Skip to content
Snippets Groups Projects
icbutl.F90 43.4 KiB
Newer Older
Guillaume Samson's avatar
Guillaume Samson committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
MODULE icbutl
   !!======================================================================
   !!                       ***  MODULE  icbutl  ***
   !! Icebergs:  various iceberg utility routines
   !!======================================================================
   !! History : 3.3.1 !  2010-01  (Martin&Adcroft) Original code
   !!            -    !  2011-03  (Madec)          Part conversion to NEMO form
   !!            -    !                            Removal of mapping from another grid
   !!            -    !  2011-04  (Alderson)       Split into separate modules
   !!           4.2   !  2020-07  (P. Mathiot)     simplification of interpolation routine
   !!                 !                            and add Nacho Merino work
   !!----------------------------------------------------------------------

   !!----------------------------------------------------------------------
   !!   icb_utl_interp   :
   !!   icb_utl_pos      : compute bottom left corner indice, weight and mask
   !!   icb_utl_bilin_h  : interpolation field to icb position
   !!   icb_utl_bilin_e  : interpolation of scale factor to icb position
   !!----------------------------------------------------------------------
   USE par_oce                             ! ocean parameters
   USE oce,    ONLY: ts, uu, vv
   USE dom_oce                             ! ocean domain
   USE in_out_manager                      ! IO parameters
   USE lbclnk                              ! lateral boundary condition
   USE lib_mpp                             ! MPI code and lk_mpp in particular
   USE icb_oce                             ! define iceberg arrays
   USE sbc_oce                             ! ocean surface boundary conditions
#if defined key_si3
   USE ice,    ONLY: u_ice, v_ice, hm_i    ! SI3 variables
   USE icevar                              ! ice_var_sshdyn
   USE sbc_ice, ONLY: snwice_mass, snwice_mass_b
#endif

   IMPLICIT NONE
   PRIVATE

   INTERFACE icb_utl_bilin_h
      MODULE PROCEDURE icb_utl_bilin_2d_h, icb_utl_bilin_3d_h
   END INTERFACE

   PUBLIC   icb_utl_copy          ! routine called in icbstp module
   PUBLIC   icb_utl_getkb         ! routine called in icbdyn and icbthm modules
   PUBLIC   test_icb_utl_getkb    ! routine called in icbdyn and icbthm modules
   PUBLIC   icb_utl_zavg          ! routine called in icbdyn and icbthm modules
   PUBLIC   icb_utl_interp        ! routine called in icbdyn, icbthm modules
   PUBLIC   icb_utl_bilin_h       ! routine called in icbdyn module
   PUBLIC   icb_utl_add           ! routine called in icbini.F90, icbclv, icblbc and icbrst modules
   PUBLIC   icb_utl_delete        ! routine called in icblbc, icbthm modules
   PUBLIC   icb_utl_destroy       ! routine called in icbstp module
   PUBLIC   icb_utl_track         ! routine not currently used, retain just in case
   PUBLIC   icb_utl_print_berg    ! routine called in icbthm module
   PUBLIC   icb_utl_print         ! routine called in icbini, icbstp module
   PUBLIC   icb_utl_count         ! routine called in icbdia, icbini, icblbc, icbrst modules
   PUBLIC   icb_utl_incr          ! routine called in icbini, icbclv modules
   PUBLIC   icb_utl_yearday       ! routine called in icbclv, icbstp module
   PUBLIC   icb_utl_mass          ! routine called in icbdia module
   PUBLIC   icb_utl_heat          ! routine called in icbdia module

   !! * Substitutions
#  include "domzgr_substitute.h90"
   !!----------------------------------------------------------------------
   !! NEMO/OCE 4.0 , NEMO Consortium (2018)
   !! $Id: icbutl.F90 15372 2021-10-14 15:47:24Z davestorkey $
   !! Software governed by the CeCILL license (see ./LICENSE)
   !!----------------------------------------------------------------------
CONTAINS

   SUBROUTINE icb_utl_copy( Kmm )
      !!----------------------------------------------------------------------
      !!                  ***  ROUTINE icb_utl_copy  ***
      !!
      !! ** Purpose :   iceberg initialization.
      !!
      !! ** Method  : - blah blah
      !!----------------------------------------------------------------------
      REAL(wp), DIMENSION(0:jpi+1,0:jpj+1) :: ztmp
#if defined key_si3
      REAL(wp), DIMENSION(jpi,jpj) :: zssh_lead_m    !    ocean surface (ssh_m) if ice is not embedded
      !                                              !    ocean surface in leads if ice is embedded   
#endif
      INTEGER :: jk   ! vertical loop index
      INTEGER :: Kmm  ! ocean time levelindex
      !
      ! copy nemo forcing arrays into iceberg versions with extra halo
      ! only necessary for variables not on T points
      ! and ssh which is used to calculate gradients
      !
      ! surface forcing
      !
      ssu_e(1:jpi,1:jpj) = ssu_m(:,:) * umask(:,:,1)
      ssv_e(1:jpi,1:jpj) = ssv_m(:,:) * vmask(:,:,1)
      sst_e(1:jpi,1:jpj) = sst_m(:,:)
      sss_e(1:jpi,1:jpj) = sss_m(:,:)
      fr_e (1:jpi,1:jpj) = fr_i (:,:)
      ua_e (1:jpi,1:jpj) = utau_icb (:,:) * umask(:,:,1) ! maybe mask useless because mask applied in sbcblk
      va_e (1:jpi,1:jpj) = vtau_icb (:,:) * vmask(:,:,1) ! maybe mask useless because mask applied in sbcblk
      ff_e(1:jpi,1:jpj) = ff_f (:,:) 
      !
      CALL lbc_lnk_icb( 'icbutl', ssu_e, 'U', -1._wp, 1, 1 )
      CALL lbc_lnk_icb( 'icbutl', ssv_e, 'V', -1._wp, 1, 1 )
      CALL lbc_lnk_icb( 'icbutl', ua_e , 'U', -1._wp, 1, 1 )
      CALL lbc_lnk_icb( 'icbutl', va_e , 'V', -1._wp, 1, 1 )
#if defined key_si3
      hi_e(1:jpi, 1:jpj) = hm_i (:,:)  
      ui_e(1:jpi, 1:jpj) = u_ice(:,:)
      vi_e(1:jpi, 1:jpj) = v_ice(:,:)
      !      
      ! compute ssh slope using ssh_lead if embedded
      zssh_lead_m(:,:) = ice_var_sshdyn(ssh_m, snwice_mass, snwice_mass_b)
      ssh_e(1:jpi, 1:jpj) = zssh_lead_m(:,:) * tmask(:,:,1)
      !
      CALL lbc_lnk_icb( 'icbutl', ui_e , 'U', -1._wp, 1, 1 )
      CALL lbc_lnk_icb( 'icbutl', vi_e , 'V', -1._wp, 1, 1 )
#else
      ssh_e(1:jpi, 1:jpj) = ssh_m(:,:) * tmask(:,:,1)         
#endif
      !
      ! (PM) could be improve with a 3d lbclnk gathering both variables
      ! should be done once extra haloe generalised
      IF ( ln_M2016 ) THEN
         DO jk = 1,jpk
            ! uoce
            ztmp(1:jpi,1:jpj) = uu(:,:,jk,Kmm)
            CALL lbc_lnk_icb( 'icbutl', ztmp, 'U', -1._wp, 1, 1 )
            uoce_e(:,:,jk) = ztmp(:,:)
            !
            ! voce
            ztmp(1:jpi,1:jpj) = vv(:,:,jk,Kmm)
            CALL lbc_lnk_icb( 'icbutl', ztmp, 'V', -1._wp, 1, 1 )
            voce_e(:,:,jk) = ztmp(:,:)
            !
            e3t_e(1:jpi,1:jpj,jk) = e3t(:,:,jk,Kmm)
         END DO
         toce_e(1:jpi,1:jpj,:) = ts(:,:,:,1,Kmm)
      END IF
      !
   END SUBROUTINE icb_utl_copy


   SUBROUTINE icb_utl_interp( pi, pj, pe1 , pssu, pui, pua, pssh_i,         &
      &                               pe2 , pssv, pvi, pva, pssh_j,         &
      &                               psst, psss, pcn, phi, pff   ,         &
      &                               plon, plat, ptoce, puoce, pvoce, pe3t )
      !!----------------------------------------------------------------------
      !!                  ***  ROUTINE icb_utl_interp  ***
      !!
      !! ** Purpose :   interpolation
      !!
      !! ** Method  : - interpolate from various ocean arrays onto iceberg position
      !!
      !!       !!gm  CAUTION here I do not care of the slip/no-slip conditions
      !!             this can be done later (not that easy to do...)
      !!             right now, U is 0 in land so that the coastal value of velocity parallel to the coast
      !!             is half the off shore value, wile the normal-to-the-coast value is zero.
      !!             This is OK as a starting point.
      !!       !!pm  HARD CODED: - rho_air now computed in sbcblk (what are the effect ?)
      !!                         - drag coefficient (should it be namelist parameter ?)
      !!
      !!----------------------------------------------------------------------
      REAL(wp), INTENT(in   ) ::   pi , pj                        ! position in (i,j) referential
      REAL(wp), INTENT(  out), OPTIONAL ::   pe1, pe2                       ! i- and j scale factors
      REAL(wp), INTENT(  out), OPTIONAL ::   pssu, pssv, pui, pvi, pua, pva ! ocean, ice and wind speeds
      REAL(wp), INTENT(  out), OPTIONAL ::   pssh_i, pssh_j                 ! ssh i- & j-gradients
      REAL(wp), INTENT(  out), OPTIONAL ::   psst, psss, pcn, phi, pff      ! SST, SSS, ice concentration, ice thickness, Coriolis
      REAL(wp), INTENT(  out), OPTIONAL ::   plat, plon                     ! position
      REAL(wp), DIMENSION(jpk), INTENT(  out), OPTIONAL ::   ptoce, puoce, pvoce, pe3t   ! 3D variables
      !
      REAL(wp), DIMENSION(4) :: zwT  , zwU  , zwV  , zwF   ! interpolation weight
      REAL(wp), DIMENSION(4) :: zmskF, zmskU, zmskV, zmskT ! mask
      REAL(wp), DIMENSION(4) :: zwTp, zmskTp, zwTm, zmskTm
      REAL(wp), DIMENSION(4,jpk) :: zw1d
      INTEGER                :: iiT, iiU, iiV, iiF, ijT, ijU, ijV, ijF ! bottom left corner
      INTEGER                :: iiTp, iiTm, ijTp, ijTm
      REAL(wp) ::   zcd, zmod       ! local scalars
      !!----------------------------------------------------------------------
      !
      ! get position, weight and mask 
      CALL icb_utl_pos( pi, pj, 'T', iiT, ijT, zwT, zmskT )
      CALL icb_utl_pos( pi, pj, 'U', iiU, ijU, zwU, zmskU )
      CALL icb_utl_pos( pi, pj, 'V', iiV, ijV, zwV, zmskV )
      CALL icb_utl_pos( pi, pj, 'F', iiF, ijF, zwF, zmskF )
      !
      ! metrics and coordinates
      IF ( PRESENT(pe1 ) ) pe1 = icb_utl_bilin_e( e1t, e1u, e1v, e1f, pi, pj )      ! scale factors
      IF ( PRESENT(pe2 ) ) pe2 = icb_utl_bilin_e( e2t, e2u, e2v, e2f, pi, pj )
      IF ( PRESENT(plon) ) plon= icb_utl_bilin_h( rlon_e, iiT, ijT, zwT, .true.  )
      IF ( PRESENT(plat) ) plat= icb_utl_bilin_h( rlat_e, iiT, ijT, zwT, .false. )
      !
      IF ( PRESENT(pssu) ) pssu = icb_utl_bilin_h( ssu_e, iiU, ijU, zwU        , .false. ) ! ocean velocities
      IF ( PRESENT(pssv) ) pssv = icb_utl_bilin_h( ssv_e, iiV, ijV, zwV        , .false. ) !
      IF ( PRESENT(psst) ) psst = icb_utl_bilin_h( sst_e, iiT, ijT, zwT * zmskT, .false. ) ! sst
      IF ( PRESENT(psss) ) psss = icb_utl_bilin_h( sss_e, iiT, ijT, zwT * zmskT, .false. ) ! sss
      IF ( PRESENT(pcn ) ) pcn  = icb_utl_bilin_h( fr_e , iiT, ijT, zwT * zmskT, .false. ) ! ice concentration
      IF ( PRESENT(pff ) ) pff  = icb_utl_bilin_h( ff_e , iiF, ijF, zwF        , .false. ) ! Coriolis parameter
      !
      IF ( PRESENT(pua) .AND. PRESENT(pva) ) THEN
         pua  = icb_utl_bilin_h( ua_e, iiU, ijU, zwU * zmskU, .false. ) ! 10m wind
         pva  = icb_utl_bilin_h( va_e, iiV, ijV, zwV * zmskV, .false. ) ! here (ua,va) are stress => rough conversion from stress to speed
         zcd  = 1.22_wp * 1.5e-3_wp                               ! air density * drag coefficient 
         zmod = 1._wp / MAX(  1.e-20, SQRT(  zcd * SQRT( pua*pua + pva*pva)  )  )
         pua  = pua * zmod                                       ! note: stress module=0 necessarly implies ua=va=0
         pva  = pva * zmod
      END IF
      !
#if defined key_si3
      IF ( PRESENT(pui) ) pui = icb_utl_bilin_h( ui_e , iiU, ijU, zwU        , .false. ) ! sea-ice velocities
      IF ( PRESENT(pvi) ) pvi = icb_utl_bilin_h( vi_e , iiV, ijV, zwV        , .false. )
      IF ( PRESENT(phi) ) phi = icb_utl_bilin_h( hi_e , iiT, ijT, zwT * zmskT, .false. ) ! ice thickness
#else
      IF ( PRESENT(pui) ) pui = 0._wp
      IF ( PRESENT(pvi) ) pvi = 0._wp
      IF ( PRESENT(phi) ) phi = 0._wp
#endif
      !
      ! Estimate SSH gradient in i- and j-direction (centred evaluation)
      IF ( PRESENT(pssh_i) .AND. PRESENT(pssh_j) ) THEN
         CALL icb_utl_pos( pi+0.1, pj    , 'T', iiTp, ijTp, zwTp, zmskTp )
         CALL icb_utl_pos( pi-0.1, pj    , 'T', iiTm, ijTm, zwTm, zmskTm )
         !
         IF ( .NOT. PRESENT(pe1) ) pe1 = icb_utl_bilin_e( e1t, e1u, e1v, e1f, pi, pj )
         pssh_i = ( icb_utl_bilin_h( ssh_e, iiTp, ijTp, zwTp*zmskTp, .false. ) -   &
            &       icb_utl_bilin_h( ssh_e, iiTm, ijTm, zwTm*zmskTm, .false. )  ) / ( 0.2_wp * pe1 )
         !
         CALL icb_utl_pos( pi    , pj+0.1, 'T', iiTp, ijTp, zwTp, zmskTp )
         CALL icb_utl_pos( pi    , pj-0.1, 'T', iiTm, ijTm, zwTm, zmskTm )
         !
         IF ( .NOT. PRESENT(pe2) ) pe2 = icb_utl_bilin_e( e2t, e2u, e2v, e2f, pi, pj )
         pssh_j = ( icb_utl_bilin_h( ssh_e, iiTp, ijTp, zwTp*zmskTp, .false. ) -   &
            &       icb_utl_bilin_h( ssh_e, iiTm, ijTm, zwTm*zmskTm, .false. )  ) / ( 0.2_wp * pe2 )
      END IF
      !
      ! 3d interpolation
      IF ( PRESENT(puoce) .AND. PRESENT(pvoce) ) THEN
         ! no need to mask as 0 is a valid data for land
         zw1d(1,:) = zwU(1) ; zw1d(2,:) = zwU(2) ; zw1d(3,:) = zwU(3) ; zw1d(4,:) = zwU(4) ;
         puoce(:) = icb_utl_bilin_h( uoce_e , iiU, ijU, zw1d )

         zw1d(1,:) = zwV(1) ; zw1d(2,:) = zwV(2) ; zw1d(3,:) = zwV(3) ; zw1d(4,:) = zwV(4) ;
         pvoce(:) = icb_utl_bilin_h( voce_e , iiV, ijV, zw1d )
      END IF

      IF ( PRESENT(ptoce) ) THEN
         ! for temperature we need to mask the weight properly
         ! no need of extra halo as it is a T point variable
         zw1d(1,:) = tmask(iiT  ,ijT  ,:) * zwT(1) * zmskT(1)
         zw1d(2,:) = tmask(iiT+1,ijT  ,:) * zwT(2) * zmskT(2)
         zw1d(3,:) = tmask(iiT  ,ijT+1,:) * zwT(3) * zmskT(3)
         zw1d(4,:) = tmask(iiT+1,ijT+1,:) * zwT(4) * zmskT(4)
         ptoce(:) = icb_utl_bilin_h( toce_e , iiT, ijT, zw1d )
      END IF
      !
      IF ( PRESENT(pe3t)  ) pe3t(:)  = e3t_e(iiT,ijT,:)    ! as in Nacho tarball need to be fix once we are able to reproduce Nacho results
      !
   END SUBROUTINE icb_utl_interp

   SUBROUTINE icb_utl_pos( pi, pj, cd_type, kii, kij, pw, pmsk )
      !!----------------------------------------------------------------------
      !!                  ***  FUNCTION icb_utl_bilin  ***
      !!
      !! ** Purpose :   bilinear interpolation at berg location depending on the grid-point type
      !!                this version deals with extra halo points
      !!
      !!       !!gm  CAUTION an optional argument should be added to handle
      !!             the slip/no-slip conditions  ==>>> to be done later
      !!
      !!----------------------------------------------------------------------
      REAL(wp)              , INTENT(IN)  ::   pi, pj    ! targeted coordinates in (i,j) referential
      CHARACTER(len=1)      , INTENT(IN)  ::   cd_type   ! point type
      REAL(wp), DIMENSION(4), INTENT(OUT) ::   pw, pmsk  ! weight and mask
      INTEGER ,               INTENT(OUT) ::   kii, kij  ! bottom left corner position in local domain
      !
      REAL(wp) :: zwi, zwj ! distance to bottom left corner
      INTEGER  :: ierr 
      !
      !!----------------------------------------------------------------------
      !
      SELECT CASE ( cd_type )
      CASE ( 'T' )
         ! note that here there is no +0.5 added
         ! since we're looking for four T points containing quadrant we're in of 
         ! current T cell
         kii = MAX(0, INT( pi        ))
         kij = MAX(0, INT( pj        ))    ! T-point
         zwi = pi - REAL(kii,wp)
         zwj = pj - REAL(kij,wp)
      CASE ( 'U' )
         kii = MAX(0, INT( pi-0.5_wp ))
         kij = MAX(0, INT( pj        ))    ! U-point
         zwi = pi - 0.5_wp - REAL(kii,wp)
         zwj = pj - REAL(kij,wp)
      CASE ( 'V' )
         kii = MAX(0, INT( pi        ))
         kij = MAX(0, INT( pj-0.5_wp ))    ! V-point
         zwi = pi - REAL(kii,wp)
         zwj = pj - 0.5_wp - REAL(kij,wp)
      CASE ( 'F' )
         kii = MAX(0, INT( pi-0.5_wp ))
         kij = MAX(0, INT( pj-0.5_wp ))    ! F-point
         zwi = pi - 0.5_wp - REAL(kii,wp)
         zwj = pj - 0.5_wp - REAL(kij,wp)
      END SELECT
      kii = kii + (nn_hls-1)
      kij = kij + (nn_hls-1)
      !
      ! compute weight
      pw(1) = (1._wp-zwi) * (1._wp-zwj)
      pw(2) =        zwi  * (1._wp-zwj)
      pw(3) = (1._wp-zwi) *        zwj
      pw(4) =        zwi  *        zwj
      !
      ! find position in this processor. Prevent near edge problems (see #1389)
      !
      IF (TRIM(cd_type) == 'T' ) THEN
         ierr = 0
         IF    ( kii <  mig( 1 ) ) THEN   ;  ierr = ierr + 1
         ELSEIF( kii >= mig(jpi) ) THEN   ;  ierr = ierr + 1
         ENDIF
         !
         IF    ( kij <  mjg( 1 ) ) THEN   ;   ierr = ierr + 1
         ELSEIF( kij >= mjg(jpj) ) THEN   ;   ierr = ierr + 1
         ENDIF
         !
         IF ( ierr > 0 ) THEN
            WRITE(numicb,*) 'bottom left corner T point out of bound'
            WRITE(numicb,*) pi, kii, mig( 1 ), mig(jpi)
            WRITE(numicb,*) pj, kij, mjg( 1 ), mjg(jpj)
            WRITE(numicb,*) pmsk
            CALL FLUSH(numicb)
            CALL ctl_stop('STOP','icb_utl_bilin_e: an icebergs coordinates is out of valid range (out of bound error).'       , &
                 &                                'This can be fixed using rn_speed_limit=0.4 in &namberg.'                   , &
                 &                                'More details in the corresponding iceberg.stat file (nn_verbose_level > 0).' )
         END IF
      END IF
      !
      ! find position in this processor. Prevent near edge problems (see #1389)
      ! (PM) will be useless if extra halo is used in NEMO
      !
      IF    ( kii <= mig(1)-1 ) THEN   ;   kii = 0
      ELSEIF( kii  > mig(jpi) ) THEN   ;   kii = jpi
      ELSE                             ;   kii = mi1(kii)
      ENDIF
      IF    ( kij <= mjg(1)-1 ) THEN   ;   kij = 0
      ELSEIF( kij  > mjg(jpj) ) THEN   ;   kij = jpj
      ELSE                             ;   kij = mj1(kij)
      ENDIF
      !
      ! define mask array 
      ! land value is not used in the interpolation
      SELECT CASE ( cd_type )
      CASE ( 'T' )
         pmsk = (/tmask_e(kii,kij), tmask_e(kii+1,kij), tmask_e(kii,kij+1), tmask_e(kii+1,kij+1)/)
      CASE ( 'U' )
         pmsk = (/umask_e(kii,kij), umask_e(kii+1,kij), umask_e(kii,kij+1), umask_e(kii+1,kij+1)/)
      CASE ( 'V' )
         pmsk = (/vmask_e(kii,kij), vmask_e(kii+1,kij), vmask_e(kii,kij+1), vmask_e(kii+1,kij+1)/)
      CASE ( 'F' )
         ! F case only used for coriolis, ff_f is not mask so zmask = 1
         pmsk = 1.
      END SELECT
   END SUBROUTINE icb_utl_pos

   REAL(wp) FUNCTION icb_utl_bilin_2d_h( pfld, pii, pij, pw, pllon )
      !!----------------------------------------------------------------------
      !!                  ***  FUNCTION icb_utl_bilin  ***
      !!
      !! ** Purpose :   bilinear interpolation at berg location depending on the grid-point type
      !!                this version deals with extra halo points
      !!
      !!       !!gm  CAUTION an optional argument should be added to handle
      !!             the slip/no-slip conditions  ==>>> to be done later
      !!
      !!----------------------------------------------------------------------
      REAL(wp), DIMENSION(0:jpi+1,0:jpj+1), INTENT(in) ::   pfld      ! field to be interpolated
      REAL(wp), DIMENSION(4)              , INTENT(in) ::   pw        ! weight
      LOGICAL                             , INTENT(in) ::   pllon     ! input data is a longitude
      INTEGER ,                             INTENT(in) ::   pii, pij  ! bottom left corner
      !
      REAL(wp), DIMENSION(4) :: zdat ! input data
      !!----------------------------------------------------------------------
      !
      ! data
      zdat(1) = pfld(pii  ,pij  )
      zdat(2) = pfld(pii+1,pij  )
      zdat(3) = pfld(pii  ,pij+1)
      zdat(4) = pfld(pii+1,pij+1)
      !
      IF( pllon .AND. MAXVAL(zdat) - MINVAL(zdat) > 90._wp ) THEN
         WHERE( zdat < 0._wp ) zdat = zdat + 360._wp
      ENDIF
      !
      ! compute interpolated value
      icb_utl_bilin_2d_h = ( zdat(1)*pw(1) + zdat(2)*pw(2) + zdat(3)*pw(3) + zdat(4)*pw(4) ) / MAX(1.e-20, pw(1)+pw(2)+pw(3)+pw(4)) 
      !
      IF( pllon .AND. icb_utl_bilin_2d_h > 180._wp ) icb_utl_bilin_2d_h = icb_utl_bilin_2d_h - 360._wp
      !
   END FUNCTION icb_utl_bilin_2d_h

   FUNCTION icb_utl_bilin_3d_h( pfld, pii, pij, pw )
      !!----------------------------------------------------------------------
      !!                  ***  FUNCTION icb_utl_bilin  ***
      !!
      !! ** Purpose :   bilinear interpolation at berg location depending on the grid-point type
      !!                this version deals with extra halo points
      !!
      !!       !!gm  CAUTION an optional argument should be added to handle
      !!             the slip/no-slip conditions  ==>>> to be done later
      !!
      !!----------------------------------------------------------------------
      REAL(wp), DIMENSION(0:jpi+1,0:jpj+1, jpk), INTENT(in) ::   pfld      ! field to be interpolated
      REAL(wp), DIMENSION(4,jpk)               , INTENT(in) ::   pw        ! weight
      INTEGER ,                                  INTENT(in) ::   pii, pij  ! bottom left corner
      REAL(wp), DIMENSION(jpk) :: icb_utl_bilin_3d_h
      !
      REAL(wp), DIMENSION(4,jpk) :: zdat ! input data
      INTEGER :: jk
      !!----------------------------------------------------------------------
      !
      ! data
      zdat(1,:) = pfld(pii  ,pij  ,:)
      zdat(2,:) = pfld(pii+1,pij  ,:)
      zdat(3,:) = pfld(pii  ,pij+1,:)
      zdat(4,:) = pfld(pii+1,pij+1,:)
      !
      ! compute interpolated value
      DO jk=1,jpk
         icb_utl_bilin_3d_h(jk) =   ( zdat(1,jk)*pw(1,jk) + zdat(2,jk)*pw(2,jk) + zdat(3,jk)*pw(3,jk) + zdat(4,jk)*pw(4,jk) ) &
            &                     /   MAX(1.e-20, pw(1,jk)+pw(2,jk)+pw(3,jk)+pw(4,jk)) 
      END DO
      !
   END FUNCTION icb_utl_bilin_3d_h

   REAL(wp) FUNCTION icb_utl_bilin_e( pet, peu, pev, pef, pi, pj )
      !!----------------------------------------------------------------------
      !!                  ***  FUNCTION dom_init  ***
      !!
      !! ** Purpose :   bilinear interpolation at berg location of horizontal scale factor
      !! ** Method  :   interpolation done using the 4 nearest grid points among
      !!                t-, u-, v-, and f-points.
      !!----------------------------------------------------------------------
      REAL(wp), DIMENSION(:,:), INTENT(in) ::   pet, peu, pev, pef   ! horizontal scale factor to be interpolated at t-,u-,v- & f-pts
      REAL(wp)                , INTENT(IN) ::   pi , pj              ! iceberg position
      !
      ! weights corresponding to corner points of a T cell quadrant
      REAL(wp) ::   zi, zj          ! local real
      INTEGER  ::   ii, ij          ! bottom left corner coordinate in local domain
      !
      ! values at corner points of a T cell quadrant
      ! 00 = bottom left, 10 = bottom right, 01 = top left, 11 = top right
      REAL(wp) ::   ze00, ze10, ze01, ze11
      !!----------------------------------------------------------------------
      !
      ! cannot used iiT because need ii/ij reltaive to global indices not local one
      ii = MAX(1, INT( pi ))   ;   ij = MAX(1, INT( pj ))            ! left bottom T-point (i,j) indices
      ! 
      ! fractional box spacing
      ! 0   <= zi < 0.5, 0   <= zj < 0.5   -->  NW quadrant of current T cell
      ! 0.5 <= zi < 1  , 0   <= zj < 0.5   -->  NE quadrant
      ! 0   <= zi < 0.5, 0.5 <= zj < 1     -->  SE quadrant
      ! 0.5 <= zi < 1  , 0.5 <= zj < 1     -->  SW quadrant

      zi = pi - REAL(ii,wp)          !!gm use here mig, mjg arrays
      zj = pj - REAL(ij,wp)

      ! conversion to local domain (no need to do a sanity check already done in icbpos)
      ii = mi1(ii) + (nn_hls-1)
      ij = mj1(ij) + (nn_hls-1)
      !
      IF(    0.0_wp <= zi .AND. zi < 0.5_wp   ) THEN
         IF( 0.0_wp <= zj .AND. zj < 0.5_wp        )   THEN        !  NE quadrant
            !                                                      !             i=I       i=I+1/2
            ze01 = pev(ii  ,ij  )   ;   ze11 = pef(ii  ,ij  )      !   j=J+1/2    V ------- F
            ze00 = pet(ii  ,ij  )   ;   ze10 = peu(ii  ,ij  )      !   j=J        T ------- U
            zi = 2._wp * zi
            zj = 2._wp * zj
         ELSE                                                      !  SE quadrant
            !                                                                    !             i=I       i=I+1/2
            ze01 = pet(ii  ,ij+1)   ;   ze11 = peu(ii  ,ij+1)      !   j=J+1      T ------- U
            ze00 = pev(ii  ,ij  )   ;   ze10 = pef(ii  ,ij  )      !   j=J+1/2    V ------- F
            zi = 2._wp *  zi
            zj = 2._wp * (zj-0.5_wp)
         ENDIF
      ELSE
         IF( 0.0_wp <= zj .AND. zj < 0.5_wp        )   THEN        !  NW quadrant
            !                                                                    !             i=I       i=I+1/2
            ze01 = pef(ii  ,ij  )   ;   ze11 = pev(ii+1,ij)        !   j=J+1/2    F ------- V
            ze00 = peu(ii  ,ij  )   ;   ze10 = pet(ii+1,ij)        !   j=J        U ------- T
            zi = 2._wp * (zi-0.5_wp)
            zj = 2._wp *  zj
         ELSE                                                      !  SW quadrant
            !                                                                    !             i=I+1/2   i=I+1
            ze01 = peu(ii  ,ij+1)   ;   ze11 = pet(ii+1,ij+1)      !   j=J+1      U ------- T
            ze00 = pef(ii  ,ij  )   ;   ze10 = pev(ii+1,ij  )      !   j=J+1/2    F ------- V
            zi = 2._wp * (zi-0.5_wp)
            zj = 2._wp * (zj-0.5_wp)
         ENDIF
      ENDIF
      !
      icb_utl_bilin_e = ( ze01 * (1._wp-zi) + ze11 * zi ) *        zj    &
         &            + ( ze00 * (1._wp-zi) + ze10 * zi ) * (1._wp-zj)
      !
   END FUNCTION icb_utl_bilin_e

   SUBROUTINE icb_utl_getkb( kb, pe3, pD )
      !!----------------------------------------------------------------------
      !!                ***  ROUTINE icb_utl_getkb         ***
      !!
      !! ** Purpose :   compute the latest level affected by icb
      !!
      !!----------------------------------------------------------------------
      INTEGER,                INTENT(out):: kb
      REAL(wp), DIMENSION(:), INTENT(in) :: pe3
      REAL(wp),               INTENT(in) :: pD
      !!
      INTEGER  :: jk
      REAL(wp) :: zdepw
      !!----------------------------------------------------------------------
      !!
      zdepw = pe3(1) ; kb = 2
      DO WHILE ( zdepw <  pD)
         zdepw = zdepw + pe3(kb)
         kb = kb + 1
      END DO
      kb = MIN(kb - 1,jpk)
   END SUBROUTINE

   SUBROUTINE icb_utl_zavg(pzavg, pdat, pe3, pD, kb )
      !!----------------------------------------------------------------------
      !!                ***  ROUTINE icb_utl_getkb         ***
      !!
      !! ** Purpose :   compute the vertical average of ocean properties affected by icb
      !!
      !!----------------------------------------------------------------------
      INTEGER,                INTENT(in ) :: kb        ! deepest level affected by icb
      REAL(wp), DIMENSION(:), INTENT(in ) :: pe3, pdat ! vertical profile
      REAL(wp),               INTENT(in ) :: pD        ! draft
      REAL(wp),               INTENT(out) :: pzavg     ! z average
      !!----------------------------------------------------------------------
      INTEGER  :: jk
      REAL(wp) :: zdep
      !!----------------------------------------------------------------------
      pzavg = 0.0 ; zdep = 0.0
      DO jk = 1,kb-1
         pzavg = pzavg + pe3(jk)*pdat(jk)
         zdep  = zdep  + pe3(jk)
      END DO
      ! if kb is limited by mbkt  => bottom value is used between bathy and icb tail
      ! if kb not limited by mbkt => ocean value over mask is used (ie 0.0 for u, v)
      pzavg = ( pzavg + (pD - zdep)*pdat(kb)) / pD
   END SUBROUTINE

   SUBROUTINE icb_utl_add( bergvals, ptvals )
      !!----------------------------------------------------------------------
      !!                ***  ROUTINE icb_utl_add           ***
      !!
      !! ** Purpose :   add a new berg to the iceberg list
      !!
      !!----------------------------------------------------------------------
      TYPE(iceberg), INTENT(in)           ::   bergvals
      TYPE(point)  , INTENT(in)           ::   ptvals
      !
      TYPE(iceberg), POINTER ::   new => NULL()
      !!----------------------------------------------------------------------
      !
      new => NULL()
      CALL icb_utl_create( new, bergvals, ptvals )
      CALL icb_utl_insert( new )
      new => NULL()     ! Clear new
      !
   END SUBROUTINE icb_utl_add         


   SUBROUTINE icb_utl_create( berg, bergvals, ptvals )
      !!----------------------------------------------------------------------
      !!                ***  ROUTINE icb_utl_create  ***
      !!
      !! ** Purpose :   add a new berg to the iceberg list
      !!
      !!----------------------------------------------------------------------
      TYPE(iceberg), INTENT(in) ::   bergvals
      TYPE(point)  , INTENT(in) ::   ptvals
      TYPE(iceberg), POINTER    ::   berg
      !
      TYPE(point)  , POINTER    ::   pt
      INTEGER                   ::   istat
      !!----------------------------------------------------------------------
      !
      IF( ASSOCIATED(berg) )   CALL ctl_stop( 'icebergs, icb_utl_create: berg already associated' )
      ALLOCATE(berg, STAT=istat)
      IF( istat /= 0 ) CALL ctl_stop( 'failed to allocate iceberg' )
      berg%number(:) = bergvals%number(:)
      berg%mass_scaling = bergvals%mass_scaling
      berg%prev => NULL()
      berg%next => NULL()
      !
      ALLOCATE(pt, STAT=istat)
      IF( istat /= 0 ) CALL ctl_stop( 'failed to allocate first iceberg point' )
      pt = ptvals
      berg%current_point => pt
      !
   END SUBROUTINE icb_utl_create


   SUBROUTINE icb_utl_insert( newberg )
      !!----------------------------------------------------------------------
      !!                 ***  ROUTINE icb_utl_insert  ***
      !!
      !! ** Purpose :   add a new berg to the iceberg list
      !!
      !!----------------------------------------------------------------------
      TYPE(iceberg), POINTER  ::   newberg
      !
      TYPE(iceberg), POINTER  ::   this, prev, last
      !!----------------------------------------------------------------------
      !
      IF( ASSOCIATED( first_berg ) ) THEN
         last => first_berg
         DO WHILE (ASSOCIATED(last%next))
            last => last%next
         ENDDO
         newberg%prev => last
         last%next    => newberg
         last         => newberg
      ELSE                       ! list is empty so create it
         first_berg => newberg
      ENDIF
      !
   END SUBROUTINE icb_utl_insert


   REAL(wp) FUNCTION icb_utl_yearday(kmon, kday, khr, kmin, ksec)
      !!----------------------------------------------------------------------
      !!                 ***  FUNCTION icb_utl_yearday  ***
      !!
      !! ** Purpose :   
      !!
      ! sga - improved but still only applies to 365 day year, need to do this properly
      !
      !!gm  all these info are already known in daymod, no???
      !!
      !!----------------------------------------------------------------------
      INTEGER, INTENT(in)     :: kmon, kday, khr, kmin, ksec
      ! 
      INTEGER, DIMENSION(12)  :: imonths = (/ 0,31,28,31,30,31,30,31,31,30,31,30 /)
      !!----------------------------------------------------------------------
      !
      icb_utl_yearday = REAL( SUM( imonths(1:kmon) ), wp )
      icb_utl_yearday = icb_utl_yearday + REAL(kday-1,wp) + (REAL(khr,wp) + (REAL(kmin,wp) + REAL(ksec,wp)/60.)/60.)/24.
      !
   END FUNCTION icb_utl_yearday

   !!-------------------------------------------------------------------------

   SUBROUTINE icb_utl_delete( first, berg )
      !!----------------------------------------------------------------------
      !!                 ***  ROUTINE icb_utl_delete  ***
      !!
      !! ** Purpose :   
      !!
      !!----------------------------------------------------------------------
      TYPE(iceberg), POINTER :: first, berg
      !!----------------------------------------------------------------------
      ! Connect neighbors to each other
      IF ( ASSOCIATED(berg%prev) ) THEN
        berg%prev%next => berg%next
      ELSE
        first => berg%next
      ENDIF
      IF (ASSOCIATED(berg%next)) berg%next%prev => berg%prev
      !
      CALL icb_utl_destroy(berg)
      !
   END SUBROUTINE icb_utl_delete


   SUBROUTINE icb_utl_destroy( berg )
      !!----------------------------------------------------------------------
      !!                 ***  ROUTINE icb_utl_destroy  ***
      !!
      !! ** Purpose :   remove a single iceberg instance
      !!
      !!----------------------------------------------------------------------
      TYPE(iceberg), POINTER :: berg
      !!----------------------------------------------------------------------
      !
      ! Remove any points
      IF( ASSOCIATED( berg%current_point ) )   DEALLOCATE( berg%current_point )
      !
      DEALLOCATE(berg)
      !
   END SUBROUTINE icb_utl_destroy


   SUBROUTINE icb_utl_track( knum, cd_label, kt )
      !!----------------------------------------------------------------------
      !!                 ***  ROUTINE icb_utl_track  ***
      !!
      !! ** Purpose :   
      !!
      !!----------------------------------------------------------------------
      INTEGER, DIMENSION(nkounts)    :: knum       ! iceberg number
      CHARACTER(len=*)               :: cd_label   ! 
      INTEGER                        :: kt         ! timestep number
      ! 
      TYPE(iceberg), POINTER         :: this
      LOGICAL                        :: match
      INTEGER                        :: k
      !!----------------------------------------------------------------------
      !
      this => first_berg
      DO WHILE( ASSOCIATED(this) )
         match = .TRUE.
         DO k = 1, nkounts
            IF( this%number(k) /= knum(k) ) match = .FALSE.
         END DO
         IF( match )   CALL icb_utl_print_berg(this, kt)
         this => this%next
      END DO
      !
   END SUBROUTINE icb_utl_track


   SUBROUTINE icb_utl_print_berg( berg, kt )
      !!----------------------------------------------------------------------
      !!                 ***  ROUTINE icb_utl_print_berg  ***
      !!
      !! ** Purpose :   print one
      !!
      !!----------------------------------------------------------------------
      TYPE(iceberg), POINTER :: berg
      TYPE(point)  , POINTER :: pt
      INTEGER                :: kt      ! timestep number
      !!----------------------------------------------------------------------
      !
      IF (nn_verbose_level == 0) RETURN
      pt => berg%current_point
      WRITE(numicb, 9200) kt, berg%number(1), &
                   pt%xi, pt%yj, pt%lon, pt%lat, pt%uvel, pt%vvel,  &
                   pt%ssu, pt%ssv, pt%ua, pt%va, pt%ui, pt%vi
      CALL flush( numicb )
 9200 FORMAT(5x,i5,2x,i10,6(2x,2f10.4))
      !
   END SUBROUTINE icb_utl_print_berg


   SUBROUTINE icb_utl_print( cd_label, kt )
      !!----------------------------------------------------------------------
      !!                 ***  ROUTINE icb_utl_print  ***
      !!
      !! ** Purpose :   print many
      !!
      !!----------------------------------------------------------------------
      CHARACTER(len=*)       :: cd_label
      INTEGER                :: kt             ! timestep number
      ! 
      INTEGER                :: ibergs, inbergs
      TYPE(iceberg), POINTER :: this
      !!----------------------------------------------------------------------
      !
      IF (nn_verbose_level == 0) RETURN
      this => first_berg
      IF( ASSOCIATED(this) ) THEN
         WRITE(numicb,'(a," pe=(",i3,")")' ) cd_label, narea
         WRITE(numicb,'(a8,4x,a6,12x,a5,15x,a7,19x,a3,17x,a5,17x,a5,17x,a5)' )   &
            &         'timestep', 'number', 'xi,yj','lon,lat','u,v','ssu,ssv','ua,va','ui,vi'
      ENDIF
      DO WHILE( ASSOCIATED(this) )
        CALL icb_utl_print_berg(this, kt)
        this => this%next
      END DO
      ibergs = icb_utl_count()
      inbergs = ibergs
      CALL mpp_sum('icbutl', inbergs)
      IF( ibergs > 0 )   WRITE(numicb,'(a," there are",i5," bergs out of",i6," on PE ",i4)')   &
         &                                  cd_label, ibergs, inbergs, narea
      !
   END SUBROUTINE icb_utl_print


   SUBROUTINE icb_utl_incr()
      !!----------------------------------------------------------------------
      !!                 ***  ROUTINE icb_utl_incr  ***
      !!
      !! ** Purpose :   
      !!
      ! Small routine for coping with very large integer values labelling icebergs
      ! num_bergs is a array of integers
      ! the first member is incremented in steps of jpnij starting from narea
      ! this means each iceberg is labelled with a unique number
      ! when this gets to the maximum allowed integer the second and subsequent members are 
      ! used to count how many times the member before cycles
      !!----------------------------------------------------------------------
      INTEGER ::   ii, ibig
      !!----------------------------------------------------------------------

      ibig = HUGE(num_bergs(1))
      IF( ibig-jpnij < num_bergs(1) ) THEN
         num_bergs(1) = narea
         DO ii = 2,nkounts
            IF( num_bergs(ii) == ibig ) THEN
               num_bergs(ii) = 0
               IF( ii == nkounts ) CALL ctl_stop('Sorry, run out of iceberg number space')
            ELSE
               num_bergs(ii) = num_bergs(ii) + 1
               EXIT
            ENDIF
         END DO
      ELSE
         num_bergs(1) = num_bergs(1) + jpnij
      ENDIF
      !
   END SUBROUTINE icb_utl_incr


   INTEGER FUNCTION icb_utl_count()
      !!----------------------------------------------------------------------
      !!                 ***  FUNCTION icb_utl_count  ***
      !!
      !! ** Purpose :   
      !!----------------------------------------------------------------------
      TYPE(iceberg), POINTER :: this
      !!----------------------------------------------------------------------
      !
      icb_utl_count = 0
      this => first_berg
      DO WHILE( ASSOCIATED(this) )
         icb_utl_count = icb_utl_count+1
         this => this%next
      END DO
      !
   END FUNCTION icb_utl_count


   REAL(wp) FUNCTION icb_utl_mass( first, justbits, justbergs )
      !!----------------------------------------------------------------------
      !!                 ***  FUNCTION icb_utl_mass  ***
      !!
      !! ** Purpose :   compute the mass all iceberg, all berg bits or all bergs.
      !!----------------------------------------------------------------------
      TYPE(iceberg)      , POINTER  ::   first
      TYPE(point)        , POINTER  ::   pt
      LOGICAL, INTENT(in), OPTIONAL ::   justbits, justbergs
      !
      TYPE(iceberg), POINTER ::   this
      !!----------------------------------------------------------------------
      icb_utl_mass = 0._wp
      this => first
      !
      IF( PRESENT( justbergs  ) ) THEN
         DO WHILE( ASSOCIATED( this ) )
            pt => this%current_point
            icb_utl_mass = icb_utl_mass + pt%mass         * this%mass_scaling
            this => this%next
         END DO
      ELSEIF( PRESENT(justbits) ) THEN
         DO WHILE( ASSOCIATED( this ) )
            pt => this%current_point
            icb_utl_mass = icb_utl_mass + pt%mass_of_bits * this%mass_scaling
            this => this%next
         END DO
      ELSE
         DO WHILE( ASSOCIATED( this ) )
            pt => this%current_point
            icb_utl_mass = icb_utl_mass + ( pt%mass + pt%mass_of_bits ) * this%mass_scaling
            this => this%next
         END DO
      ENDIF
      !
   END FUNCTION icb_utl_mass


   REAL(wp) FUNCTION icb_utl_heat( first, justbits, justbergs )
      !!----------------------------------------------------------------------
      !!                 ***  FUNCTION icb_utl_heat  ***
      !!
      !! ** Purpose :   compute the heat in all iceberg, all bergies or all bergs.
      !!----------------------------------------------------------------------
      TYPE(iceberg)      , POINTER  ::   first
      LOGICAL, INTENT(in), OPTIONAL ::   justbits, justbergs
      !
      TYPE(iceberg)      , POINTER  ::   this
      TYPE(point)        , POINTER  ::   pt
      !!----------------------------------------------------------------------
      icb_utl_heat = 0._wp
      this => first
      !
      IF( PRESENT( justbergs  ) ) THEN
         DO WHILE( ASSOCIATED( this ) )
            pt => this%current_point
            icb_utl_heat = icb_utl_heat + pt%mass         * this%mass_scaling * pt%heat_density
            this => this%next
         END DO
      ELSEIF( PRESENT(justbits) ) THEN
         DO WHILE( ASSOCIATED( this ) )
            pt => this%current_point
            icb_utl_heat = icb_utl_heat + pt%mass_of_bits * this%mass_scaling * pt%heat_density
            this => this%next
         END DO
      ELSE
         DO WHILE( ASSOCIATED( this ) )
            pt => this%current_point
            icb_utl_heat = icb_utl_heat + ( pt%mass + pt%mass_of_bits ) * this%mass_scaling * pt%heat_density
            this => this%next
         END DO
      ENDIF
      !
   END FUNCTION icb_utl_heat

   SUBROUTINE test_icb_utl_getkb
      !!----------------------------------------------------------------------
      !!                 ***  FUNCTION test_icb_utl_getkb  ***
      !!
      !! ** Purpose : Test routine icb_utl_getkb, icb_utl_zavg
      !! ** Methode : Call each subroutine with specific input data
      !!              What should be the output is easy to determined and check 
      !!              if NEMO return the correct answer.
      !! ** Comments : not called, if needed a CALL test_icb_utl_getkb need to be added in icb_step
      !!----------------------------------------------------------------------
      INTEGER :: ikb
      REAL(wp) :: zD, zout
      REAL(wp), DIMENSION(jpk) :: ze3, zin
      WRITE(numout,*) 'Test icb_utl_getkb : '
      zD = 0.0 ; ze3= 20.0
      WRITE(numout,*) 'INPUT : zD = ',zD,' ze3 = ',ze3(1)
      CALL icb_utl_getkb(ikb, ze3, zD)
      WRITE(numout,*) 'OUTPUT : kb = ',ikb

      zD = 8000000.0 ; ze3= 20.0
      WRITE(numout,*) 'INPUT : zD = ',zD,' ze3 = ',ze3(1)
      CALL icb_utl_getkb(ikb, ze3, zD)
      WRITE(numout,*) 'OUTPUT : kb = ',ikb

      zD = 80.0 ; ze3= 20.0
      WRITE(numout,*) 'INPUT : zD = ',zD,' ze3 = ',ze3(1)
      CALL icb_utl_getkb(ikb, ze3, zD)
      WRITE(numout,*) 'OUTPUT : kb = ',ikb

      zD = 85.0 ; ze3= 20.0
      WRITE(numout,*) 'INPUT : zD = ',zD,' ze3 = ',ze3(1)
      CALL icb_utl_getkb(ikb, ze3, zD)
      WRITE(numout,*) 'OUTPUT : kb = ',ikb

      zD = 75.0 ; ze3= 20.0
      WRITE(numout,*) 'INPUT : zD = ',zD,' ze3 = ',ze3(1)
      CALL icb_utl_getkb(ikb, ze3, zD)
      WRITE(numout,*) 'OUTPUT : kb = ',ikb

      WRITE(numout,*) '=================================='
      WRITE(numout,*) 'Test icb_utl_zavg'
      zD = 0.0 ; ze3= 20.0 ; zin=1.0
      CALL icb_utl_getkb(ikb, ze3, zD)
      CALL icb_utl_zavg(zout, zin, ze3, zD, ikb)
      WRITE(numout,*) 'INPUT  : zD = ',zD,' ze3 = ',ze3(1),' zin = ', zin, ' ikb = ',ikb
      WRITE(numout,*) 'OUTPUT : zout = ',zout

      zD = 50.0 ; ze3= 20.0 ; zin=1.0; zin(3:jpk) = 0.0
      CALL icb_utl_getkb(ikb, ze3, zD)
      CALL icb_utl_zavg(zout, zin, ze3, zD, ikb)
      WRITE(numout,*) 'INPUT  : zD = ',zD,' ze3 = ',ze3(1),' zin = ', zin, ' ikb = ',ikb
      WRITE(numout,*) 'OUTPUT : zout = ',zout
      CALL FLUSH(numout)

      zD = 80.0 ; ze3= 20.0 ; zin=1.0; zin(3:jpk) = 0.0
      CALL icb_utl_getkb(ikb, ze3, zD)
      CALL icb_utl_zavg(zout, zin, ze3, zD, ikb)
      WRITE(numout,*) 'INPUT  : zD = ',zD,' ze3 = ',ze3(1),' zin = ', zin, ' ikb = ',ikb
      WRITE(numout,*) 'OUTPUT : zout = ',zout

      zD = 80 ; ze3= 20.0 ; zin=1.0 ; zin(3:jpk) = 0.0
      CALL icb_utl_getkb(ikb, ze3, zD)
      ikb = 2
      CALL icb_utl_zavg(zout, zin, ze3, zD, ikb)
      WRITE(numout,*) 'INPUT  : zD = ',zD,' ze3 = ',ze3(1),' zin = ', zin, ' ikb = ',ikb
      WRITE(numout,*) 'OUTPUT : zout = ',zout

      CALL FLUSH(numout)

   END SUBROUTINE test_icb_utl_getkb

   !!======================================================================
END MODULE icbutl