Skip to content
Snippets Groups Projects
trabbl.F90 31.7 KiB
Newer Older
Guillaume Samson's avatar
Guillaume Samson committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
MODULE trabbl
   !!==============================================================================
   !!                       ***  MODULE  trabbl  ***
   !! Ocean physics :  advective and/or diffusive bottom boundary layer scheme
   !!==============================================================================
   !! History :  OPA  ! 1996-06  (L. Mortier)  Original code
   !!            8.0  ! 1997-11  (G. Madec)    Optimization
   !!   NEMO     1.0  ! 2002-08  (G. Madec)  free form + modules
   !!             -   ! 2004-01  (A. de Miranda, G. Madec, J.M. Molines ) add advective bbl
   !!            3.3  ! 2009-11  (G. Madec)  merge trabbl and trabbl_adv + style + optimization
   !!             -   ! 2010-04  (G. Madec)  Campin & Goosse advective bbl
   !!             -   ! 2010-06  (C. Ethe, G. Madec)  merge TRA-TRC
   !!             -   ! 2010-11  (G. Madec) add mbk. arrays associated to the deepest ocean level
   !!             -   ! 2013-04  (F. Roquet, G. Madec)  use of eosbn2 instead of local hard coded alpha and beta
   !!            4.0  ! 2017-04  (G. Madec)  ln_trabbl namelist variable instead of a CPP key
   !!----------------------------------------------------------------------

   !!----------------------------------------------------------------------
   !!   tra_bbl_alloc : allocate trabbl arrays
   !!   tra_bbl       : update the tracer trends due to the bottom boundary layer (advective and/or diffusive)
   !!   tra_bbl_dif   : generic routine to compute bbl diffusive trend
   !!   tra_bbl_adv   : generic routine to compute bbl advective trend
   !!   bbl           : computation of bbl diffu. flux coef. & transport in bottom boundary layer
   !!   tra_bbl_init  : initialization, namelist read, parameters control
   !!----------------------------------------------------------------------
   USE oce            ! ocean dynamics and active tracers
   USE dom_oce        ! ocean space and time domain
   USE phycst         ! physical constant
   USE eosbn2         ! equation of state
   USE trd_oce        ! trends: ocean variables
   USE trdtra         ! trends: active tracers
   !
   USE iom            ! IOM library
   USE in_out_manager ! I/O manager
   USE lbclnk         ! ocean lateral boundary conditions
   USE prtctl         ! Print control
   USE timing         ! Timing
   USE lib_fortran    ! Fortran utilities (allows no signed zero when 'key_nosignedzero' defined)

   IMPLICIT NONE
   PRIVATE

   PUBLIC   tra_bbl       !  routine called by step.F90
   PUBLIC   tra_bbl_init  !  routine called by nemogcm.F90
   PUBLIC   tra_bbl_dif   !  routine called by trcbbl.F90
   PUBLIC   tra_bbl_adv   !     -      -          -
   PUBLIC   bbl           !  routine called by trcbbl.F90 and dtadyn.F90

   !                                !!* Namelist nambbl *
   LOGICAL , PUBLIC ::   ln_trabbl   !: bottom boundary layer flag
   INTEGER , PUBLIC ::   nn_bbl_ldf  !: =1   : diffusive bbl or not (=0)
   INTEGER , PUBLIC ::   nn_bbl_adv  !: =1/2 : advective bbl or not (=0)
   !                                            !  =1 : advective bbl using the bottom ocean velocity
   !                                            !  =2 :     -      -  using utr_bbl proportional to grad(rho)
   REAL(wp), PUBLIC ::   rn_ahtbbl   !: along slope bbl diffusive coefficient [m2/s]
   REAL(wp), PUBLIC ::   rn_gambbl   !: lateral coeff. for bottom boundary layer scheme [s]

   LOGICAL , PUBLIC ::   l_bbl       !: flag to compute bbl diffu. flux coef and transport

   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:), PUBLIC ::   utr_bbl  , vtr_bbl   ! u- (v-) transport in the bottom boundary layer
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:), PUBLIC ::   ahu_bbl  , ahv_bbl   ! masked diffusive bbl coeff. at u & v-pts

   INTEGER , ALLOCATABLE, SAVE, DIMENSION(:,:), PUBLIC ::   mbku_d   , mbkv_d      ! vertical index of the "lower" bottom ocean U/V-level (PUBLIC for TAM)
   INTEGER , ALLOCATABLE, SAVE, DIMENSION(:,:), PUBLIC ::   mgrhu    , mgrhv       ! = +/-1, sign of grad(H) in u-(v-)direction (PUBLIC for TAM)
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)         ::   ahu_bbl_0, ahv_bbl_0   ! diffusive bbl flux coefficients at u and v-points
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:), PUBLIC ::   e3u_bbl_0, e3v_bbl_0   ! thichness of the bbl (e3) at u and v-points (PUBLIC for TAM)

   !! * Substitutions
#  include "do_loop_substitute.h90"
#  include "domzgr_substitute.h90"
   !!----------------------------------------------------------------------
   !! NEMO/OCE 4.0 , NEMO Consortium (2018)
   !! $Id: trabbl.F90 15053 2021-06-24 15:39:38Z clem $
   !! Software governed by the CeCILL license (see ./LICENSE)
   !!----------------------------------------------------------------------
CONTAINS

   INTEGER FUNCTION tra_bbl_alloc()
      !!----------------------------------------------------------------------
      !!                ***  FUNCTION tra_bbl_alloc  ***
      !!----------------------------------------------------------------------
      ALLOCATE( utr_bbl  (jpi,jpj) , ahu_bbl  (jpi,jpj) , mbku_d(jpi,jpj) , mgrhu(jpi,jpj) ,     &
         &      vtr_bbl  (jpi,jpj) , ahv_bbl  (jpi,jpj) , mbkv_d(jpi,jpj) , mgrhv(jpi,jpj) ,     &
         &      ahu_bbl_0(jpi,jpj) , ahv_bbl_0(jpi,jpj) ,                                        &
         &      e3u_bbl_0(jpi,jpj) , e3v_bbl_0(jpi,jpj) ,                                    STAT=tra_bbl_alloc )
         !
      CALL mpp_sum ( 'trabbl', tra_bbl_alloc )
      IF( tra_bbl_alloc > 0 )   CALL ctl_warn('tra_bbl_alloc: allocation of arrays failed.')
   END FUNCTION tra_bbl_alloc


   SUBROUTINE tra_bbl( kt, Kbb, Kmm, pts, Krhs )
      !!----------------------------------------------------------------------
      !!                  ***  ROUTINE bbl  ***
      !!
      !! ** Purpose :   Compute the before tracer (t & s) trend associated
      !!              with the bottom boundary layer and add it to the general
      !!              trend of tracer equations.
      !!
      !! ** Method  :   Depending on namtra_bbl namelist parameters the bbl
      !!              diffusive and/or advective contribution to the tracer trend
      !!              is added to the general tracer trend
      !!----------------------------------------------------------------------
      INTEGER,                                   INTENT(in   ) :: kt              ! ocean time-step
      INTEGER,                                   INTENT(in   ) :: Kbb, Kmm, Krhs  ! time level indices
      REAL(wp), DIMENSION(jpi,jpj,jpk,jpts,jpt), INTENT(inout) :: pts             ! active tracers and RHS of tracer equation
      !
      INTEGER  ::   ji, jj, jk   ! Dummy loop indices
      REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) ::   ztrdt, ztrds
      !!----------------------------------------------------------------------
      !
      IF( ln_timing )   CALL timing_start( 'tra_bbl')
      !
      IF( l_trdtra )   THEN                         !* Save the T-S input trends
         ALLOCATE( ztrdt(jpi,jpj,jpk), ztrds(jpi,jpj,jpk) )
         ztrdt(:,:,:) = pts(:,:,:,jp_tem,Krhs)
         ztrds(:,:,:) = pts(:,:,:,jp_sal,Krhs)
      ENDIF

      IF( l_bbl )   CALL bbl( kt, nit000, 'TRA', Kbb, Kmm )   !* bbl coef. and transport (only if not already done in trcbbl)

      IF( nn_bbl_ldf == 1 ) THEN                    !* Diffusive bbl
         !
         CALL tra_bbl_dif( pts(:,:,:,:,Kbb), pts(:,:,:,:,Krhs), jpts, Kmm )
         IF( sn_cfctl%l_prtctl )  &
         CALL prt_ctl( tab3d_1=pts(:,:,:,jp_tem,Krhs), clinfo1=' bbl_ldf  - Ta: ', mask1=tmask, &
            &          tab3d_2=pts(:,:,:,jp_sal,Krhs), clinfo2=           ' Sa: ', mask2=tmask, clinfo3='tra' )
         CALL iom_put( "ahu_bbl", ahu_bbl )   ! bbl diffusive flux i-coef
         CALL iom_put( "ahv_bbl", ahv_bbl )   ! bbl diffusive flux j-coef
         !
      ENDIF
      !
      IF( nn_bbl_adv /= 0 ) THEN                    !* Advective bbl
         !
         CALL tra_bbl_adv( pts(:,:,:,:,Kbb), pts(:,:,:,:,Krhs), jpts, Kmm )
         IF(sn_cfctl%l_prtctl)   &
         CALL prt_ctl( tab3d_1=pts(:,:,:,jp_tem,Krhs), clinfo1=' bbl_adv  - Ta: ', mask1=tmask, &
            &          tab3d_2=pts(:,:,:,jp_sal,Krhs), clinfo2=           ' Sa: ', mask2=tmask, clinfo3='tra' )
         CALL iom_put( "uoce_bbl", utr_bbl )  ! bbl i-transport
         CALL iom_put( "voce_bbl", vtr_bbl )  ! bbl j-transport
         !
      ENDIF

      IF( l_trdtra )   THEN                      ! send the trends for further diagnostics
         ztrdt(:,:,:) = pts(:,:,:,jp_tem,Krhs) - ztrdt(:,:,:)
         ztrds(:,:,:) = pts(:,:,:,jp_sal,Krhs) - ztrds(:,:,:)
         CALL trd_tra( kt, Kmm, Krhs, 'TRA', jp_tem, jptra_bbl, ztrdt )
         CALL trd_tra( kt, Kmm, Krhs, 'TRA', jp_sal, jptra_bbl, ztrds )
         DEALLOCATE( ztrdt, ztrds )
      ENDIF
      !
      IF( ln_timing )  CALL timing_stop( 'tra_bbl')
      !
   END SUBROUTINE tra_bbl


   SUBROUTINE tra_bbl_dif( pt, pt_rhs, kjpt, Kmm )
      !!----------------------------------------------------------------------
      !!                  ***  ROUTINE tra_bbl_dif  ***
      !!
      !! ** Purpose :   Computes the bottom boundary horizontal and vertical
      !!                advection terms.
      !!
      !! ** Method  : * diffusive bbl only (nn_bbl_ldf=1) :
      !!        When the product grad( rho) * grad(h) < 0 (where grad is an
      !!      along bottom slope gradient) an additional lateral 2nd order
      !!      diffusion along the bottom slope is added to the general
      !!      tracer trend, otherwise the additional trend is set to 0.
      !!      A typical value of ahbt is 2000 m2/s (equivalent to
      !!      a downslope velocity of 20 cm/s if the condition for slope
      !!      convection is satified)
      !!
      !! ** Action  :   pt_rhs   increased by the bbl diffusive trend
      !!
      !! References : Beckmann, A., and R. Doscher, 1997, J. Phys.Oceanogr., 581-591.
      !!              Campin, J.-M., and H. Goosse, 1999, Tellus, 412-430.
      !!----------------------------------------------------------------------
      INTEGER                              , INTENT(in   ) ::   kjpt   ! number of tracers
      REAL(wp), DIMENSION(jpi,jpj,jpk,kjpt), INTENT(in   ) ::   pt     ! before and now tracer fields
      REAL(wp), DIMENSION(jpi,jpj,jpk,kjpt), INTENT(inout) ::   pt_rhs ! tracer trend
      INTEGER                              , INTENT(in   ) ::   Kmm    ! time level indices
      !
      INTEGER  ::   ji, jj, jn   ! dummy loop indices
      INTEGER  ::   ik           ! local integers
      REAL(wp) ::   zbtr         ! local scalars
      REAL(wp), DIMENSION(A2D(nn_hls)) ::   zptb   ! workspace
      !!----------------------------------------------------------------------
      !
      DO jn = 1, kjpt                                     ! tracer loop
         !                                                ! ===========
         DO_2D( 1, 1, 1, 1 )
            ik = mbkt(ji,jj)                             ! bottom T-level index
            zptb(ji,jj) = pt(ji,jj,ik,jn)                ! bottom before T and S
         END_2D
         !
         DO_2D( 0, 0, 0, 0 )                               ! Compute the trend
            ik = mbkt(ji,jj)                            ! bottom T-level index
            pt_rhs(ji,jj,ik,jn) = pt_rhs(ji,jj,ik,jn)                                                  &
               &                + (  ahu_bbl(ji  ,jj  ) * ( zptb(ji+1,jj  ) - zptb(ji  ,jj  ) )     &
               &                   - ahu_bbl(ji-1,jj  ) * ( zptb(ji  ,jj  ) - zptb(ji-1,jj  ) )     &
               &                   + ahv_bbl(ji  ,jj  ) * ( zptb(ji  ,jj+1) - zptb(ji  ,jj  ) )     &
               &                   - ahv_bbl(ji  ,jj-1) * ( zptb(ji  ,jj  ) - zptb(ji  ,jj-1) )  )  &
               &                * r1_e1e2t(ji,jj) / e3t(ji,jj,ik,Kmm)
         END_2D
         !                                                  ! ===========
      END DO                                                ! end tracer
      !                                                     ! ===========
   END SUBROUTINE tra_bbl_dif


   ! NOTE: [tiling] tiling changes the results, but only the order of floating point operations is different
   SUBROUTINE tra_bbl_adv( pt, pt_rhs, kjpt, Kmm )
      !!----------------------------------------------------------------------
      !!                  ***  ROUTINE trc_bbl  ***
      !!
      !! ** Purpose :   Compute the before passive tracer trend associated
      !!     with the bottom boundary layer and add it to the general trend
      !!     of tracer equations.
      !! ** Method  :   advective bbl (nn_bbl_adv = 1 or 2) :
      !!      nn_bbl_adv = 1   use of the ocean near bottom velocity as bbl velocity
      !!      nn_bbl_adv = 2   follow Campin and Goosse (1999) implentation i.e.
      !!                       transport proportional to the along-slope density gradient
      !!
      !! References : Beckmann, A., and R. Doscher, 1997, J. Phys.Oceanogr., 581-591.
      !!              Campin, J.-M., and H. Goosse, 1999, Tellus, 412-430.
      !!----------------------------------------------------------------------
      INTEGER                              , INTENT(in   ) ::   kjpt   ! number of tracers
      REAL(wp), DIMENSION(jpi,jpj,jpk,kjpt), INTENT(in   ) ::   pt     ! before and now tracer fields
      REAL(wp), DIMENSION(jpi,jpj,jpk,kjpt), INTENT(inout) ::   pt_rhs ! tracer trend
      INTEGER                              , INTENT(in   ) ::   Kmm    ! time level indices
      !
      INTEGER  ::   ji, jj, jk, jn           ! dummy loop indices
      INTEGER  ::   iis , iid , ijs , ijd    ! local integers
      INTEGER  ::   ikus, ikud, ikvs, ikvd   !   -       -
      REAL(wp) ::   zbtr, ztra               ! local scalars
      REAL(wp) ::   zu_bbl, zv_bbl           !   -      -
      !!----------------------------------------------------------------------
      !                                                          ! ===========
      DO jn = 1, kjpt                                            ! tracer loop
         !                                                       ! ===========
         DO_2D_OVR( 1, 0, 1, 0 )            ! CAUTION start from i=1 to update i=2 when cyclic east-west
            IF( utr_bbl(ji,jj) /= 0.e0 ) THEN            ! non-zero i-direction bbl advection
               ! down-slope i/k-indices (deep)      &   up-slope i/k indices (shelf)
               iid  = ji + MAX( 0, mgrhu(ji,jj) )   ;   iis  = ji + 1 - MAX( 0, mgrhu(ji,jj) )
               ikud = mbku_d(ji,jj)                 ;   ikus = mbku(ji,jj)
               zu_bbl = ABS( utr_bbl(ji,jj) )
               !
               !                                               ! up  -slope T-point (shelf bottom point)
               zbtr = r1_e1e2t(iis,jj) / e3t(iis,jj,ikus,Kmm)
               ztra = zu_bbl * ( pt(iid,jj,ikus,jn) - pt(iis,jj,ikus,jn) ) * zbtr
               pt_rhs(iis,jj,ikus,jn) = pt_rhs(iis,jj,ikus,jn) + ztra
               !
               DO jk = ikus, ikud-1                            ! down-slope upper to down T-point (deep column)
                  zbtr = r1_e1e2t(iid,jj) / e3t(iid,jj,jk,Kmm)
                  ztra = zu_bbl * ( pt(iid,jj,jk+1,jn) - pt(iid,jj,jk,jn) ) * zbtr
                  pt_rhs(iid,jj,jk,jn) = pt_rhs(iid,jj,jk,jn) + ztra
               END DO
               !
               zbtr = r1_e1e2t(iid,jj) / e3t(iid,jj,ikud,Kmm)
               ztra = zu_bbl * ( pt(iis,jj,ikus,jn) - pt(iid,jj,ikud,jn) ) * zbtr
               pt_rhs(iid,jj,ikud,jn) = pt_rhs(iid,jj,ikud,jn) + ztra
            ENDIF
            !
            IF( vtr_bbl(ji,jj) /= 0.e0 ) THEN            ! non-zero j-direction bbl advection
               ! down-slope j/k-indices (deep)        &   up-slope j/k indices (shelf)
               ijd  = jj + MAX( 0, mgrhv(ji,jj) )     ;   ijs  = jj + 1 - MAX( 0, mgrhv(ji,jj) )
               ikvd = mbkv_d(ji,jj)                   ;   ikvs = mbkv(ji,jj)
               zv_bbl = ABS( vtr_bbl(ji,jj) )
               !
               ! up  -slope T-point (shelf bottom point)
               zbtr = r1_e1e2t(ji,ijs) / e3t(ji,ijs,ikvs,Kmm)
               ztra = zv_bbl * ( pt(ji,ijd,ikvs,jn) - pt(ji,ijs,ikvs,jn) ) * zbtr
               pt_rhs(ji,ijs,ikvs,jn) = pt_rhs(ji,ijs,ikvs,jn) + ztra
               !
               DO jk = ikvs, ikvd-1                            ! down-slope upper to down T-point (deep column)
                  zbtr = r1_e1e2t(ji,ijd) / e3t(ji,ijd,jk,Kmm)
                  ztra = zv_bbl * ( pt(ji,ijd,jk+1,jn) - pt(ji,ijd,jk,jn) ) * zbtr
                  pt_rhs(ji,ijd,jk,jn) = pt_rhs(ji,ijd,jk,jn)  + ztra
               END DO
               !                                               ! down-slope T-point (deep bottom point)
               zbtr = r1_e1e2t(ji,ijd) / e3t(ji,ijd,ikvd,Kmm)
               ztra = zv_bbl * ( pt(ji,ijs,ikvs,jn) - pt(ji,ijd,ikvd,jn) ) * zbtr
               pt_rhs(ji,ijd,ikvd,jn) = pt_rhs(ji,ijd,ikvd,jn) + ztra
            ENDIF
         END_2D
         !                                                       ! ===========
      END DO                                                     ! end tracer
      !                                                          ! ===========
   END SUBROUTINE tra_bbl_adv


   SUBROUTINE bbl( kt, kit000, cdtype, Kbb, Kmm )
      !!----------------------------------------------------------------------
      !!                  ***  ROUTINE bbl  ***
      !!
      !! ** Purpose :   Computes the bottom boundary horizontal and vertical
      !!                advection terms.
      !!
      !! ** Method  : * diffusive bbl (nn_bbl_ldf=1) :
      !!        When the product grad( rho) * grad(h) < 0 (where grad is an
      !!      along bottom slope gradient) an additional lateral 2nd order
      !!      diffusion along the bottom slope is added to the general
      !!      tracer trend, otherwise the additional trend is set to 0.
      !!      A typical value of ahbt is 2000 m2/s (equivalent to
      !!      a downslope velocity of 20 cm/s if the condition for slope
      !!      convection is satified)
      !!              * advective bbl (nn_bbl_adv=1 or 2) :
      !!      nn_bbl_adv = 1   use of the ocean velocity as bbl velocity
      !!      nn_bbl_adv = 2   follow Campin and Goosse (1999) implentation
      !!        i.e. transport proportional to the along-slope density gradient
      !!
      !!      NB: the along slope density gradient is evaluated using the
      !!      local density (i.e. referenced at a common local depth).
      !!
      !! References : Beckmann, A., and R. Doscher, 1997, J. Phys.Oceanogr., 581-591.
      !!              Campin, J.-M., and H. Goosse, 1999, Tellus, 412-430.
      !!----------------------------------------------------------------------
      INTEGER         , INTENT(in   ) ::   kt       ! ocean time-step index
      INTEGER         , INTENT(in   ) ::   kit000   ! first time step index
      CHARACTER(len=3), INTENT(in   ) ::   cdtype   ! =TRA or TRC (tracer indicator)
      INTEGER         , INTENT(in   ) ::   Kbb, Kmm ! ocean time level index
      !
      INTEGER  ::   ji, jj                    ! dummy loop indices
      INTEGER  ::   ik                        ! local integers
      INTEGER  ::   iis, iid, ikus, ikud      !   -       -
      INTEGER  ::   ijs, ijd, ikvs, ikvd      !   -       -
      REAL(wp) ::   za, zb, zgdrho            ! local scalars
      REAL(wp) ::   zsign, zsigna, zgbbl      !   -      -
      REAL(wp), DIMENSION(A2D(nn_hls),jpts)   :: zts, zab         ! 3D workspace
      REAL(wp), DIMENSION(A2D(nn_hls))        :: zub, zvb, zdep   ! 2D workspace
      !!----------------------------------------------------------------------
      !
      IF( .NOT. l_istiled .OR. ntile == 1 )  THEN                       ! Do only on the first tile
         IF( kt == kit000 )  THEN
            IF(lwp)  WRITE(numout,*)
            IF(lwp)  WRITE(numout,*) 'trabbl:bbl : Compute bbl velocities and diffusive coefficients in ', cdtype
            IF(lwp)  WRITE(numout,*) '~~~~~~~~~~'
         ENDIF
      ENDIF
      !                                        !* bottom variables (T, S, alpha, beta, depth, velocity)
      DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
         ik = mbkt(ji,jj)                             ! bottom T-level index
         zts (ji,jj,jp_tem) = ts(ji,jj,ik,jp_tem,Kbb) ! bottom before T and S
         zts (ji,jj,jp_sal) = ts(ji,jj,ik,jp_sal,Kbb)
         !
         zdep(ji,jj) = gdept(ji,jj,ik,Kmm)            ! bottom T-level reference depth
         zub (ji,jj) = uu(ji,jj,mbku(ji,jj),Kmm)      ! bottom velocity
         zvb (ji,jj) = vv(ji,jj,mbkv(ji,jj),Kmm)
      END_2D
      !
      CALL eos_rab( zts, zdep, zab, Kmm )
      !
      !                                   !-------------------!
      IF( nn_bbl_ldf == 1 ) THEN          !   diffusive bbl   !
         !                                !-------------------!
         DO_2D_OVR( 1, 0, 1, 0 )                   ! (criteria for non zero flux: grad(rho).grad(h) < 0 )
            !                                                   ! i-direction
            za = zab(ji+1,jj,jp_tem) + zab(ji,jj,jp_tem)              ! 2*(alpha,beta) at u-point
            zb = zab(ji+1,jj,jp_sal) + zab(ji,jj,jp_sal)
            !                                                         ! 2*masked bottom density gradient
            zgdrho = (  za * ( zts(ji+1,jj,jp_tem) - zts(ji,jj,jp_tem) )    &
               &      - zb * ( zts(ji+1,jj,jp_sal) - zts(ji,jj,jp_sal) )  ) * umask(ji,jj,1)
            !
            zsign  = SIGN(  0.5_wp, -zgdrho * REAL( mgrhu(ji,jj) )  )    ! sign of ( i-gradient * i-slope )
            ahu_bbl(ji,jj) = ( 0.5 - zsign ) * ahu_bbl_0(ji,jj)       ! masked diffusive flux coeff.
            !
            !                                                   ! j-direction
            za = zab(ji,jj+1,jp_tem) + zab(ji,jj,jp_tem)              ! 2*(alpha,beta) at v-point
            zb = zab(ji,jj+1,jp_sal) + zab(ji,jj,jp_sal)
            !                                                         ! 2*masked bottom density gradient
            zgdrho = (  za * ( zts(ji,jj+1,jp_tem) - zts(ji,jj,jp_tem) )    &
               &      - zb * ( zts(ji,jj+1,jp_sal) - zts(ji,jj,jp_sal) )  ) * vmask(ji,jj,1)
            !
            zsign = SIGN(  0.5_wp, -zgdrho * REAL( mgrhv(ji,jj) )  )     ! sign of ( j-gradient * j-slope )
            ahv_bbl(ji,jj) = ( 0.5 - zsign ) * ahv_bbl_0(ji,jj)
         END_2D
         !
      ENDIF
      !
      !                                   !-------------------!
      IF( nn_bbl_adv /= 0 ) THEN          !   advective bbl   !
         !                                !-------------------!
         SELECT CASE ( nn_bbl_adv )             !* bbl transport type
         !
         CASE( 1 )                                   != use of upper velocity
            DO_2D_OVR( 1, 0, 1, 0 )                              ! criteria: grad(rho).grad(h)<0  and grad(rho).grad(h)<0
               !                                                  ! i-direction
               za = zab(ji+1,jj,jp_tem) + zab(ji,jj,jp_tem)               ! 2*(alpha,beta) at u-point
               zb = zab(ji+1,jj,jp_sal) + zab(ji,jj,jp_sal)
               !                                                          ! 2*masked bottom density gradient
               zgdrho = (  za * ( zts(ji+1,jj,jp_tem) - zts(ji,jj,jp_tem) )    &
                         - zb * ( zts(ji+1,jj,jp_sal) - zts(ji,jj,jp_sal) )  ) * umask(ji,jj,1)
               !
               zsign = SIGN(  0.5_wp, - zgdrho   * REAL( mgrhu(ji,jj) )  )   ! sign of i-gradient * i-slope
               zsigna= SIGN(  0.5_wp, zub(ji,jj) * REAL( mgrhu(ji,jj) )  )   ! sign of u * i-slope
               !
               !                                                          ! bbl velocity
               utr_bbl(ji,jj) = ( 0.5 + zsigna ) * ( 0.5 - zsign ) * e2u(ji,jj) * e3u_bbl_0(ji,jj) * zub(ji,jj)
               !
               !                                                  ! j-direction
               za = zab(ji,jj+1,jp_tem) + zab(ji,jj,jp_tem)               ! 2*(alpha,beta) at v-point
               zb = zab(ji,jj+1,jp_sal) + zab(ji,jj,jp_sal)
               !                                                          ! 2*masked bottom density gradient
               zgdrho = (  za * ( zts(ji,jj+1,jp_tem) - zts(ji,jj,jp_tem) )    &
                  &      - zb * ( zts(ji,jj+1,jp_sal) - zts(ji,jj,jp_sal) )  ) * vmask(ji,jj,1)
               zsign = SIGN(  0.5_wp, - zgdrho   * REAL( mgrhv(ji,jj) )  )   ! sign of j-gradient * j-slope
               zsigna= SIGN(  0.5_wp, zvb(ji,jj) * REAL( mgrhv(ji,jj) )  )   ! sign of u * i-slope
               !
               !                                                          ! bbl transport
               vtr_bbl(ji,jj) = ( 0.5 + zsigna ) * ( 0.5 - zsign ) * e1v(ji,jj) * e3v_bbl_0(ji,jj) * zvb(ji,jj)
            END_2D
            !
         CASE( 2 )                                 != bbl velocity = F( delta rho )
            zgbbl = grav * rn_gambbl
            DO_2D_OVR( 1, 0, 1, 0 )                         ! criteria: rho_up > rho_down
               !                                                  ! i-direction
               ! down-slope T-point i/k-index (deep)  &   up-slope T-point i/k-index (shelf)
               iid  = ji + MAX( 0, mgrhu(ji,jj) )
               iis  = ji + 1 - MAX( 0, mgrhu(ji,jj) )
               !
               ikud = mbku_d(ji,jj)
               ikus = mbku(ji,jj)
               !
               za = zab(ji+1,jj,jp_tem) + zab(ji,jj,jp_tem)               ! 2*(alpha,beta) at u-point
               zb = zab(ji+1,jj,jp_sal) + zab(ji,jj,jp_sal)
               !                                                          !   masked bottom density gradient
               zgdrho = 0.5 * (  za * ( zts(iid,jj,jp_tem) - zts(iis,jj,jp_tem) )    &
                  &            - zb * ( zts(iid,jj,jp_sal) - zts(iis,jj,jp_sal) )  ) * umask(ji,jj,1)
               zgdrho = MAX( 0.e0, zgdrho )                               ! only if shelf is denser than deep
               !
               !                                                          ! bbl transport (down-slope direction)
               utr_bbl(ji,jj) = e2u(ji,jj) * e3u_bbl_0(ji,jj) * zgbbl * zgdrho * REAL( mgrhu(ji,jj) )
               !
               !                                                  ! j-direction
               !  down-slope T-point j/k-index (deep)  &   of the up  -slope T-point j/k-index (shelf)
               ijd  = jj + MAX( 0, mgrhv(ji,jj) )
               ijs  = jj + 1 - MAX( 0, mgrhv(ji,jj) )
               !
               ikvd = mbkv_d(ji,jj)
               ikvs = mbkv(ji,jj)
               !
               za = zab(ji,jj+1,jp_tem) + zab(ji,jj,jp_tem)               ! 2*(alpha,beta) at v-point
               zb = zab(ji,jj+1,jp_sal) + zab(ji,jj,jp_sal)
               !                                                          !   masked bottom density gradient
               zgdrho = 0.5 * (  za * ( zts(ji,ijd,jp_tem) - zts(ji,ijs,jp_tem) )    &
                  &            - zb * ( zts(ji,ijd,jp_sal) - zts(ji,ijs,jp_sal) )  ) * vmask(ji,jj,1)
               zgdrho = MAX( 0.e0, zgdrho )                               ! only if shelf is denser than deep
               !
               !                                                          ! bbl transport (down-slope direction)
               vtr_bbl(ji,jj) = e1v(ji,jj) * e3v_bbl_0(ji,jj) * zgbbl * zgdrho * REAL( mgrhv(ji,jj) )
            END_2D
         END SELECT
         !
      ENDIF
      !
   END SUBROUTINE bbl


   SUBROUTINE tra_bbl_init
      !!----------------------------------------------------------------------
      !!                  ***  ROUTINE tra_bbl_init  ***
      !!
      !! ** Purpose :   Initialization for the bottom boundary layer scheme.
      !!
      !! ** Method  :   Read the nambbl namelist and check the parameters
      !!              called by nemo_init at the first timestep (kit000)
      !!----------------------------------------------------------------------
      INTEGER ::   ji, jj                      ! dummy loop indices
      INTEGER ::   ii0, ii1, ij0, ij1, ios     ! local integer
      REAL(wp), DIMENSION(jpi,jpj) ::   zmbku, zmbkv   ! workspace
      !!
      NAMELIST/nambbl/ ln_trabbl, nn_bbl_ldf, nn_bbl_adv, rn_ahtbbl, rn_gambbl
      !!----------------------------------------------------------------------
      !
      READ  ( numnam_ref, nambbl, IOSTAT = ios, ERR = 901)
901   IF( ios /= 0 )   CALL ctl_nam ( ios , 'nambbl in reference namelist' )
      !
      READ  ( numnam_cfg, nambbl, IOSTAT = ios, ERR = 902 )
902   IF( ios >  0 )   CALL ctl_nam ( ios , 'nambbl in configuration namelist' )
      IF(lwm) WRITE ( numond, nambbl )
      !
      l_bbl = .TRUE.                 !* flag to compute bbl coef and transport
      !
      IF(lwp) THEN                   !* Parameter control and print
         WRITE(numout,*)
         WRITE(numout,*) 'tra_bbl_init : bottom boundary layer initialisation'
         WRITE(numout,*) '~~~~~~~~~~~~'
         WRITE(numout,*) '       Namelist nambbl : set bbl parameters'
         WRITE(numout,*) '          bottom boundary layer flag          ln_trabbl  = ', ln_trabbl
      ENDIF
      IF( .NOT.ln_trabbl )   RETURN
      !
      IF(lwp) THEN
         WRITE(numout,*) '          diffusive bbl (=1)   or not (=0)    nn_bbl_ldf = ', nn_bbl_ldf
         WRITE(numout,*) '          advective bbl (=1/2) or not (=0)    nn_bbl_adv = ', nn_bbl_adv
         WRITE(numout,*) '          diffusive bbl coefficient           rn_ahtbbl  = ', rn_ahtbbl, ' m2/s'
         WRITE(numout,*) '          advective bbl coefficient           rn_gambbl  = ', rn_gambbl, ' s'
      ENDIF
      !
      !                              ! allocate trabbl arrays
      IF( tra_bbl_alloc() /= 0 )   CALL ctl_stop( 'STOP', 'tra_bbl_init : unable to allocate arrays' )
      !
      IF(lwp) THEN
         IF( nn_bbl_adv == 1 )    WRITE(numout,*) '       * Advective BBL using upper velocity'
         IF( nn_bbl_adv == 2 )    WRITE(numout,*) '       * Advective BBL using velocity = F( delta rho)'
      ENDIF
      !
      !                             !* vertical index of  "deep" bottom u- and v-points
      DO_2D( 1, 0, 1, 0 )                 ! (the "shelf" bottom k-indices are mbku and mbkv)
         mbku_d(ji,jj) = MAX(  mbkt(ji+1,jj  ) , mbkt(ji,jj)  )   ! >= 1 as mbkt=1 over land
         mbkv_d(ji,jj) = MAX(  mbkt(ji  ,jj+1) , mbkt(ji,jj)  )
      END_2D
      ! converte into REAL to use lbc_lnk ; impose a min value of 1 as a zero can be set in lbclnk
      zmbku(:,:) = REAL( mbku_d(:,:), wp )   ;     zmbkv(:,:) = REAL( mbkv_d(:,:), wp )
      CALL lbc_lnk( 'trabbl', zmbku,'U',1.0_wp, zmbkv,'V',1.0_wp)
      mbku_d(:,:) = MAX( INT( zmbku(:,:) ), 1 ) ;  mbkv_d(:,:) = MAX( NINT( zmbkv(:,:) ), 1 )
      !
      !                             !* sign of grad(H) at u- and v-points; zero if grad(H) = 0
      mgrhu(:,:) = 0   ;   mgrhv(:,:) = 0
      DO_2D( 1, 0, 1, 0 )
         IF( gdept_0(ji+1,jj,mbkt(ji+1,jj)) - gdept_0(ji,jj,mbkt(ji,jj)) /= 0._wp ) THEN
            mgrhu(ji,jj) = INT(  SIGN( 1.0_wp, gdept_0(ji+1,jj,mbkt(ji+1,jj)) - gdept_0(ji,jj,mbkt(ji,jj)) )  )
         ENDIF
         !
         IF( gdept_0(ji,jj+1,mbkt(ji,jj+1)) - gdept_0(ji,jj,mbkt(ji,jj)) /= 0._wp ) THEN
            mgrhv(ji,jj) = INT(  SIGN( 1.0_wp, gdept_0(ji,jj+1,mbkt(ji,jj+1)) - gdept_0(ji,jj,mbkt(ji,jj)) )  )
         ENDIF
      END_2D
      !
      DO_2D( 1, 0, 1, 0 )           !* bbl thickness at u- (v-) point; minimum of top & bottom e3u_0 (e3v_0)
         e3u_bbl_0(ji,jj) = MIN( e3u_0(ji,jj,mbkt(ji+1,jj  )), e3u_0(ji,jj,mbkt(ji,jj)) )
         e3v_bbl_0(ji,jj) = MIN( e3v_0(ji,jj,mbkt(ji  ,jj+1)), e3v_0(ji,jj,mbkt(ji,jj)) )
      END_2D
      CALL lbc_lnk( 'trabbl', e3u_bbl_0, 'U', 1.0_wp , e3v_bbl_0, 'V', 1.0_wp )      ! lateral boundary conditions
      !
      !                             !* masked diffusive flux coefficients
      ahu_bbl_0(:,:) = rn_ahtbbl * e2_e1u(:,:) * e3u_bbl_0(:,:) * umask(:,:,1)
      ahv_bbl_0(:,:) = rn_ahtbbl * e1_e2v(:,:) * e3v_bbl_0(:,:) * vmask(:,:,1)
      !
   END SUBROUTINE tra_bbl_init

   !!======================================================================
END MODULE trabbl