Skip to content
Snippets Groups Projects
traadv_qck.F90 22.3 KiB
Newer Older
Guillaume Samson's avatar
Guillaume Samson committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
MODULE traadv_qck
   !!==============================================================================
   !!                       ***  MODULE  traadv_qck  ***
   !! Ocean tracers:  horizontal & vertical advective trend
   !!==============================================================================
   !! History :  3.0  !  2008-07  (G. Reffray)  Original code
   !!            3.3  !  2010-05  (C.Ethe, G. Madec)  merge TRC-TRA + switch from velocity to transport
   !!----------------------------------------------------------------------

   !!----------------------------------------------------------------------
   !!   tra_adv_qck    : update the tracer trend with the horizontal advection
   !!                    trends using a 3rd order finite difference scheme
   !!   tra_adv_qck_i  : apply QUICK scheme in i-direction
   !!   tra_adv_qck_j  : apply QUICK scheme in j-direction
   !!   tra_adv_cen2_k : 2nd centered scheme for the vertical advection
   !!----------------------------------------------------------------------
   USE oce             ! ocean dynamics and active tracers
   USE dom_oce         ! ocean space and time domain
   USE trc_oce         ! share passive tracers/Ocean variables
   USE trd_oce         ! trends: ocean variables
   USE trdtra          ! trends manager: tracers
   USE diaptr          ! poleward transport diagnostics
   USE iom
   !
   USE in_out_manager  ! I/O manager
   USE lib_mpp         ! distribued memory computing
   USE lbclnk          ! ocean lateral boundary condition (or mpp link)
   USE lib_fortran     ! Fortran utilities (allows no signed zero when 'key_nosignedzero' defined)
#if defined key_loop_fusion
   USE traadv_qck_lf   ! QCK    scheme            (tra_adv_qck  routine - loop fusion version)
#endif

   IMPLICIT NONE
   PRIVATE

   PUBLIC   tra_adv_qck   ! routine called by step.F90

   REAL(wp) :: r1_6 = 1./ 6.   ! 1/6 ratio

   LOGICAL  ::   l_trd   ! flag to compute trends
   LOGICAL  ::   l_ptr   ! flag to compute poleward transport


   !! * Substitutions
#  include "do_loop_substitute.h90"
#  include "domzgr_substitute.h90"
   !!----------------------------------------------------------------------
   !! NEMO/OCE 4.0 , NEMO Consortium (2018)
   !! $Id: traadv_qck.F90 14978 2021-06-11 13:21:08Z hadcv $
   !! Software governed by the CeCILL license (see ./LICENSE)
   !!----------------------------------------------------------------------
CONTAINS

   SUBROUTINE tra_adv_qck ( kt, kit000, cdtype, p2dt, pU, pV, pW, Kbb, Kmm, pt, kjpt, Krhs )
      !!----------------------------------------------------------------------
      !!                  ***  ROUTINE tra_adv_qck  ***
      !!
      !! ** Purpose :   Compute the now trend due to the advection of tracers
      !!      and add it to the general trend of passive tracer equations.
      !!
      !! ** Method :   The advection is evaluated by a third order scheme
      !!             For a positive velocity u :              u(i)>0
      !!                                          |--FU--|--FC--|--FD--|------|
      !!                                             i-1    i      i+1   i+2
      !!
      !!             For a negative velocity u :              u(i)<0
      !!                                          |------|--FD--|--FC--|--FU--|
      !!                                             i-1    i      i+1   i+2
      !!             where  FU is the second upwind point
      !!                    FD is the first douwning point
      !!                    FC is the central point (or the first upwind point)
      !!
      !!      Flux(i) = u(i) * { 0.5(FC+FD)  -0.5C(i)(FD-FC)  -((1-C(i))/6)(FU+FD-2FC) }
      !!                with C(i)=|u(i)|dx(i)/dt (=Courant number)
      !!
      !!         dt = 2*rdtra and the scalar values are tb and sb
      !!
      !!       On the vertical, the simple centered scheme used pt(:,:,:,:,Kmm)
      !!
      !!               The fluxes are bounded by the ULTIMATE limiter to
      !!             guarantee the monotonicity of the solution and to
      !!            prevent the appearance of spurious numerical oscillations
      !!
      !! ** Action : - update pt(:,:,:,:,Krhs)  with the now advective tracer trends
      !!             - send trends to trdtra module for further diagnostcs (l_trdtra=T)
      !!             - poleward advective heat and salt transport (ln_diaptr=T)
      !!
      !! ** Reference : Leonard (1979, 1991)
      !!----------------------------------------------------------------------
      INTEGER                                  , INTENT(in   ) ::   kt              ! ocean time-step index
      INTEGER                                  , INTENT(in   ) ::   Kbb, Kmm, Krhs  ! ocean time level indices
      INTEGER                                  , INTENT(in   ) ::   kit000          ! first time step index
      CHARACTER(len=3)                         , INTENT(in   ) ::   cdtype          ! =TRA or TRC (tracer indicator)
      INTEGER                                  , INTENT(in   ) ::   kjpt            ! number of tracers
      REAL(wp)                                 , INTENT(in   ) ::   p2dt            ! tracer time-step
      ! TEMP: [tiling] This can be A2D(nn_hls) after all lbc_lnks removed in the nn_hls = 2 case in tra_adv_fct
      REAL(wp), DIMENSION(jpi,jpj,jpk         ), INTENT(in   ) ::   pU, pV, pW      ! 3 ocean volume transport components
      REAL(wp), DIMENSION(jpi,jpj,jpk,kjpt,jpt), INTENT(inout) ::   pt              ! tracers and RHS of tracer equation
      !!----------------------------------------------------------------------
      !
#if defined key_loop_fusion
      CALL tra_adv_qck_lf ( kt, kit000, cdtype, p2dt, pU, pV, pW, Kbb, Kmm, pt, kjpt, Krhs )
#else
      IF( .NOT. l_istiled .OR. ntile == 1 )  THEN                       ! Do only on the first tile
         IF( kt == kit000 )  THEN
            IF(lwp) WRITE(numout,*)
            IF(lwp) WRITE(numout,*) 'tra_adv_qck : 3rd order quickest advection scheme on ', cdtype
            IF(lwp) WRITE(numout,*) '~~~~~~~~~~~~'
            IF(lwp) WRITE(numout,*)
         ENDIF
         !
         l_trd = .FALSE.
         l_ptr = .FALSE.
         IF( ( cdtype == 'TRA' .AND. l_trdtra ) .OR. ( cdtype == 'TRC' .AND. l_trdtrc ) )   l_trd = .TRUE.
         IF(   cdtype == 'TRA' .AND. ( iom_use( 'sophtadv' ) .OR. iom_use( 'sophtadv' ) ) ) l_ptr = .TRUE.
      ENDIF
      !
      !        ! horizontal fluxes are computed with the QUICKEST + ULTIMATE scheme
      CALL tra_adv_qck_i( kt, cdtype, p2dt, pU, Kbb, Kmm, pt, kjpt, Krhs )
      CALL tra_adv_qck_j( kt, cdtype, p2dt, pV, Kbb, Kmm, pt, kjpt, Krhs )

      !        ! vertical fluxes are computed with the 2nd order centered scheme
      CALL tra_adv_cen2_k( kt, cdtype, pW, Kmm, pt, kjpt, Krhs )
      !
#endif
   END SUBROUTINE tra_adv_qck


   SUBROUTINE tra_adv_qck_i( kt, cdtype, p2dt, pU, Kbb, Kmm, pt, kjpt, Krhs )
      !!----------------------------------------------------------------------
      !!
      !!----------------------------------------------------------------------
      INTEGER                                  , INTENT(in   ) ::   kt         ! ocean time-step index
      INTEGER                                  , INTENT(in   ) ::   Kbb, Kmm, Krhs  ! ocean time level indices
      CHARACTER(len=3)                         , INTENT(in   ) ::   cdtype     ! =TRA or TRC (tracer indicator)
      INTEGER                                  , INTENT(in   ) ::   kjpt       ! number of tracers
      REAL(wp)                                 , INTENT(in   ) ::   p2dt       ! tracer time-step
      ! TEMP: [tiling] This can be A2D(nn_hls) after all lbc_lnks removed in the nn_hls = 2 case in tra_adv_fct
      REAL(wp), DIMENSION(jpi,jpj,jpk         ), INTENT(in   ) ::   pU        ! i-velocity components
      REAL(wp), DIMENSION(jpi,jpj,jpk,kjpt,jpt), INTENT(inout) ::   pt              ! active tracers and RHS of tracer equation
      !!
      INTEGER  ::   ji, jj, jk, jn   ! dummy loop indices
      REAL(wp) ::   ztra, zbtr, zdir, zdx, zmsk   ! local scalars
      REAL(wp), DIMENSION(A2D(nn_hls),jpk) ::   zwx, zfu, zfc, zfd
      !----------------------------------------------------------------------
      !
      !                                                          ! ===========
      DO jn = 1, kjpt                                            ! tracer loop
         !                                                       ! ===========
         zfu(:,:,:) = 0._wp     ;   zfc(:,:,:) = 0._wp
         zfd(:,:,:) = 0._wp     ;   zwx(:,:,:) = 0._wp
         !
!!gm why not using a SHIFT instruction...
         DO_3D( nn_hls-1, nn_hls-1, 0, 0, 1, jpkm1 )     !--- Computation of the ustream and downstream value of the tracer and the mask
            zfc(ji,jj,jk) = pt(ji-1,jj,jk,jn,Kbb)        ! Upstream   in the x-direction for the tracer
            zfd(ji,jj,jk) = pt(ji+1,jj,jk,jn,Kbb)        ! Downstream in the x-direction for the tracer
         END_3D
         IF (nn_hls==1) CALL lbc_lnk( 'traadv_qck', zfc(:,:,:), 'T', 1.0_wp , zfd(:,:,:), 'T', 1.0_wp, ld4only= .TRUE. )   ! Lateral boundary conditions

         !
         ! Horizontal advective fluxes
         ! ---------------------------
         DO_3D( nn_hls-1, 0, 0, 0, 1, jpkm1 )
            zdir = 0.5 + SIGN( 0.5_wp, pU(ji,jj,jk) )   ! if pU > 0 : zdir = 1 otherwise zdir = 0
            zfu(ji,jj,jk) = zdir * zfc(ji,jj,jk ) + ( 1. - zdir ) * zfd(ji+1,jj,jk)  ! FU in the x-direction for T
         END_3D
         !
         DO_3D( nn_hls-1, 0, 0, 0, 1, jpkm1 )
            zdir = 0.5 + SIGN( 0.5_wp, pU(ji,jj,jk) )   ! if pU > 0 : zdir = 1 otherwise zdir = 0
            zdx = ( zdir * e1t(ji,jj) + ( 1. - zdir ) * e1t(ji+1,jj) ) * e2u(ji,jj) * e3u(ji,jj,jk,Kmm)
            zwx(ji,jj,jk)  = ABS( pU(ji,jj,jk) ) * p2dt / zdx    ! (0<zc_cfl<1 : Courant number on x-direction)
            zfc(ji,jj,jk)  = zdir * pt(ji  ,jj,jk,jn,Kbb) + ( 1. - zdir ) * pt(ji+1,jj,jk,jn,Kbb)  ! FC in the x-direction for T
            zfd(ji,jj,jk)  = zdir * pt(ji+1,jj,jk,jn,Kbb) + ( 1. - zdir ) * pt(ji  ,jj,jk,jn,Kbb)  ! FD in the x-direction for T
         END_3D
         !--- Lateral boundary conditions
         IF (nn_hls==1) CALL lbc_lnk( 'traadv_qck', zfu(:,:,:), 'T', 1.0_wp , zfd(:,:,:), 'T', 1.0_wp, zfc(:,:,:), 'T', 1.0_wp,  zwx(:,:,:), 'T', 1.0_wp )

         !--- QUICKEST scheme
         CALL quickest( zfu, zfd, zfc, zwx )
         !
         ! Mask at the T-points in the x-direction (mask=0 or mask=1)
         DO_3D( nn_hls-1, nn_hls-1, 0, 0, 1, jpkm1 )
            zfu(ji,jj,jk) = tmask(ji-1,jj,jk) + tmask(ji,jj,jk) + tmask(ji+1,jj,jk) - 2.
         END_3D
         IF (nn_hls==1) CALL lbc_lnk( 'traadv_qck', zfu(:,:,:), 'T', 1.0_wp, ld4only= .TRUE. )      ! Lateral boundary conditions

         !
         ! Tracer flux on the x-direction
         DO_3D( 1, 0, 0, 0, 1, jpkm1 )
            zdir = 0.5 + SIGN( 0.5_wp, pU(ji,jj,jk) )   ! if pU > 0 : zdir = 1 otherwise zdir = 0
            !--- If the second ustream point is a land point
            !--- the flux is computed by the 1st order UPWIND scheme
            zmsk = zdir * zfu(ji,jj,jk) + ( 1. - zdir ) * zfu(ji+1,jj,jk)
            zwx(ji,jj,jk) = zmsk * zwx(ji,jj,jk) + ( 1. - zmsk ) * zfc(ji,jj,jk)
            zwx(ji,jj,jk) = zwx(ji,jj,jk) * pU(ji,jj,jk)
         END_3D
         !
         ! Computation of the trend
         DO_3D( 0, 0, 0, 0, 1, jpkm1 )
            zbtr = r1_e1e2t(ji,jj) / e3t(ji,jj,jk,Kmm)
            ! horizontal advective trends
            ztra = - zbtr * ( zwx(ji,jj,jk) - zwx(ji-1,jj,jk) )
            !--- add it to the general tracer trends
            pt(ji,jj,jk,jn,Krhs) = pt(ji,jj,jk,jn,Krhs) + ztra
         END_3D
         !                                 ! trend diagnostics
         IF( l_trd )   CALL trd_tra( kt, Kmm, Krhs, cdtype, jn, jptra_xad, zwx, pU, pt(:,:,:,jn,Kmm) )
         !
      END DO
      !
   END SUBROUTINE tra_adv_qck_i


   SUBROUTINE tra_adv_qck_j( kt, cdtype, p2dt, pV, Kbb, Kmm, pt, kjpt, Krhs )
      !!----------------------------------------------------------------------
      !!
      !!----------------------------------------------------------------------
      INTEGER                                  , INTENT(in   ) ::   kt         ! ocean time-step index
      INTEGER                                  , INTENT(in   ) ::   Kbb, Kmm, Krhs  ! ocean time level indices
      CHARACTER(len=3)                         , INTENT(in   ) ::   cdtype     ! =TRA or TRC (tracer indicator)
      INTEGER                                  , INTENT(in   ) ::   kjpt       ! number of tracers
      REAL(wp)                                 , INTENT(in   ) ::   p2dt       ! tracer time-step
      ! TEMP: [tiling] This can be A2D(nn_hls) after all lbc_lnks removed in the nn_hls = 2 case in tra_adv_fct
      REAL(wp), DIMENSION(jpi,jpj,jpk         ), INTENT(in   ) ::   pV        ! j-velocity components
      REAL(wp), DIMENSION(jpi,jpj,jpk,kjpt,jpt), INTENT(inout) ::   pt              ! active tracers and RHS of tracer equation
      !!
      INTEGER  :: ji, jj, jk, jn                ! dummy loop indices
      REAL(wp) :: ztra, zbtr, zdir, zdx, zmsk   ! local scalars
      REAL(wp), DIMENSION(A2D(nn_hls),jpk) ::   zwy, zfu, zfc, zfd   ! 3D workspace
      !----------------------------------------------------------------------
      !
      !                                                          ! ===========
      DO jn = 1, kjpt                                            ! tracer loop
         !                                                       ! ===========
         zfu(:,:,:) = 0.0     ;   zfc(:,:,:) = 0.0
         zfd(:,:,:) = 0.0     ;   zwy(:,:,:) = 0.0
         !
         !--- Computation of the ustream and downstream value of the tracer and the mask
         DO_3D( 0, 0, nn_hls-1, nn_hls-1, 1, jpkm1 )
            ! Upstream in the x-direction for the tracer
            zfc(ji,jj,jk) = pt(ji,jj-1,jk,jn,Kbb)
            ! Downstream in the x-direction for the tracer
            zfd(ji,jj,jk) = pt(ji,jj+1,jk,jn,Kbb)
         END_3D

         IF (nn_hls==1) CALL lbc_lnk( 'traadv_qck', zfc(:,:,:), 'T', 1.0_wp , zfd(:,:,:), 'T', 1.0_wp, ld4only= .TRUE. )   ! Lateral boundary conditions

         ! Correct zfd on northfold after lbc_lnk; see #2640
         IF( nn_hls == 1 .AND. l_IdoNFold .AND. ntej == Nje0 ) THEN
            DO jk = 1, jpkm1
               WHERE( tmask_i(ntsi:ntei,ntej:jpj) == 0._wp ) zfd(ntsi:ntei,ntej:jpj,jk) = zfc(ntsi:ntei,ntej:jpj,jk)
            END DO
         ENDIF
         !
         ! Horizontal advective fluxes
         ! ---------------------------
         !
         DO_3D( 0, 0, nn_hls-1, 0, 1, jpkm1 )
            zdir = 0.5 + SIGN( 0.5_wp, pV(ji,jj,jk) )   ! if pU > 0 : zdir = 1 otherwise zdir = 0
            zfu(ji,jj,jk) = zdir * zfc(ji,jj,jk ) + ( 1. - zdir ) * zfd(ji,jj+1,jk)  ! FU in the x-direction for T
         END_3D
         !
         DO_3D( 0, 0, nn_hls-1, 0, 1, jpkm1 )
            zdir = 0.5 + SIGN( 0.5_wp, pV(ji,jj,jk) )   ! if pU > 0 : zdir = 1 otherwise zdir = 0
            zdx = ( zdir * e2t(ji,jj) + ( 1. - zdir ) * e2t(ji,jj+1) ) * e1v(ji,jj) * e3v(ji,jj,jk,Kmm)
            zwy(ji,jj,jk)  = ABS( pV(ji,jj,jk) ) * p2dt / zdx    ! (0<zc_cfl<1 : Courant number on x-direction)
            zfc(ji,jj,jk)  = zdir * pt(ji,jj  ,jk,jn,Kbb) + ( 1. - zdir ) * pt(ji,jj+1,jk,jn,Kbb)  ! FC in the x-direction for T
            zfd(ji,jj,jk)  = zdir * pt(ji,jj+1,jk,jn,Kbb) + ( 1. - zdir ) * pt(ji,jj  ,jk,jn,Kbb)  ! FD in the x-direction for T
         END_3D

         !--- Lateral boundary conditions
         IF (nn_hls==1) CALL lbc_lnk( 'traadv_qck', zfu(:,:,:), 'T', 1.0_wp , zfd(:,:,:), 'T', 1.0_wp, zfc(:,:,:), 'T', 1.0_wp, zwy(:,:,:), 'T', 1.0_wp )

         !--- QUICKEST scheme
         CALL quickest( zfu, zfd, zfc, zwy )
         !
         ! Mask at the T-points in the x-direction (mask=0 or mask=1)
         DO_3D( 0, 0, nn_hls-1, nn_hls-1, 1, jpkm1 )
            zfu(ji,jj,jk) = tmask(ji,jj-1,jk) + tmask(ji,jj,jk) + tmask(ji,jj+1,jk) - 2.
         END_3D
         IF (nn_hls==1) CALL lbc_lnk( 'traadv_qck', zfu(:,:,:), 'T', 1.0_wp, ld4only= .TRUE. )    !--- Lateral boundary conditions
         !
         ! Tracer flux on the x-direction
         DO_3D( 0, 0, 1, 0, 1, jpkm1 )
            zdir = 0.5 + SIGN( 0.5_wp, pV(ji,jj,jk) )   ! if pU > 0 : zdir = 1 otherwise zdir = 0
            !--- If the second ustream point is a land point
            !--- the flux is computed by the 1st order UPWIND scheme
            zmsk = zdir * zfu(ji,jj,jk) + ( 1. - zdir ) * zfu(ji,jj+1,jk)
            zwy(ji,jj,jk) = zmsk * zwy(ji,jj,jk) + ( 1. - zmsk ) * zfc(ji,jj,jk)
            zwy(ji,jj,jk) = zwy(ji,jj,jk) * pV(ji,jj,jk)
         END_3D
         !
         ! Computation of the trend
         DO_3D( 0, 0, 0, 0, 1, jpkm1 )
            zbtr = r1_e1e2t(ji,jj) / e3t(ji,jj,jk,Kmm)
            ! horizontal advective trends
            ztra = - zbtr * ( zwy(ji,jj,jk) - zwy(ji,jj-1,jk) )
            !--- add it to the general tracer trends
            pt(ji,jj,jk,jn,Krhs) = pt(ji,jj,jk,jn,Krhs) + ztra
         END_3D
         !                                 ! trend diagnostics
         IF( l_trd )   CALL trd_tra( kt, Kmm, Krhs, cdtype, jn, jptra_yad, zwy, pV, pt(:,:,:,jn,Kmm) )
         !                                 ! "Poleward" heat and salt transports (contribution of upstream fluxes)
         IF( l_ptr )   CALL dia_ptr_hst( jn, 'adv', zwy(:,:,:) )
         !
      END DO
      !
   END SUBROUTINE tra_adv_qck_j


   SUBROUTINE tra_adv_cen2_k( kt, cdtype, pW, Kmm, pt, kjpt, Krhs )
      !!----------------------------------------------------------------------
      !!
      !!----------------------------------------------------------------------
      INTEGER                                  , INTENT(in   ) ::   kt       ! ocean time-step index
      INTEGER                                  , INTENT(in   ) ::   Kmm, Krhs  ! ocean time level indices
      CHARACTER(len=3)                         , INTENT(in   ) ::   cdtype   ! =TRA or TRC (tracer indicator)
      INTEGER                                  , INTENT(in   ) ::   kjpt     ! number of tracers
      ! TEMP: [tiling] This can be A2D(nn_hls) after all lbc_lnks removed in the nn_hls = 2 case in tra_adv_fct
      REAL(wp), DIMENSION(jpi,jpj,jpk         ), INTENT(in   ) ::   pW      ! vertical velocity
      REAL(wp), DIMENSION(jpi,jpj,jpk,kjpt,jpt), INTENT(inout) ::   pt              ! active tracers and RHS of tracer equation
      !
      INTEGER  ::   ji, jj, jk, jn   ! dummy loop indices
      REAL(wp), DIMENSION(A2D(nn_hls),jpk) ::   zwz   ! 3D workspace
      !!----------------------------------------------------------------------
      !
      zwz(:,:, 1 ) = 0._wp       ! surface & bottom values set to zero for all tracers
      zwz(:,:,jpk) = 0._wp
      !
      !                                                          ! ===========
      DO jn = 1, kjpt                                            ! tracer loop
         !                                                       ! ===========
         !
         DO_3D( 0, 0, 0, 0, 2, jpkm1 )       !* Interior point   (w-masked 2nd order centered flux)
            zwz(ji,jj,jk) = 0.5 * pW(ji,jj,jk) * ( pt(ji,jj,jk-1,jn,Kmm) + pt(ji,jj,jk,jn,Kmm) ) * wmask(ji,jj,jk)
         END_3D
         IF( ln_linssh ) THEN                !* top value   (only in linear free surf. as zwz is multiplied by wmask)
            IF( ln_isfcav ) THEN                  ! ice-shelf cavities (top of the ocean)
               DO_2D( 0, 0, 0, 0 )
                  zwz(ji,jj, mikt(ji,jj) ) = pW(ji,jj,mikt(ji,jj)) * pt(ji,jj,mikt(ji,jj),jn,Kmm)   ! linear free surface
               END_2D
            ELSE                                   ! no ocean cavities (only ocean surface)
               DO_2D( 0, 0, 0, 0 )
                  zwz(ji,jj,1) = pW(ji,jj,1) * pt(ji,jj,1,jn,Kmm)
               END_2D
            ENDIF
         ENDIF
         !
         DO_3D( 0, 0, 0, 0, 1, jpkm1 )   !==  Tracer flux divergence added to the general trend  ==!
            pt(ji,jj,jk,jn,Krhs) = pt(ji,jj,jk,jn,Krhs) - ( zwz(ji,jj,jk) - zwz(ji,jj,jk+1) )   &
               &                                * r1_e1e2t(ji,jj) / e3t(ji,jj,jk,Kmm)
         END_3D
         !                                 ! Send trends for diagnostic
         IF( l_trd )  CALL trd_tra( kt, Kmm, Krhs, cdtype, jn, jptra_zad, zwz, pW, pt(:,:,:,jn,Kmm) )
         !
      END DO
      !
   END SUBROUTINE tra_adv_cen2_k


   SUBROUTINE quickest( pfu, pfd, pfc, puc )
      !!----------------------------------------------------------------------
      !!
      !! ** Purpose :  Computation of advective flux with Quickest scheme
      !!
      !! ** Method :
      !!----------------------------------------------------------------------
      REAL(wp), DIMENSION(A2D(nn_hls),jpk), INTENT(in   ) ::   pfu   ! second upwind point
      REAL(wp), DIMENSION(A2D(nn_hls),jpk), INTENT(in   ) ::   pfd   ! first douwning point
      REAL(wp), DIMENSION(A2D(nn_hls),jpk), INTENT(in   ) ::   pfc   ! the central point (or the first upwind point)
      REAL(wp), DIMENSION(A2D(nn_hls),jpk), INTENT(inout) ::   puc   ! input as Courant number ; output as flux
      !!
      INTEGER  ::  ji, jj, jk               ! dummy loop indices
      REAL(wp) ::  zcoef1, zcoef2, zcoef3   ! local scalars
      REAL(wp) ::  zc, zcurv, zfho          !   -      -
      !----------------------------------------------------------------------
      !
      DO_3D( 1, 0, 1, 0, 1, jpkm1 )
         zc     = puc(ji,jj,jk)                         ! Courant number
         zcurv  = pfd(ji,jj,jk) + pfu(ji,jj,jk) - 2. * pfc(ji,jj,jk)
         zcoef1 = 0.5 *      ( pfc(ji,jj,jk) + pfd(ji,jj,jk) )
         zcoef2 = 0.5 * zc * ( pfd(ji,jj,jk) - pfc(ji,jj,jk) )
         zcoef3 = ( 1. - ( zc * zc ) ) * r1_6 * zcurv
         zfho   = zcoef1 - zcoef2 - zcoef3              !  phi_f QUICKEST
         !
         zcoef1 = pfd(ji,jj,jk) - pfu(ji,jj,jk)
         zcoef2 = ABS( zcoef1 )
         zcoef3 = ABS( zcurv )
         IF( zcoef3 >= zcoef2 ) THEN
            zfho = pfc(ji,jj,jk)
         ELSE
            zcoef3 = pfu(ji,jj,jk) + ( ( pfc(ji,jj,jk) - pfu(ji,jj,jk) ) / MAX( zc, 1.e-9 ) )    ! phi_REF
            IF( zcoef1 >= 0. ) THEN
               zfho = MAX( pfc(ji,jj,jk), zfho )
               zfho = MIN( zfho, MIN( zcoef3, pfd(ji,jj,jk) ) )
            ELSE
               zfho = MIN( pfc(ji,jj,jk), zfho )
               zfho = MAX( zfho, MAX( zcoef3, pfd(ji,jj,jk) ) )
            ENDIF
         ENDIF
         puc(ji,jj,jk) = zfho
      END_3D
      !
   END SUBROUTINE quickest

   !!======================================================================
END MODULE traadv_qck