Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
MODULE trabbl
!!==============================================================================
!! *** MODULE trabbl ***
!! Ocean physics : advective and/or diffusive bottom boundary layer scheme
!!==============================================================================
!! History : OPA ! 1996-06 (L. Mortier) Original code
!! 8.0 ! 1997-11 (G. Madec) Optimization
!! NEMO 1.0 ! 2002-08 (G. Madec) free form + modules
!! - ! 2004-01 (A. de Miranda, G. Madec, J.M. Molines ) add advective bbl
!! 3.3 ! 2009-11 (G. Madec) merge trabbl and trabbl_adv + style + optimization
!! - ! 2010-04 (G. Madec) Campin & Goosse advective bbl
!! - ! 2010-06 (C. Ethe, G. Madec) merge TRA-TRC
!! - ! 2010-11 (G. Madec) add mbk. arrays associated to the deepest ocean level
!! - ! 2013-04 (F. Roquet, G. Madec) use of eosbn2 instead of local hard coded alpha and beta
!! 4.0 ! 2017-04 (G. Madec) ln_trabbl namelist variable instead of a CPP key
!!----------------------------------------------------------------------
!!----------------------------------------------------------------------
!! tra_bbl_alloc : allocate trabbl arrays
!! tra_bbl : update the tracer trends due to the bottom boundary layer (advective and/or diffusive)
!! tra_bbl_dif : generic routine to compute bbl diffusive trend
!! tra_bbl_adv : generic routine to compute bbl advective trend
!! bbl : computation of bbl diffu. flux coef. & transport in bottom boundary layer
!! tra_bbl_init : initialization, namelist read, parameters control
!!----------------------------------------------------------------------
USE oce ! ocean dynamics and active tracers
USE dom_oce ! ocean space and time domain
USE phycst ! physical constant
USE eosbn2 ! equation of state
USE trd_oce ! trends: ocean variables
USE trdtra ! trends: active tracers
!
USE iom ! IOM library
USE in_out_manager ! I/O manager
USE lbclnk ! ocean lateral boundary conditions
USE prtctl ! Print control
USE timing ! Timing
USE lib_fortran ! Fortran utilities (allows no signed zero when 'key_nosignedzero' defined)
IMPLICIT NONE
PRIVATE
PUBLIC tra_bbl ! routine called by step.F90
PUBLIC tra_bbl_init ! routine called by nemogcm.F90
PUBLIC tra_bbl_dif ! routine called by trcbbl.F90
PUBLIC tra_bbl_adv ! - - -
PUBLIC bbl ! routine called by trcbbl.F90 and dtadyn.F90
! !!* Namelist nambbl *
LOGICAL , PUBLIC :: ln_trabbl !: bottom boundary layer flag
INTEGER , PUBLIC :: nn_bbl_ldf !: =1 : diffusive bbl or not (=0)
INTEGER , PUBLIC :: nn_bbl_adv !: =1/2 : advective bbl or not (=0)
! ! =1 : advective bbl using the bottom ocean velocity
! ! =2 : - - using utr_bbl proportional to grad(rho)
REAL(wp), PUBLIC :: rn_ahtbbl !: along slope bbl diffusive coefficient [m2/s]
REAL(wp), PUBLIC :: rn_gambbl !: lateral coeff. for bottom boundary layer scheme [s]
LOGICAL , PUBLIC :: l_bbl !: flag to compute bbl diffu. flux coef and transport
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:), PUBLIC :: utr_bbl , vtr_bbl ! u- (v-) transport in the bottom boundary layer
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:), PUBLIC :: ahu_bbl , ahv_bbl ! masked diffusive bbl coeff. at u & v-pts
INTEGER , ALLOCATABLE, SAVE, DIMENSION(:,:), PUBLIC :: mbku_d , mbkv_d ! vertical index of the "lower" bottom ocean U/V-level (PUBLIC for TAM)
INTEGER , ALLOCATABLE, SAVE, DIMENSION(:,:), PUBLIC :: mgrhu , mgrhv ! = +/-1, sign of grad(H) in u-(v-)direction (PUBLIC for TAM)
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: ahu_bbl_0, ahv_bbl_0 ! diffusive bbl flux coefficients at u and v-points
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:), PUBLIC :: e3u_bbl_0, e3v_bbl_0 ! thichness of the bbl (e3) at u and v-points (PUBLIC for TAM)
!! * Substitutions
# include "do_loop_substitute.h90"
# include "domzgr_substitute.h90"
!!----------------------------------------------------------------------
!! NEMO/OCE 4.0 , NEMO Consortium (2018)
!! $Id: trabbl.F90 15053 2021-06-24 15:39:38Z clem $
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
INTEGER FUNCTION tra_bbl_alloc()
!!----------------------------------------------------------------------
!! *** FUNCTION tra_bbl_alloc ***
!!----------------------------------------------------------------------
ALLOCATE( utr_bbl (jpi,jpj) , ahu_bbl (jpi,jpj) , mbku_d(jpi,jpj) , mgrhu(jpi,jpj) , &
& vtr_bbl (jpi,jpj) , ahv_bbl (jpi,jpj) , mbkv_d(jpi,jpj) , mgrhv(jpi,jpj) , &
& ahu_bbl_0(jpi,jpj) , ahv_bbl_0(jpi,jpj) , &
& e3u_bbl_0(jpi,jpj) , e3v_bbl_0(jpi,jpj) , STAT=tra_bbl_alloc )
!
CALL mpp_sum ( 'trabbl', tra_bbl_alloc )
IF( tra_bbl_alloc > 0 ) CALL ctl_warn('tra_bbl_alloc: allocation of arrays failed.')
END FUNCTION tra_bbl_alloc
SUBROUTINE tra_bbl( kt, Kbb, Kmm, pts, Krhs )
!!----------------------------------------------------------------------
!! *** ROUTINE bbl ***
!!
!! ** Purpose : Compute the before tracer (t & s) trend associated
!! with the bottom boundary layer and add it to the general
!! trend of tracer equations.
!!
!! ** Method : Depending on namtra_bbl namelist parameters the bbl
!! diffusive and/or advective contribution to the tracer trend
!! is added to the general tracer trend
!!----------------------------------------------------------------------
INTEGER, INTENT(in ) :: kt ! ocean time-step
INTEGER, INTENT(in ) :: Kbb, Kmm, Krhs ! time level indices
REAL(wp), DIMENSION(jpi,jpj,jpk,jpts,jpt), INTENT(inout) :: pts ! active tracers and RHS of tracer equation
!
INTEGER :: ji, jj, jk ! Dummy loop indices
REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: ztrdt, ztrds
!!----------------------------------------------------------------------
!
IF( ln_timing ) CALL timing_start( 'tra_bbl')
!
IF( l_trdtra ) THEN !* Save the T-S input trends
ALLOCATE( ztrdt(jpi,jpj,jpk), ztrds(jpi,jpj,jpk) )
ztrdt(:,:,:) = pts(:,:,:,jp_tem,Krhs)
ztrds(:,:,:) = pts(:,:,:,jp_sal,Krhs)
ENDIF
IF( l_bbl ) CALL bbl( kt, nit000, 'TRA', Kbb, Kmm ) !* bbl coef. and transport (only if not already done in trcbbl)
IF( nn_bbl_ldf == 1 ) THEN !* Diffusive bbl
!
CALL tra_bbl_dif( pts(:,:,:,:,Kbb), pts(:,:,:,:,Krhs), jpts, Kmm )
IF( sn_cfctl%l_prtctl ) &
CALL prt_ctl( tab3d_1=pts(:,:,:,jp_tem,Krhs), clinfo1=' bbl_ldf - Ta: ', mask1=tmask, &
& tab3d_2=pts(:,:,:,jp_sal,Krhs), clinfo2= ' Sa: ', mask2=tmask, clinfo3='tra' )
CALL iom_put( "ahu_bbl", ahu_bbl ) ! bbl diffusive flux i-coef
CALL iom_put( "ahv_bbl", ahv_bbl ) ! bbl diffusive flux j-coef
!
ENDIF
!
IF( nn_bbl_adv /= 0 ) THEN !* Advective bbl
!
CALL tra_bbl_adv( pts(:,:,:,:,Kbb), pts(:,:,:,:,Krhs), jpts, Kmm )
IF(sn_cfctl%l_prtctl) &
CALL prt_ctl( tab3d_1=pts(:,:,:,jp_tem,Krhs), clinfo1=' bbl_adv - Ta: ', mask1=tmask, &
& tab3d_2=pts(:,:,:,jp_sal,Krhs), clinfo2= ' Sa: ', mask2=tmask, clinfo3='tra' )
CALL iom_put( "uoce_bbl", utr_bbl ) ! bbl i-transport
CALL iom_put( "voce_bbl", vtr_bbl ) ! bbl j-transport
!
ENDIF
IF( l_trdtra ) THEN ! send the trends for further diagnostics
ztrdt(:,:,:) = pts(:,:,:,jp_tem,Krhs) - ztrdt(:,:,:)
ztrds(:,:,:) = pts(:,:,:,jp_sal,Krhs) - ztrds(:,:,:)
CALL trd_tra( kt, Kmm, Krhs, 'TRA', jp_tem, jptra_bbl, ztrdt )
CALL trd_tra( kt, Kmm, Krhs, 'TRA', jp_sal, jptra_bbl, ztrds )
DEALLOCATE( ztrdt, ztrds )
ENDIF
!
IF( ln_timing ) CALL timing_stop( 'tra_bbl')
!
END SUBROUTINE tra_bbl
SUBROUTINE tra_bbl_dif( pt, pt_rhs, kjpt, Kmm )
!!----------------------------------------------------------------------
!! *** ROUTINE tra_bbl_dif ***
!!
!! ** Purpose : Computes the bottom boundary horizontal and vertical
!! advection terms.
!!
!! ** Method : * diffusive bbl only (nn_bbl_ldf=1) :
!! When the product grad( rho) * grad(h) < 0 (where grad is an
!! along bottom slope gradient) an additional lateral 2nd order
!! diffusion along the bottom slope is added to the general
!! tracer trend, otherwise the additional trend is set to 0.
!! A typical value of ahbt is 2000 m2/s (equivalent to
!! a downslope velocity of 20 cm/s if the condition for slope
!! convection is satified)
!!
!! ** Action : pt_rhs increased by the bbl diffusive trend
!!
!! References : Beckmann, A., and R. Doscher, 1997, J. Phys.Oceanogr., 581-591.
!! Campin, J.-M., and H. Goosse, 1999, Tellus, 412-430.
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: kjpt ! number of tracers
REAL(wp), DIMENSION(jpi,jpj,jpk,kjpt), INTENT(in ) :: pt ! before and now tracer fields
REAL(wp), DIMENSION(jpi,jpj,jpk,kjpt), INTENT(inout) :: pt_rhs ! tracer trend
INTEGER , INTENT(in ) :: Kmm ! time level indices
!
INTEGER :: ji, jj, jn ! dummy loop indices
INTEGER :: ik ! local integers
REAL(wp) :: zbtr ! local scalars
REAL(wp), DIMENSION(A2D(nn_hls)) :: zptb ! workspace
!!----------------------------------------------------------------------
!
DO jn = 1, kjpt ! tracer loop
! ! ===========
DO_2D( 1, 1, 1, 1 )
ik = mbkt(ji,jj) ! bottom T-level index
zptb(ji,jj) = pt(ji,jj,ik,jn) ! bottom before T and S
END_2D
!
DO_2D( 0, 0, 0, 0 ) ! Compute the trend
ik = mbkt(ji,jj) ! bottom T-level index
pt_rhs(ji,jj,ik,jn) = pt_rhs(ji,jj,ik,jn) &
& + ( ahu_bbl(ji ,jj ) * ( zptb(ji+1,jj ) - zptb(ji ,jj ) ) &
& - ahu_bbl(ji-1,jj ) * ( zptb(ji ,jj ) - zptb(ji-1,jj ) ) &
& + ahv_bbl(ji ,jj ) * ( zptb(ji ,jj+1) - zptb(ji ,jj ) ) &
& - ahv_bbl(ji ,jj-1) * ( zptb(ji ,jj ) - zptb(ji ,jj-1) ) ) &
& * r1_e1e2t(ji,jj) / e3t(ji,jj,ik,Kmm)
END_2D
! ! ===========
END DO ! end tracer
! ! ===========
END SUBROUTINE tra_bbl_dif
! NOTE: [tiling] tiling changes the results, but only the order of floating point operations is different
SUBROUTINE tra_bbl_adv( pt, pt_rhs, kjpt, Kmm )
!!----------------------------------------------------------------------
!! *** ROUTINE trc_bbl ***
!!
!! ** Purpose : Compute the before passive tracer trend associated
!! with the bottom boundary layer and add it to the general trend
!! of tracer equations.
!! ** Method : advective bbl (nn_bbl_adv = 1 or 2) :
!! nn_bbl_adv = 1 use of the ocean near bottom velocity as bbl velocity
!! nn_bbl_adv = 2 follow Campin and Goosse (1999) implentation i.e.
!! transport proportional to the along-slope density gradient
!!
!! References : Beckmann, A., and R. Doscher, 1997, J. Phys.Oceanogr., 581-591.
!! Campin, J.-M., and H. Goosse, 1999, Tellus, 412-430.
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: kjpt ! number of tracers
REAL(wp), DIMENSION(jpi,jpj,jpk,kjpt), INTENT(in ) :: pt ! before and now tracer fields
REAL(wp), DIMENSION(jpi,jpj,jpk,kjpt), INTENT(inout) :: pt_rhs ! tracer trend
INTEGER , INTENT(in ) :: Kmm ! time level indices
!
INTEGER :: ji, jj, jk, jn ! dummy loop indices
INTEGER :: iis , iid , ijs , ijd ! local integers
INTEGER :: ikus, ikud, ikvs, ikvd ! - -
REAL(wp) :: zbtr, ztra ! local scalars
REAL(wp) :: zu_bbl, zv_bbl ! - -
!!----------------------------------------------------------------------
! ! ===========
DO jn = 1, kjpt ! tracer loop
! ! ===========
DO_2D_OVR( 1, 0, 1, 0 ) ! CAUTION start from i=1 to update i=2 when cyclic east-west
IF( utr_bbl(ji,jj) /= 0.e0 ) THEN ! non-zero i-direction bbl advection
! down-slope i/k-indices (deep) & up-slope i/k indices (shelf)
iid = ji + MAX( 0, mgrhu(ji,jj) ) ; iis = ji + 1 - MAX( 0, mgrhu(ji,jj) )
ikud = mbku_d(ji,jj) ; ikus = mbku(ji,jj)
zu_bbl = ABS( utr_bbl(ji,jj) )
!
! ! up -slope T-point (shelf bottom point)
zbtr = r1_e1e2t(iis,jj) / e3t(iis,jj,ikus,Kmm)
ztra = zu_bbl * ( pt(iid,jj,ikus,jn) - pt(iis,jj,ikus,jn) ) * zbtr
pt_rhs(iis,jj,ikus,jn) = pt_rhs(iis,jj,ikus,jn) + ztra
!
DO jk = ikus, ikud-1 ! down-slope upper to down T-point (deep column)
zbtr = r1_e1e2t(iid,jj) / e3t(iid,jj,jk,Kmm)
ztra = zu_bbl * ( pt(iid,jj,jk+1,jn) - pt(iid,jj,jk,jn) ) * zbtr
pt_rhs(iid,jj,jk,jn) = pt_rhs(iid,jj,jk,jn) + ztra
END DO
!
zbtr = r1_e1e2t(iid,jj) / e3t(iid,jj,ikud,Kmm)
ztra = zu_bbl * ( pt(iis,jj,ikus,jn) - pt(iid,jj,ikud,jn) ) * zbtr
pt_rhs(iid,jj,ikud,jn) = pt_rhs(iid,jj,ikud,jn) + ztra
ENDIF
!
IF( vtr_bbl(ji,jj) /= 0.e0 ) THEN ! non-zero j-direction bbl advection
! down-slope j/k-indices (deep) & up-slope j/k indices (shelf)
ijd = jj + MAX( 0, mgrhv(ji,jj) ) ; ijs = jj + 1 - MAX( 0, mgrhv(ji,jj) )
ikvd = mbkv_d(ji,jj) ; ikvs = mbkv(ji,jj)
zv_bbl = ABS( vtr_bbl(ji,jj) )
!
! up -slope T-point (shelf bottom point)
zbtr = r1_e1e2t(ji,ijs) / e3t(ji,ijs,ikvs,Kmm)
ztra = zv_bbl * ( pt(ji,ijd,ikvs,jn) - pt(ji,ijs,ikvs,jn) ) * zbtr
pt_rhs(ji,ijs,ikvs,jn) = pt_rhs(ji,ijs,ikvs,jn) + ztra
!
DO jk = ikvs, ikvd-1 ! down-slope upper to down T-point (deep column)
zbtr = r1_e1e2t(ji,ijd) / e3t(ji,ijd,jk,Kmm)
ztra = zv_bbl * ( pt(ji,ijd,jk+1,jn) - pt(ji,ijd,jk,jn) ) * zbtr
pt_rhs(ji,ijd,jk,jn) = pt_rhs(ji,ijd,jk,jn) + ztra
END DO
! ! down-slope T-point (deep bottom point)
zbtr = r1_e1e2t(ji,ijd) / e3t(ji,ijd,ikvd,Kmm)
ztra = zv_bbl * ( pt(ji,ijs,ikvs,jn) - pt(ji,ijd,ikvd,jn) ) * zbtr
pt_rhs(ji,ijd,ikvd,jn) = pt_rhs(ji,ijd,ikvd,jn) + ztra
ENDIF
END_2D
! ! ===========
END DO ! end tracer
! ! ===========
END SUBROUTINE tra_bbl_adv
SUBROUTINE bbl( kt, kit000, cdtype, Kbb, Kmm )
!!----------------------------------------------------------------------
!! *** ROUTINE bbl ***
!!
!! ** Purpose : Computes the bottom boundary horizontal and vertical
!! advection terms.
!!
!! ** Method : * diffusive bbl (nn_bbl_ldf=1) :
!! When the product grad( rho) * grad(h) < 0 (where grad is an
!! along bottom slope gradient) an additional lateral 2nd order
!! diffusion along the bottom slope is added to the general
!! tracer trend, otherwise the additional trend is set to 0.
!! A typical value of ahbt is 2000 m2/s (equivalent to
!! a downslope velocity of 20 cm/s if the condition for slope
!! convection is satified)
!! * advective bbl (nn_bbl_adv=1 or 2) :
!! nn_bbl_adv = 1 use of the ocean velocity as bbl velocity
!! nn_bbl_adv = 2 follow Campin and Goosse (1999) implentation
!! i.e. transport proportional to the along-slope density gradient
!!
!! NB: the along slope density gradient is evaluated using the
!! local density (i.e. referenced at a common local depth).
!!
!! References : Beckmann, A., and R. Doscher, 1997, J. Phys.Oceanogr., 581-591.
!! Campin, J.-M., and H. Goosse, 1999, Tellus, 412-430.
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: kt ! ocean time-step index
INTEGER , INTENT(in ) :: kit000 ! first time step index
CHARACTER(len=3), INTENT(in ) :: cdtype ! =TRA or TRC (tracer indicator)
INTEGER , INTENT(in ) :: Kbb, Kmm ! ocean time level index
!
INTEGER :: ji, jj ! dummy loop indices
INTEGER :: ik ! local integers
INTEGER :: iis, iid, ikus, ikud ! - -
INTEGER :: ijs, ijd, ikvs, ikvd ! - -
REAL(wp) :: za, zb, zgdrho ! local scalars
REAL(wp) :: zsign, zsigna, zgbbl ! - -
REAL(wp), DIMENSION(A2D(nn_hls),jpts) :: zts, zab ! 3D workspace
REAL(wp), DIMENSION(A2D(nn_hls)) :: zub, zvb, zdep ! 2D workspace
!!----------------------------------------------------------------------
!
IF( .NOT. l_istiled .OR. ntile == 1 ) THEN ! Do only on the first tile
IF( kt == kit000 ) THEN
IF(lwp) WRITE(numout,*)
IF(lwp) WRITE(numout,*) 'trabbl:bbl : Compute bbl velocities and diffusive coefficients in ', cdtype
IF(lwp) WRITE(numout,*) '~~~~~~~~~~'
ENDIF
ENDIF
! !* bottom variables (T, S, alpha, beta, depth, velocity)
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
ik = mbkt(ji,jj) ! bottom T-level index
zts (ji,jj,jp_tem) = ts(ji,jj,ik,jp_tem,Kbb) ! bottom before T and S
zts (ji,jj,jp_sal) = ts(ji,jj,ik,jp_sal,Kbb)
!
zdep(ji,jj) = gdept(ji,jj,ik,Kmm) ! bottom T-level reference depth
zub (ji,jj) = uu(ji,jj,mbku(ji,jj),Kmm) ! bottom velocity
zvb (ji,jj) = vv(ji,jj,mbkv(ji,jj),Kmm)
END_2D
!
CALL eos_rab( zts, zdep, zab, Kmm )
!
! !-------------------!
IF( nn_bbl_ldf == 1 ) THEN ! diffusive bbl !
! !-------------------!
DO_2D_OVR( 1, 0, 1, 0 ) ! (criteria for non zero flux: grad(rho).grad(h) < 0 )
! ! i-direction
za = zab(ji+1,jj,jp_tem) + zab(ji,jj,jp_tem) ! 2*(alpha,beta) at u-point
zb = zab(ji+1,jj,jp_sal) + zab(ji,jj,jp_sal)
! ! 2*masked bottom density gradient
zgdrho = ( za * ( zts(ji+1,jj,jp_tem) - zts(ji,jj,jp_tem) ) &
& - zb * ( zts(ji+1,jj,jp_sal) - zts(ji,jj,jp_sal) ) ) * umask(ji,jj,1)
!
zsign = SIGN( 0.5_wp, -zgdrho * REAL( mgrhu(ji,jj) ) ) ! sign of ( i-gradient * i-slope )
ahu_bbl(ji,jj) = ( 0.5 - zsign ) * ahu_bbl_0(ji,jj) ! masked diffusive flux coeff.
!
! ! j-direction
za = zab(ji,jj+1,jp_tem) + zab(ji,jj,jp_tem) ! 2*(alpha,beta) at v-point
zb = zab(ji,jj+1,jp_sal) + zab(ji,jj,jp_sal)
! ! 2*masked bottom density gradient
zgdrho = ( za * ( zts(ji,jj+1,jp_tem) - zts(ji,jj,jp_tem) ) &
& - zb * ( zts(ji,jj+1,jp_sal) - zts(ji,jj,jp_sal) ) ) * vmask(ji,jj,1)
!
zsign = SIGN( 0.5_wp, -zgdrho * REAL( mgrhv(ji,jj) ) ) ! sign of ( j-gradient * j-slope )
ahv_bbl(ji,jj) = ( 0.5 - zsign ) * ahv_bbl_0(ji,jj)
END_2D
!
ENDIF
!
! !-------------------!
IF( nn_bbl_adv /= 0 ) THEN ! advective bbl !
! !-------------------!
SELECT CASE ( nn_bbl_adv ) !* bbl transport type
!
CASE( 1 ) != use of upper velocity
DO_2D_OVR( 1, 0, 1, 0 ) ! criteria: grad(rho).grad(h)<0 and grad(rho).grad(h)<0
! ! i-direction
za = zab(ji+1,jj,jp_tem) + zab(ji,jj,jp_tem) ! 2*(alpha,beta) at u-point
zb = zab(ji+1,jj,jp_sal) + zab(ji,jj,jp_sal)
! ! 2*masked bottom density gradient
zgdrho = ( za * ( zts(ji+1,jj,jp_tem) - zts(ji,jj,jp_tem) ) &
- zb * ( zts(ji+1,jj,jp_sal) - zts(ji,jj,jp_sal) ) ) * umask(ji,jj,1)
!
zsign = SIGN( 0.5_wp, - zgdrho * REAL( mgrhu(ji,jj) ) ) ! sign of i-gradient * i-slope
zsigna= SIGN( 0.5_wp, zub(ji,jj) * REAL( mgrhu(ji,jj) ) ) ! sign of u * i-slope
!
! ! bbl velocity
utr_bbl(ji,jj) = ( 0.5 + zsigna ) * ( 0.5 - zsign ) * e2u(ji,jj) * e3u_bbl_0(ji,jj) * zub(ji,jj)
!
! ! j-direction
za = zab(ji,jj+1,jp_tem) + zab(ji,jj,jp_tem) ! 2*(alpha,beta) at v-point
zb = zab(ji,jj+1,jp_sal) + zab(ji,jj,jp_sal)
! ! 2*masked bottom density gradient
zgdrho = ( za * ( zts(ji,jj+1,jp_tem) - zts(ji,jj,jp_tem) ) &
& - zb * ( zts(ji,jj+1,jp_sal) - zts(ji,jj,jp_sal) ) ) * vmask(ji,jj,1)
zsign = SIGN( 0.5_wp, - zgdrho * REAL( mgrhv(ji,jj) ) ) ! sign of j-gradient * j-slope
zsigna= SIGN( 0.5_wp, zvb(ji,jj) * REAL( mgrhv(ji,jj) ) ) ! sign of u * i-slope
!
! ! bbl transport
vtr_bbl(ji,jj) = ( 0.5 + zsigna ) * ( 0.5 - zsign ) * e1v(ji,jj) * e3v_bbl_0(ji,jj) * zvb(ji,jj)
END_2D
!
CASE( 2 ) != bbl velocity = F( delta rho )
zgbbl = grav * rn_gambbl
DO_2D_OVR( 1, 0, 1, 0 ) ! criteria: rho_up > rho_down
! ! i-direction
! down-slope T-point i/k-index (deep) & up-slope T-point i/k-index (shelf)
iid = ji + MAX( 0, mgrhu(ji,jj) )
iis = ji + 1 - MAX( 0, mgrhu(ji,jj) )
!
ikud = mbku_d(ji,jj)
ikus = mbku(ji,jj)
!
za = zab(ji+1,jj,jp_tem) + zab(ji,jj,jp_tem) ! 2*(alpha,beta) at u-point
zb = zab(ji+1,jj,jp_sal) + zab(ji,jj,jp_sal)
! ! masked bottom density gradient
zgdrho = 0.5 * ( za * ( zts(iid,jj,jp_tem) - zts(iis,jj,jp_tem) ) &
& - zb * ( zts(iid,jj,jp_sal) - zts(iis,jj,jp_sal) ) ) * umask(ji,jj,1)
zgdrho = MAX( 0.e0, zgdrho ) ! only if shelf is denser than deep
!
! ! bbl transport (down-slope direction)
utr_bbl(ji,jj) = e2u(ji,jj) * e3u_bbl_0(ji,jj) * zgbbl * zgdrho * REAL( mgrhu(ji,jj) )
!
! ! j-direction
! down-slope T-point j/k-index (deep) & of the up -slope T-point j/k-index (shelf)
ijd = jj + MAX( 0, mgrhv(ji,jj) )
ijs = jj + 1 - MAX( 0, mgrhv(ji,jj) )
!
ikvd = mbkv_d(ji,jj)
ikvs = mbkv(ji,jj)
!
za = zab(ji,jj+1,jp_tem) + zab(ji,jj,jp_tem) ! 2*(alpha,beta) at v-point
zb = zab(ji,jj+1,jp_sal) + zab(ji,jj,jp_sal)
! ! masked bottom density gradient
zgdrho = 0.5 * ( za * ( zts(ji,ijd,jp_tem) - zts(ji,ijs,jp_tem) ) &
& - zb * ( zts(ji,ijd,jp_sal) - zts(ji,ijs,jp_sal) ) ) * vmask(ji,jj,1)
zgdrho = MAX( 0.e0, zgdrho ) ! only if shelf is denser than deep
!
! ! bbl transport (down-slope direction)
vtr_bbl(ji,jj) = e1v(ji,jj) * e3v_bbl_0(ji,jj) * zgbbl * zgdrho * REAL( mgrhv(ji,jj) )
END_2D
END SELECT
!
ENDIF
!
END SUBROUTINE bbl
SUBROUTINE tra_bbl_init
!!----------------------------------------------------------------------
!! *** ROUTINE tra_bbl_init ***
!!
!! ** Purpose : Initialization for the bottom boundary layer scheme.
!!
!! ** Method : Read the nambbl namelist and check the parameters
!! called by nemo_init at the first timestep (kit000)
!!----------------------------------------------------------------------
INTEGER :: ji, jj ! dummy loop indices
INTEGER :: ii0, ii1, ij0, ij1, ios ! local integer
REAL(wp), DIMENSION(jpi,jpj) :: zmbku, zmbkv ! workspace
!!
NAMELIST/nambbl/ ln_trabbl, nn_bbl_ldf, nn_bbl_adv, rn_ahtbbl, rn_gambbl
!!----------------------------------------------------------------------
!
READ ( numnam_ref, nambbl, IOSTAT = ios, ERR = 901)
901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nambbl in reference namelist' )
!
READ ( numnam_cfg, nambbl, IOSTAT = ios, ERR = 902 )
902 IF( ios > 0 ) CALL ctl_nam ( ios , 'nambbl in configuration namelist' )
IF(lwm) WRITE ( numond, nambbl )
!
l_bbl = .TRUE. !* flag to compute bbl coef and transport
!
IF(lwp) THEN !* Parameter control and print
WRITE(numout,*)
WRITE(numout,*) 'tra_bbl_init : bottom boundary layer initialisation'
WRITE(numout,*) '~~~~~~~~~~~~'
WRITE(numout,*) ' Namelist nambbl : set bbl parameters'
WRITE(numout,*) ' bottom boundary layer flag ln_trabbl = ', ln_trabbl
ENDIF
IF( .NOT.ln_trabbl ) RETURN
!
IF(lwp) THEN
WRITE(numout,*) ' diffusive bbl (=1) or not (=0) nn_bbl_ldf = ', nn_bbl_ldf
WRITE(numout,*) ' advective bbl (=1/2) or not (=0) nn_bbl_adv = ', nn_bbl_adv
WRITE(numout,*) ' diffusive bbl coefficient rn_ahtbbl = ', rn_ahtbbl, ' m2/s'
WRITE(numout,*) ' advective bbl coefficient rn_gambbl = ', rn_gambbl, ' s'
ENDIF
!
! ! allocate trabbl arrays
IF( tra_bbl_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'tra_bbl_init : unable to allocate arrays' )
!
IF(lwp) THEN
IF( nn_bbl_adv == 1 ) WRITE(numout,*) ' * Advective BBL using upper velocity'
IF( nn_bbl_adv == 2 ) WRITE(numout,*) ' * Advective BBL using velocity = F( delta rho)'
ENDIF
!
! !* vertical index of "deep" bottom u- and v-points
DO_2D( 1, 0, 1, 0 ) ! (the "shelf" bottom k-indices are mbku and mbkv)
mbku_d(ji,jj) = MAX( mbkt(ji+1,jj ) , mbkt(ji,jj) ) ! >= 1 as mbkt=1 over land
mbkv_d(ji,jj) = MAX( mbkt(ji ,jj+1) , mbkt(ji,jj) )
END_2D
! converte into REAL to use lbc_lnk ; impose a min value of 1 as a zero can be set in lbclnk
zmbku(:,:) = REAL( mbku_d(:,:), wp ) ; zmbkv(:,:) = REAL( mbkv_d(:,:), wp )
CALL lbc_lnk( 'trabbl', zmbku,'U',1.0_wp, zmbkv,'V',1.0_wp)
mbku_d(:,:) = MAX( INT( zmbku(:,:) ), 1 ) ; mbkv_d(:,:) = MAX( NINT( zmbkv(:,:) ), 1 )
!
! !* sign of grad(H) at u- and v-points; zero if grad(H) = 0
mgrhu(:,:) = 0 ; mgrhv(:,:) = 0
DO_2D( 1, 0, 1, 0 )
IF( gdept_0(ji+1,jj,mbkt(ji+1,jj)) - gdept_0(ji,jj,mbkt(ji,jj)) /= 0._wp ) THEN
mgrhu(ji,jj) = INT( SIGN( 1.0_wp, gdept_0(ji+1,jj,mbkt(ji+1,jj)) - gdept_0(ji,jj,mbkt(ji,jj)) ) )
ENDIF
!
IF( gdept_0(ji,jj+1,mbkt(ji,jj+1)) - gdept_0(ji,jj,mbkt(ji,jj)) /= 0._wp ) THEN
mgrhv(ji,jj) = INT( SIGN( 1.0_wp, gdept_0(ji,jj+1,mbkt(ji,jj+1)) - gdept_0(ji,jj,mbkt(ji,jj)) ) )
ENDIF
END_2D
!
DO_2D( 1, 0, 1, 0 ) !* bbl thickness at u- (v-) point; minimum of top & bottom e3u_0 (e3v_0)
e3u_bbl_0(ji,jj) = MIN( e3u_0(ji,jj,mbkt(ji+1,jj )), e3u_0(ji,jj,mbkt(ji,jj)) )
e3v_bbl_0(ji,jj) = MIN( e3v_0(ji,jj,mbkt(ji ,jj+1)), e3v_0(ji,jj,mbkt(ji,jj)) )
END_2D
CALL lbc_lnk( 'trabbl', e3u_bbl_0, 'U', 1.0_wp , e3v_bbl_0, 'V', 1.0_wp ) ! lateral boundary conditions
!
! !* masked diffusive flux coefficients
ahu_bbl_0(:,:) = rn_ahtbbl * e2_e1u(:,:) * e3u_bbl_0(:,:) * umask(:,:,1)
ahv_bbl_0(:,:) = rn_ahtbbl * e1_e2v(:,:) * e3v_bbl_0(:,:) * vmask(:,:,1)
!
END SUBROUTINE tra_bbl_init
!!======================================================================
END MODULE trabbl