Skip to content
Snippets Groups Projects
icesbc.F90 25 KiB
Newer Older
Guillaume Samson's avatar
Guillaume Samson committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
MODULE icesbc
   !!======================================================================
   !!                       ***  MODULE  icesbc  ***
   !! Sea-Ice :   air-ice sbc fields
   !!=====================================================================
   !! History :  4.0  !  2017-08  (C. Rousset)       Original code
   !!            4.0  !  2018     (many people)      SI3 [aka Sea Ice cube]
   !!----------------------------------------------------------------------
#if defined key_si3
   !!----------------------------------------------------------------------
   !!   'key_si3' :                                     SI3 sea-ice model
   !!----------------------------------------------------------------------
   USE oce            ! ocean dynamics and tracers
   USE dom_oce        ! ocean space and time domain
   USE ice            ! sea-ice: variables
   USE sbc_oce        ! Surface boundary condition: ocean fields
   USE sbc_ice        ! Surface boundary condition: ice   fields
   USE usrdef_sbc     ! Surface boundary condition: user defined
   USE sbcblk         ! Surface boundary condition: bulk
   USE sbccpl         ! Surface boundary condition: coupled interface
   USE icealb         ! sea-ice: albedo
   !
   USE in_out_manager ! I/O manager
   USE iom            ! I/O manager library
   USE lib_mpp        ! MPP library
   USE lib_fortran    ! fortran utilities (glob_sum + no signed zero)
   USE lbclnk         ! lateral boundary conditions (or mpp links)
   USE timing         ! Timing
   USE fldread        !!GS: needed by agrif

   IMPLICIT NONE
   PRIVATE

   PUBLIC ice_sbc_tau   ! called by icestp.F90
   PUBLIC ice_sbc_flx   ! called by icestp.F90
   PUBLIC ice_sbc_init  ! called by icestp.F90

   !! * Substitutions
#  include "do_loop_substitute.h90"
   !!----------------------------------------------------------------------
   !! NEMO/ICE 4.0 , NEMO Consortium (2018)
   !! $Id: icesbc.F90 15388 2021-10-17 11:33:47Z clem $
   !! Software governed by the CeCILL license (see ./LICENSE)
   !!----------------------------------------------------------------------
CONTAINS

   SUBROUTINE ice_sbc_tau( kt, ksbc, utau_ice, vtau_ice )
      !!-------------------------------------------------------------------
      !!                  ***  ROUTINE ice_sbc_tau  ***
      !!
      !! ** Purpose : provide surface boundary condition for sea ice (momentum)
      !!
      !! ** Action  : It provides the following fields:
      !!              utau_ice, vtau_ice : surface ice stress (U- & V-points) [N/m2]
      !!-------------------------------------------------------------------
      INTEGER                     , INTENT(in   ) ::   kt                   ! ocean time step
      INTEGER                     , INTENT(in   ) ::   ksbc                 ! type of sbc flux
      REAL(wp), DIMENSION(jpi,jpj), INTENT(  out) ::   utau_ice, vtau_ice   ! air-ice stress   [N/m2]
      !!
      INTEGER  ::   ji, jj                 ! dummy loop index
      REAL(wp), DIMENSION(jpi,jpj) ::   zutau_ice, zvtau_ice
      !!-------------------------------------------------------------------
      !
      IF( ln_timing )   CALL timing_start('icesbc')
      !
      IF( kt == nit000 .AND. lwp ) THEN
         WRITE(numout,*)
         WRITE(numout,*)'ice_sbc_tau: Surface boundary condition for sea ice (momentum)'
         WRITE(numout,*)'~~~~~~~~~~~~~~~'
      ENDIF
      !
      SELECT CASE( ksbc )
         CASE( jp_usr     )   ;    CALL usrdef_sbc_ice_tau( kt )                 ! user defined formulation
      CASE( jp_blk     )
         CALL blk_ice_1( sf(jp_wndi)%fnow(:,:,1), sf(jp_wndj)%fnow(:,:,1),   &
            &                                      theta_air_zt(:,:), q_air_zt(:,:),   &   ! #LB: known from "sbc_oce" module...
            &                                      sf(jp_slp )%fnow(:,:,1), u_ice, v_ice, tm_su    ,   &   ! inputs
            &                                      putaui = utau_ice, pvtaui = vtau_ice            )       ! outputs
 !        CASE( jp_abl     )    utau_ice & vtau_ice are computed in ablmod
         CASE( jp_purecpl )   ;    CALL sbc_cpl_ice_tau( utau_ice , vtau_ice )   ! Coupled      formulation
      END SELECT
      !
      IF( ln_mixcpl) THEN                                                        ! Case of a mixed Bulk/Coupled formulation
                                   CALL sbc_cpl_ice_tau( zutau_ice , zvtau_ice )
         DO_2D( 0, 0, 0, 0 )
            utau_ice(ji,jj) = utau_ice(ji,jj) * xcplmask(ji,jj,0) + zutau_ice(ji,jj) * ( 1. - xcplmask(ji,jj,0) )
            vtau_ice(ji,jj) = vtau_ice(ji,jj) * xcplmask(ji,jj,0) + zvtau_ice(ji,jj) * ( 1. - xcplmask(ji,jj,0) )
         END_2D
         CALL lbc_lnk( 'icesbc', utau_ice, 'U', -1.0_wp, vtau_ice, 'V', -1.0_wp )
      ENDIF
      !
      IF( ln_timing )   CALL timing_stop('icesbc')
      !
   END SUBROUTINE ice_sbc_tau


   SUBROUTINE ice_sbc_flx( kt, ksbc )
      !!-------------------------------------------------------------------
      !!                  ***  ROUTINE ice_sbc_flx  ***
      !!
      !! ** Purpose : provide surface boundary condition for sea ice (flux)
      !!
      !! ** Action  : It provides the following fields used in sea ice model:
      !!                emp_oce , emp_ice                        = E-P over ocean and sea ice                    [Kg/m2/s]
      !!                sprecip                                  = solid precipitation                           [Kg/m2/s]
      !!                evap_ice                                 = sublimation                                   [Kg/m2/s]
      !!                qsr_tot , qns_tot                        = solar & non solar heat flux (total)           [W/m2]
      !!                qsr_ice , qns_ice                        = solar & non solar heat flux over ice          [W/m2]
      !!                dqns_ice                                 = non solar  heat sensistivity                  [W/m2]
      !!                qemp_oce, qemp_ice, qprec_ice, qevap_ice = sensible heat (associated with evap & precip) [W/m2]
      !!            + these fields
      !!                qsb_ice_bot                              = sensible heat at the ice bottom               [W/m2]
      !!                fhld, qlead                              = heat budget in the leads                      [W/m2]
      !!            + some fields that are not used outside this module:
      !!                qla_ice                                  = latent heat flux over ice                     [W/m2]
      !!                dqla_ice                                 = latent heat sensistivity                      [W/m2]
      !!                tprecip                                  = total  precipitation                          [Kg/m2/s]
      !!                alb_ice                                  = albedo above sea ice
      !!-------------------------------------------------------------------
      INTEGER, INTENT(in) ::   kt     ! ocean time step
      INTEGER, INTENT(in) ::   ksbc   ! flux formulation (user defined, bulk or Pure Coupled)
      !!--------------------------------------------------------------------
      !
      IF( ln_timing )   CALL timing_start('icesbc')

      IF( kt == nit000 .AND. lwp ) THEN
         WRITE(numout,*)
         WRITE(numout,*)'ice_sbc_flx: Surface boundary condition for sea ice (flux)'
         WRITE(numout,*)'~~~~~~~~~~~~~~~'
      ENDIF
      !                     !== ice albedo ==!
      CALL ice_alb( t_su, h_i, h_s, ln_pnd_alb, a_ip_eff, h_ip, cloud_fra, alb_ice )
      !
      SELECT CASE( ksbc )   !== fluxes over sea ice ==!
      !
      CASE( jp_usr )              !--- user defined formulation
                                  CALL usrdef_sbc_ice_flx( kt, h_s, h_i )
      CASE( jp_blk, jp_abl )      !--- bulk formulation & ABL formulation
                                  CALL blk_ice_2    ( t_su, h_s, h_i, alb_ice, &
            &                                         theta_air_zt(:,:), q_air_zt(:,:),    &   ! #LB: known from "sbc_oce" module...
            &                                         sf(jp_slp)%fnow(:,:,1), sf(jp_qlw)%fnow(:,:,1), &
            &                                         sf(jp_prec)%fnow(:,:,1), sf(jp_snow)%fnow(:,:,1) )
         IF( ln_mixcpl        )   CALL sbc_cpl_ice_flx( kt, picefr=at_i_b, palbi=alb_ice, psst=sst_m, pist=t_su, phs=h_s, phi=h_i )
         IF( nn_flxdist /= -1 )   CALL ice_flx_dist   ( t_su, alb_ice, qns_ice, qsr_ice, dqns_ice, evap_ice, devap_ice, nn_flxdist )
         !                        !    compute conduction flux and surface temperature (as in Jules surface module)
         IF( ln_cndflx .AND. .NOT.ln_cndemulate ) &
            &                     CALL blk_ice_qcn    ( ln_virtual_itd, t_su, t_bo, h_s, h_i )
      CASE ( jp_purecpl )         !--- coupled formulation
                                  CALL sbc_cpl_ice_flx( kt, picefr=at_i_b, palbi=alb_ice, psst=sst_m, pist=t_su, phs=h_s, phi=h_i )
         IF( nn_flxdist /= -1 )   CALL ice_flx_dist   ( t_su, alb_ice, qns_ice, qsr_ice, dqns_ice, evap_ice, devap_ice, nn_flxdist )
      END SELECT
      !                     !== some fluxes at the ice-ocean interface and in the leads
      CALL ice_flx_other
      !
      IF( ln_timing )   CALL timing_stop('icesbc')
      !
   END SUBROUTINE ice_sbc_flx


   SUBROUTINE ice_flx_dist( ptn_ice, palb_ice, pqns_ice, pqsr_ice, pdqn_ice, pevap_ice, pdevap_ice, k_flxdist )
      !!-------------------------------------------------------------------
      !!                  ***  ROUTINE ice_flx_dist  ***
      !!
      !! ** Purpose :   update the ice surface boundary condition by averaging
      !!              and/or redistributing fluxes on ice categories
      !!
      !! ** Method  :   average then redistribute
      !!
      !! ** Action  :   depends on k_flxdist
      !!                = -1  Do nothing (needs N(cat) fluxes)
      !!                =  0  Average N(cat) fluxes then apply the average over the N(cat) ice
      !!                =  1  Average N(cat) fluxes then redistribute over the N(cat) ice
      !!                                                 using T-ice and albedo sensitivity
      !!                =  2  Redistribute a single flux over categories
      !!-------------------------------------------------------------------
      INTEGER                   , INTENT(in   ) ::   k_flxdist  ! redistributor
      REAL(wp), DIMENSION(:,:,:), INTENT(in   ) ::   ptn_ice    ! ice surface temperature
      REAL(wp), DIMENSION(:,:,:), INTENT(in   ) ::   palb_ice   ! ice albedo
      REAL(wp), DIMENSION(:,:,:), INTENT(inout) ::   pqns_ice   ! non solar flux
      REAL(wp), DIMENSION(:,:,:), INTENT(inout) ::   pqsr_ice   ! net solar flux
      REAL(wp), DIMENSION(:,:,:), INTENT(inout) ::   pdqn_ice   ! non solar flux sensitivity
      REAL(wp), DIMENSION(:,:,:), INTENT(inout) ::   pevap_ice  ! sublimation
      REAL(wp), DIMENSION(:,:,:), INTENT(inout) ::   pdevap_ice ! sublimation sensitivity
      !
      INTEGER  ::   jl      ! dummy loop index
      !
      REAL(wp), DIMENSION(jpi,jpj) ::   z1_at_i   ! inverse of concentration
      !
      REAL(wp), ALLOCATABLE, DIMENSION(:,:) ::   z_qsr_m   ! Mean solar heat flux over all categories
      REAL(wp), ALLOCATABLE, DIMENSION(:,:) ::   z_qns_m   ! Mean non solar heat flux over all categories
      REAL(wp), ALLOCATABLE, DIMENSION(:,:) ::   z_evap_m  ! Mean sublimation over all categories
      REAL(wp), ALLOCATABLE, DIMENSION(:,:) ::   z_dqn_m   ! Mean d(qns)/dT over all categories
      REAL(wp), ALLOCATABLE, DIMENSION(:,:) ::   z_devap_m ! Mean d(evap)/dT over all categories
      REAL(wp), ALLOCATABLE, DIMENSION(:,:) ::   zalb_m    ! Mean albedo over all categories
      REAL(wp), ALLOCATABLE, DIMENSION(:,:) ::   ztem_m    ! Mean temperature over all categories
      !!----------------------------------------------------------------------
      !
      WHERE ( at_i (:,:) > 0._wp )   ; z1_at_i(:,:) = 1._wp / at_i (:,:)
      ELSEWHERE                      ; z1_at_i(:,:) = 0._wp
      END WHERE

      SELECT CASE( k_flxdist )       !==  averaged on all ice categories  ==!
      !
      CASE( 0 , 1 )
         !
         ALLOCATE( z_qns_m(jpi,jpj), z_qsr_m(jpi,jpj), z_dqn_m(jpi,jpj), z_evap_m(jpi,jpj), z_devap_m(jpi,jpj) )
         !
         z_qns_m  (:,:) = SUM( a_i(:,:,:) * pqns_ice  (:,:,:) , dim=3 ) * z1_at_i(:,:)
         z_qsr_m  (:,:) = SUM( a_i(:,:,:) * pqsr_ice  (:,:,:) , dim=3 ) * z1_at_i(:,:)
         z_dqn_m  (:,:) = SUM( a_i(:,:,:) * pdqn_ice  (:,:,:) , dim=3 ) * z1_at_i(:,:)
         z_evap_m (:,:) = SUM( a_i(:,:,:) * pevap_ice (:,:,:) , dim=3 ) * z1_at_i(:,:)
         z_devap_m(:,:) = SUM( a_i(:,:,:) * pdevap_ice(:,:,:) , dim=3 ) * z1_at_i(:,:)
         DO jl = 1, jpl
            pqns_ice  (:,:,jl) = z_qns_m (:,:)
            pqsr_ice  (:,:,jl) = z_qsr_m (:,:)
            pdqn_ice  (:,:,jl) = z_dqn_m  (:,:)
            pevap_ice (:,:,jl) = z_evap_m(:,:)
            pdevap_ice(:,:,jl) = z_devap_m(:,:)
         END DO
         !
         DEALLOCATE( z_qns_m, z_qsr_m, z_dqn_m, z_evap_m, z_devap_m )
         !
      END SELECT
      !
      SELECT CASE( k_flxdist )       !==  redistribution on all ice categories  ==!
      !
      CASE( 1 , 2 )
         !
         ALLOCATE( zalb_m(jpi,jpj), ztem_m(jpi,jpj) )
         !
         zalb_m(:,:) = SUM( a_i(:,:,:) * palb_ice(:,:,:) , dim=3 ) * z1_at_i(:,:)
         ztem_m(:,:) = SUM( a_i(:,:,:) * ptn_ice (:,:,:) , dim=3 ) * z1_at_i(:,:)
         DO jl = 1, jpl
            pqns_ice (:,:,jl) = pqns_ice (:,:,jl) + pdqn_ice  (:,:,jl) * ( ptn_ice(:,:,jl) - ztem_m(:,:) )
            pevap_ice(:,:,jl) = pevap_ice(:,:,jl) + pdevap_ice(:,:,jl) * ( ptn_ice(:,:,jl) - ztem_m(:,:) )
            pqsr_ice (:,:,jl) = pqsr_ice (:,:,jl) * ( 1._wp - palb_ice(:,:,jl) ) / ( 1._wp - zalb_m(:,:) )
         END DO
         !
         DEALLOCATE( zalb_m, ztem_m )
         !
      END SELECT
      !
   END SUBROUTINE ice_flx_dist


   SUBROUTINE ice_flx_other
      !!-----------------------------------------------------------------------
      !!                   ***  ROUTINE ice_flx_other ***
      !!
      !! ** Purpose :   prepare necessary fields for thermo calculations
      !!
      !! ** Inputs  :   u_ice, v_ice, ssu_m, ssv_m, utau, vtau
      !!                frq_m, qsr_oce, qns_oce, qemp_oce, e3t_m, sst_m
      !! ** Outputs :   qsb_ice_bot, fhld, qlead
      !!-----------------------------------------------------------------------
      INTEGER  ::   ji, jj             ! dummy loop indices
      REAL(wp) ::   zfric_u, zqld, zqfr, zqfr_neg, zqfr_pos, zu_io, zv_io, zu_iom1, zv_iom1
      REAL(wp), PARAMETER ::   zfric_umin = 0._wp       ! lower bound for the friction velocity (cice value=5.e-04)
      REAL(wp), PARAMETER ::   zch        = 0.0057_wp   ! heat transfer coefficient
      REAL(wp), DIMENSION(jpi,jpj) ::  zfric, zvel      ! ice-ocean velocity (m/s) and frictional velocity (m2/s2)
      !!-----------------------------------------------------------------------
      !
      ! computation of friction velocity at T points
      IF( ln_icedyn ) THEN
         DO_2D( 0, 0, 0, 0 )
            zu_io   = u_ice(ji  ,jj  ) - ssu_m(ji  ,jj  )
            zu_iom1 = u_ice(ji-1,jj  ) - ssu_m(ji-1,jj  )
            zv_io   = v_ice(ji  ,jj  ) - ssv_m(ji  ,jj  )
            zv_iom1 = v_ice(ji  ,jj-1) - ssv_m(ji  ,jj-1)
            !
            zfric(ji,jj) = rn_cio * ( 0.5_wp * ( zu_io*zu_io + zu_iom1*zu_iom1 + zv_io*zv_io + zv_iom1*zv_iom1 ) ) * tmask(ji,jj,1)
            zvel (ji,jj) = 0.5_wp * SQRT( ( u_ice(ji-1,jj  ) + u_ice(ji,jj) ) * ( u_ice(ji-1,jj  ) + u_ice(ji,jj) ) + &
               &                          ( v_ice(ji  ,jj-1) + v_ice(ji,jj) ) * ( v_ice(ji  ,jj-1) + v_ice(ji,jj) ) )
         END_2D
      ELSE      !  if no ice dynamics => transfer directly the atmospheric stress to the ocean
         DO_2D( 0, 0, 0, 0 )
            zfric(ji,jj) = r1_rho0 * SQRT( 0.5_wp *  &
               &                         (  utau(ji,jj) * utau(ji,jj) + utau(ji-1,jj) * utau(ji-1,jj)   &
               &                          + vtau(ji,jj) * vtau(ji,jj) + vtau(ji,jj-1) * vtau(ji,jj-1) ) ) * tmask(ji,jj,1)
            zvel(ji,jj) = 0._wp
         END_2D
      ENDIF
      CALL lbc_lnk( 'icesbc', zfric, 'T',  1.0_wp, zvel, 'T', 1.0_wp )
      !
      !--------------------------------------------------------------------!
      ! Partial computation of forcing for the thermodynamic sea ice model
      !--------------------------------------------------------------------!
      DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )   ! needed for qlead
         rswitch  = tmask(ji,jj,1) * MAX( 0._wp , SIGN( 1._wp , at_i(ji,jj) - epsi10 ) ) ! 0 if no ice
         !
         ! --- Energy received in the lead from atm-oce exchanges, zqld is defined everywhere (J.m-2) --- !
         zqld =  tmask(ji,jj,1) * rDt_ice *  &
            &    ( ( 1._wp - at_i_b(ji,jj) ) * qsr_oce(ji,jj) * frq_m(ji,jj) +  &
            &      ( 1._wp - at_i_b(ji,jj) ) * qns_oce(ji,jj) + qemp_oce(ji,jj) )

         ! --- Energy needed to bring ocean surface layer until its freezing, zqfr is defined everywhere (J.m-2) --- !
         !     (mostly<0 but >0 if supercooling)
         zqfr     = rho0 * rcp * e3t_m(ji,jj) * ( t_bo(ji,jj) - ( sst_m(ji,jj) + rt0 ) ) * tmask(ji,jj,1)  ! both < 0 (t_bo < sst) and > 0 (t_bo > sst)
         zqfr_neg = MIN( zqfr , 0._wp )                                                                    ! only < 0
         zqfr_pos = MAX( zqfr , 0._wp )                                                                    ! only > 0

         ! --- Sensible ocean-to-ice heat flux (W/m2) --- !
         !     (mostly>0 but <0 if supercooling)
         zfric_u            = MAX( SQRT( zfric(ji,jj) ), zfric_umin )
         qsb_ice_bot(ji,jj) = rswitch * rho0 * rcp * zch * zfric_u * ( ( sst_m(ji,jj) + rt0 ) - t_bo(ji,jj) )

         ! upper bound for qsb_ice_bot: the heat retrieved from the ocean must be smaller than the heat necessary to reach
         !                              the freezing point, so that we do not have SST < T_freeze
         !                              This implies: qsb_ice_bot(ji,jj) * at_i(ji,jj) * rtdice <= - zqfr_neg
         !                              The following formulation is ok for both normal conditions and supercooling
         qsb_ice_bot(ji,jj) = rswitch * MIN( qsb_ice_bot(ji,jj), - zqfr_neg * r1_Dt_ice / MAX( at_i(ji,jj), epsi10 ) )

         ! If conditions are always supercooled (such as at the mouth of ice-shelves), then ice grows continuously
         ! ==> stop ice formation by artificially setting up the turbulent fluxes to 0 when volume > 20m (arbitrary)
         IF( ( t_bo(ji,jj) - ( sst_m(ji,jj) + rt0 ) ) > 0._wp .AND. vt_i(ji,jj) >= 20._wp ) THEN
            zqfr               = 0._wp
            zqfr_pos           = 0._wp
            qsb_ice_bot(ji,jj) = 0._wp
         ENDIF
         !
         ! --- Energy Budget of the leads (qlead, J.m-2) --- !
         !     qlead is the energy received from the atm. in the leads.
         !     If warming (zqld >= 0), then the energy in the leads is used to melt ice (bottom melting) => fhld  (W/m2)
         !     If cooling (zqld <  0), then the energy in the leads is used to grow ice in open water    => qlead (J.m-2)
         IF( zqld >= 0._wp .AND. at_i(ji,jj) > 0._wp ) THEN
            ! upper bound for fhld: fhld should be equal to zqld
            !                        but we have to make sure that this heat will not make the sst drop below the freezing point
            !                        so the max heat that can be pulled out of the ocean is zqld - qsb - zqfr_pos
            !                        The following formulation is ok for both normal conditions and supercooling
            fhld (ji,jj) = rswitch * MAX( 0._wp, ( zqld - zqfr_pos ) * r1_Dt_ice / MAX( at_i(ji,jj), epsi10 ) &  ! divided by at_i since this is (re)multiplied by a_i in icethd_dh.F90
               &                                 - qsb_ice_bot(ji,jj) )
            qlead(ji,jj) = 0._wp
         ELSE
            fhld (ji,jj) = 0._wp
            ! upper bound for qlead: qlead should be equal to zqld
            !                        but before using this heat for ice formation, we suppose that the ocean cools down till the freezing point.
            !                        The energy for this cooling down is zqfr. Also some heat will be removed from the ocean from turbulent fluxes (qsb)
            !                        and freezing point is reached if zqfr = zqld - qsb*a/dt
            !                        so the max heat that can be pulled out of the ocean is zqld - qsb - zqfr
            !                        The following formulation is ok for both normal conditions and supercooling
            qlead(ji,jj) = MIN( 0._wp , zqld - ( qsb_ice_bot(ji,jj) * at_i(ji,jj) * rDt_ice ) - zqfr )
         ENDIF
         !
         ! If ice is landfast and ice concentration reaches its max
         ! => stop ice formation in open water
         IF(  zvel(ji,jj) <= 5.e-04_wp .AND. at_i(ji,jj) >= rn_amax_2d(ji,jj)-epsi06 )   qlead(ji,jj) = 0._wp
         !
         ! If the grid cell is almost fully covered by ice (no leads)
         ! => stop ice formation in open water
         IF( at_i(ji,jj) >= (1._wp - epsi10) )   qlead(ji,jj) = 0._wp
         !
         ! If ln_leadhfx is false
         ! => do not use energy of the leads to melt sea-ice
         IF( .NOT.ln_leadhfx )   fhld(ji,jj) = 0._wp
         !
      END_2D

      ! In case we bypass open-water ice formation
      IF( .NOT. ln_icedO )  qlead(:,:) = 0._wp
      ! In case we bypass growing/melting from top and bottom
      IF( .NOT. ln_icedH ) THEN
         qsb_ice_bot(:,:) = 0._wp
         fhld       (:,:) = 0._wp
      ENDIF
      
   END SUBROUTINE ice_flx_other
   
   
   SUBROUTINE ice_sbc_init
      !!-------------------------------------------------------------------
      !!                  ***  ROUTINE ice_sbc_init  ***
      !!
      !! ** Purpose :   Physical constants and parameters linked to the ice dynamics
      !!
      !! ** Method  :   Read the namsbc namelist and check the ice-dynamic
      !!              parameter values called at the first timestep (nit000)
      !!
      !! ** input   :   Namelist namsbc
      !!-------------------------------------------------------------------
      INTEGER ::   ios, ioptio   ! Local integer
      !!
      NAMELIST/namsbc/ rn_cio, nn_snwfra, rn_snwblow, nn_flxdist, ln_cndflx, ln_cndemulate, nn_qtrice
      !!-------------------------------------------------------------------
      !
      READ  ( numnam_ice_ref, namsbc, IOSTAT = ios, ERR = 901)
901   IF( ios /= 0 )   CALL ctl_nam ( ios , 'namsbc in reference namelist' )
      READ  ( numnam_ice_cfg, namsbc, IOSTAT = ios, ERR = 902 )
902   IF( ios >  0 )   CALL ctl_nam ( ios , 'namsbc in configuration namelist' )
      IF(lwm) WRITE( numoni, namsbc )
      !
      IF(lwp) THEN                     ! control print
         WRITE(numout,*)
         WRITE(numout,*) 'ice_sbc_init: ice parameters for ice dynamics '
         WRITE(numout,*) '~~~~~~~~~~~~~~~~'
         WRITE(numout,*) '   Namelist namsbc:'
         WRITE(numout,*) '      drag coefficient for oceanic stress                       rn_cio        = ', rn_cio
         WRITE(numout,*) '      fraction of ice covered by snow (options 0,1,2)           nn_snwfra     = ', nn_snwfra
         WRITE(numout,*) '      coefficient for ice-lead partition of snowfall            rn_snwblow    = ', rn_snwblow
         WRITE(numout,*) '      Multicategory heat flux formulation                       nn_flxdist    = ', nn_flxdist
         WRITE(numout,*) '      Use conduction flux as surface condition                  ln_cndflx     = ', ln_cndflx
         WRITE(numout,*) '         emulate conduction flux                                ln_cndemulate = ', ln_cndemulate
         WRITE(numout,*) '      solar flux transmitted thru the surface scattering layer  nn_qtrice     = ', nn_qtrice
         WRITE(numout,*) '         = 0  Grenfell and Maykut 1977'
         WRITE(numout,*) '         = 1  Lebrun 2019'
      ENDIF
      !
      IF(lwp) WRITE(numout,*)
      SELECT CASE( nn_flxdist )         ! SI3 Multi-category heat flux formulation
      CASE( -1  )
         IF(lwp) WRITE(numout,*) '   SI3: use per-category fluxes (nn_flxdist = -1) '
      CASE(  0  )
         IF(lwp) WRITE(numout,*) '   SI3: use average per-category fluxes (nn_flxdist = 0) '
      CASE(  1  )
         IF(lwp) WRITE(numout,*) '   SI3: use average then redistribute per-category fluxes (nn_flxdist = 1) '
         IF( ln_cpl )         CALL ctl_stop( 'ice_thd_init: the chosen nn_flxdist for SI3 in coupled mode must be /=1' )
      CASE(  2  )
         IF(lwp) WRITE(numout,*) '   SI3: Redistribute a single flux over categories (nn_flxdist = 2) '
         IF( .NOT. ln_cpl )   CALL ctl_stop( 'ice_thd_init: the chosen nn_flxdist for SI3 in forced mode must be /=2' )
      CASE DEFAULT
         CALL ctl_stop( 'ice_thd_init: SI3 option, nn_flxdist, should be between -1 and 2' )
      END SELECT
      !
   END SUBROUTINE ice_sbc_init

#else
   !!----------------------------------------------------------------------
   !!   Default option :         Empty module         NO SI3 sea-ice model
   !!----------------------------------------------------------------------
#endif

   !!======================================================================
END MODULE icesbc