Skip to content
Snippets Groups Projects
ldfdyn.F90 31.1 KiB
Newer Older
Guillaume Samson's avatar
Guillaume Samson committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
MODULE ldfdyn
   !!======================================================================
   !!                       ***  MODULE  ldfdyn  ***
   !! Ocean physics:  lateral viscosity coefficient 
   !!=====================================================================
   !! History :  OPA  ! 1997-07  (G. Madec)  multi dimensional coefficients
   !!   NEMO     1.0  ! 2002-09  (G. Madec)  F90: Free form and module
   !!            3.7  ! 2014-01  (F. Lemarie, G. Madec)  restructuration/simplification of ahm specification,
   !!                 !                                  add velocity dependent coefficient and optional read in file
   !!----------------------------------------------------------------------

   !!----------------------------------------------------------------------
   !!   ldf_dyn_init  : initialization, namelist read, and parameters control
   !!   ldf_dyn       : update lateral eddy viscosity coefficients at each time step 
   !!----------------------------------------------------------------------
   USE oce             ! ocean dynamics and tracers   
   USE dom_oce         ! ocean space and time domain 
   USE phycst          ! physical constants
   USE ldfslp          ! lateral diffusion: slopes of mixing orientation
   USE ldfc1d_c2d      ! lateral diffusion: 1D and 2D cases
   !
   USE in_out_manager  ! I/O manager
   USE iom             ! I/O module for ehanced bottom friction file
   USE timing          ! Timing
   USE lib_mpp         ! distribued memory computing library
   USE lbclnk          ! ocean lateral boundary conditions (or mpp link)

   IMPLICIT NONE
   PRIVATE

   PUBLIC   ldf_dyn_init   ! called by nemogcm.F90
   PUBLIC   ldf_dyn        ! called by step.F90

   !                                    !!* Namelist namdyn_ldf : lateral mixing on momentum *
   LOGICAL , PUBLIC ::   ln_dynldf_OFF   !: No operator (i.e. no explicit diffusion)
   INTEGER , PUBLIC ::   nn_dynldf_typ   !: operator type (0: div-rot ; 1: symmetric)
   LOGICAL , PUBLIC ::   ln_dynldf_lap   !: laplacian operator
   LOGICAL , PUBLIC ::   ln_dynldf_blp   !: bilaplacian operator
   LOGICAL , PUBLIC ::   ln_dynldf_lev   !: iso-level direction
   LOGICAL , PUBLIC ::   ln_dynldf_hor   !: horizontal (geopotential) direction
!  LOGICAL , PUBLIC ::   ln_dynldf_iso   !: iso-neutral direction                        (see ldfslp)
   INTEGER , PUBLIC ::   nn_ahm_ijk_t    !: choice of time & space variations of the lateral eddy viscosity coef.
   !                                        !  time invariant coefficients:  aht = 1/2  Ud*Ld   (lap case) 
   !                                           !                             bht = 1/12 Ud*Ld^3 (blp case)
   REAL(wp), PUBLIC ::   rn_Uv                 !: lateral viscous velocity  [m/s]
   REAL(wp), PUBLIC ::   rn_Lv                 !: lateral viscous length    [m]
   !                                        ! Smagorinsky viscosity  (nn_ahm_ijk_t = 32) 
   REAL(wp), PUBLIC ::   rn_csmc               !: Smagorinsky constant of proportionality 
   REAL(wp), PUBLIC ::   rn_minfac             !: Multiplicative factor of theorectical minimum Smagorinsky viscosity
   REAL(wp), PUBLIC ::   rn_maxfac             !: Multiplicative factor of theorectical maximum Smagorinsky viscosity
   !                                        ! iso-neutral laplacian (ln_dynldf_lap=ln_dynldf_iso=T)
   REAL(wp), PUBLIC ::   rn_ahm_b              !: lateral laplacian background eddy viscosity  [m2/s]

   !                                    !!* Parameter to control the type of lateral viscous operator
   INTEGER, PARAMETER, PUBLIC ::   np_ERROR   =-10                      !: error in setting the operator
   INTEGER, PARAMETER, PUBLIC ::   np_no_ldf  = 00                      !: without operator (i.e. no lateral viscous trend)
   !
   INTEGER, PARAMETER, PUBLIC ::   np_typ_rot = 0                       !: div-rot   operator
   INTEGER, PARAMETER, PUBLIC ::   np_typ_sym = 1                       !: symmetric operator
   !
   !                          !!      laplacian     !    bilaplacian    !
   INTEGER, PARAMETER, PUBLIC ::   np_lap    = 10   ,   np_blp    = 20  !: iso-level operator
   INTEGER, PARAMETER, PUBLIC ::   np_lap_i  = 11                       !: iso-neutral or geopotential operator
   !
   INTEGER           , PUBLIC ::   nldf_dyn         !: type of lateral diffusion used defined from ln_dynldf_... (namlist logicals)
   LOGICAL           , PUBLIC ::   l_ldfdyn_time    !: flag for time variation of the lateral eddy viscosity coef.

   REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) ::   ahmt, ahmf   !: eddy viscosity coef. at T- and F-points [m2/s or m4/s]
   REAL(wp),         ALLOCATABLE, SAVE, DIMENSION(:,:,:) ::   dtensq       !: horizontal tension squared         (Smagorinsky only)
   REAL(wp),         ALLOCATABLE, SAVE, DIMENSION(:,:,:) ::   dshesq       !: horizontal shearing strain squared (Smagorinsky only)
   REAL(wp),         ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   esqt, esqf   !: Square of the local gridscale (e1e2/(e1+e2))**2           

   REAL(wp) ::   r1_2    = 0.5_wp            ! =1/2
   REAL(wp) ::   r1_4    = 0.25_wp           ! =1/4
   REAL(wp) ::   r1_8    = 0.125_wp          ! =1/8
   REAL(wp) ::   r1_12   = 1._wp / 12._wp    ! =1/12
   REAL(wp) ::   r1_288  = 1._wp / 288._wp   ! =1/( 12^2 * 2 )

   !! * Substitutions
#  include "do_loop_substitute.h90"
   !!----------------------------------------------------------------------
   !! NEMO/OCE 4.0 , NEMO Consortium (2018)
   !! $Id: ldfdyn.F90 15014 2021-06-17 17:02:04Z smasson $ 
   !! Software governed by the CeCILL license (see ./LICENSE)
   !!----------------------------------------------------------------------
CONTAINS

   SUBROUTINE ldf_dyn_init
      !!----------------------------------------------------------------------
      !!                  ***  ROUTINE ldf_dyn_init  ***
      !!                   
      !! ** Purpose :   set the horizontal ocean dynamics physics
      !!
      !! ** Method  :   the eddy viscosity coef. specification depends on:
      !!              - the operator:
      !!             ln_dynldf_lap = T     laplacian operator
      !!             ln_dynldf_blp = T   bilaplacian operator
      !!              - the parameter nn_ahm_ijk_t:
      !!    nn_ahm_ijk_t  =  0 => = constant
      !!                  = 10 => = F(z) :     = constant with a reduction of 1/4 with depth 
      !!                  =-20 => = F(i,j)     = shape read in 'eddy_viscosity_2D.nc' file
      !!                  = 20    = F(i,j)     = F(e1,e2) or F(e1^3,e2^3) (lap or bilap case)
      !!                  =-30 => = F(i,j,k)   = shape read in 'eddy_viscosity_3D.nc'  file
      !!                  = 30    = F(i,j,k)   = 2D (case 20) + decrease with depth (case 10)
      !!                  = 31    = F(i,j,k,t) = F(local velocity) (  |u|e  /12   laplacian operator
      !!                                                           or |u|e^3/12 bilaplacian operator )
      !!                  = 32    = F(i,j,k,t) = F(local deformation rate and gridscale) (D and L) (Smagorinsky)  
      !!                                                           (   L^2|D|      laplacian operator
      !!                                                           or  L^4|D|/8  bilaplacian operator )
      !!----------------------------------------------------------------------
      INTEGER  ::   ji, jj, jk                     ! dummy loop indices
      INTEGER  ::   ioptio, ierr, inum, ios, inn   ! local integer
      REAL(wp) ::   zah0, zah_max, zUfac           ! local scalar
      CHARACTER(len=5) ::   cl_Units               ! units (m2/s or m4/s)
      !!
      NAMELIST/namdyn_ldf/ ln_dynldf_OFF, nn_dynldf_typ, ln_dynldf_lap, ln_dynldf_blp,   &   ! type of operator
         &                 ln_dynldf_lev, ln_dynldf_hor, ln_dynldf_iso,                  &   ! acting direction of the operator
         &                 nn_ahm_ijk_t , rn_Uv        , rn_Lv        ,   rn_ahm_b,      &   ! lateral eddy coefficient
         &                 rn_csmc      , rn_minfac    , rn_maxfac                           ! Smagorinsky settings
      !!----------------------------------------------------------------------
      !
      READ  ( numnam_ref, namdyn_ldf, IOSTAT = ios, ERR = 901)
901   IF( ios /= 0 )   CALL ctl_nam ( ios , 'namdyn_ldf in reference namelist' )

      READ  ( numnam_cfg, namdyn_ldf, IOSTAT = ios, ERR = 902 )
902   IF( ios >  0 )   CALL ctl_nam ( ios , 'namdyn_ldf in configuration namelist' )
      IF(lwm) WRITE ( numond, namdyn_ldf )

      IF(lwp) THEN                      ! Parameter print
         WRITE(numout,*)
         WRITE(numout,*) 'ldf_dyn : lateral momentum physics'
         WRITE(numout,*) '~~~~~~~'
         WRITE(numout,*) '   Namelist namdyn_ldf : set lateral mixing parameters'
         !
         WRITE(numout,*) '      type :'
         WRITE(numout,*) '         no explicit diffusion                ln_dynldf_OFF = ', ln_dynldf_OFF
         WRITE(numout,*) '         type of operator (div-rot or sym)    nn_dynldf_typ = ', nn_dynldf_typ
         WRITE(numout,*) '         laplacian operator                   ln_dynldf_lap = ', ln_dynldf_lap
         WRITE(numout,*) '         bilaplacian operator                 ln_dynldf_blp = ', ln_dynldf_blp
         !
         WRITE(numout,*) '      direction of action :'
         WRITE(numout,*) '         iso-level                            ln_dynldf_lev = ', ln_dynldf_lev
         WRITE(numout,*) '         horizontal (geopotential)            ln_dynldf_hor = ', ln_dynldf_hor
         WRITE(numout,*) '         iso-neutral                          ln_dynldf_iso = ', ln_dynldf_iso
         !
         WRITE(numout,*) '      coefficients :'
         WRITE(numout,*) '         type of time-space variation         nn_ahm_ijk_t  = ', nn_ahm_ijk_t
         WRITE(numout,*) '         lateral viscous velocity  (if cst)      rn_Uv      = ', rn_Uv, ' m/s'
         WRITE(numout,*) '         lateral viscous length    (if cst)      rn_Lv      = ', rn_Lv, ' m'
         WRITE(numout,*) '         background viscosity (iso-lap case)     rn_ahm_b   = ', rn_ahm_b, ' m2/s'
         !
         WRITE(numout,*) '      Smagorinsky settings (nn_ahm_ijk_t  = 32) :'
         WRITE(numout,*) '         Smagorinsky coefficient              rn_csmc       = ', rn_csmc
         WRITE(numout,*) '         factor multiplier for eddy visc.'
         WRITE(numout,*) '            lower limit (default 1.0)         rn_minfac     = ', rn_minfac
         WRITE(numout,*) '            upper limit (default 1.0)         rn_maxfac     = ', rn_maxfac
      ENDIF

      !
      !           !==  type of lateral operator used  ==!   (set nldf_dyn)
      !           !=====================================!
      !
      nldf_dyn = np_ERROR
      ioptio = 0
      IF( ln_dynldf_OFF ) THEN   ;   nldf_dyn = np_no_ldf   ;   ioptio = ioptio + 1   ;   ENDIF
      IF( ln_dynldf_lap ) THEN   ;                              ioptio = ioptio + 1   ;   ENDIF
      IF( ln_dynldf_blp ) THEN   ;                              ioptio = ioptio + 1   ;   ENDIF
      IF( ioptio /= 1   )   CALL ctl_stop( 'ldf_dyn_init: use ONE of the 3 operator options (NONE/lap/blp)' )
      !
      IF(.NOT.ln_dynldf_OFF ) THEN     !==  direction ==>> type of operator  ==!
         !
         SELECT CASE( nn_dynldf_typ )  ! div-rot or symmetric
         CASE( np_typ_rot )   ;   IF(lwp)   WRITE(numout,*) '   ==>>>   use div-rot   operator '
         CASE( np_typ_sym )   ;   IF(lwp)   WRITE(numout,*) '   ==>>>   use symmetric operator '
         CASE DEFAULT                                     ! error
            CALL ctl_stop('ldf_dyn_init: wrong value for nn_dynldf_typ (0 or 1)'  )
         END SELECT
         !
         ioptio = 0
         IF( ln_dynldf_lev )   ioptio = ioptio + 1
         IF( ln_dynldf_hor )   ioptio = ioptio + 1
         IF( ln_dynldf_iso )   ioptio = ioptio + 1
         IF( ioptio /= 1   )   CALL ctl_stop( 'ldf_dyn_init: use ONE of the 3 direction options (level/hor/iso)' )
         !
         !                             ! Set nldf_dyn, the type of lateral diffusion, from ln_dynldf_... logicals
         ierr = 0
         IF( ln_dynldf_lap ) THEN         ! laplacian operator
            IF( ln_zco ) THEN                   ! z-coordinate
               IF ( ln_dynldf_lev )   nldf_dyn = np_lap     ! iso-level = horizontal (no rotation)
               IF ( ln_dynldf_hor )   nldf_dyn = np_lap     ! iso-level = horizontal (no rotation)
               IF ( ln_dynldf_iso )   nldf_dyn = np_lap_i   ! iso-neutral            (   rotation)
            ENDIF
            IF( ln_zps ) THEN                   ! z-coordinate with partial step
               IF ( ln_dynldf_lev )   nldf_dyn = np_lap     ! iso-level              (no rotation)
               IF ( ln_dynldf_hor )   nldf_dyn = np_lap     ! iso-level              (no rotation)
               IF ( ln_dynldf_iso )   nldf_dyn = np_lap_i   ! iso-neutral            (   rotation)
            ENDIF
            IF( ln_sco ) THEN                   ! s-coordinate
               IF ( ln_dynldf_lev )   nldf_dyn = np_lap     ! iso-level = horizontal (no rotation)
               IF ( ln_dynldf_hor )   nldf_dyn = np_lap_i   ! horizontal             (   rotation)
               IF ( ln_dynldf_iso )   nldf_dyn = np_lap_i   ! iso-neutral            (   rotation)
            ENDIF
         ENDIF
         !
         IF( ln_dynldf_blp ) THEN         ! bilaplacian operator
            IF( ln_zco ) THEN                   ! z-coordinate
               IF( ln_dynldf_lev )   nldf_dyn = np_blp   ! iso-level = horizontal (no rotation)
               IF( ln_dynldf_hor )   nldf_dyn = np_blp   ! iso-level = horizontal (no rotation)
               IF( ln_dynldf_iso )   ierr = 2            ! iso-neutral            (   rotation)
            ENDIF
            IF( ln_zps ) THEN                   ! z-coordinate with partial step
               IF( ln_dynldf_lev )   nldf_dyn = np_blp   ! iso-level              (no rotation)
               IF( ln_dynldf_hor )   nldf_dyn = np_blp   ! iso-level              (no rotation)
               IF( ln_dynldf_iso )   ierr = 2            ! iso-neutral            (   rotation)
            ENDIF
            IF( ln_sco ) THEN                   ! s-coordinate
               IF( ln_dynldf_lev )   nldf_dyn = np_blp   ! iso-level              (no rotation)
               IF( ln_dynldf_hor )   ierr = 2            ! horizontal             (   rotation)
               IF( ln_dynldf_iso )   ierr = 2            ! iso-neutral            (   rotation)
            ENDIF
         ENDIF
         !
         IF( ierr == 2 )   CALL ctl_stop( 'rotated bi-laplacian operator does not exist' )
         !
         IF( nldf_dyn == np_lap_i )   l_ldfslp = .TRUE.  ! rotation require the computation of the slopes
         !
      ENDIF
      !
      IF(lwp) THEN
         WRITE(numout,*)
         SELECT CASE( nldf_dyn )
         CASE( np_no_ldf )   ;   WRITE(numout,*) '   ==>>>   NO lateral viscosity'
         CASE( np_lap    )   ;   WRITE(numout,*) '   ==>>>   iso-level laplacian operator'
         CASE( np_lap_i  )   ;   WRITE(numout,*) '   ==>>>   rotated laplacian operator with iso-level background'
         CASE( np_blp    )   ;   WRITE(numout,*) '   ==>>>   iso-level bi-laplacian operator'
         END SELECT
         WRITE(numout,*)
      ENDIF
      
      !
      !           !==  Space/time variation of eddy coefficients  ==!
      !           !=================================================!
      !
      l_ldfdyn_time = .FALSE.                ! no time variation except in case defined below
      !
      IF( ln_dynldf_OFF ) THEN
         IF(lwp) WRITE(numout,*) '   ==>>>   No viscous operator selected. ahmt and ahmf are not allocated'
         RETURN
         !
      ELSE                                   !==  a lateral diffusion operator is used  ==!
         !
         !                                         ! allocate the ahm arrays
         ALLOCATE( ahmt(jpi,jpj,jpk) , ahmf(jpi,jpj,jpk) , STAT=ierr )
         IF( ierr /= 0 )   CALL ctl_stop( 'STOP', 'ldf_dyn_init: failed to allocate arrays')
         !
         ahmt(:,:,:) = 0._wp                       ! init to 0 needed 
         ahmf(:,:,:) = 0._wp
         !
         !                                         ! value of lap/blp eddy mixing coef.
         IF(     ln_dynldf_lap ) THEN   ;   zUfac = r1_2 *rn_Uv   ;   inn = 1   ;   cl_Units = ' m2/s'   !   laplacian
         ELSEIF( ln_dynldf_blp ) THEN   ;   zUfac = r1_12*rn_Uv   ;   inn = 3   ;   cl_Units = ' m4/s'   ! bilaplacian
         ENDIF
         zah0    = zUfac *    rn_Lv**inn              ! mixing coefficient
         zah_max = zUfac * (ra*rad)**inn              ! maximum reachable coefficient (value at the Equator)
         !
         SELECT CASE(  nn_ahm_ijk_t  )             !* Specification of space-time variations of ahmt, ahmf
         !
         CASE(   0  )      !==  constant  ==!
            IF(lwp) WRITE(numout,*) '   ==>>>   eddy viscosity. = constant = ', zah0, cl_Units
            ahmt(:,:,1:jpkm1) = zah0
            ahmf(:,:,1:jpkm1) = zah0
            !
         CASE(  10  )      !==  fixed profile  ==!
            IF(lwp) WRITE(numout,*) '   ==>>>   eddy viscosity = F( depth )'
            IF(lwp) WRITE(numout,*) '           surface viscous coef. = constant = ', zah0, cl_Units
            ahmt(:,:,1) = zah0                        ! constant surface value
            ahmf(:,:,1) = zah0
            CALL ldf_c1d( 'DYN', ahmt(:,:,1), ahmf(:,:,1), ahmt, ahmf )
            !
         CASE ( -20 )      !== fixed horizontal shape read in file  ==!
            IF(lwp) WRITE(numout,*) '   ==>>>   eddy viscosity = F(i,j) read in eddy_viscosity.nc file'
            CALL iom_open( 'eddy_viscosity_2D.nc', inum )
            CALL iom_get ( inum, jpdom_global, 'ahmt_2d', ahmt(:,:,1), cd_type = 'T', psgn = 1._wp )
            CALL iom_get ( inum, jpdom_global, 'ahmf_2d', ahmf(:,:,1), cd_type = 'F', psgn = 1._wp )
            CALL iom_close( inum )
            DO jk = 2, jpkm1
               ahmt(:,:,jk) = ahmt(:,:,1)
               ahmf(:,:,jk) = ahmf(:,:,1)
            END DO
            !
         CASE(  20  )      !== fixed horizontal shape  ==!
            IF(lwp) WRITE(numout,*) '   ==>>>   eddy viscosity = F( e1, e2 ) or F( e1^3, e2^3 ) (lap. or blp. case)'
            IF(lwp) WRITE(numout,*) '           using a fixed viscous velocity = ', rn_Uv  ,' m/s   and   Lv = Max(e1,e2)'
            IF(lwp) WRITE(numout,*) '           maximum reachable coefficient (at the Equator) = ', zah_max, cl_Units, '  for e1=1°)'
            CALL ldf_c2d( 'DYN', zUfac      , inn        , ahmt, ahmf )         ! surface value proportional to scale factor^inn
            !
         CASE( -30  )      !== fixed 3D shape read in file  ==!
            IF(lwp) WRITE(numout,*) '   ==>>>   eddy viscosity = F(i,j,k) read in eddy_viscosity_3D.nc file'
            CALL iom_open( 'eddy_viscosity_3D.nc', inum )
            CALL iom_get ( inum, jpdom_global, 'ahmt_3d', ahmt, cd_type = 'T', psgn = 1._wp )
            CALL iom_get ( inum, jpdom_global, 'ahmf_3d', ahmf, cd_type = 'F', psgn = 1._wp )
            CALL iom_close( inum )
            !
         CASE(  30  )       !==  fixed 3D shape  ==!
            IF(lwp) WRITE(numout,*) '   ==>>>   eddy viscosity = F( latitude, longitude, depth )'
            IF(lwp) WRITE(numout,*) '           using a fixed viscous velocity = ', rn_Uv  ,' m/s   and   Ld = Max(e1,e2)'
            IF(lwp) WRITE(numout,*) '           maximum reachable coefficient (at the Equator) = ', zah_max, cl_Units, '  for e1=1°)'
            CALL ldf_c2d( 'DYN', zUfac      , inn        , ahmt, ahmf )         ! surface value proportional to scale factor^inn
            CALL ldf_c1d( 'DYN', ahmt(:,:,1), ahmf(:,:,1), ahmt, ahmf )  ! reduction with depth
            !
         CASE(  31  )       !==  time varying 3D field  ==!
            IF(lwp) WRITE(numout,*) '   ==>>>   eddy viscosity = F( latitude, longitude, depth , time )'
            IF(lwp) WRITE(numout,*) '           proportional to the local velocity : 1/2 |u|e (lap) or 1/12 |u|e^3 (blp)'
            !
            l_ldfdyn_time = .TRUE.     ! will be calculated by call to ldf_dyn routine in step.F90
            !
         CASE(  32  )       !==  time varying 3D field  ==!
            IF(lwp) WRITE(numout,*) '   ==>>>   eddy viscosity = F( latitude, longitude, depth , time )'
            IF(lwp) WRITE(numout,*) '           proportional to the local deformation rate and gridscale (Smagorinsky)'
            !
            l_ldfdyn_time = .TRUE.     ! will be calculated by call to ldf_dyn routine in step.F90
            !
            !                          ! allocate arrays used in ldf_dyn. 
            ALLOCATE( dtensq(jpi,jpj,jpk) , dshesq(jpi,jpj,jpk) , esqt(jpi,jpj) , esqf(jpi,jpj) , STAT=ierr )
            IF( ierr /= 0 )   CALL ctl_stop( 'STOP', 'ldf_dyn_init: failed to allocate Smagorinsky arrays')
            !
            DO_2D( 1, 1, 1, 1 )        ! Set local gridscale values
               esqt(ji,jj) = ( 2._wp * e1e2t(ji,jj) / ( e1t(ji,jj) + e2t(ji,jj) ) )**2 
               esqf(ji,jj) = ( 2._wp * e1e2f(ji,jj) / ( e1f(ji,jj) + e2f(ji,jj) ) )**2 
            END_2D
            !
         CASE DEFAULT
            CALL ctl_stop('ldf_dyn_init: wrong choice for nn_ahm_ijk_t, the type of space-time variation of ahm')
         END SELECT
         !
         IF( .NOT.l_ldfdyn_time ) THEN             !* No time variation 
            IF(     ln_dynldf_lap ) THEN                 !   laplacian operator (mask only)
               ahmt(:,:,1:jpkm1) =       ahmt(:,:,1:jpkm1)   * tmask(:,:,1:jpkm1)
               ahmf(:,:,1:jpkm1) =       ahmf(:,:,1:jpkm1)   * fmask(:,:,1:jpkm1)
            ELSEIF( ln_dynldf_blp ) THEN                 ! bilaplacian operator (square root + mask)
               ahmt(:,:,1:jpkm1) = SQRT( ahmt(:,:,1:jpkm1) ) * tmask(:,:,1:jpkm1)
               ahmf(:,:,1:jpkm1) = SQRT( ahmf(:,:,1:jpkm1) ) * fmask(:,:,1:jpkm1)
            ENDIF
         ENDIF
         !
      ENDIF
      !
   END SUBROUTINE ldf_dyn_init


   SUBROUTINE ldf_dyn( kt, Kbb )
      !!----------------------------------------------------------------------
      !!                  ***  ROUTINE ldf_dyn  ***
      !! 
      !! ** Purpose :   update at kt the momentum lateral mixing coeff. (ahmt and ahmf)
      !!
      !! ** Method  :   time varying eddy viscosity coefficients:
      !!
      !!    nn_ahm_ijk_t = 31    ahmt, ahmf = F(i,j,k,t) = F(local velocity) 
      !!                         ( |u|e /12  or  |u|e^3/12 for laplacian or bilaplacian operator )
      !!
      !!    nn_ahm_ijk_t = 32    ahmt, ahmf = F(i,j,k,t) = F(local deformation rate and gridscale) (D and L) (Smagorinsky)  
      !!                         ( L^2|D|    or  L^4|D|/8  for laplacian or bilaplacian operator )
      !!
      !! ** note    :    in BLP cases the sqrt of the eddy coef is returned, since bilaplacian is en re-entrant laplacian
      !! ** action  :    ahmt, ahmf   updated at each time step
      !!----------------------------------------------------------------------
      INTEGER, INTENT(in) ::   kt   ! time step index
      INTEGER, INTENT(in) ::   Kbb  ! ocean time level indices
      !
      INTEGER  ::   ji, jj, jk   ! dummy loop indices
      REAL(wp) ::   zu2pv2_ij_p1, zu2pv2_ij, zu2pv2_ij_m1, zemax   ! local scalar (option 31)
      REAL(wp) ::   zcmsmag, zstabf_lo, zstabf_up, zdelta, zdb     ! local scalar (option 32)
      !!----------------------------------------------------------------------
      !
      IF( ln_timing )   CALL timing_start('ldf_dyn')
      !
      SELECT CASE(  nn_ahm_ijk_t  )       !== Eddy vicosity coefficients ==!
      !
      CASE(  31  )       !==  time varying 3D field  ==!   = F( local velocity )
         !
         IF( ln_dynldf_lap   ) THEN        ! laplacian operator : |u| e /12 = |u/144| e
            DO jk = 1, jpkm1
               DO_2D( 0, 0, 0, 0 )
                  zu2pv2_ij    = uu(ji  ,jj  ,jk,Kbb) * uu(ji  ,jj  ,jk,Kbb) + vv(ji  ,jj  ,jk,Kbb) * vv(ji  ,jj  ,jk,Kbb)
                  zu2pv2_ij_m1 = uu(ji-1,jj  ,jk,Kbb) * uu(ji-1,jj  ,jk,Kbb) + vv(ji  ,jj-1,jk,Kbb) * vv(ji  ,jj-1,jk,Kbb)
                  zu2pv2_ij_p1 = uu(ji  ,jj+1,jk,Kbb) * uu(ji  ,jj+1,jk,Kbb) + vv(ji+1,jj  ,jk,Kbb) * vv(ji+1,jj  ,jk,Kbb)
                  zemax = MAX( e1t(ji,jj) , e2t(ji,jj) )
                  ahmt(ji,jj,jk) = SQRT( (zu2pv2_ij + zu2pv2_ij_m1) * r1_288 ) * zemax * tmask(ji,jj,jk)      ! 288= 12*12 * 2
                  zemax = MAX( e1f(ji,jj) , e2f(ji,jj) )
                  ahmf(ji,jj,jk) = SQRT( (zu2pv2_ij + zu2pv2_ij_p1) * r1_288 ) * zemax * fmask(ji,jj,jk)      ! 288= 12*12 * 2
               END_2D
            END DO
         ELSEIF( ln_dynldf_blp ) THEN      ! bilaplacian operator : sqrt( |u| e^3 /12 ) = sqrt( |u/144| e ) * e
            DO jk = 1, jpkm1
               DO_2D( 0, 0, 0, 0 )
                  zu2pv2_ij    = uu(ji  ,jj  ,jk,Kbb) * uu(ji  ,jj  ,jk,Kbb) + vv(ji  ,jj  ,jk,Kbb) * vv(ji  ,jj  ,jk,Kbb)
                  zu2pv2_ij_m1 = uu(ji-1,jj  ,jk,Kbb) * uu(ji-1,jj  ,jk,Kbb) + vv(ji  ,jj-1,jk,Kbb) * vv(ji  ,jj-1,jk,Kbb)
                  zu2pv2_ij_p1 = uu(ji  ,jj+1,jk,Kbb) * uu(ji  ,jj+1,jk,Kbb) + vv(ji+1,jj  ,jk,Kbb) * vv(ji+1,jj  ,jk,Kbb)
                  zemax = MAX( e1t(ji,jj) , e2t(ji,jj) )
                  ahmt(ji,jj,jk) = SQRT(  SQRT( (zu2pv2_ij + zu2pv2_ij_m1) * r1_288 ) * zemax  ) * zemax * tmask(ji,jj,jk)
                  zemax = MAX( e1f(ji,jj) , e2f(ji,jj) )
                  ahmf(ji,jj,jk) = SQRT(  SQRT( (zu2pv2_ij + zu2pv2_ij_p1) * r1_288 ) * zemax  ) * zemax * fmask(ji,jj,jk)
               END_2D
            END DO
         ENDIF
         !
         CALL lbc_lnk( 'ldfdyn', ahmt, 'T', 1.0_wp,  ahmf, 'F', 1.0_wp )
         !
         !
      CASE(  32  )       !==  time varying 3D field  ==!   = F( local deformation rate and gridscale ) (Smagorinsky)
         !
         IF( ln_dynldf_lap .OR. ln_dynldf_blp  ) THEN        ! laplacian operator : (C_smag/pi)^2 L^2 |D|
            !
            zcmsmag   = (rn_csmc/rpi)**2                                            ! (C_smag/pi)^2
            zstabf_lo = rn_minfac * rn_minfac / ( 2._wp * 12._wp * 12._wp * zcmsmag ) ! lower limit stability factor scaling
            zstabf_up = rn_maxfac / ( 4._wp * zcmsmag * 2._wp * rn_Dt )               ! upper limit stability factor scaling
            IF( ln_dynldf_blp ) zstabf_lo = ( 16._wp / 9._wp ) * zstabf_lo          ! provide |U|L^3/12 lower limit instead 
            !                                                                       ! of |U|L^3/16 in blp case
            DO jk = 1, jpkm1
               !
               DO_2D( 0, 0, 0, 0 )
                  zdb =    ( uu(ji,jj,jk,Kbb) * r1_e2u(ji,jj) -  uu(ji-1,jj,jk,Kbb) * r1_e2u(ji-1,jj) )  &
                       &                      * r1_e1t(ji,jj) * e2t(ji,jj)                           &
                       & - ( vv(ji,jj,jk,Kbb) * r1_e1v(ji,jj) -  vv(ji,jj-1,jk,Kbb) * r1_e1v(ji,jj-1) )  &
                       &                      * r1_e2t(ji,jj) * e1t(ji,jj)
                  dtensq(ji,jj,jk) = zdb * zdb * tmask(ji,jj,jk)
               END_2D
               !
               DO_2D( 1, 0, 1, 0 )
                  zdb =   (  uu(ji,jj+1,jk,Kbb) * r1_e1u(ji,jj+1) -  uu(ji,jj,jk,Kbb) * r1_e1u(ji,jj) )  &
                       &                        * r1_e2f(ji,jj)   * e1f(ji,jj)                       &
                       & + ( vv(ji+1,jj,jk,Kbb) * r1_e2v(ji+1,jj) -  vv(ji,jj,jk,Kbb) * r1_e2v(ji,jj) )  &
                       &                        * r1_e1f(ji,jj)   * e2f(ji,jj)
                  dshesq(ji,jj,jk) = zdb * zdb * fmask(ji,jj,jk)
               END_2D
               !
            END DO
            !
            CALL lbc_lnk( 'ldfdyn', dtensq, 'T', 1.0_wp )  ! lbc_lnk on dshesq not needed
            !
            DO jk = 1, jpkm1
              !
               DO_2D( 0, 0, 0, 0 )                                   ! T-point value
                  !
                  zu2pv2_ij    = uu(ji  ,jj  ,jk,Kbb) * uu(ji  ,jj  ,jk,Kbb) + vv(ji  ,jj  ,jk,Kbb) * vv(ji  ,jj  ,jk,Kbb)
                  zu2pv2_ij_m1 = uu(ji-1,jj  ,jk,Kbb) * uu(ji-1,jj  ,jk,Kbb) + vv(ji  ,jj-1,jk,Kbb) * vv(ji  ,jj-1,jk,Kbb)
                  !
                  zdelta         = zcmsmag * esqt(ji,jj)                                        ! L^2 * (C_smag/pi)^2
                  ahmt(ji,jj,jk) = zdelta * SQRT(          dtensq(ji  ,jj,jk) +                         &
                     &                            r1_4 * ( dshesq(ji  ,jj,jk) + dshesq(ji  ,jj-1,jk) +  &
                     &                                     dshesq(ji-1,jj,jk) + dshesq(ji-1,jj-1,jk) ) )
                  ahmt(ji,jj,jk) = MAX( ahmt(ji,jj,jk), SQRT( (zu2pv2_ij + zu2pv2_ij_m1) * zdelta * zstabf_lo ) ) ! Impose lower limit == minfac  * |U|L/2
                  ahmt(ji,jj,jk) = MIN( ahmt(ji,jj,jk),                                    zdelta * zstabf_up )   ! Impose upper limit == maxfac  * L^2/(4*2dt)
                  !
               END_2D
               !
               DO_2D( 1, 0, 1, 0 )                                   ! F-point value
                  !
                  zu2pv2_ij_p1 = uu(ji  ,jj+1,jk, kbb) * uu(ji  ,jj+1,jk, kbb) + vv(ji+1,jj  ,jk, kbb) * vv(ji+1,jj  ,jk, kbb)
                  zu2pv2_ij    = uu(ji  ,jj  ,jk, kbb) * uu(ji  ,jj  ,jk, kbb) + vv(ji  ,jj  ,jk, kbb) * vv(ji  ,jj  ,jk, kbb)
                  !
                  zdelta         = zcmsmag * esqf(ji,jj)                                        ! L^2 * (C_smag/pi)^2
                  ahmf(ji,jj,jk) = zdelta * SQRT(          dshesq(ji  ,jj,jk) +                         &
                     &                            r1_4 * ( dtensq(ji  ,jj,jk) + dtensq(ji  ,jj+1,jk) +  &
                     &                                     dtensq(ji+1,jj,jk) + dtensq(ji+1,jj+1,jk) ) )
                  ahmf(ji,jj,jk) = MAX( ahmf(ji,jj,jk), SQRT( (zu2pv2_ij + zu2pv2_ij_p1) * zdelta * zstabf_lo ) ) ! Impose lower limit == minfac  * |U|L/2
                  ahmf(ji,jj,jk) = MIN( ahmf(ji,jj,jk),                                    zdelta * zstabf_up )   ! Impose upper limit == maxfac  * L^2/(4*2dt)
                  !
               END_2D
               !
            END DO
            !
         ENDIF
         !
         IF( ln_dynldf_blp ) THEN      ! bilaplacian operator : sqrt( (C_smag/pi)^2 L^4 |D|/8)
            !                          !                      = sqrt( A_lap_smag L^2/8 )
            !                          ! stability limits already applied to laplacian values
            !                          ! effective default limits are 1/12 |U|L^3 < B_hm < 1//(32*2dt) L^4
            DO jk = 1, jpkm1
               DO_2D( 0, 0, 0, 0 )
                  ahmt(ji,jj,jk) = SQRT( r1_8 * esqt(ji,jj) * ahmt(ji,jj,jk) )
                  ahmf(ji,jj,jk) = SQRT( r1_8 * esqf(ji,jj) * ahmf(ji,jj,jk) )
               END_2D
            END DO
            !
         ENDIF
         !
         CALL lbc_lnk( 'ldfdyn', ahmt, 'T', 1.0_wp , ahmf, 'F', 1.0_wp )
         !
      END SELECT
      !
      CALL iom_put( "ahmt_2d", ahmt(:,:,1) )   ! surface u-eddy diffusivity coeff.
      CALL iom_put( "ahmf_2d", ahmf(:,:,1) )   ! surface v-eddy diffusivity coeff.
      CALL iom_put( "ahmt_3d", ahmt(:,:,:) )   ! 3D      u-eddy diffusivity coeff.
      CALL iom_put( "ahmf_3d", ahmf(:,:,:) )   ! 3D      v-eddy diffusivity coeff.
      !
      IF( ln_timing )   CALL timing_stop('ldf_dyn')
      !
   END SUBROUTINE ldf_dyn

   !!======================================================================
END MODULE ldfdyn