Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
MODULE flo4rk
!!======================================================================
!! *** MODULE flo4rk ***
!! Ocean floats : trajectory computation using a 4th order Runge-Kutta
!!======================================================================
!!
!!----------------------------------------------------------------------
!! flo_4rk : Compute the geographical position of floats
!! flo_interp : interpolation
!!----------------------------------------------------------------------
USE flo_oce ! ocean drifting floats
USE oce ! ocean dynamics and tracers
USE dom_oce ! ocean space and time domain
USE in_out_manager ! I/O manager
IMPLICIT NONE
PRIVATE
PUBLIC flo_4rk ! routine called by floats.F90
! ! RK4 and Lagrange interpolation coefficients
REAL(wp), DIMENSION (4) :: tcoef1 = (/ 1.0 , 0.5 , 0.5 , 0.0 /) !
REAL(wp), DIMENSION (4) :: tcoef2 = (/ 0.0 , 0.5 , 0.5 , 1.0 /) !
REAL(wp), DIMENSION (4) :: scoef2 = (/ 1.0 , 2.0 , 2.0 , 1.0 /) !
REAL(wp), DIMENSION (4) :: rcoef = (/-1./6. , 1./2. ,-1./2. , 1./6. /) !
REAL(wp), DIMENSION (3) :: scoef1 = (/ 0.5 , 0.5 , 1.0 /) !
# include "domzgr_substitute.h90"
!!----------------------------------------------------------------------
!! NEMO/OCE 4.0 , NEMO Consortium (2018)
!! $Id: flo4rk.F90 13237 2020-07-03 09:12:53Z smasson $
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
SUBROUTINE flo_4rk( kt, Kbb, Kmm )
!!----------------------------------------------------------------------
!! *** ROUTINE flo_4rk ***
!!
!! ** Purpose : Compute the geographical position (lat,lon,depth)
!! of each float at each time step.
!!
!! ** Method : The position of a float is computed with a 4th order
!! Runge-Kutta scheme and and Lagrange interpolation.
!! We need to know the velocity field, the old positions of the
!! floats and the grid defined on the domain.
!!----------------------------------------------------------------------
INTEGER, INTENT(in) :: kt ! ocean time-step index
INTEGER, INTENT(in) :: Kbb, Kmm ! ocean time level indices
!!
INTEGER :: jfl, jind ! dummy loop indices
INTEGER :: ierror ! error value
REAL(wp), DIMENSION(jpnfl) :: zgifl , zgjfl , zgkfl ! index RK positions
REAL(wp), DIMENSION(jpnfl) :: zufl , zvfl , zwfl ! interpolated velocity at the float position
REAL(wp), DIMENSION(jpnfl,4) :: zrkxfl, zrkyfl, zrkzfl ! RK coefficients
!!---------------------------------------------------------------------
!
IF( ierror /= 0 ) THEN
WRITE(numout,*) 'flo_4rk: allocation of workspace arrays failed'
ENDIF
IF( kt == nit000 ) THEN
IF(lwp) WRITE(numout,*)
IF(lwp) WRITE(numout,*) 'flo_4rk : compute Runge Kutta trajectories for floats '
IF(lwp) WRITE(numout,*) '~~~~~~~'
ENDIF
! Verification of the floats positions. If one of them leave the domain
! domain we replace the float near the border.
DO jfl = 1, jpnfl
! i-direction
IF( tpifl(jfl) <= 1.5 ) THEN
IF(lwp)WRITE(numout,*)'!!!!!!!!!!!!! WARNING !!!!!!!!!!!!!!!!'
IF(lwp)WRITE(numout,*)'The float',jfl,'is out of the domain at the WEST border.'
tpifl(jfl) = tpifl(jfl) + 1.
IF(lwp)WRITE(numout,*)'New initialisation for this float at i=',tpifl(jfl)
ENDIF
IF( tpifl(jfl) >= jpi-.5 ) THEN
IF(lwp)WRITE(numout,*)'!!!!!!!!!!!!! WARNING !!!!!!!!!!!!!!!!'
IF(lwp)WRITE(numout,*)'The float',jfl,'is out of the domain at the EAST border.'
tpifl(jfl) = tpifl(jfl) - 1.
IF(lwp)WRITE(numout,*)'New initialisation for this float at i=', tpifl(jfl)
ENDIF
! j-direction
IF( tpjfl(jfl) <= 1.5 ) THEN
IF(lwp)WRITE(numout,*)'!!!!!!!!!!!!! WARNING !!!!!!!!!!!!!!!!'
IF(lwp)WRITE(numout,*)'The float',jfl,'is out of the domain at the SOUTH border.'
tpjfl(jfl) = tpjfl(jfl) + 1.
IF(lwp)WRITE(numout,*)'New initialisation for this float at j=', tpjfl(jfl)
ENDIF
IF( tpjfl(jfl) >= jpj-.5 ) THEN
IF(lwp)WRITE(numout,*)'!!!!!!!!!!!!! WARNING !!!!!!!!!!!!!!!!'
IF(lwp)WRITE(numout,*)'The float',jfl,'is out of the domain at the NORTH border.'
tpjfl(jfl) = tpjfl(jfl) - 1.
IF(lwp)WRITE(numout,*)'New initialisation for this float at j=', tpjfl(jfl)
ENDIF
! k-direction
IF( tpkfl(jfl) <= .5 ) THEN
IF(lwp)WRITE(numout,*)'!!!!!!!!!!!!! WARNING !!!!!!!!!!!!!!!!'
IF(lwp)WRITE(numout,*)'The float',jfl,'is out of the domain at the TOP border.'
tpkfl(jfl) = tpkfl(jfl) + 1.
IF(lwp)WRITE(numout,*)'New initialisation for this float at k=', tpkfl(jfl)
ENDIF
IF( tpkfl(jfl) >= jpk-.5 ) THEN
IF(lwp)WRITE(numout,*)'!!!!!!!!!!!!! WARNING !!!!!!!!!!!!!!!!'
IF(lwp)WRITE(numout,*)'The float',jfl,'is out of the domain at the BOTTOM border.'
tpkfl(jfl) = tpkfl(jfl) - 1.
IF(lwp)WRITE(numout,*)'New initialisation for this float at k=', tpkfl(jfl)
ENDIF
END DO
! 4 steps of Runge-Kutta algorithme
! initialisation of the positions
DO jfl = 1, jpnfl
zgifl(jfl) = tpifl(jfl)
zgjfl(jfl) = tpjfl(jfl)
zgkfl(jfl) = tpkfl(jfl)
END DO
DO jind = 1, 4
! for each step we compute the compute the velocity with Lagrange interpolation
CALL flo_interp( Kbb, Kmm, zgifl, zgjfl, zgkfl, zufl, zvfl, zwfl, jind )
! computation of Runge-Kutta factor
DO jfl = 1, jpnfl
zrkxfl(jfl,jind) = rn_Dt*zufl(jfl)
zrkyfl(jfl,jind) = rn_Dt*zvfl(jfl)
zrkzfl(jfl,jind) = rn_Dt*zwfl(jfl)
END DO
IF( jind /= 4 ) THEN
DO jfl = 1, jpnfl
zgifl(jfl) = (tpifl(jfl)) + scoef1(jind)*zrkxfl(jfl,jind)
zgjfl(jfl) = (tpjfl(jfl)) + scoef1(jind)*zrkyfl(jfl,jind)
zgkfl(jfl) = (tpkfl(jfl)) + scoef1(jind)*zrkzfl(jfl,jind)
END DO
ENDIF
END DO
DO jind = 1, 4
DO jfl = 1, jpnfl
tpifl(jfl) = tpifl(jfl) + scoef2(jind)*zrkxfl(jfl,jind)/6.
tpjfl(jfl) = tpjfl(jfl) + scoef2(jind)*zrkyfl(jfl,jind)/6.
tpkfl(jfl) = tpkfl(jfl) + scoef2(jind)*zrkzfl(jfl,jind)/6.
END DO
END DO
!
!
END SUBROUTINE flo_4rk
SUBROUTINE flo_interp( Kbb, Kmm, &
& pxt , pyt , pzt , &
& pufl, pvfl, pwfl, ki )
!!----------------------------------------------------------------------
!! *** ROUTINE flointerp ***
!!
!! ** Purpose : Interpolation of the velocity on the float position
!!
!! ** Method : Lagrange interpolation with the 64 neighboring
!! points. This routine is call 4 time at each time step to
!! compute velocity at the date and the position we need to
!! integrated with RK method.
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: Kbb, Kmm ! ocean time level indices
REAL(wp) , DIMENSION(jpnfl), INTENT(in ) :: pxt , pyt , pzt ! position of the float
REAL(wp) , DIMENSION(jpnfl), INTENT( out) :: pufl, pvfl, pwfl ! velocity at this position
INTEGER , INTENT(in ) :: ki !
!!
INTEGER :: jfl, jind1, jind2, jind3 ! dummy loop indices
REAL(wp) :: zsumu, zsumv, zsumw ! local scalar
INTEGER , DIMENSION(jpnfl) :: iilu, ijlu, iklu ! nearest neighbour INDEX-u
INTEGER , DIMENSION(jpnfl) :: iilv, ijlv, iklv ! nearest neighbour INDEX-v
INTEGER , DIMENSION(jpnfl) :: iilw, ijlw, iklw ! nearest neighbour INDEX-w
INTEGER , DIMENSION(jpnfl,4) :: iidu, ijdu, ikdu ! 64 nearest neighbour INDEX-u
INTEGER , DIMENSION(jpnfl,4) :: iidv, ijdv, ikdv ! 64 nearest neighbour INDEX-v
INTEGER , DIMENSION(jpnfl,4) :: iidw, ijdw, ikdw ! 64 nearest neighbour INDEX-w
REAL(wp) , DIMENSION(jpnfl,4) :: zlagxu, zlagyu, zlagzu ! Lagrange coefficients
REAL(wp) , DIMENSION(jpnfl,4) :: zlagxv, zlagyv, zlagzv ! - -
REAL(wp) , DIMENSION(jpnfl,4) :: zlagxw, zlagyw, zlagzw ! - -
REAL(wp) , DIMENSION(jpnfl,4,4,4) :: ztufl , ztvfl , ztwfl ! velocity at choosen time step
!!---------------------------------------------------------------------
! Interpolation of U velocity
! nearest neightboring point for computation of u
DO jfl = 1, jpnfl
iilu(jfl) = INT(pxt(jfl)-.5)
ijlu(jfl) = INT(pyt(jfl)-.5)
iklu(jfl) = INT(pzt(jfl))
END DO
! 64 neightboring points for computation of u
DO jind1 = 1, 4
DO jfl = 1, jpnfl
! i-direction
IF( iilu(jfl) <= 2 ) THEN ; iidu(jfl,jind1) = jind1
ELSE
IF( iilu(jfl) >= jpi-1 ) THEN ; iidu(jfl,jind1) = jpi + jind1 - 4
ELSE ; iidu(jfl,jind1) = iilu(jfl) + jind1 - 2
ENDIF
ENDIF
! j-direction
IF( ijlu(jfl) <= 2 ) THEN ; ijdu(jfl,jind1) = jind1
ELSE
IF( ijlu(jfl) >= jpj-1 ) THEN ; ijdu(jfl,jind1) = jpj + jind1 - 4
ELSE ; ijdu(jfl,jind1) = ijlu(jfl) + jind1 - 2
ENDIF
ENDIF
! k-direction
IF( iklu(jfl) <= 2 ) THEN ; ikdu(jfl,jind1) = jind1
ELSE
IF( iklu(jfl) >= jpk-1 ) THEN ; ikdu(jfl,jind1) = jpk + jind1 - 4
ELSE ; ikdu(jfl,jind1) = iklu(jfl) + jind1 - 2
ENDIF
ENDIF
END DO
END DO
! Lagrange coefficients
DO jfl = 1, jpnfl
DO jind1 = 1, 4
zlagxu(jfl,jind1) = 1.
zlagyu(jfl,jind1) = 1.
zlagzu(jfl,jind1) = 1.
END DO
END DO
DO jind1 = 1, 4
DO jind2 = 1, 4
DO jfl= 1, jpnfl
IF( jind1 /= jind2 ) THEN
zlagxu(jfl,jind1) = zlagxu(jfl,jind1) * ( pxt(jfl)-(float(iidu(jfl,jind2))+.5) )
zlagyu(jfl,jind1) = zlagyu(jfl,jind1) * ( pyt(jfl)-(float(ijdu(jfl,jind2))) )
zlagzu(jfl,jind1) = zlagzu(jfl,jind1) * ( pzt(jfl)-(float(ikdu(jfl,jind2))) )
ENDIF
END DO
END DO
END DO
! velocity when we compute at middle time step
DO jfl = 1, jpnfl
DO jind1 = 1, 4
DO jind2 = 1, 4
DO jind3 = 1, 4
ztufl(jfl,jind1,jind2,jind3) = &
& ( tcoef1(ki) * uu(iidu(jfl,jind1),ijdu(jfl,jind2),ikdu(jfl,jind3),Kbb) + &
& tcoef2(ki) * uu(iidu(jfl,jind1),ijdu(jfl,jind2),ikdu(jfl,jind3),Kmm) ) &
& / e1u(iidu(jfl,jind1),ijdu(jfl,jind2))
END DO
END DO
END DO
zsumu = 0.
DO jind1 = 1, 4
DO jind2 = 1, 4
DO jind3 = 1, 4
zsumu = zsumu + ztufl(jfl,jind1,jind2,jind3) * zlagxu(jfl,jind1) * zlagyu(jfl,jind2) &
& * zlagzu(jfl,jind3) * rcoef(jind1)*rcoef(jind2)*rcoef(jind3)
END DO
END DO
END DO
pufl(jfl) = zsumu
END DO
! Interpolation of V velocity
! nearest neightboring point for computation of v
DO jfl = 1, jpnfl
iilv(jfl) = INT(pxt(jfl)-.5)
ijlv(jfl) = INT(pyt(jfl)-.5)
iklv(jfl) = INT(pzt(jfl))
END DO
! 64 neightboring points for computation of v
DO jind1 = 1, 4
DO jfl = 1, jpnfl
! i-direction
IF( iilv(jfl) <= 2 ) THEN ; iidv(jfl,jind1) = jind1
ELSE
IF( iilv(jfl) >= jpi-1 ) THEN ; iidv(jfl,jind1) = jpi + jind1 - 4
ELSE ; iidv(jfl,jind1) = iilv(jfl) + jind1 - 2
ENDIF
ENDIF
! j-direction
IF( ijlv(jfl) <= 2 ) THEN ; ijdv(jfl,jind1) = jind1
ELSE
IF( ijlv(jfl) >= jpj-1 ) THEN ; ijdv(jfl,jind1) = jpj + jind1 - 4
ELSE ; ijdv(jfl,jind1) = ijlv(jfl) + jind1 - 2
ENDIF
ENDIF
! k-direction
IF( iklv(jfl) <= 2 ) THEN ; ikdv(jfl,jind1) = jind1
ELSE
IF( iklv(jfl) >= jpk-1 ) THEN ; ikdv(jfl,jind1) = jpk + jind1 - 4
ELSE ; ikdv(jfl,jind1) = iklv(jfl) + jind1 - 2
ENDIF
ENDIF
END DO
END DO
! Lagrange coefficients
DO jfl = 1, jpnfl
DO jind1 = 1, 4
zlagxv(jfl,jind1) = 1.
zlagyv(jfl,jind1) = 1.
zlagzv(jfl,jind1) = 1.
END DO
END DO
DO jind1 = 1, 4
DO jind2 = 1, 4
DO jfl = 1, jpnfl
IF( jind1 /= jind2 ) THEN
zlagxv(jfl,jind1)= zlagxv(jfl,jind1)*(pxt(jfl) - (float(iidv(jfl,jind2)) ) )
zlagyv(jfl,jind1)= zlagyv(jfl,jind1)*(pyt(jfl) - (float(ijdv(jfl,jind2))+.5) )
zlagzv(jfl,jind1)= zlagzv(jfl,jind1)*(pzt(jfl) - (float(ikdv(jfl,jind2)) ) )
ENDIF
END DO
END DO
END DO
! velocity when we compute at middle time step
DO jfl = 1, jpnfl
DO jind1 = 1, 4
DO jind2 = 1, 4
DO jind3 = 1 ,4
ztvfl(jfl,jind1,jind2,jind3)= &
& ( tcoef1(ki) * vv(iidv(jfl,jind1),ijdv(jfl,jind2),ikdv(jfl,jind3),Kbb) + &
& tcoef2(ki) * vv(iidv(jfl,jind1),ijdv(jfl,jind2),ikdv(jfl,jind3),Kmm) ) &
& / e2v(iidv(jfl,jind1),ijdv(jfl,jind2))
END DO
END DO
END DO
zsumv=0.
DO jind1 = 1, 4
DO jind2 = 1, 4
DO jind3 = 1, 4
zsumv = zsumv + ztvfl(jfl,jind1,jind2,jind3) * zlagxv(jfl,jind1) * zlagyv(jfl,jind2) &
& * zlagzv(jfl,jind3) * rcoef(jind1)*rcoef(jind2)*rcoef(jind3)
END DO
END DO
END DO
pvfl(jfl) = zsumv
END DO
! Interpolation of W velocity
! nearest neightboring point for computation of w
DO jfl = 1, jpnfl
iilw(jfl) = INT( pxt(jfl) )
ijlw(jfl) = INT( pyt(jfl) )
iklw(jfl) = INT( pzt(jfl)+.5)
END DO
! 64 neightboring points for computation of w
DO jind1 = 1, 4
DO jfl = 1, jpnfl
! i-direction
IF( iilw(jfl) <= 2 ) THEN ; iidw(jfl,jind1) = jind1
ELSE
IF( iilw(jfl) >= jpi-1 ) THEN ; iidw(jfl,jind1) = jpi + jind1 - 4
ELSE ; iidw(jfl,jind1) = iilw(jfl) + jind1 - 2
ENDIF
ENDIF
! j-direction
IF( ijlw(jfl) <= 2 ) THEN ; ijdw(jfl,jind1) = jind1
ELSE
IF( ijlw(jfl) >= jpj-1 ) THEN ; ijdw(jfl,jind1) = jpj + jind1 - 4
ELSE ; ijdw(jfl,jind1) = ijlw(jfl) + jind1 - 2
ENDIF
ENDIF
! k-direction
IF( iklw(jfl) <= 2 ) THEN ; ikdw(jfl,jind1) = jind1
ELSE
IF( iklw(jfl) >= jpk-1 ) THEN ; ikdw(jfl,jind1) = jpk + jind1 - 4
ELSE ; ikdw(jfl,jind1) = iklw(jfl) + jind1 - 2
ENDIF
ENDIF
END DO
END DO
DO jind1 = 1, 4
DO jfl = 1, jpnfl
IF( iklw(jfl) <= 2 ) THEN ; ikdw(jfl,jind1) = jind1
ELSE
IF( iklw(jfl) >= jpk-1 ) THEN ; ikdw(jfl,jind1) = jpk + jind1 - 4
ELSE ; ikdw(jfl,jind1) = iklw(jfl) + jind1 - 2
ENDIF
ENDIF
END DO
END DO
! Lagrange coefficients for w interpolation
DO jfl = 1, jpnfl
DO jind1 = 1, 4
zlagxw(jfl,jind1) = 1.
zlagyw(jfl,jind1) = 1.
zlagzw(jfl,jind1) = 1.
END DO
END DO
DO jind1 = 1, 4
DO jind2 = 1, 4
DO jfl = 1, jpnfl
IF( jind1 /= jind2 ) THEN
zlagxw(jfl,jind1) = zlagxw(jfl,jind1) * (pxt(jfl) - (float(iidw(jfl,jind2)) ) )
zlagyw(jfl,jind1) = zlagyw(jfl,jind1) * (pyt(jfl) - (float(ijdw(jfl,jind2)) ) )
zlagzw(jfl,jind1) = zlagzw(jfl,jind1) * (pzt(jfl) - (float(ikdw(jfl,jind2))-.5) )
ENDIF
END DO
END DO
END DO
! velocity w when we compute at middle time step
DO jfl = 1, jpnfl
DO jind1 = 1, 4
DO jind2 = 1, 4
DO jind3 = 1, 4
ztwfl(jfl,jind1,jind2,jind3)= &
& ( tcoef1(ki) * wb(iidw(jfl,jind1),ijdw(jfl,jind2),ikdw(jfl,jind3))+ &
& tcoef2(ki) * ww(iidw(jfl,jind1),ijdw(jfl,jind2),ikdw(jfl,jind3)) ) &
& / e3w(iidw(jfl,jind1),ijdw(jfl,jind2),ikdw(jfl,jind3),Kmm)
END DO
END DO
END DO
zsumw = 0.e0
DO jind1 = 1, 4
DO jind2 = 1, 4
DO jind3 = 1, 4
zsumw = zsumw + ztwfl(jfl,jind1,jind2,jind3) * zlagxw(jfl,jind1) * zlagyw(jfl,jind2) &
& * zlagzw(jfl,jind3) * rcoef(jind1)*rcoef(jind2)*rcoef(jind3)
END DO
END DO
END DO
pwfl(jfl) = zsumw
END DO
!
!
END SUBROUTINE flo_interp
!!======================================================================
END MODULE flo4rk