Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#define SPONGE && define SPONGE_TOP
MODULE agrif_oce_sponge
!!======================================================================
!! *** MODULE agrif_oce_interp ***
!! AGRIF: sponge package for the ocean dynamics (OCE)
!!======================================================================
!! History : 2.0 ! 2002-06 (XXX) Original cade
!! - ! 2005-11 (XXX)
!! 3.2 ! 2009-04 (R. Benshila)
!! 3.6 ! 2014-09 (R. Benshila)
!!----------------------------------------------------------------------
#if defined key_agrif
!!----------------------------------------------------------------------
!! 'key_agrif' AGRIF zoom
!!----------------------------------------------------------------------
USE par_oce
USE oce
USE dom_oce
!
USE in_out_manager
USE agrif_oce
USE lbclnk ! ocean lateral boundary conditions (or mpp link)
USE iom
USE vremap
IMPLICIT NONE
PRIVATE
PUBLIC Agrif_Sponge, Agrif_Sponge_2d, Agrif_Sponge_Tra, Agrif_Sponge_Dyn
PUBLIC interptsn_sponge, interpun_sponge, interpvn_sponge
PUBLIC interpunb_sponge, interpvnb_sponge
!! * Substitutions
# include "domzgr_substitute.h90"
# include "do_loop_substitute.h90"
!!----------------------------------------------------------------------
!! NEMO/NST 4.0 , NEMO Consortium (2018)
!! $Id: agrif_oce_sponge.F90 15437 2021-10-22 12:21:20Z jchanut $
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
SUBROUTINE Agrif_Sponge_Tra
!!----------------------------------------------------------------------
!! *** ROUTINE Agrif_Sponge_Tra ***
!!----------------------------------------------------------------------
REAL(wp) :: zcoef ! local scalar
INTEGER :: istart, iend, jstart, jend
!!----------------------------------------------------------------------
!
#if defined SPONGE
!! Assume persistence:
zcoef = REAL(Agrif_rhot()-1,wp)/REAL(Agrif_rhot())
Agrif_SpecialValue = 0._wp
Agrif_UseSpecialValue = l_spc_tra
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
l_vremap = ln_vert_remap
tabspongedone_tsn = .FALSE.
!
CALL Agrif_Bc_Variable( ts_sponge_id, calledweight=zcoef, procname=interptsn_sponge )
!
Agrif_UseSpecialValue = .FALSE.
l_vremap = .FALSE.
#endif
!
CALL iom_put( 'agrif_spu', fspu(:,:))
CALL iom_put( 'agrif_spv', fspv(:,:))
!
END SUBROUTINE Agrif_Sponge_Tra
SUBROUTINE Agrif_Sponge_dyn
!!----------------------------------------------------------------------
!! *** ROUTINE Agrif_Sponge_dyn ***
!!----------------------------------------------------------------------
REAL(wp) :: zcoef ! local scalar
!!----------------------------------------------------------------------
!
#if defined SPONGE
zcoef = REAL(Agrif_rhot()-1,wp)/REAL(Agrif_rhot())
Agrif_SpecialValue = 0._wp
Agrif_UseSpecialValue = ln_spc_dyn
l_vremap = ln_vert_remap
use_sign_north = .TRUE.
sign_north = -1._wp
!
tabspongedone_u = .FALSE.
tabspongedone_v = .FALSE.
CALL Agrif_Bc_Variable( un_sponge_id, calledweight=zcoef, procname=interpun_sponge )
!
tabspongedone_u = .FALSE.
tabspongedone_v = .FALSE.
CALL Agrif_Bc_Variable( vn_sponge_id, calledweight=zcoef, procname=interpvn_sponge )
IF ( nn_shift_bar>0 ) THEN ! then split sponge between 2d and 3d
zcoef = REAL(Agrif_NbStepint(),wp)/REAL(Agrif_rhot()) ! forward tsplit
tabspongedone_u = .FALSE.
tabspongedone_v = .FALSE.
CALL Agrif_Bc_Variable( unb_sponge_id, calledweight=zcoef, procname=interpunb_sponge )
!
tabspongedone_u = .FALSE.
tabspongedone_v = .FALSE.
CALL Agrif_Bc_Variable( vnb_sponge_id, calledweight=zcoef, procname=interpvnb_sponge )
ENDIF
!
Agrif_UseSpecialValue = .FALSE.
use_sign_north = .FALSE.
l_vremap = .FALSE.
!
#endif
!
CALL iom_put( 'agrif_spt', fspt(:,:))
CALL iom_put( 'agrif_spf', fspf(:,:))
!
END SUBROUTINE Agrif_Sponge_dyn
SUBROUTINE Agrif_Sponge
!!----------------------------------------------------------------------
!! *** ROUTINE Agrif_Sponge ***
!!----------------------------------------------------------------------
INTEGER :: ji, jj, ind1, ind2
INTEGER :: ispongearea, jspongearea
REAL(wp) :: z1_ispongearea, z1_jspongearea
REAL(wp), DIMENSION(jpi,jpj) :: ztabramp
!!----------------------------------------------------------------------
!
! Sponge 1d example with:
! iraf = 3 ; nbghost = 3 ; nn_sponge_len = 2
!
!coarse : U T U T U T U
!| | | | |
!fine : t u t u t u t u t u t u t u t u t u t u t
!sponge val:0 1 1 1 1 5/6 4/6 3/6 2/6 1/6 0
! | ghost | <-- sponge area -- > |
! | points | |
! |--> dynamical interface
#if defined SPONGE || defined SPONGE_TOP
! Define ramp from boundaries towards domain interior at F-points
! Store it in ztabramp
ispongearea = nn_sponge_len * Agrif_irhox()
z1_ispongearea = 1._wp / REAL( MAX(ispongearea,1), wp )
jspongearea = nn_sponge_len * Agrif_irhoy()
z1_jspongearea = 1._wp / REAL( MAX(jspongearea,1), wp )
ztabramp(:,:) = 0._wp
IF( lk_west ) THEN ! --- West --- !
ind1 = nn_hls + nbghostcells ! halo + nbghostcells
ind2 = nn_hls + nbghostcells + ispongearea
DO ji = mi0(ind1), mi1(ind2)
DO jj = 1, jpj
ztabramp(ji,jj) = REAL(ind2 - mig(ji), wp) * z1_ispongearea
END DO
END DO
! ghost cells:
ind1 = 1
ind2 = nn_hls + nbghostcells ! halo + nbghostcells
DO ji = mi0(ind1), mi1(ind2)
DO jj = 1, jpj
ztabramp(ji,jj) = 1._wp
END DO
END DO
ENDIF
IF( lk_east ) THEN ! --- East --- !
ind1 = jpiglo - ( nn_hls + nbghostcells -1 ) - ispongearea - 1
ind2 = jpiglo - ( nn_hls + nbghostcells -1 ) - 1 ! halo + land + nbghostcells - 1
DO ji = mi0(ind1), mi1(ind2)
DO jj = 1, jpj
ztabramp(ji,jj) = MAX( ztabramp(ji,jj), REAL(mig(ji) - ind1, wp) * z1_ispongearea )
END DO
END DO
! ghost cells:
ind1 = jpiglo - ( nn_hls + nbghostcells -1 ) - 1 ! halo + land + nbghostcells - 1
ind2 = jpiglo - 1
DO ji = mi0(ind1), mi1(ind2)
DO jj = 1, jpj
ztabramp(ji,jj) = 1._wp
END DO
END DO
ENDIF
IF( lk_south ) THEN ! --- South --- !
ind1 = nn_hls + nbghostcells ! halo + nbghostcells
ind2 = nn_hls + nbghostcells + jspongearea
DO jj = mj0(ind1), mj1(ind2)
DO ji = 1, jpi
ztabramp(ji,jj) = MAX( ztabramp(ji,jj), REAL(ind2 - mjg(jj), wp) * z1_jspongearea )
END DO
END DO
! ghost cells:
ind1 = 1
ind2 = nn_hls + nbghostcells ! halo + nbghostcells
DO jj = mj0(ind1), mj1(ind2)
DO ji = 1, jpi
ztabramp(ji,jj) = 1._wp
END DO
END DO
ENDIF
IF( lk_north ) THEN ! --- North --- !
ind1 = jpjglo - ( nn_hls + nbghostcells -1 ) - jspongearea - 1
ind2 = jpjglo - ( nn_hls + nbghostcells -1 ) - 1 ! halo + nbghostcells - 1
DO jj = mj0(ind1), mj1(ind2)
DO ji = 1, jpi
ztabramp(ji,jj) = MAX( ztabramp(ji,jj), REAL(mjg(jj) - ind1, wp) * z1_jspongearea )
END DO
END DO
! ghost cells:
ind1 = jpjglo - ( nn_hls + nbghostcells -1 ) ! halo + land + nbghostcells - 1
ind2 = jpjglo
DO jj = mj0(ind1), mj1(ind2)
DO ji = 1, jpi
ztabramp(ji,jj) = 1._wp
END DO
END DO
ENDIF
!
! Tracers
fspu(:,:) = 0._wp
fspv(:,:) = 0._wp
DO_2D( 0, 0, 0, 0 )
fspu(ji,jj) = 0.5_wp * ( ztabramp(ji,jj) + ztabramp(ji,jj-1) ) * ssumask(ji,jj)
fspv(ji,jj) = 0.5_wp * ( ztabramp(ji,jj) + ztabramp(ji-1,jj) ) * ssvmask(ji,jj)
END_2D
! Dynamics
fspt(:,:) = 0._wp
fspf(:,:) = 0._wp
DO_2D( 0, 0, 0, 0 )
fspt(ji,jj) = 0.25_wp * ( ztabramp(ji ,jj ) + ztabramp(ji-1,jj ) &
& +ztabramp(ji ,jj-1) + ztabramp(ji-1,jj-1) ) * ssmask(ji,jj)
fspf(ji,jj) = ztabramp(ji,jj) * ssvmask(ji,jj) * ssvmask(ji,jj+1)
END_2D
CALL lbc_lnk( 'agrif_Sponge', fspu, 'U', 1._wp, fspv, 'V', 1._wp, fspt, 'T', 1._wp, fspf, 'F', 1._wp )
!
! Remove vertical interpolation where not needed:
! (A null value in mbkx arrays does the job)
WHERE (ssumask(:,:) == 0._wp) mbku_parent(:,:) = 0
WHERE (ssvmask(:,:) == 0._wp) mbkv_parent(:,:) = 0
WHERE (ssmask(:,:) == 0._wp) mbkt_parent(:,:) = 0
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
!
#endif
!
END SUBROUTINE Agrif_Sponge
SUBROUTINE Agrif_Sponge_2d
!!----------------------------------------------------------------------
!! *** ROUTINE Agrif_Sponge_2d ***
!!----------------------------------------------------------------------
INTEGER :: ji, jj, ind1, ind2, ishift, jshift
INTEGER :: ispongearea, jspongearea
REAL(wp) :: z1_ispongearea, z1_jspongearea
REAL(wp), DIMENSION(jpi,jpj) :: ztabramp
!!----------------------------------------------------------------------
!
! Sponge 1d example with:
! iraf = 3 ; nbghost = 3 ; nn_sponge_len = 2
!
!coarse : U T U T U T U
!| | | | |
!fine : t u t u t u t u t u t u t u t u t u t u t
!sponge val:0 1 1 1 1 5/6 4/6 3/6 2/6 1/6 0
! | ghost | <-- sponge area -- > |
! | points | |
! |--> dynamical interface
#if defined SPONGE || defined SPONGE_TOP
! Define ramp from boundaries towards domain interior at F-points
! Store it in ztabramp
ispongearea = nn_sponge_len * Agrif_irhox()
z1_ispongearea = 1._wp / REAL( MAX(ispongearea,1), wp )
jspongearea = nn_sponge_len * Agrif_irhoy()
z1_jspongearea = 1._wp / REAL( MAX(jspongearea,1), wp )
ishift = nn_shift_bar * Agrif_irhox()
jshift = nn_shift_bar * Agrif_irhoy()
ztabramp(:,:) = 0._wp
IF( lk_west ) THEN ! --- West --- !
ind1 = nn_hls + nbghostcells + ishift
ind2 = nn_hls + nbghostcells + ishift + ispongearea
DO ji = mi0(ind1), mi1(ind2)
DO jj = 1, jpj
ztabramp(ji,jj) = REAL(ind2 - mig(ji), wp) * z1_ispongearea
END DO
END DO
! ghost cells:
ind1 = 1
ind2 = nn_hls + nbghostcells + ishift ! halo + nbghostcells
DO ji = mi0(ind1), mi1(ind2)
DO jj = 1, jpj
ztabramp(ji,jj) = 1._wp
END DO
END DO
ENDIF
IF( lk_east ) THEN ! --- East --- !
ind1 = jpiglo - ( nn_hls + nbghostcells -1 + ishift) - ispongearea - 1
ind2 = jpiglo - ( nn_hls + nbghostcells -1 + ishift) - 1 ! halo + nbghostcells - 1
DO ji = mi0(ind1), mi1(ind2)
DO jj = 1, jpj
ztabramp(ji,jj) = MAX( ztabramp(ji,jj), REAL(mig(ji) - ind1, wp) * z1_ispongearea )
END DO
END DO
! ghost cells:
ind1 = jpiglo - ( nn_hls + nbghostcells -1 + ishift) - 1 ! halo + nbghostcells - 1
ind2 = jpiglo - 1
DO ji = mi0(ind1), mi1(ind2)
DO jj = 1, jpj
ztabramp(ji,jj) = 1._wp
END DO
END DO
ENDIF
IF( lk_south ) THEN ! --- South --- !
ind1 = nn_hls + nbghostcells + jshift ! halo + nbghostcells
ind2 = nn_hls + nbghostcells + jshift + jspongearea
DO jj = mj0(ind1), mj1(ind2)
DO ji = 1, jpi
ztabramp(ji,jj) = MAX( ztabramp(ji,jj), REAL(ind2 - mjg(jj), wp) * z1_jspongearea )
END DO
END DO
! ghost cells:
ind1 = 1
ind2 = nn_hls + nbghostcells + jshift ! halo + land + nbghostcells
DO jj = mj0(ind1), mj1(ind2)
DO ji = 1, jpi
ztabramp(ji,jj) = 1._wp
END DO
END DO
ENDIF
IF( lk_north ) THEN ! --- North --- !
ind1 = jpjglo - ( nn_hls + nbghostcells -1 + jshift) - jspongearea - 1
ind2 = jpjglo - ( nn_hls + nbghostcells -1 + jshift) - 1 ! halo + land + nbghostcells - 1
DO jj = mj0(ind1), mj1(ind2)
DO ji = 1, jpi
ztabramp(ji,jj) = MAX( ztabramp(ji,jj), REAL(mjg(jj) - ind1, wp) * z1_jspongearea )
END DO
END DO
! ghost cells:
ind1 = jpjglo - ( nn_hls + nbghostcells -1 + jshift) ! halo + land + nbghostcells - 1
ind2 = jpjglo
DO jj = mj0(ind1), mj1(ind2)
DO ji = 1, jpi
ztabramp(ji,jj) = 1._wp
END DO
END DO
ENDIF
!
! Tracers
fspu_2d(:,:) = 0._wp
fspv_2d(:,:) = 0._wp
DO_2D( 0, 0, 0, 0 )
fspu_2d(ji,jj) = 0.5_wp * ( ztabramp(ji,jj) + ztabramp(ji,jj-1) ) * ssumask(ji,jj)
fspv_2d(ji,jj) = 0.5_wp * ( ztabramp(ji,jj) + ztabramp(ji-1,jj) ) * ssvmask(ji,jj)
END_2D
! Dynamics
fspt_2d(:,:) = 0._wp
fspf_2d(:,:) = 0._wp
DO_2D( 0, 0, 0, 0 )
fspt_2d(ji,jj) = 0.25_wp * ( ztabramp(ji ,jj ) + ztabramp(ji-1,jj ) &
& +ztabramp(ji ,jj-1) + ztabramp(ji-1,jj-1) ) * ssmask(ji,jj)
fspf_2d(ji,jj) = ztabramp(ji,jj) * ssvmask(ji,jj) * ssvmask(ji,jj+1)
END_2D
CALL lbc_lnk( 'agrif_Sponge_2d', fspu_2d, 'U', 1._wp, fspv_2d, 'V', 1._wp, fspt_2d, 'T', 1._wp, fspf_2d, 'F', 1._wp )
!
#endif
!
END SUBROUTINE Agrif_Sponge_2d
SUBROUTINE interptsn_sponge( tabres, i1, i2, j1, j2, k1, k2, n1, n2, before)
!!----------------------------------------------------------------------
!! *** ROUTINE interptsn_sponge ***
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: i1, i2, j1, j2, k1, k2, n1, n2
REAL(wp), DIMENSION(i1:i2,j1:j2,k1:k2,n1:n2), INTENT(inout) :: tabres
LOGICAL , INTENT(in ) :: before
!
INTEGER :: ji, jj, jk, jn ! dummy loop indices
INTEGER :: iku, ikv
REAL(wp) :: ztsa, zabe1, zabe2, zbtr, zhtot
REAl(wp) :: zflag, zdmod, zdtot
REAL(wp), DIMENSION(i1-1:i2,j1-1:j2,jpk) :: ztu, ztv
REAL(wp), DIMENSION(i1:i2,j1:j2,jpk,n1:n2) ::tsbdiff
! vertical interpolation:
REAL(wp), DIMENSION(i1:i2,j1:j2,jpk,n1:n2) ::tabres_child
REAL(wp), DIMENSION(k1:k2,n1:n2-1) :: tabin, tabin_i
REAL(wp), DIMENSION(k1:k2) :: z_in, z_in_i, h_in_i
REAL(wp), DIMENSION(1:jpk) :: h_out, z_out
INTEGER :: N_in, N_out
!!----------------------------------------------------------------------
!
IF( before ) THEN
DO jn = 1, jpts

Jérôme Chanut
committed
DO jk=k1,k2-1
DO jj=j1,j2
DO ji=i1,i2
! JC: masking is mandatory here: before tracer field seems
! to hold non zero values where tmask=0
tabres(ji,jj,jk,jn) = ts(ji,jj,jk,jn,Kbb_a) * tmask(ji,jj,jk)
END DO
END DO
END DO
END DO
IF ( l_vremap.OR.ln_zps ) THEN
! Fill cell depths (i.e. gdept) to be interpolated
! Warning: these are masked, hence extrapolated prior interpolation.
DO jj=j1,j2
DO ji=i1,i2
tabres(ji,jj,k1,jpts+1) = 0.5_wp * tmask(ji,jj,k1) * e3w(ji,jj,k1,Kbb_a)

Jérôme Chanut
committed
DO jk=k1+1,k2-1
& ( tabres(ji,jj,jk-1,jpts+1) + e3w(ji,jj,jk,Kbb_a) )
END DO
END DO
END DO
! Save ssh at last level:
IF ( .NOT.ln_linssh ) THEN
tabres(i1:i2,j1:j2,k2,jpts+1) = ssh(i1:i2,j1:j2,Kbb_a)*tmask(i1:i2,j1:j2,1)
END IF
END IF
ELSE
!
IF ( l_vremap ) THEN
IF (ln_linssh) THEN
tabres(i1:i2,j1:j2,k2,n2) = 0._wp
ELSE ! Assuming parent volume follows child:
tabres(i1:i2,j1:j2,k2,n2) = ssh(i1:i2,j1:j2,Kbb_a)
ENDIF
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
DO jj=j1,j2
DO ji=i1,i2
tabres_child(ji,jj,:,:) = 0._wp
! Build vertical grids:
N_in = mbkt_parent(ji,jj)
! Input grid (account for partial cells if any):
IF ( N_in > 0 ) THEN
DO jk=1,N_in
z_in(jk) = tabres(ji,jj,jk,n2) - tabres(ji,jj,k2,n2)
tabin(jk,1:jpts) = tabres(ji,jj,jk,1:jpts)
END DO
! Intermediate grid:
DO jk = 1, N_in
h_in_i(jk) = e3t0_parent(ji,jj,jk) * &
& (1._wp + tabres(ji,jj,k2,n2)/(ht0_parent(ji,jj)*ssmask(ji,jj) + 1._wp - ssmask(ji,jj)))
END DO
z_in_i(1) = 0.5_wp * h_in_i(1)
DO jk=2,N_in
z_in_i(jk) = z_in_i(jk-1) + 0.5_wp * ( h_in_i(jk) + h_in_i(jk-1) )
END DO
z_in_i(1:N_in) = z_in_i(1:N_in) - tabres(ji,jj,k2,n2)
END IF
! Output (Child) grid:
N_out = mbkt(ji,jj)
DO jk=1,N_out
h_out(jk) = e3t(ji,jj,jk,Kbb_a)
END DO
z_out(1) = 0.5_wp * e3w(ji,jj,1,Kbb_a)
z_out(jk) = z_out(jk-1) + e3w(ji,jj,jk,Kbb_a)
END DO
IF (.NOT.ln_linssh) z_out(1:N_out) = z_out(1:N_out) - ssh(ji,jj,Kbb_a)
! Account for small differences in the free-surface
IF ( sum(h_out(1:N_out)) > sum(h_in_i(1:N_in) )) THEN
h_out(1) = h_out(1) - ( sum(h_out(1:N_out))-sum(h_in_i(1:N_in)) )
ELSE
h_in_i(1)= h_in_i(1) - ( sum(h_in_i(1:N_in))-sum(h_out(1:N_out)) )
END IF
IF (N_in*N_out > 0) THEN
! jc: disable "two steps" vertical remapping
! since this would require e3w0_parent to be available
! CALL remap_linear(tabin(1:N_in,1:jpts),z_in(1:N_in),tabin_i(1:N_in,1:jpts),z_in_i(1:N_in),N_in,N_in,jpts)
! CALL reconstructandremap(tabin_i(1:N_in,1:jpts),h_in_i(1:N_in),tabres_child(ji,jj,1:N_out,1:jpts),h_out(1:N_out),N_in,N_out,jpts)
CALL reconstructandremap(tabin(1:N_in,1:jpts),h_in_i(1:N_in),tabres_child(ji,jj,1:N_out,1:jpts),h_out(1:N_out),N_in,N_out,jpts)
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
! CALL remap_linear(tabin(1:N_in,1:jpts),z_in(1:N_in),tabres_child(ji,jj,1:N_out,1:jpts),z_out(1:N_in),N_in,N_out,jpts)
ENDIF
END DO
END DO
DO jj=j1,j2
DO ji=i1,i2
DO jk=1,jpkm1
tsbdiff(ji,jj,jk,1:jpts) = (ts(ji,jj,jk,1:jpts,Kbb_a) - tabres_child(ji,jj,jk,1:jpts)) * tmask(ji,jj,jk)
END DO
END DO
END DO
ELSE
IF ( Agrif_Parent(ln_zps) ) THEN ! Account for partial cells
DO jj=j1,j2
DO ji=i1,i2
!
N_in = mbkt(ji,jj)
N_out = mbkt(ji,jj)
z_in(1) = tabres(ji,jj,1,n2)
tabin(1,1:jpts) = tabres(ji,jj,1,1:jpts)
DO jk=2, N_in
z_in(jk) = tabres(ji,jj,jk,n2)
tabin(jk,1:jpts) = tabres(ji,jj,jk,1:jpts)
END DO
IF (.NOT.ln_linssh) z_in(1:N_in) = z_in(1:N_in) - tabres(ji,jj,k2,n2)
z_out(1) = 0.5_wp * e3w(ji,jj,1,Kbb_a)
z_out(jk) = z_out(jk-1) + e3w(ji,jj,jk,Kbb_a)
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
END DO
IF (.NOT.ln_linssh) z_out(1:N_out) = z_out(1:N_out) - ssh(ji,jj,Kbb_a)
CALL remap_linear(tabin(1:N_in,1:jpts), z_in(1:N_in), tabres(ji,jj,1:N_out,1:jpts), &
& z_out(1:N_out), N_in, N_out, jpts)
END DO
END DO
ENDIF
DO jj=j1,j2
DO ji=i1,i2
DO jk=1,jpkm1
tsbdiff(ji,jj,jk,1:jpts) = (ts(ji,jj,jk,1:jpts,Kbb_a) - tabres(ji,jj,jk,1:jpts))*tmask(ji,jj,jk)
END DO
END DO
END DO
END IF
DO jn = 1, jpts
DO jk = 1, jpkm1
ztu(i1-1:i2,j1-1:j2,jk) = 0._wp
DO jj = j1,j2
DO ji = i1,i2-1
zabe1 = rn_sponge_tra * r1_Dt * umask(ji,jj,jk) * e1e2u(ji,jj) * e3u(ji,jj,jk,Kmm_a)
zdtot = tsbdiff(ji+1,jj,jk,jn) - tsbdiff(ji,jj,jk,jn)
zdmod = ts(ji+1,jj,jk,jn,Kbb_a) - ts(ji,jj,jk,jn,Kbb_a)
zflag = 0.5_wp + SIGN(0.5_wp, zdtot*zdmod)
ztu(ji,jj,jk) = zabe1 * fspu(ji,jj) * ( zflag * zdtot + (1._wp - zflag) * zdmod )
END DO
END DO
ztv(i1-1:i2,j1-1:j2,jk) = 0._wp
DO ji = i1,i2
DO jj = j1,j2-1
zabe2 = rn_sponge_tra * r1_Dt * vmask(ji,jj,jk) * e1e2v(ji,jj) * e3v(ji,jj,jk,Kmm_a)
ztv(ji,jj,jk) = zabe2 * fspv(ji,jj) * ( tsbdiff(ji ,jj+1,jk,jn) - tsbdiff(ji,jj,jk,jn) )
zdtot = tsbdiff(ji,jj+1,jk,jn) - tsbdiff(ji,jj,jk,jn)
zdmod = ts(ji,jj+1,jk,jn,Kbb_a) - ts(ji,jj,jk,jn,Kbb_a)
zflag = 0.5_wp + SIGN(0.5_wp, zdtot*zdmod)
ztv(ji,jj,jk) = zabe2 * fspv(ji,jj) * ( zflag * zdtot + (1._wp - zflag) * zdmod )
END DO
END DO
!
IF( ln_zps ) THEN ! set gradient at partial step level
DO jj = j1,j2
DO ji = i1,i2
! last level
iku = mbku(ji,jj)
ikv = mbkv(ji,jj)
IF( iku == jk ) ztu(ji,jj,jk) = 0._wp
IF( ikv == jk ) ztv(ji,jj,jk) = 0._wp
END DO
END DO
ENDIF
END DO
!
! JC: there is something wrong with the Laplacian in corners
DO jk = 1, jpkm1
DO jj = j1,j2
DO ji = i1,i2
IF (.NOT. tabspongedone_tsn(ji,jj)) THEN
zbtr = r1_e1e2t(ji,jj) / e3t(ji,jj,jk,Kmm_a)
! horizontal diffusive trends
ztsa = zbtr * ( ztu(ji,jj,jk) - ztu(ji-1,jj,jk) &
& + ztv(ji,jj,jk) - ztv(ji,jj-1,jk) ) &
& - rn_trelax_tra * r1_Dt * fspt(ji,jj) * tsbdiff(ji,jj,jk,jn)
! add it to the general tracer trends
ts(ji,jj,jk,jn,Krhs_a) = ts(ji,jj,jk,jn,Krhs_a) + ztsa
ENDIF
END DO
END DO
END DO
!
END DO
!
tabspongedone_tsn(i1:i2,j1:j2) = .TRUE.
!
ENDIF
!
END SUBROUTINE interptsn_sponge
SUBROUTINE interpun_sponge(tabres,i1,i2,j1,j2,k1,k2,m1,m2, before)
!!---------------------------------------------
!! *** ROUTINE interpun_sponge ***
!!---------------------------------------------
INTEGER, INTENT(in) :: i1,i2,j1,j2,k1,k2,m1,m2
REAL(wp), DIMENSION(i1:i2,j1:j2,k1:k2,m1:m2), INTENT(inout) :: tabres
LOGICAL, INTENT(in) :: before
INTEGER :: ji,jj,jk,jmax
INTEGER :: ind1
! sponge parameters
REAL(wp) :: ze2u, ze1v, zua, zva, zbtr, zrhoy
REAL(wp), DIMENSION(i1:i2,j1:j2) :: zsshu
REAL(wp), DIMENSION(i1:i2,j1:j2,1:jpk) :: ubdiff
REAL(wp), DIMENSION(i1:i2,j1:j2,1:jpk) :: rotdiff, hdivdiff
! vertical interpolation:
REAL(wp), DIMENSION(i1:i2,j1:j2,1:jpk) :: tabres_child
REAL(wp), DIMENSION(k1:k2) :: tabin, h_in
REAL(wp), DIMENSION(1:jpk) :: h_out
INTEGER :: N_in, N_out
!!---------------------------------------------
!
IF( before ) THEN

Jérôme Chanut
committed
DO jk=k1,k2-1
tabres(ji,jj,jk,m1) = e2u(ji,jj) * e3u(ji,jj,jk,Kbb_a) * uu(ji,jj,jk,Kbb_a) * umask(ji,jj,jk)
zrhoy = Agrif_rhoy()
IF ( ln_linssh ) THEN
zsshu(i1:i2,j1:j2) = 0._wp
ELSE
zsshu(i1:i2,j1:j2) = hu(i1:i2,j1:j2,Kbb_a) - hu_0(i1:i2,j1:j2)
ENDIF
DO jj=j1,j2
DO ji=i1,i2
tabres_child(ji,jj,:) = 0._wp
N_in = mbku_parent(ji,jj)
N_out = mbku(ji,jj)
IF (N_in * N_out > 0) THEN
DO jk=1,N_in
h_in(jk) = e3u0_parent(ji,jj,jk) * &
& (1._wp + zsshu(ji,jj)/(hu0_parent(ji,jj)*ssumask(ji,jj) + 1._wp - ssumask(ji,jj)))
tabin(jk) = tabres(ji,jj,jk,1) / (e2u(ji,jj)*zrhoy*h_in(jk))
END DO
!
DO jk=1,N_out
h_out(jk) = e3u(ji,jj,jk,Kbb_a)
END DO
CALL reconstructandremap(tabin(1:N_in),h_in(1:N_in),tabres_child(ji,jj,1:N_out),h_out(1:N_out),N_in,N_out,1)
ENDIF
END DO
END DO
ELSE
DO jk=1,jpkm1
tabres_child(i1:i2,j1:j2,jk) = tabres(i1:i2,j1:j2,jk,1)/(e2u(i1:i2,j1:j2)*zrhoy*e3u(i1:i2,j1:j2,jk,Kbb_a))
END DO

Jérôme Chanut
committed
ubdiff(i1:i2,j1:j2,1:jpkm1) = (uu(i1:i2,j1:j2,1:jpkm1,Kbb_a) - tabres_child(i1:i2,j1:j2,1:jpkm1))*umask(i1:i2,j1:j2,1:jpkm1)
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
DO jk = 1, jpkm1 ! Horizontal slab
! ! ===============
! ! --------
! Horizontal divergence ! div
! ! --------
DO jj = j1,j2
DO ji = i1+1,i2 ! vector opt.
zbtr = rn_sponge_dyn * r1_Dt * fspt(ji,jj) / e3t(ji,jj,jk,Kbb_a)
hdivdiff(ji,jj,jk) = ( e2u(ji ,jj)*e3u(ji ,jj,jk,Kbb_a) * ubdiff(ji ,jj,jk) &
& -e2u(ji-1,jj)*e3u(ji-1,jj,jk,Kbb_a) * ubdiff(ji-1,jj,jk) ) * zbtr
END DO
END DO
DO jj = j1,j2-1
DO ji = i1,i2 ! vector opt.
zbtr = rn_sponge_dyn * r1_Dt * fspf(ji,jj) * e3f(ji,jj,jk)
rotdiff(ji,jj,jk) = ( -e1u(ji,jj+1) * ubdiff(ji,jj+1,jk) &
& +e1u(ji,jj ) * ubdiff(ji,jj ,jk) ) * fmask(ji,jj,jk) * zbtr
END DO
END DO
END DO
!
DO jj = j1+1, j2-1
DO ji = i1+1, i2-1 ! vector opt.
IF (.NOT. tabspongedone_u(ji,jj)) THEN
DO jk = 1, jpkm1 ! Horizontal slab
ze2u = rotdiff (ji,jj,jk)
ze1v = hdivdiff(ji,jj,jk)
! horizontal diffusive trends
zua = - ( ze2u - rotdiff (ji,jj-1,jk) ) / ( e2u(ji,jj) * e3u(ji,jj,jk,Kmm_a) ) &
& + ( hdivdiff(ji+1,jj,jk) - ze1v ) * r1_e1u(ji,jj) &
& - rn_trelax_dyn * r1_Dt * fspu(ji,jj) * ubdiff(ji,jj,jk)
! add it to the general momentum trends
uu(ji,jj,jk,Krhs_a) = uu(ji,jj,jk,Krhs_a) + zua
END DO
ENDIF
END DO
END DO
tabspongedone_u(i1+1:i2-1,j1+1:j2-1) = .TRUE.
jmax = j2-1
ind1 = jpjglo - ( nn_hls + nbghostcells + 1 ) ! North
DO jj = mj0(ind1), mj1(ind1)
jmax = MIN(jmax,jj)
END DO
DO jj = j1+1, jmax
DO ji = i1+1, i2 ! vector opt.
IF (.NOT. tabspongedone_v(ji,jj)) THEN
DO jk = 1, jpkm1 ! Horizontal slab
ze2u = rotdiff (ji,jj,jk)
ze1v = hdivdiff(ji,jj,jk)
! horizontal diffusive trends
zva = + ( ze2u - rotdiff (ji-1,jj,jk) ) / ( e1v(ji,jj) * e3v(ji,jj,jk,Kmm_a) ) &
+ ( hdivdiff(ji,jj+1,jk) - ze1v ) * r1_e2v(ji,jj)
! add it to the general momentum trends
vv(ji,jj,jk,Krhs_a) = vv(ji,jj,jk,Krhs_a) + zva
END DO
ENDIF
!
END DO
END DO
!
tabspongedone_v(i1+1:i2,j1+1:jmax) = .TRUE.
!
ENDIF
!
END SUBROUTINE interpun_sponge
SUBROUTINE interpvn_sponge(tabres,i1,i2,j1,j2,k1,k2,m1,m2, before)
!!---------------------------------------------
!! *** ROUTINE interpvn_sponge ***
!!---------------------------------------------
INTEGER, INTENT(in) :: i1,i2,j1,j2,k1,k2,m1,m2
REAL(wp), DIMENSION(i1:i2,j1:j2,k1:k2,m1:m2), INTENT(inout) :: tabres
LOGICAL, INTENT(in) :: before
!
INTEGER :: ji, jj, jk, imax
INTEGER :: ind1
REAL(wp) :: ze2u, ze1v, zua, zva, zbtr, zrhox
REAL(wp), DIMENSION(i1:i2,j1:j2) :: zsshv
REAL(wp), DIMENSION(i1:i2,j1:j2,1:jpk) :: vbdiff
REAL(wp), DIMENSION(i1:i2,j1:j2,1:jpk) :: rotdiff, hdivdiff
! vertical interpolation:
REAL(wp), DIMENSION(i1:i2,j1:j2,1:jpk) :: tabres_child
REAL(wp), DIMENSION(k1:k2) :: tabin, h_in
REAL(wp), DIMENSION(1:jpk) :: h_out
INTEGER :: N_in, N_out
!!---------------------------------------------
IF( before ) THEN

Jérôme Chanut
committed
DO jk=k1,k2-1
tabres(ji,jj,jk,m1) = e1v(ji,jj) * e3v(ji,jj,jk,Kbb_a) * vv(ji,jj,jk,Kbb_a) * vmask(ji,jj,jk)
zrhox = Agrif_rhox()
IF ( ln_linssh ) THEN
zsshv(i1:i2,j1:j2) = 0._wp
ELSE
zsshv(i1:i2,j1:j2) = hv(i1:i2,j1:j2,Kbb_a) - hv_0(i1:i2,j1:j2)
ENDIF
DO jj=j1,j2
DO ji=i1,i2
tabres_child(ji,jj,:) = 0._wp
N_in = mbkv_parent(ji,jj)
N_out = mbkv(ji,jj)
IF (N_in * N_out > 0) THEN
DO jk=1,N_in
h_in(jk) = e3v0_parent(ji,jj,jk) * &
& (1._wp + zsshv(ji,jj)/(hv0_parent(ji,jj)*ssvmask(ji,jj) + 1._wp - ssvmask(ji,jj)))
tabin(jk) = tabres(ji,jj,jk,1) / (e1v(ji,jj)*zrhox*h_in(jk))
DO jk=1,N_out
h_out(jk) = e3v(ji,jj,jk,Kbb_a)
END DO
CALL reconstructandremap(tabin(1:N_in),h_in(1:N_in),tabres_child(ji,jj,1:N_out),h_out(1:N_out),N_in,N_out,1)
ENDIF
END DO
END DO
ELSE
DO jk=1,jpkm1
tabres_child(i1:i2,j1:j2,jk) = tabres(i1:i2,j1:j2,jk,1)/(e1v(i1:i2,j1:j2)*zrhox*e3v(i1:i2,j1:j2,jk,Kbb_a))
END DO

Jérôme Chanut
committed
vbdiff(i1:i2,j1:j2,1:jpkm1) = (vv(i1:i2,j1:j2,1:jpkm1,Kbb_a) - tabres_child(i1:i2,j1:j2,1:jpkm1))*vmask(i1:i2,j1:j2,1:jpkm1)
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
DO jk = 1, jpkm1 ! Horizontal slab
! ! ===============
! ! --------
! Horizontal divergence ! div
! ! --------
DO jj = j1+1,j2
DO ji = i1,i2 ! vector opt.
zbtr = rn_sponge_dyn * r1_Dt * fspt(ji,jj) / e3t(ji,jj,jk,Kbb_a)
hdivdiff(ji,jj,jk) = ( e1v(ji,jj ) * e3v(ji,jj ,jk,Kbb_a) * vbdiff(ji,jj ,jk) &
& -e1v(ji,jj-1) * e3v(ji,jj-1,jk,Kbb_a) * vbdiff(ji,jj-1,jk) ) * zbtr
END DO
END DO
DO jj = j1,j2
DO ji = i1,i2-1 ! vector opt.
zbtr = rn_sponge_dyn * r1_Dt * fspf(ji,jj) * e3f(ji,jj,jk)
rotdiff(ji,jj,jk) = ( e2v(ji+1,jj) * vbdiff(ji+1,jj,jk) &
& -e2v(ji ,jj) * vbdiff(ji ,jj,jk) ) * fmask(ji,jj,jk) * zbtr
END DO
END DO
END DO
! ! ===============
!
imax = i2 - 1
ind1 = jpiglo - ( nn_hls + nbghostcells + 1 ) ! East
DO ji = mi0(ind1), mi1(ind1)
imax = MIN(imax,ji)
END DO
DO jj = j1+1, j2
DO ji = i1+1, imax ! vector opt.
IF( .NOT. tabspongedone_u(ji,jj) ) THEN
DO jk = 1, jpkm1
uu(ji,jj,jk,Krhs_a) = uu(ji,jj,jk,Krhs_a) &
& - ( rotdiff (ji ,jj,jk) - rotdiff (ji,jj-1,jk)) / ( e2u(ji,jj) * e3u(ji,jj,jk,Kmm_a) ) &
& + ( hdivdiff(ji+1,jj,jk) - hdivdiff(ji,jj ,jk)) * r1_e1u(ji,jj)
END DO
ENDIF
END DO
END DO
!
tabspongedone_u(i1+1:imax,j1+1:j2) = .TRUE.
!
DO jj = j1+1, j2-1
DO ji = i1+1, i2-1 ! vector opt.
IF( .NOT. tabspongedone_v(ji,jj) ) THEN
DO jk = 1, jpkm1
vv(ji,jj,jk,Krhs_a) = vv(ji,jj,jk,Krhs_a) &
& + ( rotdiff (ji,jj ,jk) - rotdiff (ji-1,jj,jk) ) / ( e1v(ji,jj) * e3v(ji,jj,jk,Kmm_a) ) &
& + ( hdivdiff(ji,jj+1,jk) - hdivdiff(ji ,jj,jk) ) * r1_e2v(ji,jj) &
& - rn_trelax_dyn * r1_Dt * fspv(ji,jj) * vbdiff(ji,jj,jk)
END DO
ENDIF
END DO
END DO
tabspongedone_v(i1+1:i2-1,j1+1:j2-1) = .TRUE.
ENDIF
!
END SUBROUTINE interpvn_sponge
SUBROUTINE interpunb_sponge(tabres,i1,i2,j1,j2, before)
!!---------------------------------------------
!! *** ROUTINE interpunb_sponge ***
!!---------------------------------------------
INTEGER, INTENT(in) :: i1,i2,j1,j2
REAL(wp), DIMENSION(i1:i2,j1:j2), INTENT(inout) :: tabres
LOGICAL, INTENT(in) :: before
INTEGER :: ji, jj, ind1, jmax
! sponge parameters
REAL(wp) :: ze2u, ze1v, zua, zva, zbtr
REAL(wp), DIMENSION(i1:i2,j1:j2) :: ubdiff
REAL(wp), DIMENSION(i1:i2,j1:j2) :: rotdiff, hdivdiff
!!---------------------------------------------
!
IF( before ) THEN
DO jj=j1,j2
DO ji=i1,i2
tabres(ji,jj) = uu_b(ji,jj,Kmm_a)
END DO
END DO
ELSE
ubdiff(i1:i2,j1:j2) = (uu_b(i1:i2,j1:j2,Kmm_a) - tabres(i1:i2,j1:j2))*umask(i1:i2,j1:j2,1)
!
! ! --------
! Horizontal divergence ! div
! ! --------
DO jj = j1,j2
DO ji = i1+1,i2 ! vector opt.
zbtr = rn_sponge_dyn * r1_Dt * fspt_2d(ji,jj) * r1_ht_0(ji,jj)
hdivdiff(ji,jj) = ( e2u(ji ,jj)*hu(ji ,jj,Kbb_a) * ubdiff(ji ,jj) &
&-e2u(ji-1,jj)*hu(ji-1,jj,Kbb_a) * ubdiff(ji-1,jj) ) * zbtr
END DO
END DO
DO jj = j1,j2-1
DO ji = i1,i2 ! vector opt.
zbtr = rn_sponge_dyn * r1_Dt * fspf_2d(ji,jj) * hf_0(ji,jj)
rotdiff(ji,jj) = ( -e1u(ji,jj+1) * ubdiff(ji,jj+1) &
& +e1u(ji,jj ) * ubdiff(ji,jj ) ) * fmask(ji,jj,1) * zbtr
END DO
END DO
!
DO jj = j1+1, j2-1
DO ji = i1+1, i2-1 ! vector opt.
IF (.NOT. tabspongedone_u(ji,jj)) THEN
ze2u = rotdiff (ji,jj)
ze1v = hdivdiff(ji,jj)
! horizontal diffusive trends
zua = - ( ze2u - rotdiff (ji,jj-1) ) * r1_e2u(ji,jj) * r1_hu(ji,jj,Kmm_a) &
& + ( hdivdiff(ji+1,jj) - ze1v ) * r1_e1u(ji,jj) &
& - rn_trelax_dyn * r1_Dt * fspu_2d(ji,jj) * ubdiff(ji,jj)
! add it to the general momentum trends
uu(ji,jj,:,Krhs_a) = uu(ji,jj,:,Krhs_a) + zua
ENDIF
END DO
END DO
tabspongedone_u(i1+1:i2-1,j1+1:j2-1) = .TRUE.
jmax = j2-1
ind1 = jpjglo - ( nn_hls + nbghostcells + 1 ) ! North
DO jj = mj0(ind1), mj1(ind1)
jmax = MIN(jmax,jj)
END DO
DO jj = j1+1, jmax
DO ji = i1+1, i2 ! vector opt.
IF (.NOT. tabspongedone_v(ji,jj)) THEN
ze2u = rotdiff (ji,jj)
ze1v = hdivdiff(ji,jj)
zva = + ( ze2u - rotdiff (ji-1,jj) ) * r1_e1v(ji,jj) * r1_hv(ji,jj,Kmm_a) &
+ ( hdivdiff(ji,jj+1) - ze1v ) * r1_e2v(ji,jj)
vv(ji,jj,:,Krhs_a) = vv(ji,jj,:,Krhs_a) + zva
ENDIF
END DO
END DO
!
tabspongedone_v(i1+1:i2,j1+1:jmax) = .TRUE.
!
ENDIF
!
END SUBROUTINE interpunb_sponge
SUBROUTINE interpvnb_sponge(tabres,i1,i2,j1,j2, before)
!!---------------------------------------------
!! *** ROUTINE interpvnb_sponge ***
!!---------------------------------------------
INTEGER, INTENT(in) :: i1,i2,j1,j2
REAL(wp), DIMENSION(i1:i2,j1:j2), INTENT(inout) :: tabres
LOGICAL, INTENT(in) :: before
!
INTEGER :: ji, jj, ind1, imax
REAL(wp) :: ze2u, ze1v, zua, zva, zbtr
REAL(wp), DIMENSION(i1:i2,j1:j2) :: vbdiff
REAL(wp), DIMENSION(i1:i2,j1:j2) :: rotdiff, hdivdiff
!!---------------------------------------------
IF( before ) THEN
DO jj=j1,j2
DO ji=i1,i2
tabres(ji,jj) = vv_b(ji,jj,Kmm_a)
END DO
END DO
ELSE
vbdiff(i1:i2,j1:j2) = (vv_b(i1:i2,j1:j2,Kmm_a) - tabres(i1:i2,j1:j2))*vmask(i1:i2,j1:j2,1)
! ! --------
! Horizontal divergence ! div
! ! --------
DO jj = j1+1,j2