Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
! - Stop if error is too large ("safeguard against bad forcing" of original Zhang routine)
IF ( i_inn > 1 .AND. zverr_max > zuerr_max_vp ) THEN
IF ( lwp ) WRITE(numout,*) " VP rheology error was too large : ", zverr_max, " in outer V-iteration ", i_out, " after ", i_inn, " iterations, we stopped "
ll_v_iterate = .FALSE.
ENDIF
! - Stop if error small enough
IF ( zverr_max < zuerr_min_vp ) THEN
IF ( lwp ) WRITE(numout,*) " VP rheology nicely done in outer V-iteration ", i_out, " after ", i_inn, " iterations, finished! "
ll_v_iterate = .FALSE.
ENDIF
ENDIF ! ll_v_iterate
ENDIF ! --- end ll_u_iterate or ll_v_iterate
!---------------------------------------------------------------------------------------
!
! --- Calculate extra convergence diagnostics and save them
!
!---------------------------------------------------------------------------------------
IF( nn_rhg_chkcvg/=0 .AND. MOD ( i_inn - 1, nn_vp_chkcvg ) == 0 ) THEN
CALL rhg_cvg_vp( kt, i_out, i_inn, i_inn_tot, nn_vp_nout, nn_vp_ninn, nn_nvp, &
& u_ice, v_ice, zu_b, zv_b, zu_c, zv_c, &
& zmt, za_iU, za_iV, zuerr_max, zverr_max, zglob_area, &
& zrhsu, zAU, zBU, zCU, zDU, zEU, zFU, &
& zrhsv, zAV, zBV, zCV, zDV, zEV, zFV, &
zvel_res, zvel_diff )
ENDIF
END DO ! i_inn, end of inner loop
END DO ! End of outer loop (i_out) =============================================================================================
IF( nn_rhg_chkcvg/=0 ) THEN
IF( iom_use('velo_res') ) CALL iom_put( 'velo_res', zvel_res ) ! linear system residual @last inner&outer iteration
IF( iom_use('velo_ero') ) CALL iom_put( 'velo_ero', zvel_diff ) ! abs velocity difference @last outer iteration
IF( iom_use('uice_eri') ) CALL iom_put( 'uice_eri', zuerr ) ! abs velocity difference @last inner iteration
IF( iom_use('vice_eri') ) CALL iom_put( 'vice_eri', zverr ) ! abs velocity difference @last inner iteration
ENDIF ! nn_rhg_chkcvg
!------------------------------------------------------------------------------!
!
! --- Recompute delta, shear and div (inputs for mechanical redistribution)
!
!------------------------------------------------------------------------------!
!
DO_2D( nn_hls, nn_hls-1, nn_hls, nn_hls-1 ) ! 1->jpj-1; 1->jpi-1
! shear at F points
zds(ji,jj) = ( ( u_ice(ji,jj+1) * r1_e1u(ji,jj+1) - u_ice(ji,jj) * r1_e1u(ji,jj) ) * e1f(ji,jj) * e1f(ji,jj) &
& + ( v_ice(ji+1,jj) * r1_e2v(ji+1,jj) - v_ice(ji,jj) * r1_e2v(ji,jj) ) * e2f(ji,jj) * e2f(ji,jj) &
& ) * r1_e1e2f(ji,jj) * fimask(ji,jj)
END_2D
DO_2D( 0, 0, 0, 0 ) ! 2->jpj-1; 2->jpi-1
! shear**2 at T points (doc eq. A16)
zds2 = ( zds(ji,jj ) * zds(ji,jj ) * e1e2f(ji,jj ) + zds(ji-1,jj ) * zds(ji-1,jj ) * e1e2f(ji-1,jj ) &
& + zds(ji,jj-1) * zds(ji,jj-1) * e1e2f(ji,jj-1) + zds(ji-1,jj-1) * zds(ji-1,jj-1) * e1e2f(ji-1,jj-1) &
& ) * 0.25_wp * r1_e1e2t(ji,jj)
! tension**2 at T points
zdt = ( ( u_ice(ji,jj) * r1_e2u(ji,jj) - u_ice(ji-1,jj) * r1_e2u(ji-1,jj) ) * e2t(ji,jj) * e2t(ji,jj) &
& - ( v_ice(ji,jj) * r1_e1v(ji,jj) - v_ice(ji,jj-1) * r1_e1v(ji,jj-1) ) * e1t(ji,jj) * e1t(ji,jj) &
& ) * r1_e1e2t(ji,jj)
zdt2 = zdt * zdt
zten_i(ji,jj) = zdt * zmsk(ji,jj)
! maximum shear rate at T points (includes tension, output only)
pshear_i(ji,jj) = SQRT( zdt2 + zds2 ) * zmsk(ji,jj)
zshear(ji,jj) = SQRT( zds2 ) * zmsk(ji,jj)
! divergence at T points
pdivu_i(ji,jj) = ( e2u(ji,jj) * u_ice(ji,jj) - e2u(ji-1,jj) * u_ice(ji-1,jj) &
& + e1v(ji,jj) * v_ice(ji,jj) - e1v(ji,jj-1) * v_ice(ji,jj-1) &
& ) * r1_e1e2t(ji,jj) * zmsk(ji,jj)
zfac = SQRT( pdivu_i(ji,jj) * pdivu_i(ji,jj) + ( zdt2 + zds2 ) * z1_ecc2 ) * zmsk(ji,jj) ! delta
zdelta(ji,jj) = zfac
! delta* at T points
rswitch = 1._wp - MAX( 0._wp, SIGN( 1._wp, -zfac ) ) ! 0 if delta=0
pdelta_i(ji,jj) = zfac + rn_creepl ! * rswitch
END_2D
CALL lbc_lnk( 'icedyn_rhg_vp', pshear_i, 'T', 1._wp, pdivu_i, 'T', 1._wp, pdelta_i, 'T', 1._wp, &
& zdelta , 'T', 1._wp, zten_i , 'T', 1._wp, zshear , 'T', 1._wp )
! --- Sea ice stresses at T-points --- !
IF ( iom_use('normstr') .OR. iom_use('sheastr') .OR. &
& iom_use('intstrx') .OR. iom_use('intstry') .OR. &
& iom_use('sig1_pnorm') .OR. iom_use('sig2_pnorm') ) THEN
! sigma1, sigma2, sigma12 are some recombination of the stresses (HD MWR002, Bouillon et al., OM2013)
! not to be confused with stress tensor components, stress invariants, or stress principal components
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) ! 2->jpj-1; 2->jpi-1
zvisc_t(ji,jj) = strength(ji,jj) / pdelta_i(ji,jj) ! update viscosity
zfac = zvisc_t(ji,jj)
zs1(ji,jj) = zfac * ( pdivu_i(ji,jj) - zdelta(ji,jj) )
zs2(ji,jj) = zfac * z1_ecc2 * zten_i(ji,jj)
zs12(ji,jj) = zfac * z1_ecc2 * zshear(ji,jj) * 0.5_wp
!!$ CALL lbc_lnk( 'icedyn_rhg_vp', zs1, 'T', 1., zs2, 'T', 1., zs12, 'T', 1. )
! --- Shear (s12) at F-points --- !
IF ( iom_use('intstrx') .OR. iom_use('intstry') ) THEN
DO_2D( nn_hls, nn_hls-1, nn_hls, nn_hls-1 ) ! 1->jpj-1; 1->jpi-1
zvisc_f = 0.25_wp * ( zvisc_t(ji,jj) + zvisc_t(ji+1,jj) + zvisc_t(ji,jj+1) + zvisc_t(ji+1,jj+1) )
zs12f(ji,jj) = zvisc_f * z1_ecc2 * zds(ji,jj)
END_2D
CALL lbc_lnk( 'icedyn_rhg_vp', zs12f, 'F', 1. )
ENDIF
!------------------------------------------------------------------------------!
!
! --- Diagnostics
!------------------------------------------------------------------------------!
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
! --- Ice-ocean, ice-atm. & ice-ocean bottom (landfast) stresses --- !
IF( iom_use('utau_oi') .OR. iom_use('vtau_oi') .OR. iom_use('utau_ai') .OR. iom_use('vtau_ai') .OR. &
& iom_use('utau_bi') .OR. iom_use('vtau_bi') ) THEN
ALLOCATE( ztaux_oi(jpi,jpj) , ztauy_oi(jpi,jpj) )
!--- Recalculate oceanic stress at last inner iteration
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) ! 2->jpj-1; 2->jpi-1
!--- ice u-velocity @V points, v-velocity @U points (for non-linear drag computation)
zu_cV = 0.25_wp * ( u_ice(ji,jj) + u_ice(ji-1,jj) + u_ice(ji,jj+1) + u_ice(ji-1,jj+1) ) * vmask(ji,jj,1)
zv_cU = 0.25_wp * ( v_ice(ji,jj) + v_ice(ji,jj-1) + v_ice(ji+1,jj) + v_ice(ji+1,jj-1) ) * umask(ji,jj,1)
!--- non-linear drag coefficients (need to be updated at each outer loop, see Lemieux and Tremblay JGR09, p.3, beginning of Section 3)
zCwU(ji,jj) = za_iU(ji,jj) * zrhoco * SQRT( ( u_ice(ji,jj) - u_oce (ji,jj) ) * ( u_ice(ji,jj) - u_oce (ji,jj) ) &
& + ( zv_cU - v_oceU(ji,jj) ) * ( zv_cU - v_oceU(ji,jj) ) )
zCwV(ji,jj) = za_iV(ji,jj) * zrhoco * SQRT( ( v_ice(ji,jj) - v_oce (ji,jj) ) * ( v_ice(ji,jj) - v_oce (ji,jj) ) &
& + ( zu_cV - u_oceV(ji,jj) ) * ( zu_cV - u_oceV(ji,jj) ) )
!--- Ocean-ice stress
ztaux_oi(ji,jj) = zCwU(ji,jj) * ( u_oce(ji,jj) - u_ice(ji,jj) )
ztauy_oi(ji,jj) = zCwV(ji,jj) * ( v_oce(ji,jj) - v_ice(ji,jj) )
END_2D
!
CALL lbc_lnk( 'icedyn_rhg_vp', ztaux_oi, 'U', -1., ztauy_oi, 'V', -1., ztaux_ai, 'U', -1., ztauy_ai, 'V', -1. ) !, &
! & ztaux_bi, 'U', -1., ztauy_bi, 'V', -1. )
!
CALL iom_put( 'utau_oi' , ztaux_oi * zmsk00 )
CALL iom_put( 'vtau_oi' , ztauy_oi * zmsk00 )
CALL iom_put( 'utau_ai' , ztaux_ai * zmsk00 )
CALL iom_put( 'vtau_ai' , ztauy_ai * zmsk00 )
! CALL iom_put( 'utau_bi' , ztaux_bi * zmsk00 )
! CALL iom_put( 'vtau_bi' , ztauy_bi * zmsk00 )
DEALLOCATE( ztaux_oi , ztauy_oi )
ENDIF
! --- Divergence, shear and strength --- !
IF( iom_use('icediv') ) CALL iom_put( 'icediv' , pdivu_i * zmsk00 ) ! divergence
IF( iom_use('iceshe') ) CALL iom_put( 'iceshe' , pshear_i * zmsk00 ) ! maximum shear rate
IF( iom_use('icedlt') ) CALL iom_put( 'icedlt' , zdelta * zmsk00 ) ! delta
IF( iom_use('icestr') ) CALL iom_put( 'icestr' , strength * zmsk00 ) ! strength
! --- Stress tensor invariants (SIMIP diags) --- !
IF( iom_use('normstr') .OR. iom_use('sheastr') ) THEN
!
ALLOCATE( zsig_I(jpi,jpj) , zsig_II(jpi,jpj) )
!
! Stress invariants (sigma_I, sigma_II, Coon 1974, Feltham 2008)
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls ) ! 2->jpj-1; 2->jpi-1
zsig_I(ji,jj) = 0.5_wp * zs1(ji,jj)
zsig_II(ji,jj) = 0.5_wp * SQRT ( zs2(ji,jj) * zs2(ji,jj) + 4. * zs12(ji,jj) * zs12(ji,jj) )
!!$ CALL lbc_lnk( 'icedyn_rhg_vp', zsig_I, 'T', 1., zsig_II, 'T', 1.)
IF( iom_use('normstr') ) CALL iom_put( 'normstr' , zsig_I(:,:) * zmsk00(:,:) ) ! Normal stress
IF( iom_use('sheastr') ) CALL iom_put( 'sheastr' , zsig_II(:,:) * zmsk00(:,:) ) ! Maximum shear stress
DEALLOCATE ( zsig_I, zsig_II )
ENDIF
! --- Normalized stress tensor principal components --- !
! These are used to plot the normalized yield curve (Lemieux & Dupont, GMD 2020)
! To plot the yield curve and evaluate physical convergence, they have two recommendations
! Recommendation 1 : Use ice strength, not replacement pressure
! Recommendation 2 : Need to use deformations at PREVIOUS iterate for viscosities (see p. 1765)
! R2 means we need to recompute stresses
IF( iom_use('sig1_pnorm') .OR. iom_use('sig2_pnorm') ) THEN
!
ALLOCATE( zsig1_p(jpi,jpj) , zsig2_p(jpi,jpj) , zsig_I(jpi,jpj) , zsig_II(jpi,jpj) )
!
DO_2D( 0, 0, 0, 0 ) ! clem: check bounds
! Ice stresses computed with **viscosities** (P/delta) at **previous** iterates
! and **deformations** at current iterates
! following Lemieux & Dupont (2020)
zfac = zvisc_t_prev(ji,jj)
zsig1 = zfac * ( pdivu_i(ji,jj) - zdelta(ji,jj) )
zsig2 = zfac * z1_ecc2 * zten_i(ji,jj)
zsig12 = zfac * z1_ecc2 * zshear(ji,jj) * 0.5_wp
! Stress invariants (sigma_I, sigma_II, Coon 1974, Feltham 2008), T-point
zsig_I(ji,jj) = 0.5_wp * zsig1 ! normal stress
zsig_II(ji,jj) = 0.5_wp * SQRT ( zsig2 * zsig2 + 4. *zsig12 * zsig12 ) ! max shear stress
! Normalized principal stresses (used to display the ellipse)
z1_strength = 1._wp / MAX ( 1._wp , strength(ji,jj) )
zsig1_p(ji,jj) = ( zsig_I(ji,jj) + zsig_II(ji,jj) ) * z1_strength
zsig2_p(ji,jj) = ( zsig_I(ji,jj) - zsig_II(ji,jj) ) * z1_strength
END_2D
!
! CALL lbc_lnk( 'icedyn_rhg_vp', zsig1_p, 'T', 1., zsig2_p, 'T', 1.)
!
CALL iom_put( 'sig1_pnorm' , zsig1_p )
CALL iom_put( 'sig2_pnorm' , zsig2_p )
DEALLOCATE( zsig1_p , zsig2_p , zsig_I , zsig_II )
ENDIF
! --- SIMIP, terms of tendency for momentum equation --- !
IF( iom_use('dssh_dx') .OR. iom_use('dssh_dy') .OR. &
& iom_use('corstrx') .OR. iom_use('corstry') ) THEN
! --- Recalculate Coriolis stress at last inner iteration
DO_2D( 0, 0, 0, 0 ) ! clem: check bounds
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
! --- U-component
zCorU(ji,jj) = 0.25_wp * r1_e1u(ji,jj) * &
& ( zmf(ji ,jj) * ( e1v(ji ,jj) * v_ice(ji ,jj) + e1v(ji ,jj-1) * v_ice(ji ,jj-1) ) &
& + zmf(ji+1,jj) * ( e1v(ji+1,jj) * v_ice(ji+1,jj) + e1v(ji+1,jj-1) * v_ice(ji+1,jj-1) ) )
zCorV(ji,jj) = - 0.25_wp * r1_e2v(ji,jj) * &
& ( zmf(ji,jj ) * ( e2u(ji,jj ) * u_ice(ji,jj ) + e2u(ji-1,jj ) * u_ice(ji-1,jj ) ) &
& + zmf(ji,jj+1) * ( e2u(ji,jj+1) * u_ice(ji,jj+1) + e2u(ji-1,jj+1) * u_ice(ji-1,jj+1) ) )
END_2D
!
CALL lbc_lnk( 'icedyn_rhg_vp', zspgU, 'U', -1., zspgV, 'V', -1., &
& zCorU, 'U', -1., zCorV, 'V', -1. )
!
CALL iom_put( 'dssh_dx' , zspgU * zmsk00 ) ! Sea-surface tilt term in force balance (x)
CALL iom_put( 'dssh_dy' , zspgV * zmsk00 ) ! Sea-surface tilt term in force balance (y)
CALL iom_put( 'corstrx' , zCorU * zmsk00 ) ! Coriolis force term in force balance (x)
CALL iom_put( 'corstry' , zCorV * zmsk00 ) ! Coriolis force term in force balance (y)
ENDIF
IF ( iom_use('intstrx') .OR. iom_use('intstry') ) THEN
! Recalculate internal forces (divergence of stress tensor) at last inner iteration
DO_2D( 0, 0, 0, 0 ) ! clem: check bounds
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
zfU(ji,jj) = 0.5_wp * ( ( zs1(ji+1,jj) - zs1(ji,jj) ) * e2u(ji,jj) &
& + ( zs2(ji+1,jj) * e2t(ji+1,jj) * e2t(ji+1,jj) - zs2(ji,jj) * e2t(ji,jj) * e2t(ji,jj) &
& ) * r1_e2u(ji,jj) &
& + ( zs12f(ji,jj) * e1f(ji,jj) * e1f(ji,jj) - zs12f(ji,jj-1) * e1f(ji,jj-1) * e1f(ji,jj-1) &
& ) * 2._wp * r1_e1u(ji,jj) &
& ) * r1_e1e2u(ji,jj)
zfV(ji,jj) = 0.5_wp * ( ( zs1(ji,jj+1) - zs1(ji,jj) ) * e1v(ji,jj) &
& - ( zs2(ji,jj+1) * e1t(ji,jj+1) * e1t(ji,jj+1) - zs2(ji,jj) * e1t(ji,jj) * e1t(ji,jj) &
& ) * r1_e1v(ji,jj) &
& + ( zs12f(ji,jj) * e2f(ji,jj) * e2f(ji,jj) - zs12f(ji-1,jj) * e2f(ji-1,jj) * e2f(ji-1,jj) &
& ) * 2._wp * r1_e2v(ji,jj) &
& ) * r1_e1e2v(ji,jj)
END_2D
CALL lbc_lnk( 'icedyn_rhg_vp', zfU, 'U', -1., zfV, 'V', -1. )
CALL iom_put( 'intstrx' , zfU * zmsk00 ) ! Internal force term in force balance (x)
CALL iom_put( 'intstry' , zfV * zmsk00 ) ! Internal force term in force balance (y)
ENDIF
! --- Ice & snow mass and ice area transports
IF( iom_use('xmtrpice') .OR. iom_use('ymtrpice') .OR. &
& iom_use('xmtrpsnw') .OR. iom_use('ymtrpsnw') .OR. iom_use('xatrp') .OR. iom_use('yatrp') ) THEN
!
ALLOCATE( zdiag_xmtrp_ice(jpi,jpj) , zdiag_ymtrp_ice(jpi,jpj) , &
& zdiag_xmtrp_snw(jpi,jpj) , zdiag_ymtrp_snw(jpi,jpj) , zdiag_xatrp(jpi,jpj) , zdiag_yatrp(jpi,jpj) )
!
DO_2D( 0, 0, 0, 0 ) ! clem: check bounds
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
zfac_x = 0.5 * u_ice(ji,jj) * e2u(ji,jj) * zmsk00(ji,jj)
zfac_y = 0.5 * v_ice(ji,jj) * e1v(ji,jj) * zmsk00(ji,jj)
zdiag_xmtrp_ice(ji,jj) = rhoi * zfac_x * ( vt_i(ji+1,jj) + vt_i(ji,jj) ) ! ice mass transport, X-component
zdiag_ymtrp_ice(ji,jj) = rhoi * zfac_y * ( vt_i(ji,jj+1) + vt_i(ji,jj) ) ! '' Y- ''
zdiag_xmtrp_snw(ji,jj) = rhos * zfac_x * ( vt_s(ji+1,jj) + vt_s(ji,jj) ) ! snow mass transport, X-component
zdiag_ymtrp_snw(ji,jj) = rhos * zfac_y * ( vt_s(ji,jj+1) + vt_s(ji,jj) ) ! '' Y- ''
zdiag_xatrp(ji,jj) = zfac_x * ( at_i(ji+1,jj) + at_i(ji,jj) ) ! area transport, X-component
zdiag_yatrp(ji,jj) = zfac_y * ( at_i(ji,jj+1) + at_i(ji,jj) ) ! '' Y- ''
END_2D
CALL lbc_lnk( 'icedyn_rhg_vp', zdiag_xmtrp_ice, 'U', -1., zdiag_ymtrp_ice, 'V', -1., &
& zdiag_xmtrp_snw, 'U', -1., zdiag_ymtrp_snw, 'V', -1., &
& zdiag_xatrp , 'U', -1., zdiag_yatrp , 'V', -1. )
CALL iom_put( 'xmtrpice' , zdiag_xmtrp_ice ) ! X-component of sea-ice mass transport (kg/s)
CALL iom_put( 'ymtrpice' , zdiag_ymtrp_ice ) ! Y-component of sea-ice mass transport
CALL iom_put( 'xmtrpsnw' , zdiag_xmtrp_snw ) ! X-component of snow mass transport (kg/s)
CALL iom_put( 'ymtrpsnw' , zdiag_ymtrp_snw ) ! Y-component of snow mass transport
CALL iom_put( 'xatrp' , zdiag_xatrp ) ! X-component of ice area transport
CALL iom_put( 'yatrp' , zdiag_yatrp ) ! Y-component of ice area transport
DEALLOCATE( zdiag_xmtrp_ice , zdiag_ymtrp_ice , &
& zdiag_xmtrp_snw , zdiag_ymtrp_snw , zdiag_xatrp , zdiag_yatrp )
ENDIF
END SUBROUTINE ice_dyn_rhg_vp
SUBROUTINE rhg_cvg_vp( kt, kitout, kitinn, kitinntot, kitoutmax, kitinnmax, kitinntotmax , &
& pu, pv, pub, pvb, pub_outer, pvb_outer , &
& pmt, pat_iu, pat_iv, puerr_max, pverr_max, pglob_area , &
& prhsu, pAU, pBU, pCU, pDU, pEU, pFU , &
& prhsv, pAV, pBV, pCV, pDV, pEV, pFV , &
& pvel_res, pvel_diff )
!!
!!----------------------------------------------------------------------
!! *** ROUTINE rhg_cvg_vp ***
!!
!! ** Purpose : check convergence of VP ice rheology
!!
!! ** Method : create a file ice_cvg.nc containing a few convergence diagnostics
!! This routine is called every sub-iteration, so it is cpu expensive
!!
!! Calculates / stores
!! - maximum absolute U-V difference (uice_cvg, u_dif, v_dif, m/s)
!! - residuals in U, V and UV-mean taken as square-root of area-weighted mean square residual (u_res, v_res, vel_res, N/m2)
!! - mean kinetic energy (mke_ice, J/m2)
!!
!! ** Note : for the first sub-iteration, uice_cvg is set to 0 (too large otherwise)
!!
!!----------------------------------------------------------------------
!!
INTEGER , INTENT(in) :: kt, kitout, kitinn, kitinntot ! ocean model iterate, outer, inner and total n-iterations
INTEGER , INTENT(in) :: kitoutmax, kitinnmax ! max number of outer & inner iterations
INTEGER , INTENT(in) :: kitinntotmax ! max number of total sub-iterations
REAL(wp), DIMENSION(:,:), INTENT(in) :: pu, pv, pub, pvb ! now & sub-iter-before velocities
REAL(wp), DIMENSION(:,:), INTENT(in) :: pub_outer, pvb_outer ! velocities @before outer iterations
REAL(wp), DIMENSION(:,:), INTENT(in) :: pmt, pat_iu, pat_iv ! mass at T-point, ice concentration at U&V
REAL(wp), INTENT(in) :: puerr_max, pverr_max ! absolute mean velocity difference
REAL(wp), INTENT(in) :: pglob_area ! global ice area
REAL(wp), DIMENSION(:,:), INTENT(in) :: prhsu, pAU, pBU, pCU, pDU, pEU, pFU ! linear system coefficients
REAL(wp), DIMENSION(:,:), INTENT(in) :: prhsv, pAV, pBV, pCV, pDV, pEV, pFV
REAL(wp), DIMENSION(:,:), INTENT(inout) :: pvel_res ! velocity residual @last inner iteration
REAL(wp), DIMENSION(:,:), INTENT(inout) :: pvel_diff ! velocity difference @last outer iteration
!!
INTEGER :: idtime, istatus, ix_dim, iy_dim
INTEGER :: ji, jj ! dummy loop indices
INTEGER :: it_inn_file, it_out_file
REAL(wp) :: zu_res_mean, zv_res_mean, zvel_res_mean ! mean residuals of the linear system
REAL(wp) :: zu_mad, zv_mad, zvel_mad ! mean absolute deviation, sub-iterates
REAL(wp) :: zu_mad_outer, zv_mad_outer, zvel_mad_outer ! mean absolute deviation, outer-iterates
REAL(wp) :: zvel_err_max, zmke, zu, zv ! local scalars
REAL(wp) :: z1_pglob_area ! inverse global ice area
REAL(wp), DIMENSION(jpi,jpj) :: zu_res, zv_res, zvel2 ! local arrays
REAL(wp), DIMENSION(jpi,jpj) :: zu_diff, zv_diff ! local arrays
CHARACTER(len=20) :: clname
!!----------------------------------------------------------------------
IF( lwp ) THEN
WRITE(numout,*)
WRITE(numout,*) 'rhg_cvg_vp : ice rheology convergence control'
WRITE(numout,*) '~~~~~~~~~~~'
WRITE(numout,*) ' kt = : ', kt
WRITE(numout,*) ' kitout = : ', kitout
WRITE(numout,*) ' kitinn = : ', kitinn
WRITE(numout,*) ' kitinntot = : ', kitinntot
WRITE(numout,*) ' kitoutmax (nn_vp_nout) = ', kitoutmax
WRITE(numout,*) ' kitinnmax (nn_vp_ninn) = ', kitinnmax
WRITE(numout,*) ' kitinntotmax (nn_nvp) = ', kitinntotmax
WRITE(numout,*)
ENDIF
z1_pglob_area = 1._wp / pglob_area ! inverse global ice area
! create file
IF( kt == nit000 .AND. kitinntot == 1 ) THEN
!
IF( lwm ) THEN
clname = 'ice_cvg.nc'
IF( .NOT. Agrif_Root() ) clname = TRIM(Agrif_CFixed())//"_"//TRIM(clname)
istatus = NF90_CREATE( TRIM(clname), NF90_CLOBBER, ncvgid )
istatus = NF90_DEF_DIM( ncvgid, 'time' , NF90_UNLIMITED, idtime )
istatus = NF90_DEF_DIM( ncvgid, 'x' , jpi, ix_dim )
istatus = NF90_DEF_DIM( ncvgid, 'y' , jpj, iy_dim )
istatus = NF90_DEF_VAR( ncvgid, 'u_res' , NF90_DOUBLE , (/ idtime /), nvarid_ures )
istatus = NF90_DEF_VAR( ncvgid, 'v_res' , NF90_DOUBLE , (/ idtime /), nvarid_vres )
istatus = NF90_DEF_VAR( ncvgid, 'vel_res' , NF90_DOUBLE , (/ idtime /), nvarid_velres )
istatus = NF90_DEF_VAR( ncvgid, 'uerr_max_sub' , NF90_DOUBLE , (/ idtime /), nvarid_uerr_max )
istatus = NF90_DEF_VAR( ncvgid, 'verr_max_sub' , NF90_DOUBLE , (/ idtime /), nvarid_verr_max )
istatus = NF90_DEF_VAR( ncvgid, 'velerr_max_sub', NF90_DOUBLE , (/ idtime /), nvarid_velerr_max )
istatus = NF90_DEF_VAR( ncvgid, 'umad_sub' , NF90_DOUBLE , (/ idtime /), nvarid_umad )
istatus = NF90_DEF_VAR( ncvgid, 'vmad_sub' , NF90_DOUBLE , (/ idtime /), nvarid_vmad )
istatus = NF90_DEF_VAR( ncvgid, 'velmad_sub' , NF90_DOUBLE , (/ idtime /), nvarid_velmad )
istatus = NF90_DEF_VAR( ncvgid, 'umad_outer' , NF90_DOUBLE , (/ idtime /), nvarid_umad_outer )
istatus = NF90_DEF_VAR( ncvgid, 'vmad_outer' , NF90_DOUBLE , (/ idtime /), nvarid_vmad_outer )
istatus = NF90_DEF_VAR( ncvgid, 'velmad_outer' , NF90_DOUBLE , (/ idtime /), nvarid_velmad_outer )
istatus = NF90_DEF_VAR( ncvgid, 'mke_ice', NF90_DOUBLE , (/ idtime /), nvarid_mke )
istatus = NF90_ENDDEF(ncvgid)
ENDIF
!
ENDIF
!------------------------------------------------------------
!
! Max absolute velocity difference with previous sub-iterate
! ( zvel_err_max )
!
!------------------------------------------------------------
!
! This comes from the criterion used to stop the iterative procedure
zvel_err_max = 0.5_wp * ( puerr_max + pverr_max ) ! average of U- and V- maximum error over the whole domain
!----------------------------------------------
!
! Mean-absolute-deviation (sub-iterates)
! ( zu_mad, zv_mad, zvel_mad)
!
!----------------------------------------------
!
! U
DO_2D( 0, 0, 0, 0 ) !clem check bounds
zu_diff(ji,jj) = ABS ( ( pu(ji,jj) - pub(ji,jj) ) ) * e1e2u(ji,jj) * pat_iu(ji,jj) * umask(ji,jj,1) * z1_pglob_area
zv_diff(ji,jj) = ABS ( ( pv(ji,jj) - pvb(ji,jj) ) ) * e1e2v(ji,jj) * pat_iv(ji,jj) * vmask(ji,jj,1) * z1_pglob_area
END_2D
! global sum & U-V average
zu_mad = glob_sum( 'icedyn_rhg_vp : ', zu_diff )
zv_mad = glob_sum( 'icedyn_rhg_vp : ', zv_diff )
zvel_mad = 0.5_wp * ( zu_mad + zv_mad )
!-----------------------------------------------
!
! Mean-absolute-deviation (outer-iterates)
! ( zu_mad_outer, zv_mad_outer, zvel_mad_outer)
!
!-----------------------------------------------
!
IF ( kitinn == kitinnmax ) THEN ! only work at the end of outer iterates
DO_2D( 0, 0, 0, 0 ) !clem check bounds
zu_diff(ji,jj) = ABS ( ( pu(ji,jj) - pub_outer(ji,jj) ) ) * e1e2u(ji,jj) * pat_iu(ji,jj) * umask(ji,jj,1) * &
zv_diff(ji,jj) = ABS ( ( pv(ji,jj) - pvb_outer(ji,jj) ) ) * e1e2v(ji,jj) * pat_iv(ji,jj) * vmask(ji,jj,1) * &
END_2D
! Global ice-concentration, grid-cell-area weighted mean
zu_mad_outer = glob_sum( 'icedyn_rhg_vp : ', zu_diff )
zv_mad_outer = glob_sum( 'icedyn_rhg_vp : ', zv_diff )
! Average of both U & V
zvel_mad_outer = 0.5_wp * ( zu_mad_outer + zv_mad_outer )
ENDIF
! --- Spatially-resolved absolute difference to send back to main routine
! (last iteration only, T-point)
IF ( kitinntot == kitinntotmax) THEN
DO_2D( 0, 0, 0, 0 ) !clem check bounds
zu_diff(ji,jj) = ( ABS ( ( pu(ji-1,jj) - pub_outer(ji-1,jj) ) ) * umask(ji-1,jj,1) &
& + ABS ( ( pu(ji,jj ) - pub_outer(ji,jj) ) ) * umask(ji,jj,1) ) &
& / ( umask(ji-1,jj,1) + umask(ji,jj,1) )
zv_diff(ji,jj) = ( ABS ( ( pv(ji,jj-1) - pvb_outer(ji,jj-1) ) ) * vmask(ji,jj-1,1) &
& + ABS ( ( pv(ji,jj ) - pvb_outer(ji,jj) ) ) * vmask(ji,jj,1) &
& / ( vmask(ji,jj-1,1) + vmask(ji,jj,1) ) )
pvel_diff(ji,jj) = 0.5_wp * ( zu_diff(ji,jj) + zv_diff(ji,jj) )
END_2D
CALL lbc_lnk( 'icedyn_rhg_cvg_vp', pvel_diff, 'T', 1._wp )
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
ELSE
pvel_diff(:,:) = 0._wp
ENDIF
!---------------------------------------
!
! --- Mean residual & kinetic energy
!
!---------------------------------------
IF ( kitinntot == 1 ) THEN
zu_res_mean = 0._wp
zv_res_mean = 0._wp
zvel_res_mean = 0._wp
zmke = 0._wp
ELSE
! * Mean residual (N/m2)
! Here we take the residual of the linear system (N/m2),
! We define it as in mitgcm: global area-weighted mean of square-root residual
! Local residual r = Ax - B expresses to which extent the momentum balance is verified
! i.e., how close we are to a solution
DO_2D( 0, 0, 0, 0 ) !clem check bounds
zu_res(ji,jj) = ( prhsu(ji,jj) + pDU(ji,jj) * pu(ji,jj-1) + pEU(ji,jj) * pu(ji,jj+1) &
& - pAU(ji,jj) * pu(ji-1,jj) - pBU(ji,jj) * pu(ji,jj) - pCU(ji,jj) * pu(ji+1,jj) )
zv_res(ji,jj) = ( prhsv(ji,jj) + pDV(ji,jj) * pv(ji-1,jj) + pEV(ji,jj) * pv(ji+1,jj) &
& - pAV(ji,jj) * pv(ji,jj-1) - pBV(ji,jj) * pv(ji,jj) - pCV(ji,jj) * pv(ji,jj+1) )
! zu_res(ji,jj) = pFU(ji,jj) - pAU(ji,jj) * pu(ji-1,jj) - pBU(ji,jj) * pu(ji,jj) - pCU(ji,jj) * pu(ji+1,jj)
! zv_res(ji,jj) = pFV(ji,jj) - pAV(ji,jj) * pv(ji,jj-1) - pBV(ji,jj) * pv(ji,jj) - pCV(ji,jj) * pv(ji,jj+1)
zu_res(ji,jj) = SQRT( zu_res(ji,jj) * zu_res(ji,jj) ) * umask(ji,jj,1) * pat_iu(ji,jj) * e1e2u(ji,jj) * z1_pglob_area
zv_res(ji,jj) = SQRT( zv_res(ji,jj) * zv_res(ji,jj) ) * vmask(ji,jj,1) * pat_iv(ji,jj) * e1e2v(ji,jj) * z1_pglob_area
END_2D
! Global ice-concentration, grid-cell-area weighted mean
zu_res_mean = glob_sum( 'ice_rhg_vp', zu_res(:,:) )
zv_res_mean = glob_sum( 'ice_rhg_vp', zv_res(:,:) )
zvel_res_mean = 0.5_wp * ( zu_res_mean + zv_res_mean )
! --- Global mean kinetic energy per unit area (J/m2)
zvel2(:,:) = 0._wp
DO_2D( 0, 0, 0, 0 ) !clem check bounds
zu = 0.5_wp * ( pu(ji-1,jj) + pu(ji,jj) ) ! u-vel at T-point
zv = 0.5_wp * ( pv(ji,jj-1) + pv(ji,jj) )
zvel2(ji,jj) = zu*zu + zv*zv ! square of ice velocity at T-point
END_2D
zmke = 0.5_wp * glob_sum( 'ice_rhg_vp', pmt(:,:) * e1e2t(:,:) * zvel2(:,:) ) / pglob_area
ENDIF ! kitinntot
!--- Spatially-resolved residual at last iteration to send back to main routine (last iteration only)
!--- Calculation @T-point
IF ( kitinntot == kitinntotmax) THEN
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
zu_res(ji,jj) = ( prhsu(ji,jj) + pDU(ji,jj) * pu(ji,jj-1) + pEU(ji,jj) * pu(ji,jj+1) &
& - pAU(ji,jj) * pu(ji-1,jj) - pBU(ji,jj) * pu(ji,jj) - pCU(ji,jj) * pu(ji+1,jj) )
zv_res(ji,jj) = ( prhsv(ji,jj) + pDV(ji,jj) * pv(ji-1,jj) + pEV(ji,jj) * pv(ji+1,jj) &
& - pAV(ji,jj) * pv(ji,jj-1) - pBV(ji,jj) * pv(ji,jj) - pCV(ji,jj) * pv(ji,jj+1) )
zu_res(ji,jj) = SQRT( zu_res(ji,jj) * zu_res(ji,jj) ) * umask(ji,jj,1)
zv_res(ji,jj) = SQRT( zv_res(ji,jj) * zv_res(ji,jj) ) * vmask(ji,jj,1)
END_2D
IF( nn_hls == 1 ) CALL lbc_lnk( 'icedyn_rhg_cvg_vp', zu_res, 'U', 1., zv_res , 'V', 1. )
DO_2D( 0, 0, 0, 0 ) !clem check bounds
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
pvel_res(ji,jj) = 0.25_wp * ( zu_res(ji-1,jj) + zu_res(ji,jj) + zv_res(ji,jj-1) + zv_res(ji,jj) )
END_2D
CALL lbc_lnk( 'icedyn_rhg_cvg_vp', pvel_res, 'T', 1. )
ELSE
pvel_res(:,:) = 0._wp
ENDIF
! ! ==================== !
it_inn_file = ( kt - nit000 ) * kitinntotmax + kitinntot ! time step in the file
it_out_file = ( kt - nit000 ) * kitoutmax + kitout
! write variables
IF( lwm ) THEN
istatus = NF90_PUT_VAR( ncvgid, nvarid_ures , (/zu_res_mean/), (/it_inn_file/), (/1/) ) ! Residuals of the linear system, area weighted mean
istatus = NF90_PUT_VAR( ncvgid, nvarid_vres , (/zv_res_mean/), (/it_inn_file/), (/1/) ) !
istatus = NF90_PUT_VAR( ncvgid, nvarid_velres, (/zvel_res_mean/), (/it_inn_file/), (/1/) ) !
istatus = NF90_PUT_VAR( ncvgid, nvarid_uerr_max , (/puerr_max/), (/it_inn_file/), (/1/) ) ! Max velocit_inn_filey error, sub-it_inn_fileerates
istatus = NF90_PUT_VAR( ncvgid, nvarid_verr_max , (/pverr_max/), (/it_inn_file/), (/1/) ) !
istatus = NF90_PUT_VAR( ncvgid, nvarid_velerr_max, (/zvel_err_max/), (/it_inn_file/), (/1/) ) !
istatus = NF90_PUT_VAR( ncvgid, nvarid_umad , (/zu_mad/) , (/it_inn_file/), (/1/) ) ! velocit_inn_filey MAD, area/sic-weighted, sub-it_inn_fileerates
istatus = NF90_PUT_VAR( ncvgid, nvarid_vmad , (/zv_mad/) , (/it_inn_file/), (/1/) ) !
istatus = NF90_PUT_VAR( ncvgid, nvarid_velmad , (/zvel_mad/), (/it_inn_file/), (/1/) ) !
istatus = NF90_PUT_VAR( ncvgid, nvarid_mke, (/zmke/), (/kitinntot/), (/1/) ) ! mean kinetic energy
IF ( kitinn == kitinnmax ) THEN ! only print outer mad at the end of inner loop
istatus = NF90_PUT_VAR( ncvgid, nvarid_umad_outer , (/zu_mad_outer/) , (/it_out_file/), (/1/) ) ! velocity MAD, area/sic-weighted, outer-iterates
istatus = NF90_PUT_VAR( ncvgid, nvarid_vmad_outer , (/zv_mad_outer/) , (/it_out_file/), (/1/) ) !
istatus = NF90_PUT_VAR( ncvgid, nvarid_velmad_outer , (/zvel_mad_outer/), (/it_out_file/), (/1/) ) !
ENDIF
IF( kt == nitend - nn_fsbc + 1 .AND. kitinntot == kitinntotmax ) istatus = NF90_CLOSE( ncvgid )
ENDIF
END SUBROUTINE rhg_cvg_vp
#else
!!----------------------------------------------------------------------
!! Default option Empty module NO SI3 sea-ice model
!!----------------------------------------------------------------------
#endif
!!==============================================================================
END MODULE icedyn_rhg_vp