Skip to content
Snippets Groups Projects
fldread.F90 88.9 KiB
Newer Older
Guillaume Samson's avatar
Guillaume Samson committed
         sdf(jf)%nreclast   = -1 ! Set to non zero default value to avoid errors, is updated to meaningful value during fld_clopn
         sdf(jf)%igrd       = 0
         sdf(jf)%ibdy       = 0
         sdf(jf)%imap       => NULL()
         sdf(jf)%ltotvel    = .FALSE.
         sdf(jf)%lzint      = .FALSE.
      END DO
      !
      IF(lwp) THEN      ! control print
         WRITE(numout,*)
         IF( .NOT.PRESENT( knoprint) ) THEN
            WRITE(numout,*) TRIM( cdcaller )//' : '//TRIM( cdtitle )
            WRITE(numout,*) (/ ('~', jf = 1, LEN_TRIM( cdcaller ) ) /)
         ENDIF
         WRITE(numout,*) '   fld_fill : fill data structure with information from namelist '//TRIM( cdnam )
         WRITE(numout,*) '   ~~~~~~~~'
         WRITE(numout,*) '      list of files and frequency (>0: in hours ; <0 in months)'
         DO jf = 1, SIZE(sdf)
            WRITE(numout,*) '      root filename: '  , TRIM( sdf(jf)%clrootname ), '   variable name: ', TRIM( sdf(jf)%clvar )
            WRITE(numout,*) '         frequency: '      ,       sdf(jf)%freqh       ,   &
               &                  '   time interp: '    ,       sdf(jf)%ln_tint     ,   &
               &                  '   climatology: '    ,       sdf(jf)%ln_clim
            WRITE(numout,*) '         weights: '        , TRIM( sdf(jf)%wgtname    ),   &
               &                  '   pairing: '        , TRIM( sdf(jf)%vcomp      ),   &
               &                  '   data type: '      ,       sdf(jf)%clftyp      ,   &
               &                  '   land/sea mask:'   , TRIM( sdf(jf)%lsmname    )
            call flush(numout)
         END DO
      ENDIF
      !
   END SUBROUTINE fld_fill


   SUBROUTINE wgt_list( sd, kwgt )
      !!---------------------------------------------------------------------
      !!                    ***  ROUTINE wgt_list  ***
      !!
      !! ** Purpose :   search array of WGTs and find a weights file entry,
      !!                or return a new one adding it to the end if new entry.
      !!                the weights data is read in and restructured (fld_weight)
      !!----------------------------------------------------------------------
      TYPE( FLD ), INTENT(in   ) ::   sd        ! field with name of weights file
      INTEGER    , INTENT(  out) ::   kwgt      ! index of weights
      !
      INTEGER ::   kw, nestid   ! local integer
      !!----------------------------------------------------------------------
      !
      !! search down linked list 
      !! weights filename is either present or we hit the end of the list
      !
      !! because agrif nest part of filenames are now added in iom_open
      !! to distinguish between weights files on the different grids, need to track
      !! nest number explicitly
      nestid = 0
#if defined key_agrif
      nestid = Agrif_Fixed()
#endif
      DO kw = 1, nxt_wgt-1
         IF( ref_wgts(kw)%wgtname == sd%wgtname .AND. &
             ref_wgts(kw)%nestid  == nestid) THEN
            kwgt = kw
            RETURN
         ENDIF
      END DO
      kwgt = nxt_wgt
      CALL fld_weight( sd )
      !
   END SUBROUTINE wgt_list


   SUBROUTINE wgt_print( )
      !!---------------------------------------------------------------------
      !!                    ***  ROUTINE wgt_print  ***
      !!
      !! ** Purpose :   print the list of known weights
      !!----------------------------------------------------------------------
      INTEGER ::   kw   !
      !!----------------------------------------------------------------------
      !
      DO kw = 1, nxt_wgt-1
         WRITE(numout,*) 'weight file:  ',TRIM(ref_wgts(kw)%wgtname)
         WRITE(numout,*) '      ddims:  ',ref_wgts(kw)%ddims(1),ref_wgts(kw)%ddims(2)
         WRITE(numout,*) '     numwgt:  ',ref_wgts(kw)%numwgt
         WRITE(numout,*) '     jpiwgt:  ',ref_wgts(kw)%jpiwgt
         WRITE(numout,*) '     jpjwgt:  ',ref_wgts(kw)%jpjwgt
         WRITE(numout,*) '    botleft:  ',ref_wgts(kw)%botleft
         WRITE(numout,*) '   topright:  ',ref_wgts(kw)%topright
         IF( ref_wgts(kw)%cyclic ) THEN
            WRITE(numout,*) '       cyclical'
            IF( ref_wgts(kw)%overlap > 0 ) WRITE(numout,*) '              with overlap of ', ref_wgts(kw)%overlap
         ELSE
            WRITE(numout,*) '       not cyclical'
         ENDIF
         IF( ASSOCIATED(ref_wgts(kw)%data_wgt) )  WRITE(numout,*) '       allocated'
      END DO
      !
   END SUBROUTINE wgt_print


   SUBROUTINE fld_weight( sd )
      !!---------------------------------------------------------------------
      !!                    ***  ROUTINE fld_weight  ***
      !!
      !! ** Purpose :   create a new WGT structure and fill in data from file,
      !!              restructuring as required
      !!----------------------------------------------------------------------
      TYPE( FLD ), INTENT(in) ::   sd   ! field with name of weights file
      !!
      INTEGER ::   ji,jj,jn   ! dummy loop indices
      INTEGER ::   inum       ! local logical unit
      INTEGER ::   id         ! local variable id
      INTEGER ::   ipk        ! local vertical dimension
      INTEGER ::   zwrap      ! local integer
      LOGICAL ::   cyclical   ! 
      CHARACTER (len=5) ::   clname   !
      INTEGER , DIMENSION(4) ::   ddims
      INTEGER                ::   isrc
      REAL(dp), DIMENSION(jpi,jpj) ::   data_tmp
Guillaume Samson's avatar
Guillaume Samson committed
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
      !!----------------------------------------------------------------------
      !
      IF( nxt_wgt > tot_wgts ) THEN
        CALL ctl_stop("fld_weight: weights array size exceeded, increase tot_wgts")
      ENDIF
      !
      !! new weights file entry, add in extra information
      !! a weights file represents a 2D grid of a certain shape, so we assume that the current
      !! input data file is representative of all other files to be opened and processed with the
      !! current weights file

      !! get data grid dimensions
      id = iom_varid( sd%num, sd%clvar, ddims )

      !! now open the weights file
      CALL iom_open ( sd%wgtname, inum )   ! interpolation weights
      IF( inum > 0 ) THEN

         !! determine whether we have an east-west cyclic grid
         !! from global attribute called "ew_wrap" in the weights file
         !! note that if not found, iom_getatt returns -999 and cyclic with no overlap is assumed
         !! since this is the most common forcing configuration

         CALL iom_getatt(inum, 'ew_wrap', zwrap)
         IF( zwrap >= 0 ) THEN
            cyclical = .TRUE.
         ELSE IF( zwrap == -999 ) THEN
            cyclical = .TRUE.
            zwrap = 0
         ELSE
            cyclical = .FALSE.
         ENDIF

         ref_wgts(nxt_wgt)%ddims(1) = ddims(1)
         ref_wgts(nxt_wgt)%ddims(2) = ddims(2)
         ref_wgts(nxt_wgt)%wgtname = sd%wgtname
         ref_wgts(nxt_wgt)%overlap = zwrap
         ref_wgts(nxt_wgt)%cyclic = cyclical
         ref_wgts(nxt_wgt)%nestid = 0
#if defined key_agrif
         ref_wgts(nxt_wgt)%nestid = Agrif_Fixed()
#endif
         !! weights file is stored as a set of weights (wgt01->wgt04 or wgt01->wgt16)
         !! for each weight wgtNN there is an integer array srcNN which gives the point in
         !! the input data grid which is to be multiplied by the weight
         !! they are both arrays on the model grid so the result of the multiplication is
         !! added into an output array on the model grid as a running sum

         !! two possible cases: bilinear (4 weights) or bicubic (16 weights)
         id = iom_varid(inum, 'src05', ldstop=.FALSE.)
         IF( id <= 0 ) THEN   ;   ref_wgts(nxt_wgt)%numwgt = 4
         ELSE                 ;   ref_wgts(nxt_wgt)%numwgt = 16
         ENDIF

         ALLOCATE( ref_wgts(nxt_wgt)%data_jpi(Nis0:Nie0,Njs0:Nje0,4) )
         ALLOCATE( ref_wgts(nxt_wgt)%data_jpj(Nis0:Nie0,Njs0:Nje0,4) )
         ALLOCATE( ref_wgts(nxt_wgt)%data_wgt(Nis0:Nie0,Njs0:Nje0,ref_wgts(nxt_wgt)%numwgt) )

         DO jn = 1,4
            WRITE(clname,'(a3,i2.2)') 'src',jn
            CALL iom_get ( inum, jpdom_global, clname, data_tmp(:,:), cd_type = 'Z' )   !  no call to lbc_lnk
            DO_2D( 0, 0, 0, 0 )
               isrc = NINT(data_tmp(ji,jj)) - 1
               ref_wgts(nxt_wgt)%data_jpi(ji,jj,jn) = 1 + MOD(isrc,  ref_wgts(nxt_wgt)%ddims(1))
               ref_wgts(nxt_wgt)%data_jpj(ji,jj,jn) = 1 +     isrc / ref_wgts(nxt_wgt)%ddims(1)
            END_2D
         END DO

         DO jn = 1, ref_wgts(nxt_wgt)%numwgt
            WRITE(clname,'(a3,i2.2)') 'wgt',jn
            CALL iom_get ( inum, jpdom_global, clname, data_tmp(:,:), cd_type = 'Z' )   !  no call to lbc_lnk
            DO_2D( 0, 0, 0, 0 )
               ref_wgts(nxt_wgt)%data_wgt(ji,jj,jn) = data_tmp(ji,jj)
            END_2D
         END DO
         CALL iom_close (inum)
 
         ! find min and max indices in grid
         ref_wgts(nxt_wgt)%botleft( 1) = MINVAL(ref_wgts(nxt_wgt)%data_jpi(:,:,:))
         ref_wgts(nxt_wgt)%botleft( 2) = MINVAL(ref_wgts(nxt_wgt)%data_jpj(:,:,:))
         ref_wgts(nxt_wgt)%topright(1) = MAXVAL(ref_wgts(nxt_wgt)%data_jpi(:,:,:))
         ref_wgts(nxt_wgt)%topright(2) = MAXVAL(ref_wgts(nxt_wgt)%data_jpj(:,:,:))

         ! and therefore dimensions of the input box
         ref_wgts(nxt_wgt)%jpiwgt = ref_wgts(nxt_wgt)%topright(1) - ref_wgts(nxt_wgt)%botleft(1) + 1
         ref_wgts(nxt_wgt)%jpjwgt = ref_wgts(nxt_wgt)%topright(2) - ref_wgts(nxt_wgt)%botleft(2) + 1

         ! shift indexing of source grid
         ref_wgts(nxt_wgt)%data_jpi(:,:,:) = ref_wgts(nxt_wgt)%data_jpi(:,:,:) - ref_wgts(nxt_wgt)%botleft(1) + 1
         ref_wgts(nxt_wgt)%data_jpj(:,:,:) = ref_wgts(nxt_wgt)%data_jpj(:,:,:) - ref_wgts(nxt_wgt)%botleft(2) + 1

         ! create input grid, give it a halo to allow gradient calculations
         ! SA: +3 stencil is a patch to avoid out-of-bound computation in some configuration. 
         ! a more robust solution will be given in next release
         ipk =  SIZE(sd%fnow, 3)
         ALLOCATE( ref_wgts(nxt_wgt)%fly_dta(ref_wgts(nxt_wgt)%jpiwgt+3, ref_wgts(nxt_wgt)%jpjwgt+3 ,ipk) )
         IF( ref_wgts(nxt_wgt)%cyclic ) ALLOCATE( ref_wgts(nxt_wgt)%col(1,ref_wgts(nxt_wgt)%jpjwgt+3,ipk) )
         !
         nxt_wgt = nxt_wgt + 1
         !
      ELSE 
         CALL ctl_stop( '    fld_weight : unable to read the file ' )
      ENDIF
      !
   END SUBROUTINE fld_weight


   SUBROUTINE apply_seaoverland( clmaskfile, zfieldo, jpi1_lsm, jpi2_lsm, jpj1_lsm,   &
      &                          jpj2_lsm, itmpi, itmpj, itmpz, rec1_lsm, recn_lsm )
      !!---------------------------------------------------------------------
      !!                    ***  ROUTINE apply_seaoverland  ***
      !!
      !! ** Purpose :   avoid spurious fluxes in coastal or near-coastal areas
      !!                due to the wrong usage of "land" values from the coarse
      !!                atmospheric model when spatial interpolation is required
      !!      D. Delrosso INGV          
      !!---------------------------------------------------------------------- 
      INTEGER,                   INTENT(in   ) :: itmpi,itmpj,itmpz                    ! lengths
      INTEGER,                   INTENT(in   ) :: jpi1_lsm,jpi2_lsm,jpj1_lsm,jpj2_lsm  ! temporary indices
      INTEGER, DIMENSION(3),     INTENT(in   ) :: rec1_lsm,recn_lsm                    ! temporary arrays for start and length
      REAL(wp),DIMENSION (:,:,:),INTENT(inout) :: zfieldo                              ! input/output array for seaoverland application
      CHARACTER (len=100),       INTENT(in   ) :: clmaskfile                           ! land/sea mask file name
      !
      INTEGER :: inum,jni,jnj,jnz,jc   ! local indices
      REAL(wp),DIMENSION (:,:,:),ALLOCATABLE :: zslmec1             ! local array for land point detection
      REAL(wp),DIMENSION (:,:),  ALLOCATABLE :: zfieldn   ! array of forcing field with undeff for land points
      REAL(wp),DIMENSION (:,:),  ALLOCATABLE :: zfield    ! array of forcing field
      !!---------------------------------------------------------------------
      !
      ALLOCATE ( zslmec1(itmpi,itmpj,itmpz), zfieldn(itmpi,itmpj), zfield(itmpi,itmpj) )
      !
      ! Retrieve the land sea mask data
      CALL iom_open( clmaskfile, inum )
      SELECT CASE( SIZE(zfieldo(jpi1_lsm:jpi2_lsm,jpj1_lsm:jpj2_lsm,:),3) )
      CASE(1)
         CALL iom_get( inum, jpdom_unknown, 'LSM', zslmec1(jpi1_lsm:jpi2_lsm,jpj1_lsm:jpj2_lsm,1),   &
            &          1, kstart = rec1_lsm, kcount = recn_lsm)
      CASE DEFAULT
         CALL iom_get( inum, jpdom_unknown, 'LSM', zslmec1(jpi1_lsm:jpi2_lsm,jpj1_lsm:jpj2_lsm,:),   &
            &          1, kstart = rec1_lsm, kcount = recn_lsm)
      END SELECT
      CALL iom_close( inum )
      !
      DO jnz=1,rec1_lsm(3)             !! Loop over k dimension
         !
         DO jni = 1, itmpi                               !! copy the original field into a tmp array
            DO jnj = 1, itmpj                            !! substituting undeff over land points
               zfieldn(jni,jnj) = zfieldo(jni,jnj,jnz)
               IF( zslmec1(jni,jnj,jnz) == 1. )   zfieldn(jni,jnj) = undeff_lsm
            END DO
         END DO
         !
         CALL seaoverland( zfieldn, itmpi, itmpj, zfield )
         DO jc = 1, nn_lsm
            CALL seaoverland( zfield, itmpi, itmpj, zfield )
         END DO
         !
         !   Check for Undeff and substitute original values
         IF( ANY(zfield==undeff_lsm) ) THEN
            DO jni = 1, itmpi
               DO jnj = 1, itmpj
                  IF( zfield(jni,jnj)==undeff_lsm )   zfield(jni,jnj) = zfieldo(jni,jnj,jnz)
               END DO
            END DO
         ENDIF
         !
         zfieldo(:,:,jnz) = zfield(:,:)
         !
      END DO                           !! End Loop over k dimension
      !
      DEALLOCATE ( zslmec1, zfieldn, zfield )
      !
   END SUBROUTINE apply_seaoverland 


   SUBROUTINE seaoverland( zfieldn, ileni, ilenj, zfield )
      !!---------------------------------------------------------------------
      !!                    ***  ROUTINE seaoverland  ***
      !!
      !! ** Purpose :   create shifted matrices for seaoverland application  
      !!      D. Delrosso INGV
      !!---------------------------------------------------------------------- 
      INTEGER                          , INTENT(in   ) :: ileni,ilenj   ! lengths 
      REAL(wp), DIMENSION (ileni,ilenj), INTENT(in   ) :: zfieldn       ! array of forcing field with undeff for land points
      REAL(wp), DIMENSION (ileni,ilenj), INTENT(  out) :: zfield        ! array of forcing field
      !
      REAL(wp) , DIMENSION (ileni,ilenj)   :: zmat1, zmat2, zmat3, zmat4  ! local arrays 
      REAL(wp) , DIMENSION (ileni,ilenj)   :: zmat5, zmat6, zmat7, zmat8  !   -     - 
      REAL(wp) , DIMENSION (ileni,ilenj)   :: zlsm2d                      !   -     - 
      REAL(wp) , DIMENSION (ileni,ilenj,8) :: zlsm3d                      !   -     -
      LOGICAL  , DIMENSION (ileni,ilenj,8) :: ll_msknan3d                 ! logical mask for undeff detection
      LOGICAL  , DIMENSION (ileni,ilenj)   :: ll_msknan2d                 ! logical mask for undeff detection
      !!---------------------------------------------------------------------- 
      zmat8 = eoshift( zfieldn , SHIFT=-1 , BOUNDARY = (/zfieldn(:,1)/)     , DIM=2 )
      zmat1 = eoshift( zmat8   , SHIFT=-1 , BOUNDARY = (/zmat8(1,:)/)       , DIM=1 )
      zmat2 = eoshift( zfieldn , SHIFT=-1 , BOUNDARY = (/zfieldn(1,:)/)     , DIM=1 )
      zmat4 = eoshift( zfieldn , SHIFT= 1 , BOUNDARY = (/zfieldn(:,ilenj)/) , DIM=2 )
      zmat3 = eoshift( zmat4   , SHIFT=-1 , BOUNDARY = (/zmat4(1,:)/)       , DIM=1 )
      zmat5 = eoshift( zmat4   , SHIFT= 1 , BOUNDARY = (/zmat4(ileni,:)/)   , DIM=1 )
      zmat6 = eoshift( zfieldn , SHIFT= 1 , BOUNDARY = (/zfieldn(ileni,:)/) , DIM=1 )
      zmat7 = eoshift( zmat8   , SHIFT= 1 , BOUNDARY = (/zmat8(ileni,:)/)   , DIM=1 )
      !
      zlsm3d  = RESHAPE( (/ zmat1, zmat2, zmat3, zmat4, zmat5, zmat6, zmat7, zmat8 /), (/ ileni, ilenj, 8 /))
      ll_msknan3d = .NOT.( zlsm3d  == undeff_lsm )
      ll_msknan2d = .NOT.( zfieldn == undeff_lsm )  ! FALSE where is Undeff (land)
      zlsm2d = SUM( zlsm3d, 3 , ll_msknan3d ) / MAX( 1 , COUNT( ll_msknan3d , 3 ) )
      WHERE( COUNT( ll_msknan3d , 3 ) == 0._wp )   zlsm2d = undeff_lsm
      zfield = MERGE( zfieldn, zlsm2d, ll_msknan2d )
      !
   END SUBROUTINE seaoverland


   SUBROUTINE fld_interp( num, clvar, kw, kk, dta, nrec, lsmfile)      
      !!---------------------------------------------------------------------
      !!                    ***  ROUTINE fld_interp  ***
      !!
      !! ** Purpose :   apply weights to input gridded data to create data
      !!                on model grid
      !!----------------------------------------------------------------------
      INTEGER                   , INTENT(in   ) ::   num     ! stream number
      CHARACTER(LEN=*)          , INTENT(in   ) ::   clvar   ! variable name
      INTEGER                   , INTENT(in   ) ::   kw      ! weights number
      INTEGER                   , INTENT(in   ) ::   kk      ! vertical dimension of kk
      REAL(wp), DIMENSION(:,:,:), INTENT(inout) ::   dta     ! output field on model grid
      INTEGER                   , INTENT(in   ) ::   nrec    ! record number to read (ie time slice)
      CHARACTER(LEN=*)          , INTENT(in   ) ::   lsmfile ! land sea mask file name
      !
      INTEGER, DIMENSION(3) ::   rec1, recn           ! temporary arrays for start and length
      INTEGER, DIMENSION(3) ::   rec1_lsm, recn_lsm   ! temporary arrays for start and length in case of seaoverland
      INTEGER ::   ii_lsm1,ii_lsm2,ij_lsm1,ij_lsm2    ! temporary indices
      INTEGER ::   ji, jj, jk, jn, jir, jjr           ! loop counters
      INTEGER ::   ipk
      INTEGER ::   ni, nj                             ! lengths
      INTEGER ::   jpimin,jpiwid                      ! temporary indices
      INTEGER ::   jpimin_lsm,jpiwid_lsm              ! temporary indices
      INTEGER ::   jpjmin,jpjwid                      ! temporary indices
      INTEGER ::   jpjmin_lsm,jpjwid_lsm              ! temporary indices
      INTEGER ::   jpi1,jpi2,jpj1,jpj2                ! temporary indices
      INTEGER ::   jpi1_lsm,jpi2_lsm,jpj1_lsm,jpj2_lsm   ! temporary indices
      INTEGER ::   itmpi,itmpj,itmpz                     ! lengths
      REAL(wp),DIMENSION(:,:,:), ALLOCATABLE ::   ztmp_fly_dta                 ! local array of values on input grid     
      !!----------------------------------------------------------------------
      ipk = SIZE(dta, 3)
      !
      !! for weighted interpolation we have weights at four corners of a box surrounding 
      !! a model grid point, each weight is multiplied by a grid value (bilinear case)
      !! or by a grid value and gradients at the corner point (bicubic case) 
      !! so we need to have a 4 by 4 subgrid surrounding each model point to cover both cases

      !! sub grid from non-model input grid which encloses all grid points in this nemo process
      jpimin = ref_wgts(kw)%botleft(1)
      jpjmin = ref_wgts(kw)%botleft(2)
      jpiwid = ref_wgts(kw)%jpiwgt
      jpjwid = ref_wgts(kw)%jpjwgt

      !! when reading in, expand this sub-grid by one halo point all the way round for calculating gradients
      rec1(1) = MAX( jpimin-1, 1 )
      rec1(2) = MAX( jpjmin-1, 1 )
      rec1(3) = 1
      recn(1) = MIN( jpiwid+2, ref_wgts(kw)%ddims(1)-rec1(1)+1 )
      recn(2) = MIN( jpjwid+2, ref_wgts(kw)%ddims(2)-rec1(2)+1 )
      recn(3) = kk

      !! where we need to put it in the non-nemo grid fly_dta
      !! note that jpi1 and jpj1 only differ from 1 when jpimin and jpjmin are 1
      !! (ie at the extreme west or south of the whole input grid) and similarly for jpi2 and jpj2
      jpi1 = 2 + rec1(1) - jpimin
      jpj1 = 2 + rec1(2) - jpjmin
      jpi2 = jpi1 + recn(1) - 1
      jpj2 = jpj1 + recn(2) - 1


      IF( LEN_TRIM(lsmfile) > 0 ) THEN
      !! indeces for ztmp_fly_dta
      ! --------------------------
         rec1_lsm(1)=MAX(rec1(1)-nn_lsm,1)  ! starting index for enlarged external data, x direction
         rec1_lsm(2)=MAX(rec1(2)-nn_lsm,1)  ! starting index for enlarged external data, y direction
         rec1_lsm(3) = 1                    ! vertical dimension
         recn_lsm(1)=MIN(rec1(1)-rec1_lsm(1)+recn(1)+nn_lsm,ref_wgts(kw)%ddims(1)-rec1_lsm(1)) ! n points in x direction
         recn_lsm(2)=MIN(rec1(2)-rec1_lsm(2)+recn(2)+nn_lsm,ref_wgts(kw)%ddims(2)-rec1_lsm(2)) ! n points in y direction
         recn_lsm(3) = kk                   ! number of vertical levels in the input file

      !  Avoid out of bound
         jpimin_lsm = MAX( rec1_lsm(1)+1, 1 )
         jpjmin_lsm = MAX( rec1_lsm(2)+1, 1 )
         jpiwid_lsm = MIN( recn_lsm(1)-2,ref_wgts(kw)%ddims(1)-rec1(1)+1)
         jpjwid_lsm = MIN( recn_lsm(2)-2,ref_wgts(kw)%ddims(2)-rec1(2)+1)

         jpi1_lsm = 2+rec1_lsm(1)-jpimin_lsm
         jpj1_lsm = 2+rec1_lsm(2)-jpjmin_lsm
         jpi2_lsm = jpi1_lsm + recn_lsm(1) - 1
         jpj2_lsm = jpj1_lsm + recn_lsm(2) - 1


         itmpi=jpi2_lsm-jpi1_lsm+1
         itmpj=jpj2_lsm-jpj1_lsm+1
         itmpz=kk
         ALLOCATE(ztmp_fly_dta(itmpi,itmpj,itmpz))
         ztmp_fly_dta(:,:,:) = 0.0
         SELECT CASE( SIZE(ztmp_fly_dta(jpi1_lsm:jpi2_lsm,jpj1_lsm:jpj2_lsm,:),3) )
         CASE(1)
              CALL iom_get( num, jpdom_unknown, clvar, ztmp_fly_dta(jpi1_lsm:jpi2_lsm,jpj1_lsm:jpj2_lsm,1),   &
                 &          nrec, kstart = rec1_lsm, kcount = recn_lsm)
         CASE DEFAULT
              CALL iom_get( num, jpdom_unknown, clvar, ztmp_fly_dta(jpi1_lsm:jpi2_lsm,jpj1_lsm:jpj2_lsm,:),   &
                 &          nrec, kstart = rec1_lsm, kcount = recn_lsm)
         END SELECT
         CALL apply_seaoverland(lsmfile,ztmp_fly_dta(jpi1_lsm:jpi2_lsm,jpj1_lsm:jpj2_lsm,:),                  &
                 &                                      jpi1_lsm,jpi2_lsm,jpj1_lsm,jpj2_lsm,                  &
                 &                                      itmpi,itmpj,itmpz,rec1_lsm,recn_lsm)


         ! Relative indeces for remapping
         ii_lsm1 = (rec1(1)-rec1_lsm(1))+1
         ii_lsm2 = (ii_lsm1+recn(1))-1
         ij_lsm1 = (rec1(2)-rec1_lsm(2))+1
         ij_lsm2 = (ij_lsm1+recn(2))-1

         ref_wgts(kw)%fly_dta(:,:,:) = 0.0
         ref_wgts(kw)%fly_dta(jpi1:jpi2,jpj1:jpj2,:) = ztmp_fly_dta(ii_lsm1:ii_lsm2,ij_lsm1:ij_lsm2,:)
         DEALLOCATE(ztmp_fly_dta)

      ELSE
         
         ref_wgts(kw)%fly_dta(:,:,:) = 0.0
         CALL iom_get( num, jpdom_unknown, clvar, ref_wgts(kw)%fly_dta(jpi1:jpi2,jpj1:jpj2,:), nrec, kstart = rec1, kcount = recn)
      ENDIF
      

      !! first four weights common to both bilinear and bicubic
      !! data_jpi, data_jpj have already been shifted to (1,1) corresponding to botleft
      !! note that we have to offset by 1 into fly_dta array because of halo added to fly_dta (rec1 definition)
      dta(:,:,:) = 0._wp
      DO jn = 1,4
         DO_3D( 0, 0, 0, 0, 1,ipk )
            ni = ref_wgts(kw)%data_jpi(ji,jj,jn) + 1
            nj = ref_wgts(kw)%data_jpj(ji,jj,jn) + 1
            dta(ji,jj,jk) = dta(ji,jj,jk) + ref_wgts(kw)%data_wgt(ji,jj,jn) * ref_wgts(kw)%fly_dta(ni,nj,jk)
         END_3D
      END DO

      IF(ref_wgts(kw)%numwgt .EQ. 16) THEN

         !! fix up halo points that we couldnt read from file
         IF( jpi1 == 2 ) THEN
            ref_wgts(kw)%fly_dta(jpi1-1,:,:) = ref_wgts(kw)%fly_dta(jpi1,:,:)
         ENDIF
         IF( jpi2 + jpimin - 1 == ref_wgts(kw)%ddims(1)+1 ) THEN
            ref_wgts(kw)%fly_dta(jpi2+1,:,:) = ref_wgts(kw)%fly_dta(jpi2,:,:)
         ENDIF
         IF( jpj1 == 2 ) THEN
            ref_wgts(kw)%fly_dta(:,jpj1-1,:) = ref_wgts(kw)%fly_dta(:,jpj1,:)
         ENDIF
         IF( jpj2 + jpjmin - 1 == ref_wgts(kw)%ddims(2)+1 .AND. jpj2 .LT. jpjwid+2 ) THEN
            ref_wgts(kw)%fly_dta(:,jpj2+1,:) = 2.0*ref_wgts(kw)%fly_dta(:,jpj2,:) - ref_wgts(kw)%fly_dta(:,jpj2-1,:)
         ENDIF
         
         !! if data grid is cyclic we can do better on east-west edges
         !! but have to allow for whether first and last columns are coincident
         IF( ref_wgts(kw)%cyclic ) THEN
            rec1(2) = MAX( jpjmin-1, 1 )
            recn(1) = 1
            recn(2) = MIN( jpjwid+2, ref_wgts(kw)%ddims(2)-rec1(2)+1 )
            jpj1 = 2 + rec1(2) - jpjmin
            jpj2 = jpj1 + recn(2) - 1
            IF( jpi1 == 2 ) THEN
               rec1(1) = ref_wgts(kw)%ddims(1) - ref_wgts(kw)%overlap
               CALL iom_get( num, jpdom_unknown, clvar, ref_wgts(kw)%col(:,jpj1:jpj2,:), nrec, kstart = rec1, kcount = recn)
               ref_wgts(kw)%fly_dta(jpi1-1,jpj1:jpj2,:) = ref_wgts(kw)%col(1,jpj1:jpj2,:)
            ENDIF
            IF( jpi2 + jpimin - 1 == ref_wgts(kw)%ddims(1)+1 ) THEN
               rec1(1) = 1 + ref_wgts(kw)%overlap
               CALL iom_get( num, jpdom_unknown, clvar, ref_wgts(kw)%col(:,jpj1:jpj2,:), nrec, kstart = rec1, kcount = recn)
               ref_wgts(kw)%fly_dta(jpi2+1,jpj1:jpj2,:) = ref_wgts(kw)%col(1,jpj1:jpj2,:)
            ENDIF
         ENDIF
         !
!!$         DO jn = 1,4
!!$            DO_3D( 0, 0, 0, 0, 1,ipk )
!!$               ni = ref_wgts(kw)%data_jpi(ji,jj,jn) + 1
!!$               nj = ref_wgts(kw)%data_jpj(ji,jj,jn) + 1
!!$               dta(ji,jj,jk) = dta(ji,jj,jk)   &
!!$                  ! gradient in the i direction
!!$                  &            + ref_wgts(kw)%data_wgt(ji,jj,jn+4) * 0.5_wp *                                    &
!!$                  &                (ref_wgts(kw)%fly_dta(ni+1,nj  ,jk) - ref_wgts(kw)%fly_dta(ni-1,nj  ,jk))     &
!!$                  ! gradient in the j direction
!!$                  &            + ref_wgts(kw)%data_wgt(ji,jj,jn+8) * 0.5_wp *                                    &
!!$                  &                (ref_wgts(kw)%fly_dta(ni  ,nj+1,jk) - ref_wgts(kw)%fly_dta(ni  ,nj-1,jk))     &
!!$                  ! gradient in the ij direction
!!$                  &            + ref_wgts(kw)%data_wgt(ji,jj,jn+12) * 0.25_wp *                                  &
!!$                  &               ((ref_wgts(kw)%fly_dta(ni+1,nj+1,jk) - ref_wgts(kw)%fly_dta(ni-1,nj+1,jk)) -   &
!!$                  &                (ref_wgts(kw)%fly_dta(ni+1,nj-1,jk) - ref_wgts(kw)%fly_dta(ni-1,nj-1,jk)))
!!$            END_3D
!!$         END DO
         !
         DO jn = 1,4
            DO_3D( 0, 0, 0, 0, 1,ipk )
               ni = ref_wgts(kw)%data_jpi(ji,jj,jn)
               nj = ref_wgts(kw)%data_jpj(ji,jj,jn)
               ! gradient in the i direction
               dta(ji,jj,jk) = dta(ji,jj,jk) + ref_wgts(kw)%data_wgt(ji,jj,jn+4) * 0.5_wp *         &
                  &                (ref_wgts(kw)%fly_dta(ni+2,nj+1,jk) - ref_wgts(kw)%fly_dta(ni  ,nj+1,jk))
            END_3D
         END DO
         DO jn = 1,4
            DO_3D( 0, 0, 0, 0, 1,ipk )
               ni = ref_wgts(kw)%data_jpi(ji,jj,jn)
               nj = ref_wgts(kw)%data_jpj(ji,jj,jn)
               ! gradient in the j direction
               dta(ji,jj,jk) = dta(ji,jj,jk) + ref_wgts(kw)%data_wgt(ji,jj,jn+8) * 0.5_wp *         &
                  &                (ref_wgts(kw)%fly_dta(ni+1,nj+2,jk) - ref_wgts(kw)%fly_dta(ni+1,nj  ,jk))
            END_3D
         END DO
         DO jn = 1,4
            DO_3D( 0, 0, 0, 0, 1,ipk )
               ni = ref_wgts(kw)%data_jpi(ji,jj,jn)
               nj = ref_wgts(kw)%data_jpj(ji,jj,jn)
               ! gradient in the ij direction
               dta(ji,jj,jk) = dta(ji,jj,jk) + ref_wgts(kw)%data_wgt(ji,jj,jn+12) * 0.25_wp * (     &
                  &                (ref_wgts(kw)%fly_dta(ni+2,nj+2,jk) - ref_wgts(kw)%fly_dta(ni  ,nj+2,jk)) -   &
                  &                (ref_wgts(kw)%fly_dta(ni+2,nj  ,jk) - ref_wgts(kw)%fly_dta(ni  ,nj  ,jk)))
            END_3D
         END DO
         !
      ENDIF
      !
   END SUBROUTINE fld_interp


   FUNCTION fld_filename( sdjf, kday, kmonth, kyear )
      !!---------------------------------------------------------------------
      !!                    ***  FUNCTION fld_filename *** 
      !!
      !! ** Purpose :   define the filename according to a given date
      !!---------------------------------------------------------------------
      TYPE(FLD), INTENT(in) ::   sdjf         ! input field related variables
      INTEGER  , INTENT(in) ::   kday, kmonth, kyear
      !
      CHARACTER(len = 256) ::   clname, fld_filename
      !!---------------------------------------------------------------------

      
      ! build the new filename if not climatological data
      clname=TRIM(sdjf%clrootname)
      !
      ! note that sdjf%ln_clim is is only acting on the presence of the year in the file name
      IF( .NOT. sdjf%ln_clim ) THEN   
                                         WRITE(clname, '(a,"_y",i4.4)' ) TRIM( sdjf%clrootname ), kyear    ! add year
         IF( sdjf%clftyp /= 'yearly' )   WRITE(clname, '(a, "m",i2.2)' ) TRIM( clname          ), kmonth   ! add month
      ELSE
         ! build the new filename if climatological data
         IF( sdjf%clftyp /= 'yearly' )   WRITE(clname, '(a,"_m",i2.2)' ) TRIM( sdjf%clrootname ), kmonth   ! add month
      ENDIF
      IF(    sdjf%clftyp == 'daily' .OR. sdjf%clftyp(1:4) == 'week' ) &
         &                               WRITE(clname, '(a,"d" ,i2.2)' ) TRIM( clname          ), kday     ! add day

      fld_filename = clname
      
   END FUNCTION fld_filename


   FUNCTION ksec_week( cdday )
      !!---------------------------------------------------------------------
      !!                    ***  FUNCTION ksec_week *** 
      !!
      !! ** Purpose :   seconds between 00h of the beginning of the week and half of the current time step
      !!---------------------------------------------------------------------
      CHARACTER(len=*), INTENT(in)   ::   cdday   ! first 3 letters of the first day of the weekly file
      !!
      INTEGER                        ::   ksec_week      ! output variable
      INTEGER                        ::   ijul, ishift   ! local integer
      CHARACTER(len=3),DIMENSION(7)  ::   cl_week 
      !!----------------------------------------------------------------------
      cl_week = (/"sun","sat","fri","thu","wed","tue","mon"/)
      DO ijul = 1, 7
         IF( cl_week(ijul) == TRIM(cdday) ) EXIT
      END DO
      IF( ijul .GT. 7 )   CALL ctl_stop( 'ksec_week: wrong day for sdjf%clftyp(6:8): '//TRIM(cdday) )
      !
      ishift = ijul * NINT(rday)
      ! 
      ksec_week = nsec_monday + ishift
      ksec_week = MOD( ksec_week, 7*NINT(rday) )
      ! 
   END FUNCTION ksec_week

   !!======================================================================
END MODULE fldread