Skip to content
Snippets Groups Projects
bdylib.F90 27.5 KiB
Newer Older
Guillaume Samson's avatar
Guillaume Samson committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
MODULE bdylib
   !!======================================================================
   !!                       ***  MODULE  bdylib  ***
   !! Unstructured Open Boundary Cond. :  Library module of generic boundary algorithms.
   !!======================================================================
   !! History :  3.6  !  2013     (D. Storkey) original code
   !!            4.0  !  2014     (T. Lovato) Generalize OBC structure
   !!----------------------------------------------------------------------
   !!----------------------------------------------------------------------
   !!   bdy_orlanski_2d
   !!   bdy_orlanski_3d
   !!----------------------------------------------------------------------
   USE oce            ! ocean dynamics and tracers 
   USE dom_oce        ! ocean space and time domain
   USE bdy_oce        ! ocean open boundary conditions
   USE phycst         ! physical constants
   USE bdyini
   !
   USE in_out_manager !
   USE lbclnk         ! ocean lateral boundary conditions (or mpp link)
   USE lib_mpp, ONLY: ctl_stop

   IMPLICIT NONE
   PRIVATE

   PUBLIC   bdy_frs, bdy_spe, bdy_nmn, bdy_orl
   PUBLIC   bdy_orlanski_2d
   PUBLIC   bdy_orlanski_3d

   !!----------------------------------------------------------------------
   !! NEMO/OCE 4.0 , NEMO Consortium (2018)
   !! $Id: bdylib.F90 13527 2020-09-25 16:00:14Z smasson $ 
   !! Software governed by the CeCILL license (see ./LICENSE)
   !!----------------------------------------------------------------------
CONTAINS

   SUBROUTINE bdy_frs( idx, phia, dta )
      !!----------------------------------------------------------------------
      !!                 ***  SUBROUTINE bdy_frs  ***
      !!
      !! ** Purpose : Apply the Flow Relaxation Scheme for tracers at open boundaries.
      !!
      !! Reference : Engedahl H., 1995, Tellus, 365-382.
      !!----------------------------------------------------------------------
      TYPE(OBC_INDEX),                     INTENT(in) ::   idx  ! OBC indices
      REAL(wp), DIMENSION(:,:), POINTER,   INTENT(in) ::   dta  ! OBC external data
      REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) ::   phia  ! tracer trend
      !!
      REAL(wp) ::   zwgt           ! boundary weight
      INTEGER  ::   ib, ik, igrd   ! dummy loop indices
      INTEGER  ::   ii, ij         ! 2D addresses
      !!----------------------------------------------------------------------
      !
      igrd = 1                       ! Everything is at T-points here
      DO ib = 1, idx%nblen(igrd)
         DO ik = 1, jpkm1
            ii = idx%nbi(ib,igrd) 
            ij = idx%nbj(ib,igrd)
            zwgt = idx%nbw(ib,igrd)
            phia(ii,ij,ik) = ( phia(ii,ij,ik) + zwgt * (dta(ib,ik) - phia(ii,ij,ik) ) ) * tmask(ii,ij,ik)
         END DO
      END DO
      !
   END SUBROUTINE bdy_frs


   SUBROUTINE bdy_spe( idx, phia, dta )
      !!----------------------------------------------------------------------
      !!                 ***  SUBROUTINE bdy_spe  ***
      !!
      !! ** Purpose : Apply a specified value for tracers at open boundaries.
      !!
      !!----------------------------------------------------------------------
      TYPE(OBC_INDEX),                     INTENT(in) ::   idx  ! OBC indices
      REAL(wp), DIMENSION(:,:), POINTER,   INTENT(in) ::   dta  ! OBC external data
      REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) ::   phia  ! tracer trend
      !!
      INTEGER  ::   ib, ik, igrd   ! dummy loop indices
      INTEGER  ::   ii, ij         ! 2D addresses
      !!----------------------------------------------------------------------
      !
      igrd = 1                       ! Everything is at T-points here
      DO ib = 1, idx%nblenrim(igrd)
         ii = idx%nbi(ib,igrd)
         ij = idx%nbj(ib,igrd)
         DO ik = 1, jpkm1
            phia(ii,ij,ik) = dta(ib,ik) * tmask(ii,ij,ik)
         END DO
      END DO
      !
   END SUBROUTINE bdy_spe


   SUBROUTINE bdy_orl( idx, phib, phia, dta, lrim0, ll_npo )
      !!----------------------------------------------------------------------
      !!                 ***  SUBROUTINE bdy_orl  ***
      !!
      !! ** Purpose : Apply Orlanski radiation for tracers at open boundaries.
      !!              This is a wrapper routine for bdy_orlanski_3d below
      !!
      !!----------------------------------------------------------------------
      TYPE(OBC_INDEX),                   INTENT(in   ) ::   idx  ! OBC indices
      REAL(wp), DIMENSION(:,:), POINTER, INTENT(in   ) ::   dta  ! OBC external data
      REAL(wp), DIMENSION(jpi,jpj,jpk),  INTENT(inout) ::   phib  ! before tracer field
      REAL(wp), DIMENSION(jpi,jpj,jpk),  INTENT(inout) ::   phia  ! tracer trend
      LOGICAL ,                          INTENT(in   ) ::   lrim0   ! indicate if rim 0 is treated
      LOGICAL ,                          INTENT(in   ) ::   ll_npo  ! switch for NPO version
      !!
      INTEGER  ::   igrd                                    ! grid index
      !!----------------------------------------------------------------------
      !
      igrd = 1                       ! Everything is at T-points here
      !
      CALL bdy_orlanski_3d( idx, igrd, phib(:,:,:), phia(:,:,:), dta, lrim0, ll_npo )
      !
   END SUBROUTINE bdy_orl


   SUBROUTINE bdy_orlanski_2d( idx, igrd, phib, phia, phi_ext, lrim0, ll_npo )
      !!----------------------------------------------------------------------
      !!                 ***  SUBROUTINE bdy_orlanski_2d  ***
      !!             
      !!              - Apply Orlanski radiation condition adaptively to 2D fields:
      !!                  - radiation plus weak nudging at outflow points
      !!                  - no radiation and strong nudging at inflow points
      !! 
      !!
      !! References:  Marchesiello, McWilliams and Shchepetkin, Ocean Modelling vol. 3 (2001)    
      !!----------------------------------------------------------------------
      TYPE(OBC_INDEX),                   INTENT(in   ) ::   idx      ! BDY indices
      INTEGER ,                          INTENT(in   ) ::   igrd     ! grid index
      REAL(wp), DIMENSION(:,:),          INTENT(in   ) ::   phib     ! model before 2D field
      REAL(wp), DIMENSION(:,:),          INTENT(inout) ::   phia     ! model after 2D field (to be updated)
      REAL(wp), DIMENSION(:  ), POINTER, INTENT(in   ) ::   phi_ext  ! external forcing data
      LOGICAL ,                          INTENT(in   ) ::   lrim0    ! indicate if rim 0 is treated
      LOGICAL ,                          INTENT(in   ) ::   ll_npo   ! switch for NPO version
      !
      INTEGER  ::   jb                                     ! dummy loop indices
      INTEGER  ::   ii, ij, iibm1, iibm2, ijbm1, ijbm2     ! 2D addresses
      INTEGER  ::   iijm1, iijp1, ijjm1, ijjp1             ! 2D addresses
      INTEGER  ::   iibm1jp1, iibm1jm1, ijbm1jp1, ijbm1jm1 ! 2D addresses
      INTEGER  ::   ii_offset, ij_offset                   ! offsets for mask indices
      INTEGER  ::   flagu, flagv                           ! short cuts
      INTEGER  ::   ibeg, iend                             ! length of rim to be treated (rim 0 or rim 1 or both)
      REAL(wp) ::   zmask_x, zmask_y1, zmask_y2
      REAL(wp) ::   zex1, zex2, zey, zey1, zey2
      REAL(wp) ::   zdt, zdx, zdy, znor2, zrx, zry         ! intermediate calculations
      REAL(wp) ::   zout, zwgt, zdy_centred
      REAL(wp) ::   zdy_1, zdy_2, zsign_ups
      REAL(wp), PARAMETER :: zepsilon = 1.e-30                 ! local small value
      REAL(wp), POINTER, DIMENSION(:,:)          :: zmask      ! land/sea mask for field
      REAL(wp), POINTER, DIMENSION(:,:)          :: zmask_xdif ! land/sea mask for x-derivatives
      REAL(wp), POINTER, DIMENSION(:,:)          :: zmask_ydif ! land/sea mask for y-derivatives
      REAL(wp), POINTER, DIMENSION(:,:)          :: pe_xdif    ! scale factors for x-derivatives
      REAL(wp), POINTER, DIMENSION(:,:)          :: pe_ydif    ! scale factors for y-derivatives
      !!----------------------------------------------------------------------
      !
      ! ----------------------------------!
      ! Orlanski boundary conditions     :!
      ! ----------------------------------! 
     
      SELECT CASE(igrd)
         CASE(1)
            zmask      => tmask(:,:,1)
            zmask_xdif => umask(:,:,1)
            zmask_ydif => vmask(:,:,1)
            pe_xdif    => e1u(:,:)
            pe_ydif    => e2v(:,:)
            ii_offset = 0
            ij_offset = 0
         CASE(2)
            zmask      => umask(:,:,1)
            zmask_xdif => tmask(:,:,1)
            zmask_ydif => fmask(:,:,1)
            pe_xdif    => e1t(:,:)
            pe_ydif    => e2f(:,:)
            ii_offset = 1
            ij_offset = 0
         CASE(3)
            zmask      => vmask(:,:,1)
            zmask_xdif => fmask(:,:,1)
            zmask_ydif => tmask(:,:,1)
            pe_xdif    => e1f(:,:)
            pe_ydif    => e2t(:,:)
            ii_offset = 0
            ij_offset = 1
         CASE DEFAULT ;   CALL ctl_stop( 'unrecognised value for igrd in bdy_orlanksi_2d' )
      END SELECT
      !
      IF( lrim0 ) THEN   ;   ibeg = 1                       ;   iend = idx%nblenrim0(igrd)   ! rim 0
      ELSE               ;   ibeg = idx%nblenrim0(igrd)+1   ;   iend = idx%nblenrim(igrd)    ! rim 1
      ENDIF
      !
      DO jb = ibeg, iend
         ii  = idx%nbi(jb,igrd)
         ij  = idx%nbj(jb,igrd) 
         IF( ii == 1 .OR. ii == jpi .OR. ij == 1 .OR. ij == jpj )   CYCLE
         flagu = int( idx%flagu(jb,igrd) )
         flagv = int( idx%flagv(jb,igrd) )
         !
         ! Calculate positions of b-1 and b-2 points for this rim point
         ! also (b-1,j-1) and (b-1,j+1) points
         iibm1 = ii + flagu ; iibm2 = ii + 2*flagu 
         ijbm1 = ij + flagv ; ijbm2 = ij + 2*flagv
          !
         iijm1 = ii - abs(flagv) ; iijp1 = ii + abs(flagv) 
         ijjm1 = ij - abs(flagu) ; ijjp1 = ij + abs(flagu)
         !
         iibm1jm1 = ii + flagu - abs(flagv) ; iibm1jp1 = ii + flagu + abs(flagv) 
         ijbm1jm1 = ij + flagv - abs(flagu) ; ijbm1jp1 = ij + flagv + abs(flagu) 
         !
         ! Calculate scale factors for calculation of spatial derivatives.        
         zex1 = ( abs(iibm1-iibm2) * pe_xdif(iibm1   +ii_offset,ijbm1             )   &
        &       + abs(ijbm1-ijbm2) * pe_ydif(iibm1             ,ijbm1   +ij_offset) ) 
         zex2 = ( abs(iibm1-iibm2) * pe_xdif(iibm2   +ii_offset,ijbm2             )   &
        &       + abs(ijbm1-ijbm2) * pe_ydif(iibm2             ,ijbm2   +ij_offset) ) 
         zey1 = ( (iibm1-iibm1jm1) * pe_xdif(iibm1jm1+ii_offset,ijbm1jm1          )   & 
        &      +  (ijbm1-ijbm1jm1) * pe_ydif(iibm1jm1          ,ijbm1jm1+ij_offset) ) 
         zey2 = ( (iibm1jp1-iibm1) * pe_xdif(iibm1   +ii_offset,ijbm1             )   &
        &      +  (ijbm1jp1-ijbm1) * pe_ydif(iibm1             ,ijbm1   +ij_offset) ) 
         ! make sure scale factors are nonzero
         if( zey1 .lt. rsmall ) zey1 = zey2
         if( zey2 .lt. rsmall ) zey2 = zey1
         zex1 = max(zex1,rsmall); zex2 = max(zex2,rsmall)
         zey1 = max(zey1,rsmall); zey2 = max(zey2,rsmall); 
         !
         ! Calculate masks for calculation of spatial derivatives.
         zmask_x  = ( abs(iibm1-iibm2) * zmask_xdif(iibm2   +ii_offset,ijbm2               )   &
        &           + abs(ijbm1-ijbm2) * zmask_ydif(iibm2             ,ijbm2   +ij_offset) ) 
         zmask_y1 = ( (iibm1-iibm1jm1) * zmask_xdif(iibm1jm1+ii_offset,ijbm1jm1            )   & 
        &          +  (ijbm1-ijbm1jm1) * zmask_ydif(iibm1jm1          ,ijbm1jm1+ij_offset) ) 
         zmask_y2 = ( (iibm1jp1-iibm1) * zmask_xdif(iibm1   +ii_offset,ijbm1               )   &
        &          +  (ijbm1jp1-ijbm1) * zmask_ydif(iibm1             ,ijbm1   +ij_offset) ) 

         ! Calculation of terms required for both versions of the scheme. 
         ! Mask derivatives to ensure correct land boundary conditions for each variable.
         ! Centred derivative is calculated as average of "left" and "right" derivatives for 
         ! this reason. 
         ! Note no rn_Dt factor in expression for zdt because it cancels in the expressions for 
         ! zrx and zry.
         zdt   =     phia(iibm1   ,ijbm1   ) - phib(iibm1   ,ijbm1   )
         zdx   = ( ( phia(iibm1   ,ijbm1   ) - phia(iibm2   ,ijbm2   ) ) / zex2 ) * zmask_x 
         zdy_1 = ( ( phib(iibm1   ,ijbm1   ) - phib(iibm1jm1,ijbm1jm1) ) / zey1 ) * zmask_y1    
         zdy_2 = ( ( phib(iibm1jp1,ijbm1jp1) - phib(iibm1   ,ijbm1   ) ) / zey2 ) * zmask_y2 
         zdy_centred = 0.5 * ( zdy_1 + zdy_2 )
!!$         zdy_centred = phib(iibm1jp1,ijbm1jp1) - phib(iibm1jm1,ijbm1jm1)
         ! upstream differencing for tangential derivatives
         zsign_ups = sign( 1.0_wp, zdt * zdy_centred )
         zsign_ups = 0.5*( zsign_ups + abs(zsign_ups) )
         zdy = zsign_ups * zdy_1 + (1. - zsign_ups) * zdy_2
         znor2 = zdx * zdx + zdy * zdy
         znor2 = max(znor2,zepsilon)
         !
         zrx = zdt * zdx / ( zex1 * znor2 ) 
!!$         zrx = min(zrx,2.0_wp)
         zout = sign( 1.0_wp, zrx )
         zout = 0.5*( zout + abs(zout) )
         zwgt = 2.*rn_Dt*( (1.-zout) * idx%nbd(jb,igrd) + zout * idx%nbdout(jb,igrd) )
         ! only apply radiation on outflow points 
         if( ll_npo ) then     !! NPO version !!
            phia(ii,ij) = (1.-zout) * ( phib(ii,ij) + zwgt * ( phi_ext(jb) - phib(ii,ij) ) )        &
           &            + zout      * ( phib(ii,ij) + zrx*phia(iibm1,ijbm1)                         &
           &                            + zwgt * ( phi_ext(jb) - phib(ii,ij) ) ) / ( 1. + zrx ) 
         else                  !! full oblique radiation !!
            zsign_ups = sign( 1.0_wp, zdt * zdy )
            zsign_ups = 0.5*( zsign_ups + abs(zsign_ups) )
            zey = zsign_ups * zey1 + (1.-zsign_ups) * zey2 
            zry = zdt * zdy / ( zey * znor2 ) 
            phia(ii,ij) = (1.-zout) * ( phib(ii,ij) + zwgt * ( phi_ext(jb) - phib(ii,ij) ) )        &
           &            + zout      * ( phib(ii,ij) + zrx*phia(iibm1,ijbm1)                         &
           &                    - zsign_ups      * zry * ( phib(ii   ,ij   ) - phib(iijm1,ijjm1 ) ) &
           &                    - (1.-zsign_ups) * zry * ( phib(iijp1,ijjp1) - phib(ii   ,ij    ) ) &
           &                    + zwgt * ( phi_ext(jb) - phib(ii,ij) ) ) / ( 1. + zrx ) 
         endif
         phia(ii,ij) = phia(ii,ij) * zmask(ii,ij)
      END DO
      !
   END SUBROUTINE bdy_orlanski_2d


   SUBROUTINE bdy_orlanski_3d( idx, igrd, phib, phia, phi_ext, lrim0, ll_npo )
      !!----------------------------------------------------------------------
      !!                 ***  SUBROUTINE bdy_orlanski_3d  ***
      !!             
      !!              - Apply Orlanski radiation condition adaptively to 3D fields:
      !!                  - radiation plus weak nudging at outflow points
      !!                  - no radiation and strong nudging at inflow points
      !! 
      !!
      !! References:  Marchesiello, McWilliams and Shchepetkin, Ocean Modelling vol. 3 (2001)    
      !!----------------------------------------------------------------------
      TYPE(OBC_INDEX),                     INTENT(in   ) ::   idx      ! BDY indices
      INTEGER ,                            INTENT(in   ) ::   igrd     ! grid index
      REAL(wp), DIMENSION(:,:,:),          INTENT(in   ) ::   phib     ! model before 3D field
      REAL(wp), DIMENSION(:,:,:),          INTENT(inout) ::   phia     ! model after 3D field (to be updated)
      REAL(wp), DIMENSION(:,:  ), POINTER, INTENT(in   ) ::   phi_ext  ! external forcing data
      LOGICAL ,                            INTENT(in   ) ::   lrim0    ! indicate if rim 0 is treated
      LOGICAL ,                            INTENT(in   ) ::   ll_npo   ! switch for NPO version
      !
      INTEGER  ::   jb, jk                                 ! dummy loop indices
      INTEGER  ::   ii, ij, iibm1, iibm2, ijbm1, ijbm2     ! 2D addresses
      INTEGER  ::   iijm1, iijp1, ijjm1, ijjp1             ! 2D addresses
      INTEGER  ::   iibm1jp1, iibm1jm1, ijbm1jp1, ijbm1jm1 ! 2D addresses
      INTEGER  ::   ii_offset, ij_offset                   ! offsets for mask indices
      INTEGER  ::   flagu, flagv                           ! short cuts
      INTEGER  ::   ibeg, iend                             ! length of rim to be treated (rim 0 or rim 1 or both)
      REAL(wp) ::   zmask_x, zmask_y1, zmask_y2
      REAL(wp) ::   zex1, zex2, zey, zey1, zey2
      REAL(wp) ::   zdt, zdx, zdy, znor2, zrx, zry         ! intermediate calculations
      REAL(wp) ::   zout, zwgt, zdy_centred
      REAL(wp) ::   zdy_1, zdy_2,  zsign_ups
      REAL(wp), PARAMETER :: zepsilon = 1.e-30                 ! local small value
      REAL(wp), POINTER, DIMENSION(:,:,:)        :: zmask      ! land/sea mask for field
      REAL(wp), POINTER, DIMENSION(:,:,:)        :: zmask_xdif ! land/sea mask for x-derivatives
      REAL(wp), POINTER, DIMENSION(:,:,:)        :: zmask_ydif ! land/sea mask for y-derivatives
      REAL(wp), POINTER, DIMENSION(:,:)          :: pe_xdif    ! scale factors for x-derivatives
      REAL(wp), POINTER, DIMENSION(:,:)          :: pe_ydif    ! scale factors for y-derivatives
      !!----------------------------------------------------------------------
      !
      ! ----------------------------------!
      ! Orlanski boundary conditions     :!
      ! ----------------------------------! 
      !
      SELECT CASE(igrd)
         CASE(1)
            zmask      => tmask(:,:,:)
            zmask_xdif => umask(:,:,:)
            zmask_ydif => vmask(:,:,:)
            pe_xdif    => e1u(:,:)
            pe_ydif    => e2v(:,:)
            ii_offset = 0
            ij_offset = 0
         CASE(2)
            zmask      => umask(:,:,:)
            zmask_xdif => tmask(:,:,:)
            zmask_ydif => fmask(:,:,:)
            pe_xdif    => e1t(:,:)
            pe_ydif    => e2f(:,:)
            ii_offset = 1
            ij_offset = 0
         CASE(3)
            zmask      => vmask(:,:,:)
            zmask_xdif => fmask(:,:,:)
            zmask_ydif => tmask(:,:,:)
            pe_xdif    => e1f(:,:)
            pe_ydif    => e2t(:,:)
            ii_offset = 0
            ij_offset = 1
         CASE DEFAULT ;   CALL ctl_stop( 'unrecognised value for igrd in bdy_orlanksi_2d' )
      END SELECT
      !
      IF( lrim0 ) THEN   ;   ibeg = 1                       ;   iend = idx%nblenrim0(igrd)   ! rim 0
      ELSE               ;   ibeg = idx%nblenrim0(igrd)+1   ;   iend = idx%nblenrim(igrd)    ! rim 1
      ENDIF
      !
      DO jk = 1, jpk
         !            
         DO jb = ibeg, iend
            ii  = idx%nbi(jb,igrd)
            ij  = idx%nbj(jb,igrd) 
            IF( ii == 1 .OR. ii == jpi .OR. ij == 1 .OR. ij == jpj )   CYCLE
            flagu = int( idx%flagu(jb,igrd) )
            flagv = int( idx%flagv(jb,igrd) )
            !
            ! calculate positions of b-1 and b-2 points for this rim point
            ! also (b-1,j-1) and (b-1,j+1) points
            iibm1 = ii + flagu ; iibm2 = ii + 2*flagu 
            ijbm1 = ij + flagv ; ijbm2 = ij + 2*flagv
            !
            iijm1 = ii - abs(flagv) ; iijp1 = ii + abs(flagv) 
            ijjm1 = ij - abs(flagu) ; ijjp1 = ij + abs(flagu)
            !
            iibm1jm1 = ii + flagu - abs(flagv) ; iibm1jp1 = ii + flagu + abs(flagv) 
            ijbm1jm1 = ij + flagv - abs(flagu) ; ijbm1jp1 = ij + flagv + abs(flagu) 
            !
            ! Calculate scale factors for calculation of spatial derivatives.        
            zex1 = ( abs(iibm1-iibm2) * pe_xdif(iibm1   +ii_offset,ijbm1             )   &
           &       + abs(ijbm1-ijbm2) * pe_ydif(iibm1             ,ijbm1+ij_offset   ) ) 
            zex2 = ( abs(iibm1-iibm2) * pe_xdif(iibm2   +ii_offset,ijbm2             )   &
           &       + abs(ijbm1-ijbm2) * pe_ydif(iibm2             ,ijbm2+ij_offset   ) ) 
            zey1 = ( (iibm1-iibm1jm1) * pe_xdif(iibm1jm1+ii_offset,ijbm1jm1          )   & 
           &      +  (ijbm1-ijbm1jm1) * pe_ydif(iibm1jm1          ,ijbm1jm1+ij_offset) ) 
            zey2 = ( (iibm1jp1-iibm1) * pe_xdif(iibm1   +ii_offset,ijbm1             )   &
           &      +  (ijbm1jp1-ijbm1) * pe_ydif(iibm1             ,ijbm1+ij_offset   ) ) 
            ! make sure scale factors are nonzero
            if( zey1 .lt. rsmall ) zey1 = zey2
            if( zey2 .lt. rsmall ) zey2 = zey1
            zex1 = max(zex1,rsmall); zex2 = max(zex2,rsmall); 
            zey1 = max(zey1,rsmall); zey2 = max(zey2,rsmall); 
            !
            ! Calculate masks for calculation of spatial derivatives.        
            zmask_x  = ( abs(iibm1-iibm2) * zmask_xdif(iibm2   +ii_offset,ijbm2             ,jk)   &
           &           + abs(ijbm1-ijbm2) * zmask_ydif(iibm2             ,ijbm2   +ij_offset,jk) ) 
            zmask_y1 = ( (iibm1-iibm1jm1) * zmask_xdif(iibm1jm1+ii_offset,ijbm1jm1          ,jk)   & 
           &          +  (ijbm1-ijbm1jm1) * zmask_ydif(iibm1jm1          ,ijbm1jm1+ij_offset,jk) ) 
            zmask_y2 = ( (iibm1jp1-iibm1) * zmask_xdif(iibm1   +ii_offset,ijbm1             ,jk)   &
           &          +  (ijbm1jp1-ijbm1) * zmask_ydif(iibm1             ,ijbm1   +ij_offset,jk) ) 
            !
            ! Calculate normal (zrx) and tangential (zry) components of radiation velocities.
            ! Mask derivatives to ensure correct land boundary conditions for each variable.
            ! Centred derivative is calculated as average of "left" and "right" derivatives for 
            ! this reason. 
            zdt   =     phia(iibm1   ,ijbm1   ,jk) - phib(iibm1   ,ijbm1   ,jk)
            zdx   = ( ( phia(iibm1   ,ijbm1   ,jk) - phia(iibm2   ,ijbm2   ,jk) ) / zex2 ) * zmask_x                  
            zdy_1 = ( ( phib(iibm1   ,ijbm1   ,jk) - phib(iibm1jm1,ijbm1jm1,jk) ) / zey1 ) * zmask_y1  
            zdy_2 = ( ( phib(iibm1jp1,ijbm1jp1,jk) - phib(iibm1   ,ijbm1   ,jk) ) / zey2 ) * zmask_y2      
            zdy_centred = 0.5 * ( zdy_1 + zdy_2 )
!!$            zdy_centred = phib(iibm1jp1,ijbm1jp1,jk) - phib(iibm1jm1,ijbm1jm1,jk)
            ! upstream differencing for tangential derivatives
            zsign_ups = sign( 1.0_wp, zdt * zdy_centred )
            zsign_ups = 0.5*( zsign_ups + abs(zsign_ups) )
            zdy = zsign_ups * zdy_1 + (1. - zsign_ups) * zdy_2
            znor2 = zdx * zdx + zdy * zdy
            znor2 = max(znor2,zepsilon)
            !
            ! update boundary value:
            zrx = zdt * zdx / ( zex1 * znor2 )
!!$            zrx = min(zrx,2.0_wp)
            zout = sign( 1.0_wp, zrx )
            zout = 0.5*( zout + abs(zout) )
            zwgt = 2.*rn_Dt*( (1.-zout) * idx%nbd(jb,igrd) + zout * idx%nbdout(jb,igrd) )
            ! only apply radiation on outflow points 
            if( ll_npo ) then     !! NPO version !!
               phia(ii,ij,jk) = (1.-zout) * ( phib(ii,ij,jk) + zwgt * ( phi_ext(jb,jk) - phib(ii,ij,jk) ) ) &
              &               + zout      * ( phib(ii,ij,jk) + zrx*phia(iibm1,ijbm1,jk)                     &
              &                            + zwgt * ( phi_ext(jb,jk) - phib(ii,ij,jk) ) ) / ( 1. + zrx ) 
            else                  !! full oblique radiation !!
               zsign_ups = sign( 1.0_wp, zdt * zdy )
               zsign_ups = 0.5*( zsign_ups + abs(zsign_ups) )
               zey = zsign_ups * zey1 + (1.-zsign_ups) * zey2 
               zry = zdt * zdy / ( zey * znor2 ) 
               phia(ii,ij,jk) = (1.-zout) * ( phib(ii,ij,jk) + zwgt * ( phi_ext(jb,jk) - phib(ii,ij,jk) ) )    &
              &               + zout      * ( phib(ii,ij,jk) + zrx*phia(iibm1,ijbm1,jk)                        &
              &                       - zsign_ups      * zry * ( phib(ii   ,ij   ,jk) - phib(iijm1,ijjm1,jk) ) &
              &                       - (1.-zsign_ups) * zry * ( phib(iijp1,ijjp1,jk) - phib(ii   ,ij   ,jk) ) &
              &                       + zwgt * ( phi_ext(jb,jk) - phib(ii,ij,jk) ) ) / ( 1. + zrx ) 
            endif
            phia(ii,ij,jk) = phia(ii,ij,jk) * zmask(ii,ij,jk)
         END DO
         !
      END DO
      !
   END SUBROUTINE bdy_orlanski_3d

   SUBROUTINE bdy_nmn( idx, igrd, phia, lrim0 )
      !!----------------------------------------------------------------------
      !!                 ***  SUBROUTINE bdy_nmn  ***
      !!                    
      !! ** Purpose : Duplicate the value at open boundaries, zero gradient.
      !! 
      !!
      !! ** Method  : - take the average of free ocean neighbours
      !!
      !!      ___   !   |_____|   !   ___|    !   __|x o   !   |_   _|     ! |      
      !!   __|x     !      x      !     x o   !      o     !     |_|       ! |x o   
      !!      o     !      o      !     o     !            !    o x o      ! |x_x_ 
      !!                                                   !      o      
      !!----------------------------------------------------------------------
      INTEGER,                    INTENT(in   )  ::   igrd     ! grid index
      REAL(wp), DIMENSION(:,:,:), INTENT(inout)  ::   phia     ! model after 3D field (to be updated), must be masked
      TYPE(OBC_INDEX),            INTENT(in   )  ::   idx      ! OBC indices
      LOGICAL ,                   INTENT(in   )  ::   lrim0    ! indicate if rim 0 is treated
      !! 
      REAL(wp) ::   zweight
      REAL(wp), POINTER, DIMENSION(:,:,:)      :: zmask         ! land/sea mask for field
      INTEGER  ::   ib, ik   ! dummy loop indices
      INTEGER  ::   ii, ij   ! 2D addresses
      INTEGER  ::   ipkm1    ! size of phia third dimension minus 1
      INTEGER  ::   ibeg, iend                          ! length of rim to be treated (rim 0 or rim 1 or both)
      INTEGER  ::   ii1, ii2, ii3, ij1, ij2, ij3, itreat
      !!----------------------------------------------------------------------
      !
      ipkm1 = MAX( SIZE(phia,3) - 1, 1 ) 
      !
      SELECT CASE(igrd)
         CASE(1)   ;   zmask => tmask(:,:,:)
         CASE(2)   ;   zmask => umask(:,:,:)
         CASE(3)   ;   zmask => vmask(:,:,:)
         CASE DEFAULT ;   CALL ctl_stop( 'unrecognised value for igrd in bdy_nmn' )
      END SELECT
      !
      IF( lrim0 ) THEN   ;   ibeg = 1                       ;   iend = idx%nblenrim0(igrd)   ! rim 0
      ELSE               ;   ibeg = idx%nblenrim0(igrd)+1   ;   iend = idx%nblenrim(igrd)    ! rim 1
      ENDIF
      !
      DO ib = ibeg, iend
         ii = idx%nbi(ib,igrd)
         ij = idx%nbj(ib,igrd)
         itreat = idx%ntreat(ib,igrd)
         CALL find_neib( ii, ij, itreat, ii1, ij1, ii2, ij2, ii3, ij3 )   ! find free ocean neighbours
         SELECT CASE( itreat )
         CASE( 1:8 )
            IF( ii1 < 1 .OR. ii1 > jpi .OR. ij1 < 1 .OR. ij1 > jpj )   CYCLE
            DO ik = 1, ipkm1
               IF( zmask(ii1,ij1,ik) /= 0. )   phia(ii,ij,ik) = phia(ii1,ij1,ik)  
            END DO
         CASE( 9:12 )
            IF( ii1 < 1 .OR. ii1 > jpi .OR. ij1 < 1 .OR. ij1 > jpj )   CYCLE
            IF( ii2 < 1 .OR. ii2 > jpi .OR. ij2 < 1 .OR. ij2 > jpj )   CYCLE
            DO ik = 1, ipkm1
               zweight = zmask(ii1,ij1,ik) + zmask(ii2,ij2,ik)
               IF( zweight /= 0. )   phia(ii,ij,ik) = ( phia(ii1,ij1,ik) + phia(ii2,ij2,ik) ) / zweight
            END DO
         CASE( 13:16 )
            IF( ii1 < 1 .OR. ii1 > jpi .OR. ij1 < 1 .OR. ij1 > jpj )   CYCLE
            IF( ii2 < 1 .OR. ii2 > jpi .OR. ij2 < 1 .OR. ij2 > jpj )   CYCLE
            IF( ii3 < 1 .OR. ii3 > jpi .OR. ij3 < 1 .OR. ij3 > jpj )   CYCLE
            DO ik = 1, ipkm1
               zweight = zmask(ii1,ij1,ik) + zmask(ii2,ij2,ik) + zmask(ii3,ij3,ik)
               IF( zweight /= 0. )   phia(ii,ij,ik) = ( phia(ii1,ij1,ik) + phia(ii2,ij2,ik) + phia(ii3,ij3,ik) ) / zweight
            END DO
         END SELECT
      END DO
      !
   END SUBROUTINE bdy_nmn

   !!======================================================================
END MODULE bdylib