Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
MODULE bdydyn3d
!!======================================================================
!! *** MODULE bdydyn3d ***
!! Unstructured Open Boundary Cond. : Flow relaxation scheme on baroclinic velocities
!!======================================================================
!! History : 3.4 ! 2011 (D. Storkey) new module as part of BDY rewrite
!! 3.5 ! 2012 (S. Mocavero, I. Epicoco) Optimization of BDY communications
!!----------------------------------------------------------------------
!! bdy_dyn3d : apply open boundary conditions to baroclinic velocities
!! bdy_dyn3d_frs : apply Flow Relaxation Scheme
!!----------------------------------------------------------------------
USE timing ! Timing
USE oce ! ocean dynamics and tracers
USE dom_oce ! ocean space and time domain
USE bdy_oce ! ocean open boundary conditions
USE bdylib ! for orlanski library routines
USE lib_mpp
USE lbclnk ! ocean lateral boundary conditions (or mpp link)
USE in_out_manager !
Use phycst
IMPLICIT NONE
PRIVATE
PUBLIC bdy_dyn3d ! routine called by bdy_dyn
PUBLIC bdy_dyn3d_dmp ! routine called by step
!!----------------------------------------------------------------------
!! NEMO/OCE 4.0 , NEMO Consortium (2018)
!! $Id: bdydyn3d.F90 15368 2021-10-14 08:25:34Z smasson $
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
SUBROUTINE bdy_dyn3d( kt, Kbb, puu, pvv, Kaa )
!!----------------------------------------------------------------------
!! *** SUBROUTINE bdy_dyn3d ***
!!
!! ** Purpose : - Apply open boundary conditions for baroclinic velocities
!!
!!----------------------------------------------------------------------
INTEGER , INTENT( in ) :: kt ! Main time step counter
INTEGER , INTENT( in ) :: Kbb, Kaa ! Time level indices
REAL(wp), DIMENSION(jpi,jpj,jpk,jpt), INTENT( inout ) :: puu, pvv ! Ocean velocities (to be updated at open boundaries)
!
INTEGER :: ib_bdy, ir ! BDY set index, rim index
INTEGER, DIMENSION(6) :: idir6
LOGICAL :: llrim0 ! indicate if rim 0 is treated
LOGICAL, DIMENSION(8) :: llsend2, llrecv2, llsend3, llrecv3 ! indicate how communications are to be carried out
!!----------------------------------------------------------------------
llsend2(:) = .false. ; llrecv2(:) = .false.
llsend3(:) = .false. ; llrecv3(:) = .false.
DO ir = 1, 0, -1 ! treat rim 1 before rim 0
IF( ir == 0 ) THEN ; llrim0 = .TRUE.
ELSE ; llrim0 = .FALSE.
END IF
DO ib_bdy=1, nb_bdy
!
SELECT CASE( cn_dyn3d(ib_bdy) )
CASE('none') ; CYCLE
CASE('frs' ) ! treat the whole boundary at once
IF( ir == 0) CALL bdy_dyn3d_frs( puu, pvv, Kaa, idx_bdy(ib_bdy), dta_bdy(ib_bdy), kt, ib_bdy )
CASE('specified') ! treat the whole rim at once
IF( ir == 0) CALL bdy_dyn3d_spe( puu, pvv, Kaa, idx_bdy(ib_bdy), dta_bdy(ib_bdy), kt, ib_bdy )
CASE('zero') ! treat the whole rim at once
IF( ir == 0) CALL bdy_dyn3d_zro( puu, pvv, Kaa, idx_bdy(ib_bdy), dta_bdy(ib_bdy), kt, ib_bdy )
CASE('orlanski' ) ; CALL bdy_dyn3d_orlanski( Kbb, puu, pvv, Kaa, idx_bdy(ib_bdy), dta_bdy(ib_bdy), ib_bdy, llrim0, ll_npo=.false. )
CASE('orlanski_npo'); CALL bdy_dyn3d_orlanski( Kbb, puu, pvv, Kaa, idx_bdy(ib_bdy), dta_bdy(ib_bdy), ib_bdy, llrim0, ll_npo=.true. )
CASE('zerograd') ; CALL bdy_dyn3d_zgrad( puu, pvv, Kaa, idx_bdy(ib_bdy), dta_bdy(ib_bdy), kt, ib_bdy, llrim0 )
CASE('neumann') ; CALL bdy_dyn3d_nmn( puu, pvv, Kaa, idx_bdy(ib_bdy), ib_bdy, llrim0 )
CASE DEFAULT ; CALL ctl_stop( 'bdy_dyn3d : unrecognised option for open boundaries for baroclinic velocities' )
END SELECT
END DO
!
IF( nn_hls > 1 .AND. ir == 1 ) CYCLE ! at least 2 halos will be corrected -> no need to correct rim 1 before rim 0
IF( nn_hls == 1 ) THEN
llsend2(:) = .false. ; llrecv2(:) = .false.
llsend3(:) = .false. ; llrecv3(:) = .false.
END IF
DO ib_bdy=1, nb_bdy
SELECT CASE( cn_dyn3d(ib_bdy) )
CASE('orlanski', 'orlanski_npo')
llsend2(:) = llsend2(:) .OR. lsend_bdyolr(ib_bdy,2,:,ir) ! possibly every direction, U points
llrecv2(:) = llrecv2(:) .OR. lrecv_bdyolr(ib_bdy,2,:,ir) ! possibly every direction, U points
llsend3(:) = llsend3(:) .OR. lsend_bdyolr(ib_bdy,3,:,ir) ! possibly every direction, V points
llrecv3(:) = llrecv3(:) .OR. lrecv_bdyolr(ib_bdy,3,:,ir) ! possibly every direction, V points
CASE('zerograd')
idir6 = (/ jpso, jpno, jpsw, jpse, jpnw, jpne /)
llsend2(idir6) = llsend2(idir6) .OR. lsend_bdyint(ib_bdy,2,idir6,ir) ! north/south, U points
llrecv2(idir6) = llrecv2(idir6) .OR. lrecv_bdyint(ib_bdy,2,idir6,ir) ! north/south, U points
idir6 = (/ jpwe, jpea, jpsw, jpse, jpnw, jpne /)
llsend3(idir6) = llsend3(idir6) .OR. lsend_bdyint(ib_bdy,3,idir6,ir) ! west/east, V points
llrecv3(idir6) = llrecv3(idir6) .OR. lrecv_bdyint(ib_bdy,3,idir6,ir) ! west/east, V points
CASE('neumann')
llsend2(:) = llsend2(:) .OR. lsend_bdyint(ib_bdy,2,:,ir) ! possibly every direction, U points
llrecv2(:) = llrecv2(:) .OR. lrecv_bdyint(ib_bdy,2,:,ir) ! possibly every direction, U points
llsend3(:) = llsend3(:) .OR. lsend_bdyint(ib_bdy,3,:,ir) ! possibly every direction, V points
llrecv3(:) = llrecv3(:) .OR. lrecv_bdyint(ib_bdy,3,:,ir) ! possibly every direction, V points
END SELECT
END DO
!
IF( ANY(llsend2) .OR. ANY(llrecv2) ) THEN ! if need to send/recv in at least one direction
CALL lbc_lnk( 'bdydyn2d', puu(:,:,:,Kaa), 'U', -1.0_wp, kfillmode=jpfillnothing ,lsend=llsend2, lrecv=llrecv2 )
END IF
IF( ANY(llsend3) .OR. ANY(llrecv3) ) THEN ! if need to send/recv in at least one direction
CALL lbc_lnk( 'bdydyn2d', pvv(:,:,:,Kaa), 'V', -1.0_wp, kfillmode=jpfillnothing ,lsend=llsend3, lrecv=llrecv3 )
END IF
END DO ! ir
!
END SUBROUTINE bdy_dyn3d
SUBROUTINE bdy_dyn3d_spe( puu, pvv, Kaa, idx, dta, kt, ib_bdy )
!!----------------------------------------------------------------------
!! *** SUBROUTINE bdy_dyn3d_spe ***
!!
!! ** Purpose : - Apply a specified value for baroclinic velocities
!! at open boundaries.
!!
!!----------------------------------------------------------------------
INTEGER , INTENT( in ) :: Kaa ! Time level index
REAL(wp), DIMENSION(jpi,jpj,jpk,jpt), INTENT( inout ) :: puu, pvv ! Ocean velocities (to be updated at open boundaries)
TYPE(OBC_INDEX) , INTENT( in ) :: idx ! OBC indices
TYPE(OBC_DATA) , INTENT( in ) :: dta ! OBC external data
INTEGER , INTENT( in ) :: kt ! Time step
INTEGER , INTENT( in ) :: ib_bdy ! BDY set index
!
INTEGER :: jb, jk ! dummy loop indices
INTEGER :: ii, ij, igrd ! local integers
!!----------------------------------------------------------------------
!
igrd = 2 ! Relaxation of zonal velocity
DO jb = 1, idx%nblenrim(igrd)
DO jk = 1, jpkm1
ii = idx%nbi(jb,igrd)
ij = idx%nbj(jb,igrd)
puu(ii,ij,jk,Kaa) = dta%u3d(jb,jk) * umask(ii,ij,jk)
END DO
END DO
!
igrd = 3 ! Relaxation of meridional velocity
DO jb = 1, idx%nblenrim(igrd)
DO jk = 1, jpkm1
ii = idx%nbi(jb,igrd)
ij = idx%nbj(jb,igrd)
pvv(ii,ij,jk,Kaa) = dta%v3d(jb,jk) * vmask(ii,ij,jk)
END DO
END DO
!
END SUBROUTINE bdy_dyn3d_spe
SUBROUTINE bdy_dyn3d_zgrad( puu, pvv, Kaa, idx, dta, kt, ib_bdy, llrim0 )
!!----------------------------------------------------------------------
!! *** SUBROUTINE bdy_dyn3d_zgrad ***
!!
!! ** Purpose : - Enforce a zero gradient of normal velocity
!!
!!----------------------------------------------------------------------
INTEGER , INTENT( in ) :: Kaa ! Time level index
REAL(wp), DIMENSION(jpi,jpj,jpk,jpt), INTENT( inout ) :: puu, pvv ! Ocean velocities (to be updated at open boundaries)
TYPE(OBC_INDEX) , INTENT( in ) :: idx ! OBC indices
TYPE(OBC_DATA) , INTENT( in ) :: dta ! OBC external data
INTEGER , INTENT( in ) :: kt
INTEGER , INTENT( in ) :: ib_bdy ! BDY set index
LOGICAL , INTENT( in ) :: llrim0 ! indicate if rim 0 is treated
!!
INTEGER :: jb, jk ! dummy loop indices
INTEGER :: ii, ij, igrd ! local integers
INTEGER :: flagu, flagv ! short cuts
INTEGER :: ibeg, iend ! length of rim to be treated (rim 0 or rim 1 or both)
!!----------------------------------------------------------------------
!
igrd = 2 ! Copying tangential velocity into bdy points
IF( llrim0 ) THEN ; ibeg = 1 ; iend = idx%nblenrim0(igrd)
ELSE ; ibeg = idx%nblenrim0(igrd)+1 ; iend = idx%nblenrim(igrd)
ENDIF
DO jb = ibeg, iend
ii = idx%nbi(jb,igrd)
ij = idx%nbj(jb,igrd)
flagu = NINT(idx%flagu(jb,igrd))
flagv = NINT(idx%flagv(jb,igrd))
!
IF( flagu == 0 ) THEN ! north/south bdy
IF( ij+flagv > jpj .OR. ij+flagv < 1 ) CYCLE
!
DO jk = 1, jpkm1
puu(ii,ij,jk,Kaa) = puu(ii,ij+flagv,jk,Kaa) * umask(ii,ij+flagv,jk)
END DO
!
END IF
END DO
!
igrd = 3 ! Copying tangential velocity into bdy points
IF( llrim0 ) THEN ; ibeg = 1 ; iend = idx%nblenrim0(igrd)
ELSE ; ibeg = idx%nblenrim0(igrd)+1 ; iend = idx%nblenrim(igrd)
ENDIF
DO jb = ibeg, iend
ii = idx%nbi(jb,igrd)
ij = idx%nbj(jb,igrd)
flagu = NINT(idx%flagu(jb,igrd))
flagv = NINT(idx%flagv(jb,igrd))
!
IF( flagv == 0 ) THEN ! west/east bdy
IF( ii+flagu > jpi .OR. ii+flagu < 1 ) CYCLE
!
DO jk = 1, jpkm1
pvv(ii,ij,jk,Kaa) = pvv(ii+flagu,ij,jk,Kaa) * vmask(ii+flagu,ij,jk)
END DO
!
END IF
END DO
!
END SUBROUTINE bdy_dyn3d_zgrad
SUBROUTINE bdy_dyn3d_zro( puu, pvv, Kaa, idx, dta, kt, ib_bdy )
!!----------------------------------------------------------------------
!! *** SUBROUTINE bdy_dyn3d_zro ***
!!
!! ** Purpose : - baroclinic velocities = 0. at open boundaries.
!!
!!----------------------------------------------------------------------
INTEGER , INTENT( in ) :: kt ! time step index
INTEGER , INTENT( in ) :: Kaa ! Time level index
REAL(wp), DIMENSION(jpi,jpj,jpk,jpt), INTENT( inout ) :: puu, pvv ! Ocean velocities (to be updated at open boundaries)
TYPE(OBC_INDEX) , INTENT( in ) :: idx ! OBC indices
TYPE(OBC_DATA) , INTENT( in ) :: dta ! OBC external data
INTEGER , INTENT( in ) :: ib_bdy ! BDY set index
!
INTEGER :: ib, ik ! dummy loop indices
INTEGER :: ii, ij, igrd ! local integers
!!----------------------------------------------------------------------
!
igrd = 2 ! Everything is at T-points here
DO ib = 1, idx%nblenrim(igrd)
ii = idx%nbi(ib,igrd)
ij = idx%nbj(ib,igrd)
DO ik = 1, jpkm1
puu(ii,ij,ik,Kaa) = 0._wp
END DO
END DO
!
igrd = 3 ! Everything is at T-points here
DO ib = 1, idx%nblenrim(igrd)
ii = idx%nbi(ib,igrd)
ij = idx%nbj(ib,igrd)
DO ik = 1, jpkm1
pvv(ii,ij,ik,Kaa) = 0._wp
END DO
END DO
!
END SUBROUTINE bdy_dyn3d_zro
SUBROUTINE bdy_dyn3d_frs( puu, pvv, Kaa, idx, dta, kt, ib_bdy )
!!----------------------------------------------------------------------
!! *** SUBROUTINE bdy_dyn3d_frs ***
!!
!! ** Purpose : - Apply the Flow Relaxation Scheme for baroclinic velocities
!! at open boundaries.
!!
!! References :- Engedahl H., 1995: Use of the flow relaxation scheme in
!! a three-dimensional baroclinic ocean model with realistic
!! topography. Tellus, 365-382.
!!----------------------------------------------------------------------
INTEGER , INTENT( in ) :: kt ! time step index
INTEGER , INTENT( in ) :: Kaa ! Time level index
REAL(wp), DIMENSION(jpi,jpj,jpk,jpt), INTENT( inout ) :: puu, pvv ! Ocean velocities (to be updated at open boundaries)
TYPE(OBC_INDEX) , INTENT( in ) :: idx ! OBC indices
TYPE(OBC_DATA) , INTENT( in ) :: dta ! OBC external data
INTEGER , INTENT( in ) :: ib_bdy ! BDY set index
!
INTEGER :: jb, jk ! dummy loop indices
INTEGER :: ii, ij, igrd ! local integers
REAL(wp) :: zwgt ! boundary weight
!!----------------------------------------------------------------------
!
igrd = 2 ! Relaxation of zonal velocity
DO jb = 1, idx%nblen(igrd)
DO jk = 1, jpkm1
ii = idx%nbi(jb,igrd)
ij = idx%nbj(jb,igrd)
zwgt = idx%nbw(jb,igrd)
puu(ii,ij,jk,Kaa) = ( puu(ii,ij,jk,Kaa) + zwgt * ( dta%u3d(jb,jk) - puu(ii,ij,jk,Kaa) ) ) * umask(ii,ij,jk)
END DO
END DO
!
igrd = 3 ! Relaxation of meridional velocity
DO jb = 1, idx%nblen(igrd)
DO jk = 1, jpkm1
ii = idx%nbi(jb,igrd)
ij = idx%nbj(jb,igrd)
zwgt = idx%nbw(jb,igrd)
pvv(ii,ij,jk,Kaa) = ( pvv(ii,ij,jk,Kaa) + zwgt * ( dta%v3d(jb,jk) - pvv(ii,ij,jk,Kaa) ) ) * vmask(ii,ij,jk)
END DO
END DO
!
END SUBROUTINE bdy_dyn3d_frs
SUBROUTINE bdy_dyn3d_orlanski( Kbb, puu, pvv, Kaa, idx, dta, ib_bdy, llrim0, ll_npo )
!!----------------------------------------------------------------------
!! *** SUBROUTINE bdy_dyn3d_orlanski ***
!!
!! - Apply Orlanski radiation to baroclinic velocities.
!! - Wrapper routine for bdy_orlanski_3d
!!
!!
!! References: Marchesiello, McWilliams and Shchepetkin, Ocean Modelling vol. 3 (2001)
!!----------------------------------------------------------------------
INTEGER , INTENT( in ) :: Kbb, Kaa ! Time level indices
REAL(wp), DIMENSION(jpi,jpj,jpk,jpt), INTENT( inout ) :: puu, pvv ! Ocean velocities (to be updated at open boundaries)
TYPE(OBC_INDEX) , INTENT( in ) :: idx ! OBC indices
TYPE(OBC_DATA) , INTENT( in ) :: dta ! OBC external data
INTEGER , INTENT( in ) :: ib_bdy ! BDY set index
LOGICAL , INTENT( in ) :: llrim0 ! indicate if rim 0 is treated
LOGICAL , INTENT( in ) :: ll_npo ! switch for NPO version
INTEGER :: jb, igrd ! dummy loop indices
!!----------------------------------------------------------------------
!
!! Note that at this stage the puu(:,:,:,Kbb) and puu(:,:,:,Kaa) arrays contain the baroclinic velocities.
!
igrd = 2 ! Orlanski bc on u-velocity;
!
CALL bdy_orlanski_3d( idx, igrd, puu(:,:,:,Kbb), puu(:,:,:,Kaa), dta%u3d, ll_npo, llrim0 )
igrd = 3 ! Orlanski bc on v-velocity
!
CALL bdy_orlanski_3d( idx, igrd, pvv(:,:,:,Kbb), pvv(:,:,:,Kaa), dta%v3d, ll_npo, llrim0 )
!
END SUBROUTINE bdy_dyn3d_orlanski
SUBROUTINE bdy_dyn3d_dmp( kt, Kbb, puu, pvv, Krhs )
!!----------------------------------------------------------------------
!! *** SUBROUTINE bdy_dyn3d_dmp ***
!!
!! ** Purpose : Apply damping for baroclinic velocities at open boundaries.
!!
!!----------------------------------------------------------------------
INTEGER , INTENT( in ) :: kt ! time step
INTEGER , INTENT( in ) :: Kbb, Krhs ! Time level indices
REAL(wp), DIMENSION(jpi,jpj,jpk,jpt), INTENT( inout ) :: puu, pvv ! Ocean velocities and trends (to be updated at open boundaries)
!
INTEGER :: jb, jk ! dummy loop indices
INTEGER :: ib_bdy ! loop index
INTEGER :: ii, ij, igrd ! local integers
REAL(wp) :: zwgt ! boundary weight
!!----------------------------------------------------------------------
IF( l_istiled .AND. ntile /= 1 ) RETURN ! Do only for the full domain
!
IF( ln_timing ) CALL timing_start('bdy_dyn3d_dmp')
!
DO ib_bdy=1, nb_bdy
IF ( ln_dyn3d_dmp(ib_bdy) .and. cn_dyn3d(ib_bdy) /= 'none' ) THEN
igrd = 2 ! Relaxation of zonal velocity
DO jb = 1, idx_bdy(ib_bdy)%nblen(igrd)
ii = idx_bdy(ib_bdy)%nbi(jb,igrd)
ij = idx_bdy(ib_bdy)%nbj(jb,igrd)
zwgt = idx_bdy(ib_bdy)%nbd(jb,igrd)
DO jk = 1, jpkm1
puu(ii,ij,jk,Krhs) = ( puu(ii,ij,jk,Krhs) + zwgt * ( dta_bdy(ib_bdy)%u3d(jb,jk) - &
puu(ii,ij,jk,Kbb) + uu_b(ii,ij,Kbb)) ) * umask(ii,ij,jk)
END DO
END DO
!
igrd = 3 ! Relaxation of meridional velocity
DO jb = 1, idx_bdy(ib_bdy)%nblen(igrd)
ii = idx_bdy(ib_bdy)%nbi(jb,igrd)
ij = idx_bdy(ib_bdy)%nbj(jb,igrd)
zwgt = idx_bdy(ib_bdy)%nbd(jb,igrd)
DO jk = 1, jpkm1
pvv(ii,ij,jk,Krhs) = ( pvv(ii,ij,jk,Krhs) + zwgt * ( dta_bdy(ib_bdy)%v3d(jb,jk) - &
pvv(ii,ij,jk,Kbb) + vv_b(ii,ij,Kbb)) ) * vmask(ii,ij,jk)
END DO
END DO
ENDIF
END DO
!
IF( ln_timing ) CALL timing_stop('bdy_dyn3d_dmp')
!
END SUBROUTINE bdy_dyn3d_dmp
SUBROUTINE bdy_dyn3d_nmn( puu, pvv, Kaa, idx, ib_bdy, llrim0 )
!!----------------------------------------------------------------------
!! *** SUBROUTINE bdy_dyn3d_nmn ***
!!
!! - Apply Neumann condition to baroclinic velocities.
!! - Wrapper routine for bdy_nmn
!!
!!
!!----------------------------------------------------------------------
INTEGER , INTENT( in ) :: Kaa ! Time level index
REAL(wp), DIMENSION(jpi,jpj,jpk,jpt), INTENT( inout ) :: puu, pvv ! Ocean velocities (to be updated at open boundaries)
TYPE(OBC_INDEX) , INTENT( in ) :: idx ! OBC indices
INTEGER , INTENT( in ) :: ib_bdy ! BDY set index
LOGICAL , INTENT( in ) :: llrim0 ! indicate if rim 0 is treated
INTEGER :: igrd ! dummy indice
!!----------------------------------------------------------------------
!
!! Note that at this stage the puu(:,:,:,Kbb) and puu(:,:,:,Kaa) arrays contain the baroclinic velocities.
!
igrd = 2 ! Neumann bc on u-velocity;
!
CALL bdy_nmn( idx, igrd, puu(:,:,:,Kaa), llrim0 )
igrd = 3 ! Neumann bc on v-velocity
!
CALL bdy_nmn( idx, igrd, pvv(:,:,:,Kaa), llrim0 )
!
END SUBROUTINE bdy_dyn3d_nmn
!!======================================================================
END MODULE bdydyn3d