topmelt
......
......@@ -103,34 +103,36 @@ MODULE sbc_oce
INTEGER , PUBLIC :: ncpl_qsr_freq = 0 !: qsr coupling frequency per days from atmosphere (used by top)
!
!! !! now ! before !!
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: utau , utau_b !: sea surface i-stress (ocean referential) [N/m2]
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: vtau , vtau_b !: sea surface j-stress (ocean referential) [N/m2]
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: utau_icb, vtau_icb !: sea surface (i,j)-stress used by icebergs [N/m2]
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: taum !: module of sea surface stress (at T-point) [N/m2]
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: utau !: sea surface i-stress (ocean referential) T-pt [N/m2]
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: vtau !: sea surface j-stress (ocean referential) T-pt [N/m2]
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: utauU , utau_b !: sea surface i-stress (ocean referential) U-pt [N/m2]
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: vtauV , vtau_b !: sea surface j-stress (ocean referential) V-pt [N/m2]
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: utau_icb, vtau_icb !: sea surface (i,j)-stress used by icebergs [N/m2]
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: taum !: module of sea surface stress (at T-point) [N/m2]
!! wndm is used compute surface gases exchanges in ice-free ocean or leads
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: wndm !: wind speed module at T-point (=|U10m-Uoce|) [m/s]
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: rhoa !: air density at "rn_zu" m above the sea [kg/m3]
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: qsr !: sea heat flux: solar [W/m2]
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: qns , qns_b !: sea heat flux: non solar [W/m2]
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: qsr_tot !: total solar heat flux (over sea and ice) [W/m2]
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: qns_tot !: total non solar heat flux (over sea and ice) [W/m2]
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: emp , emp_b !: freshwater budget: volume flux [Kg/m2/s]
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: sfx , sfx_b !: salt flux [PSS.kg/m2/s]
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: emp_tot !: total E-P over ocean and ice [Kg/m2/s]
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: fmmflx !: freshwater budget: freezing/melting [Kg/m2/s]
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: rnf , rnf_b !: river runoff [Kg/m2/s]
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: fwficb , fwficb_b !: iceberg melting [Kg/m2/s]
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: wndm !: wind speed module at T-point (=|U10m-Uoce|) [m/s]
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: rhoa !: air density at "rn_zu" m above the sea [kg/m3]
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: qsr !: sea heat flux: solar [W/m2]
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: qns , qns_b !: sea heat flux: non solar [W/m2]
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: qsr_tot !: total solar heat flux (over sea and ice) [W/m2]
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: qns_tot !: total non solar heat flux (over sea and ice) [W/m2]
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: emp , emp_b !: freshwater budget: volume flux [Kg/m2/s]
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: sfx , sfx_b !: salt flux [PSS.kg/m2/s]
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: emp_tot !: total E-P over ocean and ice [Kg/m2/s]
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: fmmflx !: freshwater budget: freezing/melting [Kg/m2/s]
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: rnf , rnf_b !: river runoff [Kg/m2/s]
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: fwficb , fwficb_b !: iceberg melting [Kg/m2/s]
!!
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: sbc_tsc, sbc_tsc_b !: sbc content trend [K.m/s] jpi,jpj,jpts
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: qsr_hc , qsr_hc_b !: heat content trend due to qsr flux [K.m/s] jpi,jpj,jpk
!!
!!
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: tprecip !: total precipitation [Kg/m2/s]
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: sprecip !: solid precipitation [Kg/m2/s]
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: fr_i !: ice fraction = 1 - lead fraction (between 0 to 1)
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: atm_co2 !: atmospheric pCO2 [ppm]
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xcplmask !: coupling mask for ln_mixcpl (warning: allocated in sbccpl)
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: cloud_fra !: cloud cover (fraction of cloud in a gridcell) [-]
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: tprecip !: total precipitation [Kg/m2/s]
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: sprecip !: solid precipitation [Kg/m2/s]
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: fr_i !: ice fraction = 1 - lead fraction (between 0 to 1)
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: atm_co2 !: atmospheric pCO2 [ppm]
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: xcplmask !: coupling mask for ln_mixcpl (warning: allocated in sbccpl)
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: cloud_fra !: cloud cover (fraction of cloud in a gridcell) [-]
!!---------------------------------------------------------------------
!! ABL Vertical Domain size
......@@ -177,8 +179,8 @@ CONTAINS
!!---------------------------------------------------------------------
ierr(:) = 0
!
ALLOCATE( utau(jpi,jpj) , utau_b(jpi,jpj) , taum(jpi,jpj) , &
& vtau(jpi,jpj) , vtau_b(jpi,jpj) , wndm(jpi,jpj) , rhoa(jpi,jpj) , STAT=ierr(1) )
ALLOCATE( utau(jpi,jpj) , utau_b(jpi,jpj) , utauU(jpi,jpj) , taum(jpi,jpj) , &
& vtau(jpi,jpj) , vtau_b(jpi,jpj) , vtauV(jpi,jpj) , wndm(jpi,jpj) , rhoa(jpi,jpj) , STAT=ierr(1) )
!
ALLOCATE( qns_tot(jpi,jpj) , qns (jpi,jpj) , qns_b(jpi,jpj), &
& qsr_tot(jpi,jpj) , qsr (jpi,jpj) , &
......@@ -205,9 +207,10 @@ CONTAINS
END FUNCTION sbc_oce_alloc
!!clem => this subroutine is never used in nemo
SUBROUTINE sbc_tau2wnd
!!---------------------------------------------------------------------
!! *** ROUTINE sbc_tau2wnd ***
!! *** ROUTINE ***
!!
!! ** Purpose : Estimation of wind speed as a function of wind stress
!!
......@@ -217,17 +220,14 @@ CONTAINS
USE lbclnk ! ocean lateral boundary conditions (or mpp link)
REAL(wp) :: zrhoa = 1.22 ! Air density kg/m3
REAL(wp) :: zcdrag = 1.5e-3 ! drag coefficient
REAL(wp) :: ztx, zty, ztau, zcoef ! temporary variables
REAL(wp) :: ztau, zcoef ! temporary variables
INTEGER :: ji, jj ! dummy indices
!!---------------------------------------------------------------------
zcoef = 0.5 / ( zrhoa * zcdrag )
DO_2D( 0, 0, 0, 0 )
ztx = utau(ji-1,jj ) + utau(ji,jj)
zty = vtau(ji ,jj-1) + vtau(ji,jj)
ztau = SQRT( ztx * ztx + zty * zty )
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
ztau = SQRT( utau(ji,jj)*utau(ji,jj) + vtau(ji,jj)*vtau(ji,jj) )
wndm(ji,jj) = SQRT ( ztau * zcoef ) * tmask(ji,jj,1)
END_2D
CALL lbc_lnk( 'sbc_oce', wndm(:,:) , 'T', 1.0_wp )
!
END SUBROUTINE sbc_tau2wnd
......
This diff is collapsed.
This diff is collapsed.
......@@ -119,8 +119,8 @@ CONTAINS
END DO
! ! fill sf with slf_i and control print
CALL fld_fill( sf, slf_i, cn_dir, 'sbc_flx', 'flux formulation for ocean surface boundary condition', 'namsbc_flx' )
sf(jp_utau)%cltype = 'U' ; sf(jp_utau)%zsgn = -1._wp ! vector field at U point: overwrite default definition of cltype and zsgn
sf(jp_vtau)%cltype = 'V' ; sf(jp_vtau)%zsgn = -1._wp ! vector field at V point: overwrite default definition of cltype and zsgn
sf(jp_utau)%cltype = 'T' ; sf(jp_utau)%zsgn = -1._wp ! vector field at T point: overwrite default definition of cltype and zsgn
sf(jp_vtau)%cltype = 'T' ; sf(jp_vtau)%zsgn = -1._wp ! vector field at T point: overwrite default definition of cltype and zsgn
!
ENDIF
......@@ -147,8 +147,8 @@ CONTAINS
ENDIF
#endif
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) ! set the ocean fluxes from read fields
utau(ji,jj) = sf(jp_utau)%fnow(ji,jj,1) * umask(ji,jj,1)
vtau(ji,jj) = sf(jp_vtau)%fnow(ji,jj,1) * vmask(ji,jj,1)
utau(ji,jj) = sf(jp_utau)%fnow(ji,jj,1) * tmask(ji,jj,1)
vtau(ji,jj) = sf(jp_vtau)%fnow(ji,jj,1) * tmask(ji,jj,1)
qns (ji,jj) = ( sf(jp_qtot)%fnow(ji,jj,1) - sf(jp_qsr)%fnow(ji,jj,1) ) * tmask(ji,jj,1)
emp (ji,jj) = sf(jp_emp )%fnow(ji,jj,1) * tmask(ji,jj,1)
!!sfx (ji,jj) = sf(jp_sfx )%fnow(ji,jj,1) * tmask(ji,jj,1)
......@@ -170,19 +170,15 @@ CONTAINS
ENDIF
!
ENDIF
! ! module of wind stress and wind speed at T-point
! Note the use of 0.5*(2-umask) in order to unmask the stress along coastlines
!
! module of wind stress and wind speed at T-point
zcoef = 1. / ( zrhoa * zcdrag )
DO_2D( 0, 0, 0, 0 )
ztx = ( utau(ji-1,jj ) + utau(ji,jj) ) * 0.5_wp * ( 2._wp - MIN( umask(ji-1,jj ,1), umask(ji,jj,1) ) )
zty = ( vtau(ji ,jj-1) + vtau(ji,jj) ) * 0.5_wp * ( 2._wp - MIN( vmask(ji ,jj-1,1), vmask(ji,jj,1) ) )
zmod = SQRT( ztx * ztx + zty * zty ) * tmask(ji,jj,1)
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
zmod = SQRT( utau(ji,jj) * utau(ji,jj) + vtau(ji,jj) * vtau(ji,jj) ) * tmask(ji,jj,1)
taum(ji,jj) = zmod
wndm(ji,jj) = SQRT( zmod * zcoef ) !!clem: not used?
END_2D
!
CALL lbc_lnk( 'sbcflx', taum, 'T', 1._wp, wndm, 'T', 1._wp )
!
END SUBROUTINE sbc_flx
!!======================================================================
......
......@@ -158,8 +158,8 @@ CONTAINS
!
IF( .NOT.ln_usr ) THEN ! the model calendar needs some specificities (except in user defined case)
IF( MOD( rday , rn_Dt ) /= 0. ) CALL ctl_stop( 'the time step must devide the number of second of in a day' )
IF( MOD( rday , 2. ) /= 0. ) CALL ctl_stop( 'the number of second of in a day must be an even number' )
IF( MOD( rn_Dt , 2. ) /= 0. ) CALL ctl_stop( 'the time step (in second) must be an even number' )
IF( MOD( rday , 2. ) /= 0. ) CALL ctl_stop( 'the number of second of in a day must be an even number' )
IF( MOD( rn_Dt, 2. ) /= 0. ) CALL ctl_stop( 'the time step (in second) must be an even number' )
ENDIF
! !** check option consistency
!
......@@ -395,16 +395,16 @@ CONTAINS
! ! ---------------------------------------- !
IF( kt /= nit000 ) THEN ! Swap of forcing fields !
! ! ---------------------------------------- !
utau_b(:,:) = utau(:,:) ! Swap the ocean forcing fields
vtau_b(:,:) = vtau(:,:) ! (except at nit000 where before fields
qns_b (:,:) = qns (:,:) ! are set at the end of the routine)
emp_b (:,:) = emp (:,:)
sfx_b (:,:) = sfx (:,:)
utau_b(:,:) = utauU(:,:) ! Swap the ocean forcing fields
vtau_b(:,:) = vtauV(:,:) ! (except at nit000 where before fields
qns_b (:,:) = qns (:,:) ! are set at the end of the routine)
emp_b (:,:) = emp (:,:)
sfx_b (:,:) = sfx (:,:)
IF( ln_rnf ) THEN
rnf_b (:,: ) = rnf (:,: )
rnf_tsc_b(:,:,:) = rnf_tsc(:,:,:)
ENDIF
!
!
ENDIF
! ! ---------------------------------------- !
! ! forcing field computation !
......@@ -420,60 +420,62 @@ CONTAINS
!
SELECT CASE( nsbc ) ! Compute ocean surface boundary condition
! ! (i.e. utau,vtau, qns, qsr, emp, sfx)
CASE( jp_usr ) ; CALL usrdef_sbc_oce( kt, Kbb ) ! user defined formulation
CASE( jp_flx ) ; CALL sbc_flx ( kt ) ! flux formulation
CASE( jp_usr ) ; CALL usrdef_sbc_oce( kt, Kbb ) ! user defined formulation
CASE( jp_flx ) ; CALL sbc_flx ( kt ) ! flux formulation
CASE( jp_blk )
IF( ll_sas ) CALL sbc_cpl_rcv ( kt, nn_fsbc, nn_ice, Kbb, Kmm ) ! OCE-SAS coupling: SAS receiving fields from OCE
!!!!!!!!!!! ATTENTION:ln_wave is not only used for oasis coupling !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
IF( ln_wave ) THEN
IF ( lk_oasis ) CALL sbc_cpl_rcv ( kt, nn_fsbc, nn_ice, Kbb, Kmm ) ! OCE-wave coupling
IF ( lk_oasis ) CALL sbc_cpl_rcv ( kt, nn_fsbc, nn_ice, Kbb, Kmm ) ! OCE-wave coupling
CALL sbc_wave ( kt, Kmm )
ENDIF
CALL sbc_blk ( kt ) ! bulk formulation for the ocean
CALL sbc_blk ( kt ) ! bulk formulation for the ocean
!
CASE( jp_abl )
IF( ll_sas ) CALL sbc_cpl_rcv ( kt, nn_fsbc, nn_ice, Kbb, Kmm ) ! OCE-SAS coupling: SAS receiving fields from OCE
CALL sbc_abl ( kt ) ! ABL formulation for the ocean
CALL sbc_abl ( kt ) ! ABL formulation for the ocean
!
CASE( jp_purecpl ) ; CALL sbc_cpl_rcv ( kt, nn_fsbc, nn_ice, Kbb, Kmm ) ! pure coupled formulation
CASE( jp_none )
IF( ll_opa ) CALL sbc_cpl_rcv ( kt, nn_fsbc, nn_ice, Kbb, Kmm ) ! OCE-SAS coupling: OCE receiving fields from SAS
IF( ll_opa ) CALL sbc_cpl_rcv ( kt, nn_fsbc, nn_ice, Kbb, Kmm ) ! OCE-SAS coupling: OCE receiving fields from SAS
END SELECT
!
IF( ln_mixcpl ) CALL sbc_cpl_rcv ( kt, nn_fsbc, nn_ice, Kbb, Kmm ) ! forced-coupled mixed formulation after forcing
IF( ln_mixcpl ) CALL sbc_cpl_rcv ( kt, nn_fsbc, nn_ice, Kbb, Kmm ) ! forced-coupled mixed formulation after forcing
!
IF( ln_wave .AND. ln_tauoc ) THEN ! Wave stress reduction
DO_2D( 0, 0, 0, 0)
utau(ji,jj) = utau(ji,jj) * ( tauoc_wave(ji,jj) + tauoc_wave(ji+1,jj) ) * 0.5_wp
vtau(ji,jj) = vtau(ji,jj) * ( tauoc_wave(ji,jj) + tauoc_wave(ji,jj+1) ) * 0.5_wp
END_2D
!
CALL lbc_lnk( 'sbcwave', utau, 'U', -1. )
CALL lbc_lnk( 'sbcwave', vtau, 'V', -1. )
!
taum(:,:) = taum(:,:)*tauoc_wave(:,:)
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
utau(ji,jj) = utau(ji,jj) * tauoc_wave(ji,jj)
vtau(ji,jj) = vtau(ji,jj) * tauoc_wave(ji,jj)
taum(ji,jj) = taum(ji,jj) * tauoc_wave(ji,jj)
END_2D
!
IF( kt == nit000 ) CALL ctl_warn( 'sbc: You are subtracting the wave stress to the ocean.', &
& 'If not requested select ln_tauoc=.false.' )
!
ELSEIF( ln_wave .AND. ln_taw ) THEN ! Wave stress reduction
utau(:,:) = utau(:,:) - tawx(:,:) + twox(:,:)
vtau(:,:) = vtau(:,:) - tawy(:,:) + twoy(:,:)
CALL lbc_lnk( 'sbcwave', utau, 'U', -1. )
CALL lbc_lnk( 'sbcwave', vtau, 'V', -1. )
!
DO_2D( 0, 0, 0, 0)
taum(ji,jj) = sqrt((.5*(utau(ji-1,jj)+utau(ji,jj)))**2 + (.5*(vtau(ji,jj-1)+vtau(ji,jj)))**2)
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
utau(ji,jj) = utau(ji,jj) - tawx(ji,jj) + twox(ji,jj)
vtau(ji,jj) = vtau(ji,jj) - tawy(ji,jj) + twoy(ji,jj)
taum(ji,jj) = SQRT( utau(ji,jj)*utau(ji,jj) + vtau(ji,jj)*vtau(ji,jj) )
END_2D
!
IF( kt == nit000 ) CALL ctl_warn( 'sbc: You are subtracting the wave stress to the ocean.', &
& 'If not requested select ln_taw=.false.' )
!
ENDIF
CALL lbc_lnk( 'sbcmod', taum(:,:), 'T', 1. )
!
!
IF( ln_icebergs ) THEN ! save pure stresses (with no ice-ocean stress) for use by icebergs
utau_icb(:,:) = utau(:,:) ; vtau_icb(:,:) = vtau(:,:)
! Note the use of 0.5*(2-umask) in order to unmask the stress along coastlines
! and the use of MAX(tmask(i,j),tmask(i+1,j) is to mask tau over ice shelves
DO_2D( 0, 0, 0, 0 )
utau_icb(ji,jj) = 0.5_wp * ( utau(ji,jj) + utau(ji+1,jj) ) * &
& ( 2. - umask(ji,jj,1) ) * MAX( tmask(ji,jj,1), tmask(ji+1,jj,1) )
vtau_icb(ji,jj) = 0.5_wp * ( vtau(ji,jj) + vtau(ji,jj+1) ) * &
& ( 2. - vmask(ji,jj,1) ) * MAX( tmask(ji,jj,1), tmask(ji,jj+1,1) )
END_2D
CALL lbc_lnk( 'sbcmod', utau_icb, 'U', -1.0_wp, vtau_icb, 'V', -1.0_wp )
ENDIF
!
! !== Misc. Options ==!
......@@ -507,9 +509,6 @@ CONTAINS
! Should not be run if ln_diurnal_only
IF( l_sbc_clo ) CALL sbc_clo( kt )
!!$!RBbug do not understand why see ticket 667
!!$!clem: it looks like it is necessary for the north fold (in certain circumstances). Don't know why.
!!$ CALL lbc_lnk( 'sbcmod', emp, 'T', 1.0_wp )
IF( ll_wd ) THEN ! If near WAD point limit the flux for now
zthscl = atanh(rn_wd_sbcfra) ! taper frac default is .999
zwdht(:,:) = ssh(:,:,Kmm) + ht_0(:,:) - rn_wdmin1 ! do this calc of water
......@@ -534,6 +533,16 @@ CONTAINS
emp (:,:) = emp(:,:) * zwght(:,:)
END WHERE
ENDIF
! --- calculate utau and vtau on U,V-points --- !
! Note the use of 0.5*(2-umask) in order to unmask the stress along coastlines
! and the use of MAX(tmask(i,j),tmask(i+1,j) is to mask tau over ice shelves
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
utauU (ji,jj) = 0.5_wp * ( utau(ji,jj) + utau(ji+1,jj) ) * &
& ( 2. - umask(ji,jj,1) ) * MAX( tmask(ji,jj,1), tmask(ji+1,jj,1) )
vtauV (ji,jj) = 0.5_wp * ( vtau(ji,jj) + vtau(ji,jj+1) ) * &
& ( 2. - vmask(ji,jj,1) ) * MAX( tmask(ji,jj,1), tmask(ji,jj+1,1) )
END_2D
IF( nn_hls == 1 ) CALL lbc_lnk( 'sbcmod', utauU, 'U', -1.0_wp, vtauV, 'V', -1.0_wp )
!
IF( kt == nit000 ) THEN ! set the forcing field at nit000 - 1 !
! ! ---------------------------------------- !
......@@ -543,27 +552,28 @@ CONTAINS
IF( ln_rstart .AND. .NOT.l_1st_euler ) THEN !* MLF: Restart: read in restart file
#endif
IF(lwp) WRITE(numout,*) ' nit000-1 surface forcing fields read in the restart file'
CALL iom_get( numror, jpdom_auto, 'utau_b', utau_b ) ! i-stress
CALL iom_get( numror, jpdom_auto, 'vtau_b', vtau_b ) ! j-stress
CALL iom_get( numror, jpdom_auto, 'qns_b', qns_b ) ! non solar heat flux
CALL iom_get( numror, jpdom_auto, 'emp_b', emp_b ) ! freshwater flux
CALL iom_get( numror, jpdom_auto, 'utau_b', utau_b, cd_type = 'U', psgn = -1._wp ) ! i-stress
CALL iom_get( numror, jpdom_auto, 'vtau_b', vtau_b, cd_type = 'V', psgn = -1._wp ) ! j-stress
CALL iom_get( numror, jpdom_auto, 'qns_b', qns_b, cd_type = 'T', psgn = 1._wp ) ! non solar heat flux
CALL iom_get( numror, jpdom_auto, 'emp_b', emp_b, cd_type = 'T', psgn = 1._wp ) ! freshwater flux
! NB: The 3D heat content due to qsr forcing (qsr_hc_b) is treated in traqsr
! To ensure restart capability with 3.3x/3.4 restart files !! to be removed in v3.6
IF( iom_varid( numror, 'sfx_b', ldstop = .FALSE. ) > 0 ) THEN
CALL iom_get( numror, jpdom_auto, 'sfx_b', sfx_b ) ! before salt flux (T-point)
CALL iom_get( numror, jpdom_auto, 'sfx_b', sfx_b, cd_type = 'T', psgn = 1._wp ) ! before salt flux (T-point)
ELSE
sfx_b (:,:) = sfx(:,:)
ENDIF
ELSE !* no restart: set from nit000 values
IF(lwp) WRITE(numout,*) ' nit000-1 surface forcing fields set to nit000'
utau_b(:,:) = utau(:,:)
vtau_b(:,:) = vtau(:,:)
utau_b(:,:) = utauU(:,:)
vtau_b(:,:) = vtauV(:,:)
qns_b (:,:) = qns (:,:)
emp_b (:,:) = emp (:,:)
sfx_b (:,:) = sfx (:,:)
ENDIF
ENDIF
!
!
#if defined key_RK3
! ! ---------------------------------------- !
IF( lrst_oce .AND. lk_SWE ) THEN ! RK3: Write in the ocean restart file !
......@@ -578,13 +588,13 @@ CONTAINS
IF(lwp) WRITE(numout,*) 'sbc : ocean surface forcing fields written in ocean restart file ', &
& 'at it= ', kt,' date= ', ndastp
IF(lwp) WRITE(numout,*) '~~~~'
CALL iom_rstput( kt, nitrst, numrow, 'utau_b' , utau )
CALL iom_rstput( kt, nitrst, numrow, 'vtau_b' , vtau )
CALL iom_rstput( kt, nitrst, numrow, 'qns_b' , qns )
CALL iom_rstput( kt, nitrst, numrow, 'utau_b' , utauU )
CALL iom_rstput( kt, nitrst, numrow, 'vtau_b' , vtauV )
CALL iom_rstput( kt, nitrst, numrow, 'qns_b' , qns )
! The 3D heat content due to qsr forcing is treated in traqsr
! CALL iom_rstput( kt, nitrst, numrow, 'qsr_b' , qsr )
CALL iom_rstput( kt, nitrst, numrow, 'emp_b' , emp )
CALL iom_rstput( kt, nitrst, numrow, 'sfx_b' , sfx )
CALL iom_rstput( kt, nitrst, numrow, 'emp_b' , emp )
CALL iom_rstput( kt, nitrst, numrow, 'sfx_b' , sfx )
ENDIF
! ! ---------------------------------------- !
! ! Outputs and control print !
......@@ -628,8 +638,8 @@ CONTAINS
CALL prt_ctl(tab3d_1=tmask , clinfo1=' tmask - : ', mask1=tmask, kdim=jpk )
CALL prt_ctl(tab3d_1=ts(:,:,:,jp_tem,Kmm), clinfo1=' sst - : ', mask1=tmask, kdim=1 )
CALL prt_ctl(tab3d_1=ts(:,:,:,jp_sal,Kmm), clinfo1=' sss - : ', mask1=tmask, kdim=1 )
CALL prt_ctl(tab2d_1=utau , clinfo1=' utau - : ', mask1=umask, &
& tab2d_2=vtau , clinfo2=' vtau - : ', mask2=vmask )
CALL prt_ctl(tab2d_1=utau , clinfo1=' utau - : ', mask1=tmask, &
& tab2d_2=vtau , clinfo2=' vtau - : ', mask2=tmask )
ENDIF
IF( kt == nitend ) CALL sbc_final ! Close down surface module if necessary
......
......@@ -1336,10 +1336,10 @@ CONTAINS
!! pab_pe(:,:,:,jp_tem) is alpha_pe
!! pab_pe(:,:,:,jp_sal) is beta_pe
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: Kmm ! time level index
REAL(wp), DIMENSION(jpi,jpj,jpk,jpts), INTENT(in ) :: pts ! pot. temperature & salinity
REAL(wp), DIMENSION(jpi,jpj,jpk,jpts), INTENT( out) :: pab_pe ! alpha_pe and beta_pe
REAL(wp), DIMENSION(jpi,jpj,jpk) , INTENT( out) :: ppen ! potential energy anomaly
INTEGER , INTENT(in ) :: Kmm ! time level index
REAL(wp), DIMENSION(:,:,:,:), INTENT(in ) :: pts ! pot. temperature & salinity
REAL(wp), DIMENSION(:,:,:,:), INTENT( out) :: pab_pe ! alpha_pe and beta_pe
REAL(wp), DIMENSION(:,:,:) , INTENT( out) :: ppen ! potential energy anomaly
!
INTEGER :: ji, jj, jk ! dummy loop indices
REAL(wp) :: zt , zh , zs , ztm ! local scalars
......@@ -1352,7 +1352,7 @@ CONTAINS
!
CASE( np_teos10, np_eos80 ) !== polynomial TEOS-10 / EOS-80 ==!
!
DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, jpkm1 )
DO_3D( 0, 0, 0, 0, 1, jpkm1 )
!
zh = gdept(ji,jj,jk,Kmm) * r1_Z0 ! depth
zt = pts (ji,jj,jk,jp_tem) * r1_T0 ! temperature
......@@ -1411,9 +1411,9 @@ CONTAINS
!
CASE( np_seos ) !== Vallis (2006) simplified EOS ==!
!
DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, jpkm1 )
DO_3D( 0, 0, 0, 0, 1, jpkm1 )
zt = pts(ji,jj,jk,jp_tem) - 10._wp ! temperature anomaly (t-T0)
zs = pts (ji,jj,jk,jp_sal) - 35._wp ! abs. salinity anomaly (s-S0)
zs = pts (ji,jj,jk,jp_sal) - 35._wp ! abs. salinity anomaly (s-S0)
zh = gdept(ji,jj,jk,Kmm) ! depth in meters at t-point
ztm = tmask(ji,jj,jk) ! tmask
zn = 0.5_wp * zh * r1_rho0 * ztm
......
......@@ -10,6 +10,7 @@ MODULE traadv
!! - ! 2014-12 (G. Madec) suppression of cross land advection option
!! 3.6 ! 2015-06 (E. Clementi) Addition of Stokes drift in case of wave coupling
!! 4.5 ! 2021-04 (G. Madec, S. Techene) add advective velocities as optional arguments
!! 4.5 ! 2022-06 (S. Techene, G, Madec) refactorization to reduce local memory usage
!!----------------------------------------------------------------------
!!----------------------------------------------------------------------
......@@ -191,11 +192,19 @@ CONTAINS
SELECT CASE ( nadv ) !== compute advection trend and add it to general trend ==!
!
CASE ( np_CEN ) ! Centered scheme : 2nd / 4th order
CALL tra_adv_cen ( kt, nit000, 'TRA', zuu, zvv, zww, Kmm, pts, jpts, Krhs, nn_cen_h, nn_cen_v )
IF( nn_hls == 1 ) THEN
CALL tra_adv_cen_hls1( kt, nit000, 'TRA', zuu, zvv, zww, Kmm, pts, jpts, Krhs, nn_cen_h, nn_cen_v )
ELSE
CALL tra_adv_cen ( kt, nit000, 'TRA', zuu, zvv, zww, Kmm, pts, jpts, Krhs, nn_cen_h, nn_cen_v )
ENDIF
CASE ( np_FCT ) ! FCT scheme : 2nd / 4th order
CALL tra_adv_fct ( kt, nit000, 'TRA', rDt, zuu, zvv, zww, Kbb, Kmm, pts, jpts, Krhs, nn_fct_h, nn_fct_v )
CASE ( np_MUS ) ! MUSCL
IF( nn_hls == 1 ) THEN
CALL tra_adv_mus_hls1( kt, nit000, 'TRA', rDt, zuu, zvv, zww, Kbb, Kmm, pts, jpts, Krhs, ln_mus_ups )
ELSE
CALL tra_adv_mus( kt, nit000, 'TRA', rDt, zuu, zvv, zww, Kbb, Kmm, pts, jpts, Krhs, ln_mus_ups )
END IF
CASE ( np_UBS ) ! UBS
CALL tra_adv_ubs ( kt, nit000, 'TRA', rDt, zuu, zvv, zww, Kbb, Kmm, pts, jpts, Krhs, nn_ubs_v )
CASE ( np_QCK ) ! QUICKEST
......
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
......@@ -56,10 +56,13 @@ CONTAINS
INTEGER , INTENT(in ) :: ktrd ! trend index
INTEGER , INTENT(in ) :: kt ! time step
INTEGER , INTENT(in ) :: Kmm ! time level index
INTEGER :: ji, jj, jk ! lopp indices
!!----------------------------------------------------------------------
!
putrd(:,:,:) = putrd(:,:,:) * umask(:,:,:) ! mask the trends
pvtrd(:,:,:) = pvtrd(:,:,:) * vmask(:,:,:)
DO_3D( 0, 0, 0, 0, 1, jpkm1 )
putrd(ji,jj,jk) = putrd(ji,jj,jk) * umask(ji,jj,jk) ! mask the trends
pvtrd(ji,jj,jk) = pvtrd(ji,jj,jk) * vmask(ji,jj,jk)
END_3D
!
!!gm NB : here a lbc_lnk should probably be added
......@@ -120,10 +123,10 @@ CONTAINS
CALL iom_put( "vtrd_rvo", pvtrd )
CASE( jpdyn_keg ) ; CALL iom_put( "utrd_keg", putrd ) ! Kinetic Energy gradient (or had)
CALL iom_put( "vtrd_keg", pvtrd )
ALLOCATE( z3dx(jpi,jpj,jpk) , z3dy(jpi,jpj,jpk) )
z3dx(:,:,:) = 0._wp ! U.dxU & V.dyV (approximation)
z3dy(:,:,:) = 0._wp
DO_3D( 0, 0, 0, 0, 1, jpkm1 ) ! no mask as un,vn are masked
ALLOCATE( z3dx(A2D(0),jpk) , z3dy(A2D(0),jpk) ) ! U.dxU & V.dyV (approximation)
z3dx(A2D(0),jpk) = 0._wp
z3dy(A2D(0),jpk) = 0._wp
DO_3D( 0, 0, 0, 0, 1, jpkm1 ) ! no mask as un,vn are masked
z3dx(ji,jj,jk) = uu(ji,jj,jk,Kmm) * ( uu(ji+1,jj,jk,Kmm) - uu(ji-1,jj,jk,Kmm) ) / ( 2._wp * e1u(ji,jj) )
z3dy(ji,jj,jk) = vv(ji,jj,jk,Kmm) * ( vv(ji,jj+1,jk,Kmm) - vv(ji,jj-1,jk,Kmm) ) / ( 2._wp * e2v(ji,jj) )
END_3D
......@@ -139,9 +142,11 @@ CONTAINS
CALL iom_put( "vtrd_zdf", pvtrd )
!
! ! wind stress trends
ALLOCATE( z2dx(jpi,jpj) , z2dy(jpi,jpj) )
z2dx(:,:) = ( utau_b(:,:) + utau(:,:) ) / ( e3u(:,:,1,Kmm) * rho0 )
z2dy(:,:) = ( vtau_b(:,:) + vtau(:,:) ) / ( e3v(:,:,1,Kmm) * rho0 )
ALLOCATE( z2dx(A2D(0)) , z2dy(A2D(0)) )
DO_2D( 0, 0, 0, 0 )
z2dx(ji,jj) = ( utau_b(ji,jj) + utauU(ji,jj) ) / ( e3u(ji,jj,1,Kmm) * rho0 )
z2dy(ji,jj) = ( vtau_b(ji,jj) + vtauV(ji,jj) ) / ( e3v(ji,jj,1,Kmm) * rho0 )
END_2D
CALL iom_put( "utrd_tau", z2dx )
CALL iom_put( "vtrd_tau", z2dy )
DEALLOCATE( z2dx , z2dy )
......
......@@ -42,6 +42,7 @@ MODULE trdglo
REAL(wp) :: tvolv ! volume of the whole ocean computed at v-points
REAL(wp) :: rpktrd ! potential to kinetic energy conversion
REAL(wp) :: peke ! conversion potential energy - kinetic energy trend
REAL(wp) :: xcof
! !!! domain averaged trends
REAL(wp), DIMENSION(jptot_tra) :: tmo, smo ! temperature and salinity trends
......@@ -77,44 +78,47 @@ CONTAINS
INTEGER :: ji, jj, jk ! dummy loop indices
INTEGER :: ikbu, ikbv ! local integers
REAL(wp):: zvm, zvt, zvs, z1_2rho0 ! local scalars
REAL(wp), DIMENSION(jpi,jpj) :: ztswu, ztswv, z2dx, z2dy ! 2D workspace
REAL(wp), DIMENSION(A2D(0)) :: ztswu, ztswv, z2dx, z2dy ! 2D workspace
!!----------------------------------------------------------------------
!
IF( MOD(kt,nn_trd) == 0 .OR. kt == nit000 .OR. kt == nitend ) THEN
!
SELECT CASE( ctype )
!
CASE( 'TRA' ) !== Tracers (T & S) ==!
DO_3D( 1, 1, 1, 1, 1, jpkm1 ) ! global sum of mask volume trend and trend*T (including interior mask)
zvm = e1e2t(ji,jj) * e3t(ji,jj,jk,Kmm) * tmask(ji,jj,jk) * tmask_i(ji,jj)
zvt = ptrdx(ji,jj,jk) * zvm
zvs = ptrdy(ji,jj,jk) * zvm
tmo(ktrd) = tmo(ktrd) + zvt
smo(ktrd) = smo(ktrd) + zvs
t2 (ktrd) = t2(ktrd) + zvt * ts(ji,jj,jk,jp_tem,Kmm)
s2 (ktrd) = s2(ktrd) + zvs * ts(ji,jj,jk,jp_sal,Kmm)
END_3D
SELECT CASE( ctype )
!
CASE( 'TRA' ) !== Tracers (T & S) ==!
DO_3D( 0, 0, 0, 0, 1, jpkm1 ) ! global sum of mask volume trend and trend*T (including interior mask)
zvm = e1e2t(ji,jj) * e3t(ji,jj,jk,Kmm) * tmask(ji,jj,jk) * tmask_i(ji,jj)
zvt = ptrdx(ji,jj,jk) * zvm
zvs = ptrdy(ji,jj,jk) * zvm
tmo(ktrd) = tmo(ktrd) + zvt
smo(ktrd) = smo(ktrd) + zvs
t2 (ktrd) = t2(ktrd) + zvt * ts(ji,jj,jk,jp_tem,Kmm)
s2 (ktrd) = s2(ktrd) + zvs * ts(ji,jj,jk,jp_sal,Kmm)
END_3D
! ! linear free surface: diagnose advective flux trough the fixed k=1 w-surface
IF( ln_linssh .AND. ktrd == jptra_zad ) THEN
tmo(jptra_sad) = SUM( ww(:,:,1) * ts(:,:,1,jp_tem,Kmm) * e1e2t(:,:) * tmask_i(:,:) )
smo(jptra_sad) = SUM( ww(:,:,1) * ts(:,:,1,jp_sal,Kmm) * e1e2t(:,:) * tmask_i(:,:) )
t2 (jptra_sad) = SUM( ww(:,:,1) * ts(:,:,1,jp_tem,Kmm) * ts(:,:,1,jp_tem,Kmm) * e1e2t(:,:) * tmask_i(:,:) )
s2 (jptra_sad) = SUM( ww(:,:,1) * ts(:,:,1,jp_sal,Kmm) * ts(:,:,1,jp_sal,Kmm) * e1e2t(:,:) * tmask_i(:,:) )
ENDIF
IF( ln_linssh .AND. ktrd == jptra_zad ) THEN
DO_2D( 0, 0, 0, 0 ) ! global sum of mask volume trend and trend*T (including interior mask)
zvm = ww(ji,jj,1) * e1e2t(ji,jj) * tmask_i(ji,jj)
tmo(jptra_sad) = tmo(jptra_sad) + ts(ji,jj,1,jp_tem,Kmm) * zvm
smo(jptra_sad) = smo(jptra_sad) + ts(ji,jj,1,jp_sal,Kmm) * zvm
t2 (jptra_sad) = t2 (jptra_sad) + ts(ji,jj,1,jp_tem,Kmm) * ts(ji,jj,1,jp_tem,Kmm) * zvm
s2 (jptra_sad) = s2 (jptra_sad) + ts(ji,jj,1,jp_sal,Kmm) * ts(ji,jj,1,jp_sal,Kmm) * zvm
END_2D
ENDIF
!
IF( ktrd == jptra_atf ) THEN ! last trend (asselin time filter)
!
CALL glo_tra_wri( kt ) ! print the results in ocean.output
!
tmo(:) = 0._wp ! prepare the next time step (domain averaged array reset to zero)
smo(:) = 0._wp
t2 (:) = 0._wp
s2 (:) = 0._wp
!
ENDIF
IF( ktrd == jptra_atf ) THEN ! last trend (asselin time filter)
!
CALL glo_tra_wri( kt ) ! print the results in ocean.output
!
tmo(:) = 0._wp ! prepare the next time step (domain averaged array reset to zero)
smo(:) = 0._wp
t2 (:) = 0._wp
s2 (:) = 0._wp
!
ENDIF
!
CASE( 'DYN' ) !== Momentum and KE ==!
DO_3D( 1, 0, 1, 0, 1, jpkm1 )
DO_3D( 0, 0, 0, 0, 1, jpkm1 )
zvt = ptrdx(ji,jj,jk) * tmask_i(ji+1,jj) * tmask_i(ji,jj) * umask(ji,jj,jk) &
& * e1e2u (ji,jj) * e3u(ji,jj,jk,Kmm)
zvs = ptrdy(ji,jj,jk) * tmask_i(ji,jj+1) * tmask_i(ji,jj) * vmask(ji,jj,jk) &
......@@ -126,11 +130,11 @@ CONTAINS
!
IF( ktrd == jpdyn_zdf ) THEN ! zdf trend: compute separately the surface forcing trend
z1_2rho0 = 0.5_wp / rho0
DO_2D( 1, 0, 1, 0 )
zvt = ( utau_b(ji,jj) + utau(ji,jj) ) * tmask_i(ji+1,jj) * tmask_i(ji,jj) * umask(ji,jj,jk) &
& * z1_2rho0 * e1e2u(ji,jj)
zvs = ( vtau_b(ji,jj) + vtau(ji,jj) ) * tmask_i(ji,jj+1) * tmask_i(ji,jj) * vmask(ji,jj,jk) &
& * z1_2rho0 * e1e2v(ji,jj)
DO_2D( 0, 0, 0, 0 )
zvt = ( utau_b(ji,jj) + utauU(ji,jj) ) * tmask_i(ji+1,jj) * tmask_i(ji,jj) * umask(ji,jj,jk) &
& * z1_2rho0 * e1e2u(ji,jj)
zvs = ( vtau_b(ji,jj) + vtauV(ji,jj) ) * tmask_i(ji,jj+1) * tmask_i(ji,jj) * vmask(ji,jj,jk) &
& * z1_2rho0 * e1e2v(ji,jj)
umo(jpdyn_tau) = umo(jpdyn_tau) + zvt
vmo(jpdyn_tau) = vmo(jpdyn_tau) + zvs
hke(jpdyn_tau) = hke(jpdyn_tau) + uu(ji,jj,1,Kmm) * zvt + vv(ji,jj,1,Kmm) * zvs
......@@ -184,8 +188,7 @@ CONTAINS
INTEGER, INTENT(in) :: Kmm ! time level index
!
INTEGER :: ji, jj, jk ! dummy loop indices
REAL(wp) :: zcof ! local scalar
REAL(wp), DIMENSION(jpi,jpj,jpk) :: zkx, zky, zkz, zkepe
REAL(wp), DIMENSION(A2D(0),jpk) :: zkx, zky, zkz, zkepe
!!----------------------------------------------------------------------
! I. Momentum trends
......@@ -196,24 +199,24 @@ CONTAINS
! I.1 Conversion potential energy - kinetic energy
! --------------------------------------------------
! c a u t i o n here, trends are computed at kt+1 (now , but after the swap)
zkx (:,:,:) = 0._wp
zky (:,:,:) = 0._wp
zkz (:,:,:) = 0._wp
zkepe(:,:,:) = 0._wp
DO_3D( 0, 0, 0, 0, 1, jpkm1 ) ! loop from top to bottom
zkx (ji,jj,jk) = 0._wp
zky (ji,jj,jk) = 0._wp
zkz (ji,jj,jk) = 0._wp
zkepe(ji,jj,jk) = 0._wp
END_3D
CALL eos( ts(:,:,:,:,Kmm), rhd, rhop ) ! now potential density
zcof = 0.5_wp / rho0 ! Density flux at w-point
zkz(:,:,1) = 0._wp
DO jk = 2, jpk
zkz(:,:,jk) = zcof * e1e2t(:,:) * ww(:,:,jk) * ( rhop(:,:,jk) + rhop(:,:,jk-1) ) * tmask_i(:,:)
END DO
zkz(A2D(0),1) = 0._wp
DO_3D( 0, 0, 0, 0, 1, jpk ) ! loop from top to bottom
zkz(ji,jj,jk) = xcof * e1e2t(ji,jj) * ww(ji,jj,jk) * ( rhop(ji,jj,jk) + rhop(ji,jj,jk-1) ) * tmask_i(ji,jj)
END_3D
zcof = 0.5_wp / rho0 ! Density flux at u and v-points
DO_3D( 1, 0, 1, 0, 1, jpkm1 )
zkx(ji,jj,jk) = zcof * e2u(ji,jj) * e3u(ji,jj,jk,Kmm) &
DO_3D( 0, 0, 0, 0, 1, jpkm1 )
zkx(ji,jj,jk) = xcof * e2u(ji,jj) * e3u(ji,jj,jk,Kmm) &
& * uu(ji,jj,jk,Kmm) * ( rhop(ji,jj,jk) + rhop(ji+1,jj,jk) )
zky(ji,jj,jk) = zcof * e1v(ji,jj) * e3v(ji,jj,jk,Kmm) &
zky(ji,jj,jk) = xcof * e1v(ji,jj) * e3v(ji,jj,jk,Kmm) &
& * vv(ji,jj,jk,Kmm) * ( rhop(ji,jj,jk) + rhop(ji,jj+1,jk) )
END_3D
......@@ -227,10 +230,9 @@ CONTAINS
! I.2 Basin averaged kinetic energy trend
! ----------------------------------------
peke = 0._wp
DO jk = 1, jpkm1
peke = peke + SUM( zkepe(:,:,jk) * gdept(:,:,jk,Kmm) * e1e2t(:,:) &
& * e3t(:,:,jk,Kmm) )
END DO
DO_3D( 0, 0, 0, 0, 1, jpkm1 ) ! loop from top to bottom
peke = peke + zkepe(ji,jj,jk) * gdept(ji,jj,jk,Kmm) * e1e2t(ji,jj) * e3t(ji,jj,jk,Kmm)
END_3D
peke = grav * peke
! I.3 Sums over the global domain
......@@ -509,11 +511,14 @@ CONTAINS
WRITE(numout,*) '~~~~~~~~~~~~~'
ENDIF
xcof = 0.5_wp / rho0
! Total volume at t-points:
tvolt = 0._wp
DO jk = 1, jpkm1
tvolt = tvolt + SUM( e1e2t(:,:) * e3t(:,:,jk,Kmm) * tmask(:,:,jk) * tmask_i(:,:) )
END DO
DO_3D( 0, 0, 0, 0, 1, jpkm1 ) ! Density flux divergence at t-point
tvolt = tvolt + e1e2t(ji,jj) * e3t(ji,jj,jk,Kmm) * tmask(ji,jj,jk) * tmask_i(ji,jj)
END_3D
CALL mpp_sum( 'trdglo', tvolt ) ! sum over the global domain
IF(lwp) WRITE(numout,*) ' total ocean volume at T-point tvolt = ',tvolt
......
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.