Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
MODULE bdylib
!!======================================================================
!! *** MODULE bdylib ***
!! Unstructured Open Boundary Cond. : Library module of generic boundary algorithms.
!!======================================================================
!! History : 3.6 ! 2013 (D. Storkey) original code
!! 4.0 ! 2014 (T. Lovato) Generalize OBC structure
!!----------------------------------------------------------------------
!!----------------------------------------------------------------------
!! bdy_orlanski_2d
!! bdy_orlanski_3d
!!----------------------------------------------------------------------
USE oce ! ocean dynamics and tracers
USE dom_oce ! ocean space and time domain
USE bdy_oce ! ocean open boundary conditions
USE phycst ! physical constants
USE bdyini
!
USE in_out_manager !
USE lbclnk ! ocean lateral boundary conditions (or mpp link)
USE lib_mpp, ONLY: ctl_stop
IMPLICIT NONE
PRIVATE
PUBLIC bdy_frs, bdy_spe, bdy_nmn, bdy_orl
PUBLIC bdy_orlanski_2d
PUBLIC bdy_orlanski_3d
!!----------------------------------------------------------------------
!! NEMO/OCE 4.0 , NEMO Consortium (2018)
!! $Id: bdylib.F90 13527 2020-09-25 16:00:14Z smasson $
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
SUBROUTINE bdy_frs( idx, phia, dta )
!!----------------------------------------------------------------------
!! *** SUBROUTINE bdy_frs ***
!!
!! ** Purpose : Apply the Flow Relaxation Scheme for tracers at open boundaries.
!!
!! Reference : Engedahl H., 1995, Tellus, 365-382.
!!----------------------------------------------------------------------
TYPE(OBC_INDEX), INTENT(in) :: idx ! OBC indices
REAL(wp), DIMENSION(:,:), POINTER, INTENT(in) :: dta ! OBC external data
REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: phia ! tracer trend
!!
REAL(wp) :: zwgt ! boundary weight
INTEGER :: ib, ik, igrd ! dummy loop indices
INTEGER :: ii, ij ! 2D addresses
!!----------------------------------------------------------------------
!
igrd = 1 ! Everything is at T-points here
DO ib = 1, idx%nblen(igrd)
DO ik = 1, jpkm1
ii = idx%nbi(ib,igrd)
ij = idx%nbj(ib,igrd)
zwgt = idx%nbw(ib,igrd)
phia(ii,ij,ik) = ( phia(ii,ij,ik) + zwgt * (dta(ib,ik) - phia(ii,ij,ik) ) ) * tmask(ii,ij,ik)
END DO
END DO
!
END SUBROUTINE bdy_frs
SUBROUTINE bdy_spe( idx, phia, dta )
!!----------------------------------------------------------------------
!! *** SUBROUTINE bdy_spe ***
!!
!! ** Purpose : Apply a specified value for tracers at open boundaries.
!!
!!----------------------------------------------------------------------
TYPE(OBC_INDEX), INTENT(in) :: idx ! OBC indices
REAL(wp), DIMENSION(:,:), POINTER, INTENT(in) :: dta ! OBC external data
REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: phia ! tracer trend
!!
INTEGER :: ib, ik, igrd ! dummy loop indices
INTEGER :: ii, ij ! 2D addresses
!!----------------------------------------------------------------------
!
igrd = 1 ! Everything is at T-points here
DO ib = 1, idx%nblenrim(igrd)
ii = idx%nbi(ib,igrd)
ij = idx%nbj(ib,igrd)
DO ik = 1, jpkm1
phia(ii,ij,ik) = dta(ib,ik) * tmask(ii,ij,ik)
END DO
END DO
!
END SUBROUTINE bdy_spe
SUBROUTINE bdy_orl( idx, phib, phia, dta, lrim0, ll_npo )
!!----------------------------------------------------------------------
!! *** SUBROUTINE bdy_orl ***
!!
!! ** Purpose : Apply Orlanski radiation for tracers at open boundaries.
!! This is a wrapper routine for bdy_orlanski_3d below
!!
!!----------------------------------------------------------------------
TYPE(OBC_INDEX), INTENT(in ) :: idx ! OBC indices
REAL(wp), DIMENSION(:,:), POINTER, INTENT(in ) :: dta ! OBC external data
REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: phib ! before tracer field
REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) :: phia ! tracer trend
LOGICAL , INTENT(in ) :: lrim0 ! indicate if rim 0 is treated
LOGICAL , INTENT(in ) :: ll_npo ! switch for NPO version
!!
INTEGER :: igrd ! grid index
!!----------------------------------------------------------------------
!
igrd = 1 ! Everything is at T-points here
!
CALL bdy_orlanski_3d( idx, igrd, phib(:,:,:), phia(:,:,:), dta, lrim0, ll_npo )
!
END SUBROUTINE bdy_orl
SUBROUTINE bdy_orlanski_2d( idx, igrd, phib, phia, phi_ext, lrim0, ll_npo )
!!----------------------------------------------------------------------
!! *** SUBROUTINE bdy_orlanski_2d ***
!!
!! - Apply Orlanski radiation condition adaptively to 2D fields:
!! - radiation plus weak nudging at outflow points
!! - no radiation and strong nudging at inflow points
!!
!!
!! References: Marchesiello, McWilliams and Shchepetkin, Ocean Modelling vol. 3 (2001)
!!----------------------------------------------------------------------
TYPE(OBC_INDEX), INTENT(in ) :: idx ! BDY indices
INTEGER , INTENT(in ) :: igrd ! grid index
REAL(wp), DIMENSION(:,:), INTENT(in ) :: phib ! model before 2D field
REAL(wp), DIMENSION(:,:), INTENT(inout) :: phia ! model after 2D field (to be updated)
REAL(wp), DIMENSION(: ), POINTER, INTENT(in ) :: phi_ext ! external forcing data
LOGICAL , INTENT(in ) :: lrim0 ! indicate if rim 0 is treated
LOGICAL , INTENT(in ) :: ll_npo ! switch for NPO version
!
INTEGER :: jb ! dummy loop indices
INTEGER :: ii, ij, iibm1, iibm2, ijbm1, ijbm2 ! 2D addresses
INTEGER :: iijm1, iijp1, ijjm1, ijjp1 ! 2D addresses
INTEGER :: iibm1jp1, iibm1jm1, ijbm1jp1, ijbm1jm1 ! 2D addresses
INTEGER :: ii_offset, ij_offset ! offsets for mask indices
INTEGER :: flagu, flagv ! short cuts
INTEGER :: ibeg, iend ! length of rim to be treated (rim 0 or rim 1 or both)
REAL(wp) :: zmask_x, zmask_y1, zmask_y2
REAL(wp) :: zex1, zex2, zey, zey1, zey2
REAL(wp) :: zdt, zdx, zdy, znor2, zrx, zry ! intermediate calculations
REAL(wp) :: zout, zwgt, zdy_centred
REAL(wp) :: zdy_1, zdy_2, zsign_ups
REAL(wp), PARAMETER :: zepsilon = 1.e-30 ! local small value
REAL(wp), POINTER, DIMENSION(:,:) :: zmask ! land/sea mask for field
REAL(wp), POINTER, DIMENSION(:,:) :: zmask_xdif ! land/sea mask for x-derivatives
REAL(wp), POINTER, DIMENSION(:,:) :: zmask_ydif ! land/sea mask for y-derivatives
REAL(wp), POINTER, DIMENSION(:,:) :: pe_xdif ! scale factors for x-derivatives
REAL(wp), POINTER, DIMENSION(:,:) :: pe_ydif ! scale factors for y-derivatives
!!----------------------------------------------------------------------
!
! ----------------------------------!
! Orlanski boundary conditions :!
! ----------------------------------!
SELECT CASE(igrd)
CASE(1)
zmask => tmask(:,:,1)
zmask_xdif => umask(:,:,1)
zmask_ydif => vmask(:,:,1)
pe_xdif => e1u(:,:)
pe_ydif => e2v(:,:)
ii_offset = 0
ij_offset = 0
CASE(2)
zmask => umask(:,:,1)
zmask_xdif => tmask(:,:,1)
zmask_ydif => fmask(:,:,1)
pe_xdif => e1t(:,:)
pe_ydif => e2f(:,:)
ii_offset = 1
ij_offset = 0
CASE(3)
zmask => vmask(:,:,1)
zmask_xdif => fmask(:,:,1)
zmask_ydif => tmask(:,:,1)
pe_xdif => e1f(:,:)
pe_ydif => e2t(:,:)
ii_offset = 0
ij_offset = 1
CASE DEFAULT ; CALL ctl_stop( 'unrecognised value for igrd in bdy_orlanksi_2d' )
END SELECT
!
IF( lrim0 ) THEN ; ibeg = 1 ; iend = idx%nblenrim0(igrd) ! rim 0
ELSE ; ibeg = idx%nblenrim0(igrd)+1 ; iend = idx%nblenrim(igrd) ! rim 1
ENDIF
!
DO jb = ibeg, iend
ii = idx%nbi(jb,igrd)
ij = idx%nbj(jb,igrd)
IF( ii == 1 .OR. ii == jpi .OR. ij == 1 .OR. ij == jpj ) CYCLE
flagu = int( idx%flagu(jb,igrd) )
flagv = int( idx%flagv(jb,igrd) )
!
! Calculate positions of b-1 and b-2 points for this rim point
! also (b-1,j-1) and (b-1,j+1) points
iibm1 = ii + flagu ; iibm2 = ii + 2*flagu
ijbm1 = ij + flagv ; ijbm2 = ij + 2*flagv
!
iijm1 = ii - abs(flagv) ; iijp1 = ii + abs(flagv)
ijjm1 = ij - abs(flagu) ; ijjp1 = ij + abs(flagu)
!
iibm1jm1 = ii + flagu - abs(flagv) ; iibm1jp1 = ii + flagu + abs(flagv)
ijbm1jm1 = ij + flagv - abs(flagu) ; ijbm1jp1 = ij + flagv + abs(flagu)
!
! Calculate scale factors for calculation of spatial derivatives.
zex1 = ( abs(iibm1-iibm2) * pe_xdif(iibm1 +ii_offset,ijbm1 ) &
& + abs(ijbm1-ijbm2) * pe_ydif(iibm1 ,ijbm1 +ij_offset) )
zex2 = ( abs(iibm1-iibm2) * pe_xdif(iibm2 +ii_offset,ijbm2 ) &
& + abs(ijbm1-ijbm2) * pe_ydif(iibm2 ,ijbm2 +ij_offset) )
zey1 = ( (iibm1-iibm1jm1) * pe_xdif(iibm1jm1+ii_offset,ijbm1jm1 ) &
& + (ijbm1-ijbm1jm1) * pe_ydif(iibm1jm1 ,ijbm1jm1+ij_offset) )
zey2 = ( (iibm1jp1-iibm1) * pe_xdif(iibm1 +ii_offset,ijbm1 ) &
& + (ijbm1jp1-ijbm1) * pe_ydif(iibm1 ,ijbm1 +ij_offset) )
! make sure scale factors are nonzero
if( zey1 .lt. rsmall ) zey1 = zey2
if( zey2 .lt. rsmall ) zey2 = zey1
zex1 = max(zex1,rsmall); zex2 = max(zex2,rsmall)
zey1 = max(zey1,rsmall); zey2 = max(zey2,rsmall);
!
! Calculate masks for calculation of spatial derivatives.
zmask_x = ( abs(iibm1-iibm2) * zmask_xdif(iibm2 +ii_offset,ijbm2 ) &
& + abs(ijbm1-ijbm2) * zmask_ydif(iibm2 ,ijbm2 +ij_offset) )
zmask_y1 = ( (iibm1-iibm1jm1) * zmask_xdif(iibm1jm1+ii_offset,ijbm1jm1 ) &
& + (ijbm1-ijbm1jm1) * zmask_ydif(iibm1jm1 ,ijbm1jm1+ij_offset) )
zmask_y2 = ( (iibm1jp1-iibm1) * zmask_xdif(iibm1 +ii_offset,ijbm1 ) &
& + (ijbm1jp1-ijbm1) * zmask_ydif(iibm1 ,ijbm1 +ij_offset) )
! Calculation of terms required for both versions of the scheme.
! Mask derivatives to ensure correct land boundary conditions for each variable.
! Centred derivative is calculated as average of "left" and "right" derivatives for
! this reason.
! Note no rn_Dt factor in expression for zdt because it cancels in the expressions for
! zrx and zry.
zdt = phia(iibm1 ,ijbm1 ) - phib(iibm1 ,ijbm1 )
zdx = ( ( phia(iibm1 ,ijbm1 ) - phia(iibm2 ,ijbm2 ) ) / zex2 ) * zmask_x
zdy_1 = ( ( phib(iibm1 ,ijbm1 ) - phib(iibm1jm1,ijbm1jm1) ) / zey1 ) * zmask_y1
zdy_2 = ( ( phib(iibm1jp1,ijbm1jp1) - phib(iibm1 ,ijbm1 ) ) / zey2 ) * zmask_y2
zdy_centred = 0.5 * ( zdy_1 + zdy_2 )
!!$ zdy_centred = phib(iibm1jp1,ijbm1jp1) - phib(iibm1jm1,ijbm1jm1)
! upstream differencing for tangential derivatives
zsign_ups = sign( 1.0_wp, zdt * zdy_centred )
zsign_ups = 0.5*( zsign_ups + abs(zsign_ups) )
zdy = zsign_ups * zdy_1 + (1. - zsign_ups) * zdy_2
znor2 = zdx * zdx + zdy * zdy
znor2 = max(znor2,zepsilon)
!
zrx = zdt * zdx / ( zex1 * znor2 )
!!$ zrx = min(zrx,2.0_wp)
zout = sign( 1.0_wp, zrx )
zout = 0.5*( zout + abs(zout) )
zwgt = 2.*rn_Dt*( (1.-zout) * idx%nbd(jb,igrd) + zout * idx%nbdout(jb,igrd) )
! only apply radiation on outflow points
if( ll_npo ) then !! NPO version !!
phia(ii,ij) = (1.-zout) * ( phib(ii,ij) + zwgt * ( phi_ext(jb) - phib(ii,ij) ) ) &
& + zout * ( phib(ii,ij) + zrx*phia(iibm1,ijbm1) &
& + zwgt * ( phi_ext(jb) - phib(ii,ij) ) ) / ( 1. + zrx )
else !! full oblique radiation !!
zsign_ups = sign( 1.0_wp, zdt * zdy )
zsign_ups = 0.5*( zsign_ups + abs(zsign_ups) )
zey = zsign_ups * zey1 + (1.-zsign_ups) * zey2
zry = zdt * zdy / ( zey * znor2 )
phia(ii,ij) = (1.-zout) * ( phib(ii,ij) + zwgt * ( phi_ext(jb) - phib(ii,ij) ) ) &
& + zout * ( phib(ii,ij) + zrx*phia(iibm1,ijbm1) &
& - zsign_ups * zry * ( phib(ii ,ij ) - phib(iijm1,ijjm1 ) ) &
& - (1.-zsign_ups) * zry * ( phib(iijp1,ijjp1) - phib(ii ,ij ) ) &
& + zwgt * ( phi_ext(jb) - phib(ii,ij) ) ) / ( 1. + zrx )
endif
phia(ii,ij) = phia(ii,ij) * zmask(ii,ij)
END DO
!
END SUBROUTINE bdy_orlanski_2d
SUBROUTINE bdy_orlanski_3d( idx, igrd, phib, phia, phi_ext, lrim0, ll_npo )
!!----------------------------------------------------------------------
!! *** SUBROUTINE bdy_orlanski_3d ***
!!
!! - Apply Orlanski radiation condition adaptively to 3D fields:
!! - radiation plus weak nudging at outflow points
!! - no radiation and strong nudging at inflow points
!!
!!
!! References: Marchesiello, McWilliams and Shchepetkin, Ocean Modelling vol. 3 (2001)
!!----------------------------------------------------------------------
TYPE(OBC_INDEX), INTENT(in ) :: idx ! BDY indices
INTEGER , INTENT(in ) :: igrd ! grid index
REAL(wp), DIMENSION(:,:,:), INTENT(in ) :: phib ! model before 3D field
REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: phia ! model after 3D field (to be updated)
REAL(wp), DIMENSION(:,: ), POINTER, INTENT(in ) :: phi_ext ! external forcing data
LOGICAL , INTENT(in ) :: lrim0 ! indicate if rim 0 is treated
LOGICAL , INTENT(in ) :: ll_npo ! switch for NPO version
!
INTEGER :: jb, jk ! dummy loop indices
INTEGER :: ii, ij, iibm1, iibm2, ijbm1, ijbm2 ! 2D addresses
INTEGER :: iijm1, iijp1, ijjm1, ijjp1 ! 2D addresses
INTEGER :: iibm1jp1, iibm1jm1, ijbm1jp1, ijbm1jm1 ! 2D addresses
INTEGER :: ii_offset, ij_offset ! offsets for mask indices
INTEGER :: flagu, flagv ! short cuts
INTEGER :: ibeg, iend ! length of rim to be treated (rim 0 or rim 1 or both)
REAL(wp) :: zmask_x, zmask_y1, zmask_y2
REAL(wp) :: zex1, zex2, zey, zey1, zey2
REAL(wp) :: zdt, zdx, zdy, znor2, zrx, zry ! intermediate calculations
REAL(wp) :: zout, zwgt, zdy_centred
REAL(wp) :: zdy_1, zdy_2, zsign_ups
REAL(wp), PARAMETER :: zepsilon = 1.e-30 ! local small value
REAL(wp), POINTER, DIMENSION(:,:,:) :: zmask ! land/sea mask for field
REAL(wp), POINTER, DIMENSION(:,:,:) :: zmask_xdif ! land/sea mask for x-derivatives
REAL(wp), POINTER, DIMENSION(:,:,:) :: zmask_ydif ! land/sea mask for y-derivatives
REAL(wp), POINTER, DIMENSION(:,:) :: pe_xdif ! scale factors for x-derivatives
REAL(wp), POINTER, DIMENSION(:,:) :: pe_ydif ! scale factors for y-derivatives
!!----------------------------------------------------------------------
!
! ----------------------------------!
! Orlanski boundary conditions :!
! ----------------------------------!
!
SELECT CASE(igrd)
CASE(1)
zmask => tmask(:,:,:)
zmask_xdif => umask(:,:,:)
zmask_ydif => vmask(:,:,:)
pe_xdif => e1u(:,:)
pe_ydif => e2v(:,:)
ii_offset = 0
ij_offset = 0
CASE(2)
zmask => umask(:,:,:)
zmask_xdif => tmask(:,:,:)
zmask_ydif => fmask(:,:,:)
pe_xdif => e1t(:,:)
pe_ydif => e2f(:,:)
ii_offset = 1
ij_offset = 0
CASE(3)
zmask => vmask(:,:,:)
zmask_xdif => fmask(:,:,:)
zmask_ydif => tmask(:,:,:)
pe_xdif => e1f(:,:)
pe_ydif => e2t(:,:)
ii_offset = 0
ij_offset = 1
CASE DEFAULT ; CALL ctl_stop( 'unrecognised value for igrd in bdy_orlanksi_2d' )
END SELECT
!
IF( lrim0 ) THEN ; ibeg = 1 ; iend = idx%nblenrim0(igrd) ! rim 0
ELSE ; ibeg = idx%nblenrim0(igrd)+1 ; iend = idx%nblenrim(igrd) ! rim 1
ENDIF
!
DO jk = 1, jpk
!
DO jb = ibeg, iend
ii = idx%nbi(jb,igrd)
ij = idx%nbj(jb,igrd)
IF( ii == 1 .OR. ii == jpi .OR. ij == 1 .OR. ij == jpj ) CYCLE
flagu = int( idx%flagu(jb,igrd) )
flagv = int( idx%flagv(jb,igrd) )
!
! calculate positions of b-1 and b-2 points for this rim point
! also (b-1,j-1) and (b-1,j+1) points
iibm1 = ii + flagu ; iibm2 = ii + 2*flagu
ijbm1 = ij + flagv ; ijbm2 = ij + 2*flagv
!
iijm1 = ii - abs(flagv) ; iijp1 = ii + abs(flagv)
ijjm1 = ij - abs(flagu) ; ijjp1 = ij + abs(flagu)
!
iibm1jm1 = ii + flagu - abs(flagv) ; iibm1jp1 = ii + flagu + abs(flagv)
ijbm1jm1 = ij + flagv - abs(flagu) ; ijbm1jp1 = ij + flagv + abs(flagu)
!
! Calculate scale factors for calculation of spatial derivatives.
zex1 = ( abs(iibm1-iibm2) * pe_xdif(iibm1 +ii_offset,ijbm1 ) &
& + abs(ijbm1-ijbm2) * pe_ydif(iibm1 ,ijbm1+ij_offset ) )
zex2 = ( abs(iibm1-iibm2) * pe_xdif(iibm2 +ii_offset,ijbm2 ) &
& + abs(ijbm1-ijbm2) * pe_ydif(iibm2 ,ijbm2+ij_offset ) )
zey1 = ( (iibm1-iibm1jm1) * pe_xdif(iibm1jm1+ii_offset,ijbm1jm1 ) &
& + (ijbm1-ijbm1jm1) * pe_ydif(iibm1jm1 ,ijbm1jm1+ij_offset) )
zey2 = ( (iibm1jp1-iibm1) * pe_xdif(iibm1 +ii_offset,ijbm1 ) &
& + (ijbm1jp1-ijbm1) * pe_ydif(iibm1 ,ijbm1+ij_offset ) )
! make sure scale factors are nonzero
if( zey1 .lt. rsmall ) zey1 = zey2
if( zey2 .lt. rsmall ) zey2 = zey1
zex1 = max(zex1,rsmall); zex2 = max(zex2,rsmall);
zey1 = max(zey1,rsmall); zey2 = max(zey2,rsmall);
!
! Calculate masks for calculation of spatial derivatives.
zmask_x = ( abs(iibm1-iibm2) * zmask_xdif(iibm2 +ii_offset,ijbm2 ,jk) &
& + abs(ijbm1-ijbm2) * zmask_ydif(iibm2 ,ijbm2 +ij_offset,jk) )
zmask_y1 = ( (iibm1-iibm1jm1) * zmask_xdif(iibm1jm1+ii_offset,ijbm1jm1 ,jk) &
& + (ijbm1-ijbm1jm1) * zmask_ydif(iibm1jm1 ,ijbm1jm1+ij_offset,jk) )
zmask_y2 = ( (iibm1jp1-iibm1) * zmask_xdif(iibm1 +ii_offset,ijbm1 ,jk) &
& + (ijbm1jp1-ijbm1) * zmask_ydif(iibm1 ,ijbm1 +ij_offset,jk) )
!
! Calculate normal (zrx) and tangential (zry) components of radiation velocities.
! Mask derivatives to ensure correct land boundary conditions for each variable.
! Centred derivative is calculated as average of "left" and "right" derivatives for
! this reason.
zdt = phia(iibm1 ,ijbm1 ,jk) - phib(iibm1 ,ijbm1 ,jk)
zdx = ( ( phia(iibm1 ,ijbm1 ,jk) - phia(iibm2 ,ijbm2 ,jk) ) / zex2 ) * zmask_x
zdy_1 = ( ( phib(iibm1 ,ijbm1 ,jk) - phib(iibm1jm1,ijbm1jm1,jk) ) / zey1 ) * zmask_y1
zdy_2 = ( ( phib(iibm1jp1,ijbm1jp1,jk) - phib(iibm1 ,ijbm1 ,jk) ) / zey2 ) * zmask_y2
zdy_centred = 0.5 * ( zdy_1 + zdy_2 )
!!$ zdy_centred = phib(iibm1jp1,ijbm1jp1,jk) - phib(iibm1jm1,ijbm1jm1,jk)
! upstream differencing for tangential derivatives
zsign_ups = sign( 1.0_wp, zdt * zdy_centred )
zsign_ups = 0.5*( zsign_ups + abs(zsign_ups) )
zdy = zsign_ups * zdy_1 + (1. - zsign_ups) * zdy_2
znor2 = zdx * zdx + zdy * zdy
znor2 = max(znor2,zepsilon)
!
! update boundary value:
zrx = zdt * zdx / ( zex1 * znor2 )
!!$ zrx = min(zrx,2.0_wp)
zout = sign( 1.0_wp, zrx )
zout = 0.5*( zout + abs(zout) )
zwgt = 2.*rn_Dt*( (1.-zout) * idx%nbd(jb,igrd) + zout * idx%nbdout(jb,igrd) )
! only apply radiation on outflow points
if( ll_npo ) then !! NPO version !!
phia(ii,ij,jk) = (1.-zout) * ( phib(ii,ij,jk) + zwgt * ( phi_ext(jb,jk) - phib(ii,ij,jk) ) ) &
& + zout * ( phib(ii,ij,jk) + zrx*phia(iibm1,ijbm1,jk) &
& + zwgt * ( phi_ext(jb,jk) - phib(ii,ij,jk) ) ) / ( 1. + zrx )
else !! full oblique radiation !!
zsign_ups = sign( 1.0_wp, zdt * zdy )
zsign_ups = 0.5*( zsign_ups + abs(zsign_ups) )
zey = zsign_ups * zey1 + (1.-zsign_ups) * zey2
zry = zdt * zdy / ( zey * znor2 )
phia(ii,ij,jk) = (1.-zout) * ( phib(ii,ij,jk) + zwgt * ( phi_ext(jb,jk) - phib(ii,ij,jk) ) ) &
& + zout * ( phib(ii,ij,jk) + zrx*phia(iibm1,ijbm1,jk) &
& - zsign_ups * zry * ( phib(ii ,ij ,jk) - phib(iijm1,ijjm1,jk) ) &
& - (1.-zsign_ups) * zry * ( phib(iijp1,ijjp1,jk) - phib(ii ,ij ,jk) ) &
& + zwgt * ( phi_ext(jb,jk) - phib(ii,ij,jk) ) ) / ( 1. + zrx )
endif
phia(ii,ij,jk) = phia(ii,ij,jk) * zmask(ii,ij,jk)
END DO
!
END DO
!
END SUBROUTINE bdy_orlanski_3d
SUBROUTINE bdy_nmn( idx, igrd, phia, lrim0 )
!!----------------------------------------------------------------------
!! *** SUBROUTINE bdy_nmn ***
!!
!! ** Purpose : Duplicate the value at open boundaries, zero gradient.
!!
!!
!! ** Method : - take the average of free ocean neighbours
!!
!! ___ ! |_____| ! ___| ! __|x o ! |_ _| ! |
!! __|x ! x ! x o ! o ! |_| ! |x o
!! o ! o ! o ! ! o x o ! |x_x_
!! ! o
!!----------------------------------------------------------------------
INTEGER, INTENT(in ) :: igrd ! grid index
REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: phia ! model after 3D field (to be updated), must be masked
TYPE(OBC_INDEX), INTENT(in ) :: idx ! OBC indices
LOGICAL , INTENT(in ) :: lrim0 ! indicate if rim 0 is treated
!!
REAL(wp) :: zweight
REAL(wp), POINTER, DIMENSION(:,:,:) :: zmask ! land/sea mask for field
INTEGER :: ib, ik ! dummy loop indices
INTEGER :: ii, ij ! 2D addresses
INTEGER :: ipkm1 ! size of phia third dimension minus 1
INTEGER :: ibeg, iend ! length of rim to be treated (rim 0 or rim 1 or both)
INTEGER :: ii1, ii2, ii3, ij1, ij2, ij3, itreat
!!----------------------------------------------------------------------
!
ipkm1 = MAX( SIZE(phia,3) - 1, 1 )
!
SELECT CASE(igrd)
CASE(1) ; zmask => tmask(:,:,:)
CASE(2) ; zmask => umask(:,:,:)
CASE(3) ; zmask => vmask(:,:,:)
CASE DEFAULT ; CALL ctl_stop( 'unrecognised value for igrd in bdy_nmn' )
END SELECT
!
IF( lrim0 ) THEN ; ibeg = 1 ; iend = idx%nblenrim0(igrd) ! rim 0
ELSE ; ibeg = idx%nblenrim0(igrd)+1 ; iend = idx%nblenrim(igrd) ! rim 1
ENDIF
!
DO ib = ibeg, iend
ii = idx%nbi(ib,igrd)
ij = idx%nbj(ib,igrd)
itreat = idx%ntreat(ib,igrd)
CALL find_neib( ii, ij, itreat, ii1, ij1, ii2, ij2, ii3, ij3 ) ! find free ocean neighbours
SELECT CASE( itreat )
CASE( 1:8 )
IF( ii1 < 1 .OR. ii1 > jpi .OR. ij1 < 1 .OR. ij1 > jpj ) CYCLE
DO ik = 1, ipkm1
IF( zmask(ii1,ij1,ik) /= 0. ) phia(ii,ij,ik) = phia(ii1,ij1,ik)
END DO
CASE( 9:12 )
IF( ii1 < 1 .OR. ii1 > jpi .OR. ij1 < 1 .OR. ij1 > jpj ) CYCLE
IF( ii2 < 1 .OR. ii2 > jpi .OR. ij2 < 1 .OR. ij2 > jpj ) CYCLE
DO ik = 1, ipkm1
zweight = zmask(ii1,ij1,ik) + zmask(ii2,ij2,ik)
IF( zweight /= 0. ) phia(ii,ij,ik) = ( phia(ii1,ij1,ik) + phia(ii2,ij2,ik) ) / zweight
END DO
CASE( 13:16 )
IF( ii1 < 1 .OR. ii1 > jpi .OR. ij1 < 1 .OR. ij1 > jpj ) CYCLE
IF( ii2 < 1 .OR. ii2 > jpi .OR. ij2 < 1 .OR. ij2 > jpj ) CYCLE
IF( ii3 < 1 .OR. ii3 > jpi .OR. ij3 < 1 .OR. ij3 > jpj ) CYCLE
DO ik = 1, ipkm1
zweight = zmask(ii1,ij1,ik) + zmask(ii2,ij2,ik) + zmask(ii3,ij3,ik)
IF( zweight /= 0. ) phia(ii,ij,ik) = ( phia(ii1,ij1,ik) + phia(ii2,ij2,ik) + phia(ii3,ij3,ik) ) / zweight
END DO
END SELECT
END DO
!
END SUBROUTINE bdy_nmn
!!======================================================================
END MODULE bdylib