Skip to content
Snippets Groups Projects
eosbn2.F90 80.7 KiB
Newer Older
Guillaume Samson's avatar
Guillaume Samson committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
MODULE eosbn2
   !!==============================================================================
   !!                       ***  MODULE  eosbn2  ***
   !! Equation Of Seawater : in situ density - Brunt-Vaisala frequency
   !!==============================================================================
   !! History :  OPA  ! 1989-03  (O. Marti)  Original code
   !!            6.0  ! 1994-07  (G. Madec, M. Imbard)  add bn2
   !!            6.0  ! 1994-08  (G. Madec)  Add Jackett & McDougall eos
   !!            7.0  ! 1996-01  (G. Madec)  statement function for e3
   !!            8.1  ! 1997-07  (G. Madec)  density instead of volumic mass
   !!             -   ! 1999-02  (G. Madec, N. Grima) semi-implicit pressure gradient
   !!            8.2  ! 2001-09  (M. Ben Jelloul)  bugfix on linear eos
   !!   NEMO     1.0  ! 2002-10  (G. Madec)  add eos_init
   !!             -   ! 2002-11  (G. Madec, A. Bozec)  partial step, eos_insitu_2d
   !!             -   ! 2003-08  (G. Madec)  F90, free form
   !!            3.0  ! 2006-08  (G. Madec)  add tfreez function (now eos_fzp function)
   !!            3.3  ! 2010-05  (C. Ethe, G. Madec)  merge TRC-TRA
   !!             -   ! 2010-10  (G. Nurser, G. Madec)  add alpha/beta used in ldfslp
   !!            3.7  ! 2012-03  (F. Roquet, G. Madec)  add primitive of alpha and beta used in PE computation
   !!             -   ! 2012-05  (F. Roquet)  add Vallis and original JM95 equation of state
   !!             -   ! 2013-04  (F. Roquet, G. Madec)  add eos_rab, change bn2 computation and reorganize the module
   !!             -   ! 2014-09  (F. Roquet)  add TEOS-10, S-EOS, and modify EOS-80
   !!             -   ! 2015-06  (P.A. Bouttier) eos_fzp functions changed to subroutines for AGRIF
   !!----------------------------------------------------------------------

   !!----------------------------------------------------------------------
   !!   eos           : generic interface of the equation of state
   !!   eos_insitu    : Compute the in situ density
   !!   eos_insitu_pot: Compute the insitu and surface referenced potential volumic mass
   !!   eos_insitu_2d : Compute the in situ density for 2d fields
   !!   bn2           : compute the Brunt-Vaisala frequency
   !!   eos_pt_from_ct: compute the potential temperature from the Conservative Temperature
   !!   eos_rab       : generic interface of in situ thermal/haline expansion ratio
   !!   eos_rab_3d    : compute in situ thermal/haline expansion ratio
   !!   eos_rab_2d    : compute in situ thermal/haline expansion ratio for 2d fields
   !!   eos_fzp_2d    : freezing temperature for 2d fields
   !!   eos_fzp_0d    : freezing temperature for scalar
   !!   eos_init      : set eos parameters (namelist)
   !!----------------------------------------------------------------------
   USE dom_oce        ! ocean space and time domain
   USE domutl, ONLY : is_tile
   USE phycst         ! physical constants
   USE stopar         ! Stochastic T/S fluctuations
   USE stopts         ! Stochastic T/S fluctuations
   !
   USE in_out_manager ! I/O manager
   USE lib_mpp        ! MPP library
   USE lib_fortran    ! Fortran utilities (allows no signed zero when 'key_nosignedzero' defined)
   USE prtctl         ! Print control
   USE lbclnk         ! ocean lateral boundary conditions
   USE timing         ! Timing

   IMPLICIT NONE
   PRIVATE

   !                  !! * Interface
   INTERFACE eos
      MODULE PROCEDURE eos_insitu, eos_insitu_pot, eos_insitu_2d, eos_insitu_pot_2d
   END INTERFACE
   !
   INTERFACE eos_rab
      MODULE PROCEDURE rab_3d, rab_2d, rab_0d
   END INTERFACE
   !
   INTERFACE eos_fzp
      MODULE PROCEDURE eos_fzp_2d, eos_fzp_0d
   END INTERFACE
   !
   PUBLIC   eos            ! called by step, istate, tranpc and zpsgrd modules
   PUBLIC   bn2            ! called by step module
   PUBLIC   eos_rab        ! called by ldfslp, zdfddm, trabbl
   PUBLIC   eos_pt_from_ct ! called by sbcssm
   PUBLIC   eos_fzp        ! called by traadv_cen2 and sbcice_... modules
   PUBLIC   eos_pen        ! used for pe diagnostics in trdpen module
   PUBLIC   eos_init       ! called by istate module

   !                               !!** Namelist nameos **
   LOGICAL , PUBLIC ::   ln_TEOS10
   LOGICAL , PUBLIC ::   ln_EOS80
   LOGICAL , PUBLIC ::   ln_SEOS

   ! Parameters
   LOGICAL , PUBLIC    ::   l_useCT         ! =T in ln_TEOS10=T (i.e. use eos_pt_from_ct to compute sst_m), =F otherwise
   INTEGER , PUBLIC    ::   neos            ! Identifier for equation of state used

   INTEGER , PARAMETER ::   np_teos10 = -1  ! parameter for using TEOS10
   INTEGER , PARAMETER ::   np_eos80  =  0  ! parameter for using EOS80
   INTEGER , PARAMETER ::   np_seos   = 1   ! parameter for using Simplified Equation of state

   !                               !!!  simplified eos coefficients (default value: Vallis 2006)
   REAL(wp), PUBLIC ::   rn_a0      = 1.6550e-1_wp     ! thermal expansion coeff.
   REAL(wp), PUBLIC ::   rn_b0      = 7.6554e-1_wp     ! saline  expansion coeff.
   REAL(wp) ::   rn_lambda1 = 5.9520e-2_wp     ! cabbeling coeff. in T^2
   REAL(wp) ::   rn_lambda2 = 5.4914e-4_wp     ! cabbeling coeff. in S^2
   REAL(wp) ::   rn_mu1     = 1.4970e-4_wp     ! thermobaric coeff. in T
   REAL(wp) ::   rn_mu2     = 1.1090e-5_wp     ! thermobaric coeff. in S
   REAL(wp) ::   rn_nu      = 2.4341e-3_wp     ! cabbeling coeff. in theta*salt

   ! TEOS10/EOS80 parameters
   REAL(wp) ::   r1_S0, r1_T0, r1_Z0, rdeltaS

   ! EOS parameters
   REAL(wp) ::   EOS000 , EOS100 , EOS200 , EOS300 , EOS400 , EOS500 , EOS600
   REAL(wp) ::   EOS010 , EOS110 , EOS210 , EOS310 , EOS410 , EOS510
   REAL(wp) ::   EOS020 , EOS120 , EOS220 , EOS320 , EOS420
   REAL(wp) ::   EOS030 , EOS130 , EOS230 , EOS330
   REAL(wp) ::   EOS040 , EOS140 , EOS240
   REAL(wp) ::   EOS050 , EOS150
   REAL(wp) ::   EOS060
   REAL(wp) ::   EOS001 , EOS101 , EOS201 , EOS301 , EOS401
   REAL(wp) ::   EOS011 , EOS111 , EOS211 , EOS311
   REAL(wp) ::   EOS021 , EOS121 , EOS221
   REAL(wp) ::   EOS031 , EOS131
   REAL(wp) ::   EOS041
   REAL(wp) ::   EOS002 , EOS102 , EOS202
   REAL(wp) ::   EOS012 , EOS112
   REAL(wp) ::   EOS022
   REAL(wp) ::   EOS003 , EOS103
   REAL(wp) ::   EOS013

   ! ALPHA parameters
   REAL(wp) ::   ALP000 , ALP100 , ALP200 , ALP300 , ALP400 , ALP500
   REAL(wp) ::   ALP010 , ALP110 , ALP210 , ALP310 , ALP410
   REAL(wp) ::   ALP020 , ALP120 , ALP220 , ALP320
   REAL(wp) ::   ALP030 , ALP130 , ALP230
   REAL(wp) ::   ALP040 , ALP140
   REAL(wp) ::   ALP050
   REAL(wp) ::   ALP001 , ALP101 , ALP201 , ALP301
   REAL(wp) ::   ALP011 , ALP111 , ALP211
   REAL(wp) ::   ALP021 , ALP121
   REAL(wp) ::   ALP031
   REAL(wp) ::   ALP002 , ALP102
   REAL(wp) ::   ALP012
   REAL(wp) ::   ALP003

   ! BETA parameters
   REAL(wp) ::   BET000 , BET100 , BET200 , BET300 , BET400 , BET500
   REAL(wp) ::   BET010 , BET110 , BET210 , BET310 , BET410
   REAL(wp) ::   BET020 , BET120 , BET220 , BET320
   REAL(wp) ::   BET030 , BET130 , BET230
   REAL(wp) ::   BET040 , BET140
   REAL(wp) ::   BET050
   REAL(wp) ::   BET001 , BET101 , BET201 , BET301
   REAL(wp) ::   BET011 , BET111 , BET211
   REAL(wp) ::   BET021 , BET121
   REAL(wp) ::   BET031
   REAL(wp) ::   BET002 , BET102
   REAL(wp) ::   BET012
   REAL(wp) ::   BET003

   ! PEN parameters
   REAL(wp) ::   PEN000 , PEN100 , PEN200 , PEN300 , PEN400
   REAL(wp) ::   PEN010 , PEN110 , PEN210 , PEN310
   REAL(wp) ::   PEN020 , PEN120 , PEN220
   REAL(wp) ::   PEN030 , PEN130
   REAL(wp) ::   PEN040
   REAL(wp) ::   PEN001 , PEN101 , PEN201
   REAL(wp) ::   PEN011 , PEN111
   REAL(wp) ::   PEN021
   REAL(wp) ::   PEN002 , PEN102
   REAL(wp) ::   PEN012

   ! ALPHA_PEN parameters
   REAL(wp) ::   APE000 , APE100 , APE200 , APE300
   REAL(wp) ::   APE010 , APE110 , APE210
   REAL(wp) ::   APE020 , APE120
   REAL(wp) ::   APE030
   REAL(wp) ::   APE001 , APE101
   REAL(wp) ::   APE011
   REAL(wp) ::   APE002

   ! BETA_PEN parameters
   REAL(wp) ::   BPE000 , BPE100 , BPE200 , BPE300
   REAL(wp) ::   BPE010 , BPE110 , BPE210
   REAL(wp) ::   BPE020 , BPE120
   REAL(wp) ::   BPE030
   REAL(wp) ::   BPE001 , BPE101
   REAL(wp) ::   BPE011
   REAL(wp) ::   BPE002

   !! * Substitutions
#  include "do_loop_substitute.h90"
#  include "domzgr_substitute.h90"
   !!----------------------------------------------------------------------
   !! NEMO/OCE 4.0 , NEMO Consortium (2018)
   !! $Id: eosbn2.F90 15136 2021-07-23 10:07:28Z smasson $
   !! Software governed by the CeCILL license (see ./LICENSE)
   !!----------------------------------------------------------------------
CONTAINS

   SUBROUTINE eos_insitu( pts, prd, pdep )
      !!
      REAL(wp), DIMENSION(:,:,:,:), INTENT(in   ) ::   pts   ! 1 : potential temperature  [Celsius]
      !                                                      ! 2 : salinity               [psu]
      REAL(wp), DIMENSION(:,:,:)  , INTENT(  out) ::   prd   ! in situ density            [-]
      REAL(wp), DIMENSION(:,:,:)  , INTENT(in   ) ::   pdep  ! depth                      [m]
      !!
      CALL eos_insitu_t( pts, is_tile(pts), prd, is_tile(prd), pdep, is_tile(pdep) )
   END SUBROUTINE eos_insitu

   SUBROUTINE eos_insitu_t( pts, ktts, prd, ktrd, pdep, ktdep )
      !!----------------------------------------------------------------------
      !!                   ***  ROUTINE eos_insitu  ***
      !!
      !! ** Purpose :   Compute the in situ density (ratio rho/rho0) from
      !!       potential temperature and salinity using an equation of state
      !!       selected in the nameos namelist
      !!
      !! ** Method  :   prd(t,s,z) = ( rho(t,s,z) - rho0 ) / rho0
      !!         with   prd    in situ density anomaly      no units
      !!                t      TEOS10: CT or EOS80: PT      Celsius
      !!                s      TEOS10: SA or EOS80: SP      TEOS10: g/kg or EOS80: psu
      !!                z      depth                        meters
      !!                rho    in situ density              kg/m^3
      !!                rho0   reference density            kg/m^3
      !!
      !!     ln_teos10 : polynomial TEOS-10 equation of state is used for rho(t,s,z).
      !!         Check value: rho = 1028.21993233072 kg/m^3 for z=3000 dbar, ct=3 Celsius, sa=35.5 g/kg
      !!
      !!     ln_eos80 : polynomial EOS-80 equation of state is used for rho(t,s,z).
      !!         Check value: rho = 1028.35011066567 kg/m^3 for z=3000 dbar, pt=3 Celsius, sp=35.5 psu
      !!
      !!     ln_seos : simplified equation of state
      !!              prd(t,s,z) = ( -a0*(1+lambda/2*(T-T0)+mu*z+nu*(S-S0))*(T-T0) + b0*(S-S0) ) / rho0
      !!              linear case function of T only: rn_alpha<>0, other coefficients = 0
      !!              linear eos function of T and S: rn_alpha and rn_beta<>0, other coefficients=0
      !!              Vallis like equation: use default values of coefficients
      !!
      !! ** Action  :   compute prd , the in situ density (no units)
      !!
      !! References :   Roquet et al, Ocean Modelling, in preparation (2014)
      !!                Vallis, Atmospheric and Oceanic Fluid Dynamics, 2006
      !!                TEOS-10 Manual, 2010
      !!----------------------------------------------------------------------
      INTEGER                                 , INTENT(in   ) ::   ktts, ktrd, ktdep
      REAL(wp), DIMENSION(A2D_T(ktts) ,JPK,JPTS), INTENT(in   ) ::   pts   ! 1 : potential temperature  [Celsius]
      !                                                                  ! 2 : salinity               [psu]
      REAL(wp), DIMENSION(A2D_T(ktrd) ,JPK     ), INTENT(  out) ::   prd   ! in situ density            [-]
      REAL(wp), DIMENSION(A2D_T(ktdep),JPK     ), INTENT(in   ) ::   pdep  ! depth                      [m]
      !
      INTEGER  ::   ji, jj, jk                ! dummy loop indices
      REAL(wp) ::   zt , zh , zs , ztm        ! local scalars
      REAL(wp) ::   zn , zn0, zn1, zn2, zn3   !   -      -
      !!----------------------------------------------------------------------
      !
      IF( ln_timing )   CALL timing_start('eos-insitu')
      !
      SELECT CASE( neos )
      !
      CASE( np_teos10, np_eos80 )                !==  polynomial TEOS-10 / EOS-80 ==!
         !
         DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, jpkm1 )
            !
            zh  = pdep(ji,jj,jk) * r1_Z0                                  ! depth
            zt  = pts (ji,jj,jk,jp_tem) * r1_T0                           ! temperature
            zs  = SQRT( ABS( pts(ji,jj,jk,jp_sal) + rdeltaS ) * r1_S0 )   ! square root salinity
            ztm = tmask(ji,jj,jk)                                         ! tmask
            !
            zn3 = EOS013*zt   &
               &   + EOS103*zs+EOS003
               !
            zn2 = (EOS022*zt   &
               &   + EOS112*zs+EOS012)*zt   &
               &   + (EOS202*zs+EOS102)*zs+EOS002
               !
            zn1 = (((EOS041*zt   &
               &   + EOS131*zs+EOS031)*zt   &
               &   + (EOS221*zs+EOS121)*zs+EOS021)*zt   &
               &   + ((EOS311*zs+EOS211)*zs+EOS111)*zs+EOS011)*zt   &
               &   + (((EOS401*zs+EOS301)*zs+EOS201)*zs+EOS101)*zs+EOS001
               !
            zn0 = (((((EOS060*zt   &
               &   + EOS150*zs+EOS050)*zt   &
               &   + (EOS240*zs+EOS140)*zs+EOS040)*zt   &
               &   + ((EOS330*zs+EOS230)*zs+EOS130)*zs+EOS030)*zt   &
               &   + (((EOS420*zs+EOS320)*zs+EOS220)*zs+EOS120)*zs+EOS020)*zt   &
               &   + ((((EOS510*zs+EOS410)*zs+EOS310)*zs+EOS210)*zs+EOS110)*zs+EOS010)*zt   &
               &   + (((((EOS600*zs+EOS500)*zs+EOS400)*zs+EOS300)*zs+EOS200)*zs+EOS100)*zs+EOS000
               !
            zn  = ( ( zn3 * zh + zn2 ) * zh + zn1 ) * zh + zn0
            !
            prd(ji,jj,jk) = (  zn * r1_rho0 - 1._wp  ) * ztm  ! density anomaly (masked)
            !
         END_3D
         !
      CASE( np_seos )                !==  simplified EOS  ==!
         !
         DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, jpkm1 )
            zt  = pts  (ji,jj,jk,jp_tem) - 10._wp
            zs  = pts  (ji,jj,jk,jp_sal) - 35._wp
            zh  = pdep (ji,jj,jk)
            ztm = tmask(ji,jj,jk)
            !
            zn =  - rn_a0 * ( 1._wp + 0.5_wp*rn_lambda1*zt + rn_mu1*zh ) * zt   &
               &  + rn_b0 * ( 1._wp - 0.5_wp*rn_lambda2*zs - rn_mu2*zh ) * zs   &
               &  - rn_nu * zt * zs
               !
            prd(ji,jj,jk) = zn * r1_rho0 * ztm                ! density anomaly (masked)
         END_3D
         !
      END SELECT
      !
      IF(sn_cfctl%l_prtctl)   CALL prt_ctl( tab3d_1=prd, clinfo1=' eos-insitu  : ', kdim=jpk )
      !
      IF( ln_timing )   CALL timing_stop('eos-insitu')
      !
   END SUBROUTINE eos_insitu_t


   SUBROUTINE eos_insitu_pot( pts, prd, prhop, pdep )
      !!
      REAL(wp), DIMENSION(:,:,:,:), INTENT(in   ) ::   pts    ! 1 : potential temperature  [Celsius]
      !                                                       ! 2 : salinity               [psu]
      REAL(wp), DIMENSION(:,:,:)  , INTENT(  out) ::   prd    ! in situ density            [-]
      REAL(wp), DIMENSION(:,:,:)  , INTENT(  out) ::   prhop  ! potential density (surface referenced)
      REAL(wp), DIMENSION(:,:,:)  , INTENT(in   ) ::   pdep   ! depth                      [m]
      !!
      CALL eos_insitu_pot_t( pts, is_tile(pts), prd, is_tile(prd), prhop, is_tile(prhop), pdep, is_tile(pdep) )
   END SUBROUTINE eos_insitu_pot


   SUBROUTINE eos_insitu_pot_t( pts, ktts, prd, ktrd, prhop, ktrhop, pdep, ktdep )
      !!----------------------------------------------------------------------
      !!                  ***  ROUTINE eos_insitu_pot  ***
      !!
      !! ** Purpose :   Compute the in situ density (ratio rho/rho0) and the
      !!      potential volumic mass (Kg/m3) from potential temperature and
      !!      salinity fields using an equation of state selected in the
      !!     namelist.
      !!
      !! ** Action  : - prd  , the in situ density (no units)
      !!              - prhop, the potential volumic mass (Kg/m3)
      !!
      !!----------------------------------------------------------------------
      INTEGER                                  , INTENT(in   ) ::   ktts, ktrd, ktrhop, ktdep
      REAL(wp), DIMENSION(A2D_T(ktts)  ,JPK,JPTS), INTENT(in   ) ::   pts    ! 1 : potential temperature  [Celsius]
      !                                                                    ! 2 : salinity               [psu]
      REAL(wp), DIMENSION(A2D_T(ktrd)  ,JPK     ), INTENT(  out) ::   prd    ! in situ density            [-]
      REAL(wp), DIMENSION(A2D_T(ktrhop),JPK     ), INTENT(  out) ::   prhop  ! potential density (surface referenced)
      REAL(wp), DIMENSION(A2D_T(ktdep) ,JPK     ), INTENT(in   ) ::   pdep   ! depth                      [m]
      !
      INTEGER  ::   ji, jj, jk, jsmp             ! dummy loop indices
      INTEGER  ::   jdof
      REAL(wp) ::   zt , zh , zstemp, zs , ztm   ! local scalars
      REAL(wp) ::   zn , zn0, zn1, zn2, zn3      !   -      -
      REAL(wp), DIMENSION(:), ALLOCATABLE :: zn0_sto, zn_sto, zsign    ! local vectors
      !!----------------------------------------------------------------------
      !
      IF( ln_timing )   CALL timing_start('eos-pot')
      !
      SELECT CASE ( neos )
      !
      CASE( np_teos10, np_eos80 )                !==  polynomial TEOS-10 / EOS-80 ==!
         !
         ! Stochastic equation of state
         IF ( ln_sto_eos ) THEN
            ALLOCATE(zn0_sto(1:2*nn_sto_eos))
            ALLOCATE(zn_sto(1:2*nn_sto_eos))
            ALLOCATE(zsign(1:2*nn_sto_eos))
            DO jsmp = 1, 2*nn_sto_eos, 2
              zsign(jsmp)   = 1._wp
              zsign(jsmp+1) = -1._wp
            END DO
            !
            DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, jpkm1 )
               !
               ! compute density (2*nn_sto_eos) times:
               ! (1) for t+dt, s+ds (with the random TS fluctutation computed in sto_pts)
               ! (2) for t-dt, s-ds (with the opposite fluctuation)
               DO jsmp = 1, nn_sto_eos*2
                  jdof   = (jsmp + 1) / 2
                  zh     = pdep(ji,jj,jk) * r1_Z0                                  ! depth
                  zt     = (pts (ji,jj,jk,jp_tem) + pts_ran(ji,jj,jk,jp_tem,jdof) * zsign(jsmp)) * r1_T0    ! temperature
                  zstemp = pts  (ji,jj,jk,jp_sal) + pts_ran(ji,jj,jk,jp_sal,jdof) * zsign(jsmp)
                  zs     = SQRT( ABS( zstemp + rdeltaS ) * r1_S0 )   ! square root salinity
                  ztm    = tmask(ji,jj,jk)                                         ! tmask
                  !
                  zn3 = EOS013*zt   &
                     &   + EOS103*zs+EOS003
                     !
                  zn2 = (EOS022*zt   &
                     &   + EOS112*zs+EOS012)*zt   &
                     &   + (EOS202*zs+EOS102)*zs+EOS002
                     !
                  zn1 = (((EOS041*zt   &
                     &   + EOS131*zs+EOS031)*zt   &
                     &   + (EOS221*zs+EOS121)*zs+EOS021)*zt   &
                     &   + ((EOS311*zs+EOS211)*zs+EOS111)*zs+EOS011)*zt   &
                     &   + (((EOS401*zs+EOS301)*zs+EOS201)*zs+EOS101)*zs+EOS001
                     !
                  zn0_sto(jsmp) = (((((EOS060*zt   &
                     &   + EOS150*zs+EOS050)*zt   &
                     &   + (EOS240*zs+EOS140)*zs+EOS040)*zt   &
                     &   + ((EOS330*zs+EOS230)*zs+EOS130)*zs+EOS030)*zt   &
                     &   + (((EOS420*zs+EOS320)*zs+EOS220)*zs+EOS120)*zs+EOS020)*zt   &
                     &   + ((((EOS510*zs+EOS410)*zs+EOS310)*zs+EOS210)*zs+EOS110)*zs+EOS010)*zt   &
                     &   + (((((EOS600*zs+EOS500)*zs+EOS400)*zs+EOS300)*zs+EOS200)*zs+EOS100)*zs+EOS000
                     !
                  zn_sto(jsmp)  = ( ( zn3 * zh + zn2 ) * zh + zn1 ) * zh + zn0_sto(jsmp)
               END DO
               !
               ! compute stochastic density as the mean of the (2*nn_sto_eos) densities
               prhop(ji,jj,jk) = 0._wp ; prd(ji,jj,jk) = 0._wp
               DO jsmp = 1, nn_sto_eos*2
                  prhop(ji,jj,jk) = prhop(ji,jj,jk) + zn0_sto(jsmp)                      ! potential density referenced at the surface
                  !
                  prd(ji,jj,jk) = prd(ji,jj,jk) + (  zn_sto(jsmp) * r1_rho0 - 1._wp  )   ! density anomaly (masked)
               END DO
               prhop(ji,jj,jk) = 0.5_wp * prhop(ji,jj,jk) * ztm / nn_sto_eos
               prd  (ji,jj,jk) = 0.5_wp * prd  (ji,jj,jk) * ztm / nn_sto_eos
            END_3D
            DEALLOCATE(zn0_sto,zn_sto,zsign)
         ! Non-stochastic equation of state
         ELSE
            DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, jpkm1 )
               !
               zh  = pdep(ji,jj,jk) * r1_Z0                                  ! depth
               zt  = pts (ji,jj,jk,jp_tem) * r1_T0                           ! temperature
               zs  = SQRT( ABS( pts(ji,jj,jk,jp_sal) + rdeltaS ) * r1_S0 )   ! square root salinity
               ztm = tmask(ji,jj,jk)                                         ! tmask
               !
               zn3 = EOS013*zt   &
                  &   + EOS103*zs+EOS003
                  !
               zn2 = (EOS022*zt   &
                  &   + EOS112*zs+EOS012)*zt   &
                  &   + (EOS202*zs+EOS102)*zs+EOS002
                  !
               zn1 = (((EOS041*zt   &
                  &   + EOS131*zs+EOS031)*zt   &
                  &   + (EOS221*zs+EOS121)*zs+EOS021)*zt   &
                  &   + ((EOS311*zs+EOS211)*zs+EOS111)*zs+EOS011)*zt   &
                  &   + (((EOS401*zs+EOS301)*zs+EOS201)*zs+EOS101)*zs+EOS001
                  !
               zn0 = (((((EOS060*zt   &
                  &   + EOS150*zs+EOS050)*zt   &
                  &   + (EOS240*zs+EOS140)*zs+EOS040)*zt   &
                  &   + ((EOS330*zs+EOS230)*zs+EOS130)*zs+EOS030)*zt   &
                  &   + (((EOS420*zs+EOS320)*zs+EOS220)*zs+EOS120)*zs+EOS020)*zt   &
                  &   + ((((EOS510*zs+EOS410)*zs+EOS310)*zs+EOS210)*zs+EOS110)*zs+EOS010)*zt   &
                  &   + (((((EOS600*zs+EOS500)*zs+EOS400)*zs+EOS300)*zs+EOS200)*zs+EOS100)*zs+EOS000
                  !
               zn  = ( ( zn3 * zh + zn2 ) * zh + zn1 ) * zh + zn0
               !
               prhop(ji,jj,jk) = zn0 * ztm                           ! potential density referenced at the surface
               !
               prd(ji,jj,jk) = (  zn * r1_rho0 - 1._wp  ) * ztm      ! density anomaly (masked)
            END_3D
         ENDIF

      CASE( np_seos )                !==  simplified EOS  ==!
         !
         DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, jpkm1 )
            zt  = pts  (ji,jj,jk,jp_tem) - 10._wp
            zs  = pts  (ji,jj,jk,jp_sal) - 35._wp
            zh  = pdep (ji,jj,jk)
            ztm = tmask(ji,jj,jk)
            !                                                     ! potential density referenced at the surface
            zn =  - rn_a0 * ( 1._wp + 0.5_wp*rn_lambda1*zt ) * zt   &
               &  + rn_b0 * ( 1._wp - 0.5_wp*rn_lambda2*zs ) * zs   &
               &  - rn_nu * zt * zs
            prhop(ji,jj,jk) = ( rho0 + zn ) * ztm
            !                                                     ! density anomaly (masked)
            zn = zn - ( rn_a0 * rn_mu1 * zt + rn_b0 * rn_mu2 * zs ) * zh
            prd(ji,jj,jk) = zn * r1_rho0 * ztm
            !
         END_3D
         !
      END SELECT
      !
      IF(sn_cfctl%l_prtctl)   CALL prt_ctl( tab3d_1=prd, clinfo1=' eos-pot: ', &
         &                                  tab3d_2=prhop, clinfo2=' pot : ', kdim=jpk )
      !
      IF( ln_timing )   CALL timing_stop('eos-pot')
      !
   END SUBROUTINE eos_insitu_pot_t


   SUBROUTINE eos_insitu_2d( pts, pdep, prd )
      !!
      REAL(wp), DIMENSION(:,:,:), INTENT(in   ) ::   pts   ! 1 : potential temperature  [Celsius]
      !                                                    ! 2 : salinity               [psu]
      REAL(wp), DIMENSION(:,:)  , INTENT(in   ) ::   pdep  ! depth                      [m]
      REAL(wp), DIMENSION(:,:)  , INTENT(  out) ::   prd   ! in situ density
      !!
      CALL eos_insitu_2d_t( pts, is_tile(pts), pdep, is_tile(pdep), prd, is_tile(prd) )
   END SUBROUTINE eos_insitu_2d


   SUBROUTINE eos_insitu_2d_t( pts, ktts, pdep, ktdep, prd, ktrd )
      !!----------------------------------------------------------------------
      !!                  ***  ROUTINE eos_insitu_2d  ***
      !!
      !! ** Purpose :   Compute the in situ density (ratio rho/rho0) from
      !!      potential temperature and salinity using an equation of state
      !!      selected in the nameos namelist. * 2D field case
      !!
      !! ** Action  : - prd , the in situ density (no units) (unmasked)
      !!
      !!----------------------------------------------------------------------
      INTEGER                            , INTENT(in   ) ::   ktts, ktdep, ktrd
      REAL(wp), DIMENSION(A2D_T(ktts),JPTS), INTENT(in   ) ::   pts   ! 1 : potential temperature  [Celsius]
      !                                                             ! 2 : salinity               [psu]
      REAL(wp), DIMENSION(A2D_T(ktdep)    ), INTENT(in   ) ::   pdep  ! depth                      [m]
      REAL(wp), DIMENSION(A2D_T(ktrd)     ), INTENT(  out) ::   prd   ! in situ density
      !
      INTEGER  ::   ji, jj, jk                ! dummy loop indices
      REAL(wp) ::   zt , zh , zs              ! local scalars
      REAL(wp) ::   zn , zn0, zn1, zn2, zn3   !   -      -
      !!----------------------------------------------------------------------
      !
      IF( ln_timing )   CALL timing_start('eos2d')
      !
      prd(:,:) = 0._wp
      !
      SELECT CASE( neos )
      !
      CASE( np_teos10, np_eos80 )                !==  polynomial TEOS-10 / EOS-80 ==!
         !
         DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
            !
            zh  = pdep(ji,jj) * r1_Z0                                  ! depth
            zt  = pts (ji,jj,jp_tem) * r1_T0                           ! temperature
            zs  = SQRT( ABS( pts(ji,jj,jp_sal) + rdeltaS ) * r1_S0 )   ! square root salinity
            !
            zn3 = EOS013*zt   &
               &   + EOS103*zs+EOS003
               !
            zn2 = (EOS022*zt   &
               &   + EOS112*zs+EOS012)*zt   &
               &   + (EOS202*zs+EOS102)*zs+EOS002
               !
            zn1 = (((EOS041*zt   &
               &   + EOS131*zs+EOS031)*zt   &
               &   + (EOS221*zs+EOS121)*zs+EOS021)*zt   &
               &   + ((EOS311*zs+EOS211)*zs+EOS111)*zs+EOS011)*zt   &
               &   + (((EOS401*zs+EOS301)*zs+EOS201)*zs+EOS101)*zs+EOS001
               !
            zn0 = (((((EOS060*zt   &
               &   + EOS150*zs+EOS050)*zt   &
               &   + (EOS240*zs+EOS140)*zs+EOS040)*zt   &
               &   + ((EOS330*zs+EOS230)*zs+EOS130)*zs+EOS030)*zt   &
               &   + (((EOS420*zs+EOS320)*zs+EOS220)*zs+EOS120)*zs+EOS020)*zt   &
               &   + ((((EOS510*zs+EOS410)*zs+EOS310)*zs+EOS210)*zs+EOS110)*zs+EOS010)*zt   &
               &   + (((((EOS600*zs+EOS500)*zs+EOS400)*zs+EOS300)*zs+EOS200)*zs+EOS100)*zs+EOS000
               !
            zn  = ( ( zn3 * zh + zn2 ) * zh + zn1 ) * zh + zn0
            !
            prd(ji,jj) = zn * r1_rho0 - 1._wp               ! unmasked in situ density anomaly
            !
         END_2D
         !
      CASE( np_seos )                !==  simplified EOS  ==!
         !
         DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
            !
            zt    = pts  (ji,jj,jp_tem)  - 10._wp
            zs    = pts  (ji,jj,jp_sal)  - 35._wp
            zh    = pdep (ji,jj)                         ! depth at the partial step level
            !
            zn =  - rn_a0 * ( 1._wp + 0.5_wp*rn_lambda1*zt + rn_mu1*zh ) * zt   &
               &  + rn_b0 * ( 1._wp - 0.5_wp*rn_lambda2*zs - rn_mu2*zh ) * zs   &
               &  - rn_nu * zt * zs
               !
            prd(ji,jj) = zn * r1_rho0               ! unmasked in situ density anomaly
            !
         END_2D
         !
      END SELECT
      !
      IF(sn_cfctl%l_prtctl)   CALL prt_ctl( tab2d_1=prd, clinfo1=' eos2d: ' )
      !
      IF( ln_timing )   CALL timing_stop('eos2d')
      !
   END SUBROUTINE eos_insitu_2d_t


   SUBROUTINE eos_insitu_pot_2d( pts, prhop )
      !!
      REAL(wp), DIMENSION(:,:,:), INTENT(in   ) ::   pts    ! 1 : potential temperature  [Celsius]
      !                                                     ! 2 : salinity               [psu]
      REAL(wp), DIMENSION(:,:)  , INTENT(  out) ::   prhop  ! potential density (surface referenced)
      !!
      CALL eos_insitu_pot_2d_t( pts, is_tile(pts), prhop, is_tile(prhop) )
   END SUBROUTINE eos_insitu_pot_2d


   SUBROUTINE eos_insitu_pot_2d_t( pts, ktts, prhop, ktrhop )
      !!----------------------------------------------------------------------
      !!                  ***  ROUTINE eos_insitu_pot  ***
      !!
      !! ** Purpose :   Compute the in situ density (ratio rho/rho0) and the
      !!      potential volumic mass (Kg/m3) from potential temperature and
      !!      salinity fields using an equation of state selected in the
      !!     namelist.
      !!
      !! ** Action  :
      !!              - prhop, the potential volumic mass (Kg/m3)
      !!
      !!----------------------------------------------------------------------
      INTEGER                              , INTENT(in   ) ::   ktts, ktrhop
      REAL(wp), DIMENSION(A2D_T(ktts),JPTS), INTENT(in   ) ::   pts    ! 1 : potential temperature  [Celsius]
      !                                                                ! 2 : salinity               [psu]
      REAL(wp), DIMENSION(A2D_T(ktrhop)   ), INTENT(  out) ::   prhop  ! potential density (surface referenced)
      !
      INTEGER  ::   ji, jj, jk, jsmp             ! dummy loop indices
      INTEGER  ::   jdof
      REAL(wp) ::   zt , zh , zstemp, zs , ztm   ! local scalars
      REAL(wp) ::   zn , zn0, zn1, zn2, zn3      !   -      -
      REAL(wp), DIMENSION(:), ALLOCATABLE :: zn0_sto, zn_sto, zsign    ! local vectors
      !!----------------------------------------------------------------------
      !
      IF( ln_timing )   CALL timing_start('eos-pot')
      !
      SELECT CASE ( neos )
      !
      CASE( np_teos10, np_eos80 )                !==  polynomial TEOS-10 / EOS-80 ==!
         !
         DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
            !
            zt  = pts (ji,jj,jp_tem) * r1_T0                           ! temperature
            zs  = SQRT( ABS( pts(ji,jj,jp_sal) + rdeltaS ) * r1_S0 )   ! square root salinity
            ztm = tmask(ji,jj,1)                                         ! tmask
            !
            zn0 = (((((EOS060*zt   &
               &   + EOS150*zs+EOS050)*zt   &
               &   + (EOS240*zs+EOS140)*zs+EOS040)*zt   &
               &   + ((EOS330*zs+EOS230)*zs+EOS130)*zs+EOS030)*zt   &
               &   + (((EOS420*zs+EOS320)*zs+EOS220)*zs+EOS120)*zs+EOS020)*zt   &
               &   + ((((EOS510*zs+EOS410)*zs+EOS310)*zs+EOS210)*zs+EOS110)*zs+EOS010)*zt   &
               &   + (((((EOS600*zs+EOS500)*zs+EOS400)*zs+EOS300)*zs+EOS200)*zs+EOS100)*zs+EOS000
               !
            !
            prhop(ji,jj) = zn0 * ztm                           ! potential density referenced at the surface
            !
         END_2D

      CASE( np_seos )                !==  simplified EOS  ==!
         !
         DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
            zt  = pts  (ji,jj,jp_tem) - 10._wp
            zs  = pts  (ji,jj,jp_sal) - 35._wp
            ztm = tmask(ji,jj,1)
            !                                                     ! potential density referenced at the surface
            zn =  - rn_a0 * ( 1._wp + 0.5_wp*rn_lambda1*zt ) * zt   &
               &  + rn_b0 * ( 1._wp - 0.5_wp*rn_lambda2*zs ) * zs   &
               &  - rn_nu * zt * zs
            prhop(ji,jj) = ( rho0 + zn ) * ztm
            !
         END_2D
         !
      END SELECT
      IF(sn_cfctl%l_prtctl)   CALL prt_ctl( tab2d_1=prhop, clinfo1=' pot: ', kdim=1 )
      !
      IF(sn_cfctl%l_prtctl)   CALL prt_ctl( tab2d_1=prhop, clinfo1=' eos-pot: ' )
      !
      IF( ln_timing )   CALL timing_stop('eos-pot')
      !
   END SUBROUTINE eos_insitu_pot_2d_t


   SUBROUTINE rab_3d( pts, pab, Kmm )
      !!
      INTEGER                     , INTENT(in   ) ::   Kmm   ! time level index
      REAL(wp), DIMENSION(:,:,:,:), INTENT(in   ) ::   pts   ! pot. temperature & salinity
      REAL(wp), DIMENSION(:,:,:,:), INTENT(  out) ::   pab   ! thermal/haline expansion ratio
      !!
      CALL rab_3d_t( pts, is_tile(pts), pab, is_tile(pab), Kmm )
   END SUBROUTINE rab_3d


   SUBROUTINE rab_3d_t( pts, ktts, pab, ktab, Kmm )
      !!----------------------------------------------------------------------
      !!                 ***  ROUTINE rab_3d  ***
      !!
      !! ** Purpose :   Calculates thermal/haline expansion ratio at T-points
      !!
      !! ** Method  :   calculates alpha / beta at T-points
      !!
      !! ** Action  : - pab     : thermal/haline expansion ratio at T-points
      !!----------------------------------------------------------------------
      INTEGER                                , INTENT(in   ) ::   Kmm   ! time level index
      INTEGER                                , INTENT(in   ) ::   ktts, ktab
      REAL(wp), DIMENSION(A2D_T(ktts),JPK,JPTS), INTENT(in   ) ::   pts   ! pot. temperature & salinity
      REAL(wp), DIMENSION(A2D_T(ktab),JPK,JPTS), INTENT(  out) ::   pab   ! thermal/haline expansion ratio
      !
      INTEGER  ::   ji, jj, jk                ! dummy loop indices
      REAL(wp) ::   zt , zh , zs , ztm        ! local scalars
      REAL(wp) ::   zn , zn0, zn1, zn2, zn3   !   -      -
      !!----------------------------------------------------------------------
      !
      IF( ln_timing )   CALL timing_start('rab_3d')
      !
      SELECT CASE ( neos )
      !
      CASE( np_teos10, np_eos80 )                !==  polynomial TEOS-10 / EOS-80 ==!
         !
         DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, jpkm1 )
            !
            zh  = gdept(ji,jj,jk,Kmm) * r1_Z0                                ! depth
            zt  = pts (ji,jj,jk,jp_tem) * r1_T0                           ! temperature
            zs  = SQRT( ABS( pts(ji,jj,jk,jp_sal) + rdeltaS ) * r1_S0 )   ! square root salinity
            ztm = tmask(ji,jj,jk)                                         ! tmask
            !
            ! alpha
            zn3 = ALP003
            !
            zn2 = ALP012*zt + ALP102*zs+ALP002
            !
            zn1 = ((ALP031*zt   &
               &   + ALP121*zs+ALP021)*zt   &
               &   + (ALP211*zs+ALP111)*zs+ALP011)*zt   &
               &   + ((ALP301*zs+ALP201)*zs+ALP101)*zs+ALP001
               !
            zn0 = ((((ALP050*zt   &
               &   + ALP140*zs+ALP040)*zt   &
               &   + (ALP230*zs+ALP130)*zs+ALP030)*zt   &
               &   + ((ALP320*zs+ALP220)*zs+ALP120)*zs+ALP020)*zt   &
               &   + (((ALP410*zs+ALP310)*zs+ALP210)*zs+ALP110)*zs+ALP010)*zt   &
               &   + ((((ALP500*zs+ALP400)*zs+ALP300)*zs+ALP200)*zs+ALP100)*zs+ALP000
               !
            zn  = ( ( zn3 * zh + zn2 ) * zh + zn1 ) * zh + zn0
            !
            pab(ji,jj,jk,jp_tem) = zn * r1_rho0 * ztm
            !
            ! beta
            zn3 = BET003
            !
            zn2 = BET012*zt + BET102*zs+BET002
            !
            zn1 = ((BET031*zt   &
               &   + BET121*zs+BET021)*zt   &
               &   + (BET211*zs+BET111)*zs+BET011)*zt   &
               &   + ((BET301*zs+BET201)*zs+BET101)*zs+BET001
               !
            zn0 = ((((BET050*zt   &
               &   + BET140*zs+BET040)*zt   &
               &   + (BET230*zs+BET130)*zs+BET030)*zt   &
               &   + ((BET320*zs+BET220)*zs+BET120)*zs+BET020)*zt   &
               &   + (((BET410*zs+BET310)*zs+BET210)*zs+BET110)*zs+BET010)*zt   &
               &   + ((((BET500*zs+BET400)*zs+BET300)*zs+BET200)*zs+BET100)*zs+BET000
               !
            zn  = ( ( zn3 * zh + zn2 ) * zh + zn1 ) * zh + zn0
            !
            pab(ji,jj,jk,jp_sal) = zn / zs * r1_rho0 * ztm
            !
         END_3D
         !
      CASE( np_seos )                  !==  simplified EOS  ==!
         !
         DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, jpkm1 )
            zt  = pts (ji,jj,jk,jp_tem) - 10._wp   ! pot. temperature anomaly (t-T0)
            zs  = pts (ji,jj,jk,jp_sal) - 35._wp   ! abs. salinity anomaly (s-S0)
            zh  = gdept(ji,jj,jk,Kmm)                ! depth in meters at t-point
            ztm = tmask(ji,jj,jk)                  ! land/sea bottom mask = surf. mask
            !
            zn  = rn_a0 * ( 1._wp + rn_lambda1*zt + rn_mu1*zh ) + rn_nu*zs
            pab(ji,jj,jk,jp_tem) = zn * r1_rho0 * ztm   ! alpha
            !
            zn  = rn_b0 * ( 1._wp - rn_lambda2*zs - rn_mu2*zh ) - rn_nu*zt
            pab(ji,jj,jk,jp_sal) = zn * r1_rho0 * ztm   ! beta
            !
         END_3D
         !
      CASE DEFAULT
         WRITE(ctmp1,*) '          bad flag value for neos = ', neos
         CALL ctl_stop( 'rab_3d:', ctmp1 )
         !
      END SELECT
      !
      IF(sn_cfctl%l_prtctl)   CALL prt_ctl( tab3d_1=pab(:,:,:,jp_tem), clinfo1=' rab_3d_t: ', &
         &                                  tab3d_2=pab(:,:,:,jp_sal), clinfo2=' rab_3d_s : ', kdim=jpk )
      !
      IF( ln_timing )   CALL timing_stop('rab_3d')
      !
   END SUBROUTINE rab_3d_t


   SUBROUTINE rab_2d( pts, pdep, pab, Kmm )
      !!
      INTEGER                   , INTENT(in   ) ::   Kmm   ! time level index
      REAL(wp), DIMENSION(:,:,:), INTENT(in   ) ::   pts    ! pot. temperature & salinity
      REAL(wp), DIMENSION(:,:)  , INTENT(in   ) ::   pdep   ! depth                  [m]
      REAL(wp), DIMENSION(:,:,:), INTENT(  out) ::   pab    ! thermal/haline expansion ratio
      !!
      CALL rab_2d_t(pts, is_tile(pts), pdep, is_tile(pdep), pab, is_tile(pab), Kmm)
   END SUBROUTINE rab_2d


   SUBROUTINE rab_2d_t( pts, ktts, pdep, ktdep, pab, ktab, Kmm )
      !!----------------------------------------------------------------------
      !!                 ***  ROUTINE rab_2d  ***
      !!
      !! ** Purpose :   Calculates thermal/haline expansion ratio for a 2d field (unmasked)
      !!
      !! ** Action  : - pab     : thermal/haline expansion ratio at T-points
      !!----------------------------------------------------------------------
      INTEGER                            , INTENT(in   ) ::   Kmm   ! time level index
      INTEGER                            , INTENT(in   ) ::   ktts, ktdep, ktab
      REAL(wp), DIMENSION(A2D_T(ktts),JPTS), INTENT(in   ) ::   pts    ! pot. temperature & salinity
      REAL(wp), DIMENSION(A2D_T(ktdep)    ), INTENT(in   ) ::   pdep   ! depth                  [m]
      REAL(wp), DIMENSION(A2D_T(ktab),JPTS), INTENT(  out) ::   pab    ! thermal/haline expansion ratio
      !
      INTEGER  ::   ji, jj, jk                ! dummy loop indices
      REAL(wp) ::   zt , zh , zs              ! local scalars
      REAL(wp) ::   zn , zn0, zn1, zn2, zn3   !   -      -
      !!----------------------------------------------------------------------
      !
      IF( ln_timing )   CALL timing_start('rab_2d')
      !
      pab(:,:,:) = 0._wp
      !
      SELECT CASE ( neos )
      !
      CASE( np_teos10, np_eos80 )                !==  polynomial TEOS-10 / EOS-80 ==!
         !
         DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
            !
            zh  = pdep(ji,jj) * r1_Z0                                  ! depth
            zt  = pts (ji,jj,jp_tem) * r1_T0                           ! temperature
            zs  = SQRT( ABS( pts(ji,jj,jp_sal) + rdeltaS ) * r1_S0 )   ! square root salinity
            !
            ! alpha
            zn3 = ALP003
            !
            zn2 = ALP012*zt + ALP102*zs+ALP002
            !
            zn1 = ((ALP031*zt   &
               &   + ALP121*zs+ALP021)*zt   &
               &   + (ALP211*zs+ALP111)*zs+ALP011)*zt   &
               &   + ((ALP301*zs+ALP201)*zs+ALP101)*zs+ALP001
               !
            zn0 = ((((ALP050*zt   &
               &   + ALP140*zs+ALP040)*zt   &
               &   + (ALP230*zs+ALP130)*zs+ALP030)*zt   &
               &   + ((ALP320*zs+ALP220)*zs+ALP120)*zs+ALP020)*zt   &
               &   + (((ALP410*zs+ALP310)*zs+ALP210)*zs+ALP110)*zs+ALP010)*zt   &
               &   + ((((ALP500*zs+ALP400)*zs+ALP300)*zs+ALP200)*zs+ALP100)*zs+ALP000
               !
            zn  = ( ( zn3 * zh + zn2 ) * zh + zn1 ) * zh + zn0
            !
            pab(ji,jj,jp_tem) = zn * r1_rho0
            !
            ! beta
            zn3 = BET003
            !
            zn2 = BET012*zt + BET102*zs+BET002
            !
            zn1 = ((BET031*zt   &
               &   + BET121*zs+BET021)*zt   &
               &   + (BET211*zs+BET111)*zs+BET011)*zt   &
               &   + ((BET301*zs+BET201)*zs+BET101)*zs+BET001
               !
            zn0 = ((((BET050*zt   &
               &   + BET140*zs+BET040)*zt   &
               &   + (BET230*zs+BET130)*zs+BET030)*zt   &
               &   + ((BET320*zs+BET220)*zs+BET120)*zs+BET020)*zt   &
               &   + (((BET410*zs+BET310)*zs+BET210)*zs+BET110)*zs+BET010)*zt   &
               &   + ((((BET500*zs+BET400)*zs+BET300)*zs+BET200)*zs+BET100)*zs+BET000
               !
            zn  = ( ( zn3 * zh + zn2 ) * zh + zn1 ) * zh + zn0
            !
            pab(ji,jj,jp_sal) = zn / zs * r1_rho0
            !
            !
         END_2D
         !
      CASE( np_seos )                  !==  simplified EOS  ==!
         !
         DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
            !
            zt    = pts  (ji,jj,jp_tem) - 10._wp   ! pot. temperature anomaly (t-T0)
            zs    = pts  (ji,jj,jp_sal) - 35._wp   ! abs. salinity anomaly (s-S0)
            zh    = pdep (ji,jj)                   ! depth at the partial step level
            !
            zn  = rn_a0 * ( 1._wp + rn_lambda1*zt + rn_mu1*zh ) + rn_nu*zs
            pab(ji,jj,jp_tem) = zn * r1_rho0   ! alpha
            !
            zn  = rn_b0 * ( 1._wp - rn_lambda2*zs - rn_mu2*zh ) - rn_nu*zt
            pab(ji,jj,jp_sal) = zn * r1_rho0   ! beta
            !
         END_2D
         !
      CASE DEFAULT
         WRITE(ctmp1,*) '          bad flag value for neos = ', neos
         CALL ctl_stop( 'rab_2d:', ctmp1 )
         !
      END SELECT
      !
      IF(sn_cfctl%l_prtctl)   CALL prt_ctl( tab2d_1=pab(:,:,jp_tem), clinfo1=' rab_2d_t: ', &
         &                                  tab2d_2=pab(:,:,jp_sal), clinfo2=' rab_2d_s : ' )
      !
      IF( ln_timing )   CALL timing_stop('rab_2d')
      !
   END SUBROUTINE rab_2d_t


   SUBROUTINE rab_0d( pts, pdep, pab, Kmm )
      !!----------------------------------------------------------------------
      !!                 ***  ROUTINE rab_0d  ***
      !!
      !! ** Purpose :   Calculates thermal/haline expansion ratio for a 2d field (unmasked)
      !!
      !! ** Action  : - pab     : thermal/haline expansion ratio at T-points
      !!----------------------------------------------------------------------
      INTEGER                              , INTENT(in   ) ::   Kmm   ! time level index
      REAL(wp), DIMENSION(jpts)    , INTENT(in   ) ::   pts    ! pot. temperature & salinity
      REAL(wp),                      INTENT(in   ) ::   pdep   ! depth                  [m]
      REAL(wp), DIMENSION(jpts)    , INTENT(  out) ::   pab    ! thermal/haline expansion ratio
      !
      REAL(wp) ::   zt , zh , zs              ! local scalars
      REAL(wp) ::   zn , zn0, zn1, zn2, zn3   !   -      -
      !!----------------------------------------------------------------------
      !
      IF( ln_timing )   CALL timing_start('rab_0d')
      !
      pab(:) = 0._wp
      !
      SELECT CASE ( neos )
      !
      CASE( np_teos10, np_eos80 )      !==  polynomial TEOS-10 / EOS-80 ==!
         !
         !
         zh  = pdep * r1_Z0                                  ! depth
         zt  = pts (jp_tem) * r1_T0                           ! temperature
         zs  = SQRT( ABS( pts(jp_sal) + rdeltaS ) * r1_S0 )   ! square root salinity
         !
         ! alpha
         zn3 = ALP003
         !
         zn2 = ALP012*zt + ALP102*zs+ALP002
         !
         zn1 = ((ALP031*zt   &
            &   + ALP121*zs+ALP021)*zt   &
            &   + (ALP211*zs+ALP111)*zs+ALP011)*zt   &
            &   + ((ALP301*zs+ALP201)*zs+ALP101)*zs+ALP001
            !
         zn0 = ((((ALP050*zt   &
            &   + ALP140*zs+ALP040)*zt   &
            &   + (ALP230*zs+ALP130)*zs+ALP030)*zt   &
            &   + ((ALP320*zs+ALP220)*zs+ALP120)*zs+ALP020)*zt   &
            &   + (((ALP410*zs+ALP310)*zs+ALP210)*zs+ALP110)*zs+ALP010)*zt   &
            &   + ((((ALP500*zs+ALP400)*zs+ALP300)*zs+ALP200)*zs+ALP100)*zs+ALP000
            !
         zn  = ( ( zn3 * zh + zn2 ) * zh + zn1 ) * zh + zn0
         !
         pab(jp_tem) = zn * r1_rho0
         !
         ! beta
         zn3 = BET003
         !
         zn2 = BET012*zt + BET102*zs+BET002
         !
         zn1 = ((BET031*zt   &
            &   + BET121*zs+BET021)*zt   &
            &   + (BET211*zs+BET111)*zs+BET011)*zt   &
            &   + ((BET301*zs+BET201)*zs+BET101)*zs+BET001
            !
         zn0 = ((((BET050*zt   &
            &   + BET140*zs+BET040)*zt   &
            &   + (BET230*zs+BET130)*zs+BET030)*zt   &
            &   + ((BET320*zs+BET220)*zs+BET120)*zs+BET020)*zt   &
            &   + (((BET410*zs+BET310)*zs+BET210)*zs+BET110)*zs+BET010)*zt   &
            &   + ((((BET500*zs+BET400)*zs+BET300)*zs+BET200)*zs+BET100)*zs+BET000
            !
         zn  = ( ( zn3 * zh + zn2 ) * zh + zn1 ) * zh + zn0
         !
         pab(jp_sal) = zn / zs * r1_rho0
         !
         !
         !
      CASE( np_seos )                  !==  simplified EOS  ==!
         !
         zt    = pts(jp_tem) - 10._wp   ! pot. temperature anomaly (t-T0)
         zs    = pts(jp_sal) - 35._wp   ! abs. salinity anomaly (s-S0)
         zh    = pdep                   ! depth at the partial step level
         !
         zn  = rn_a0 * ( 1._wp + rn_lambda1*zt + rn_mu1*zh ) + rn_nu*zs
         pab(jp_tem) = zn * r1_rho0   ! alpha
         !
         zn  = rn_b0 * ( 1._wp - rn_lambda2*zs - rn_mu2*zh ) - rn_nu*zt
         pab(jp_sal) = zn * r1_rho0   ! beta
         !
      CASE DEFAULT
         WRITE(ctmp1,*) '          bad flag value for neos = ', neos
         CALL ctl_stop( 'rab_0d:', ctmp1 )
         !
      END SELECT
      !
      IF( ln_timing )   CALL timing_stop('rab_0d')
      !
   END SUBROUTINE rab_0d


   SUBROUTINE bn2( pts, pab, pn2, Kmm )
      !!
      INTEGER                              , INTENT(in   ) ::  Kmm   ! time level index
      REAL(wp), DIMENSION(jpi,jpj,jpk,jpts), INTENT(in   ) ::  pts   ! pot. temperature and salinity   [Celsius,psu]
      REAL(wp), DIMENSION(:,:,:,:)         , INTENT(in   ) ::  pab   ! thermal/haline expansion coef.  [Celsius-1,psu-1]
      REAL(wp), DIMENSION(:,:,:)           , INTENT(  out) ::  pn2   ! Brunt-Vaisala frequency squared [1/s^2]