Skip to content
Snippets Groups Projects
traldf_triad.F90 33 KiB
Newer Older
Guillaume Samson's avatar
Guillaume Samson committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
MODULE traldf_triad
   !!======================================================================
   !!                   ***  MODULE  traldf_triad  ***
   !! Ocean  tracers:  horizontal component of the lateral tracer mixing trend
   !!======================================================================
   !! History :  3.3  ! 2010-10  (G. Nurser, C. Harris, G. Madec)  Griffies operator (original code)
   !!            3.7  ! 2013-12  (F. Lemarie, G. Madec)  triad operator (Griffies) + Method of Stabilizing Correction
   !!----------------------------------------------------------------------

   !!----------------------------------------------------------------------
   !!   tra_ldf_triad : update the tracer trend with the iso-neutral laplacian triad-operator
   !!----------------------------------------------------------------------
   USE oce            ! ocean dynamics and active tracers
   USE dom_oce        ! ocean space and time domain
   USE domutl, ONLY : is_tile
   USE phycst         ! physical constants
   USE trc_oce        ! share passive tracers/Ocean variables
   USE zdf_oce        ! ocean vertical physics
   USE ldftra         ! lateral physics: eddy diffusivity
   USE ldfslp         ! lateral physics: iso-neutral slopes
   USE traldf_iso     ! lateral diffusion (Madec operator)         (tra_ldf_iso routine)
   USE diaptr         ! poleward transport diagnostics
   USE diaar5         ! AR5 diagnostics
   !
   USE in_out_manager ! I/O manager
   USE iom            ! I/O library
   USE lbclnk         ! ocean lateral boundary conditions (or mpp link)
   USE lib_mpp        ! MPP library

   IMPLICIT NONE
   PRIVATE

   PUBLIC   tra_ldf_triad   ! routine called by traldf.F90

   LOGICAL  ::   l_ptr   ! flag to compute poleward transport
   LOGICAL  ::   l_hst   ! flag to compute heat transport


   !! * Substitutions
#  include "do_loop_substitute.h90"
#  include "domzgr_substitute.h90"
   !!----------------------------------------------------------------------
   !! NEMO/OCE 4.0 , NEMO Consortium (2018)
   !! $Id: traldf_triad.F90 15062 2021-06-28 11:19:48Z jchanut $
   !! Software governed by the CeCILL license (see ./LICENSE)
   !!----------------------------------------------------------------------
CONTAINS

   SUBROUTINE tra_ldf_triad( kt, Kmm, kit000, cdtype, pahu, pahv,             &
      &                                               pgu , pgv , pgui, pgvi, &
      &                                               pt, pt2, pt_rhs, kjpt, kpass )
      !!
      INTEGER                     , INTENT(in   ) ::   kt         ! ocean time-step index
      INTEGER                     , INTENT(in   ) ::   kit000     ! first time step index
      CHARACTER(len=3)            , INTENT(in   ) ::   cdtype     ! =TRA or TRC (tracer indicator)
      INTEGER                     , INTENT(in   ) ::   kjpt       ! number of tracers
      INTEGER                     , INTENT(in   ) ::   kpass      ! =1/2 first or second passage
      INTEGER                     , INTENT(in   ) ::   Kmm        ! ocean time level indices
      REAL(wp), DIMENSION(:,:,:)  , INTENT(in   ) ::   pahu, pahv ! eddy diffusivity at u- and v-points  [m2/s]
      REAL(wp), DIMENSION(:,:,:)  , INTENT(in   ) ::   pgu , pgv  ! tracer gradient at pstep levels
      REAL(wp), DIMENSION(:,:,:)  , INTENT(in   ) ::   pgui, pgvi ! tracer gradient at top   levels
      REAL(wp), DIMENSION(:,:,:,:), INTENT(in   ) ::   pt         ! tracer (kpass=1) or laplacian of tracer (kpass=2)
      REAL(wp), DIMENSION(:,:,:,:), INTENT(in   ) ::   pt2        ! tracer (only used in kpass=2)
      REAL(wp), DIMENSION(:,:,:,:), INTENT(inout) ::   pt_rhs     ! tracer trend
      !!
      CALL tra_ldf_triad_t( kt, Kmm, kit000, cdtype, pahu, pahv, is_tile(pahu),                            &
      &                                              pgu , pgv , is_tile(pgu) , pgui, pgvi, is_tile(pgui), &
      &                                              pt, is_tile(pt), pt2, is_tile(pt2), pt_rhs, is_tile(pt_rhs), kjpt, kpass )
   END SUBROUTINE tra_ldf_triad


  SUBROUTINE tra_ldf_triad_t( kt, Kmm, kit000, cdtype, pahu, pahv, ktah,                   &
      &                                                pgu , pgv , ktg , pgui, pgvi, ktgi, &
      &                                                pt, ktt, pt2, ktt2, pt_rhs, ktt_rhs, kjpt, kpass )
      !!----------------------------------------------------------------------
      !!                  ***  ROUTINE tra_ldf_triad  ***
      !!
      !! ** Purpose :   Compute the before horizontal tracer (t & s) diffusive
      !!      trend for a laplacian tensor (ezxcept the dz[ dz[.] ] term) and
      !!      add it to the general trend of tracer equation.
      !!
      !! ** Method  :   The horizontal component of the lateral diffusive trends
      !!      is provided by a 2nd order operator rotated along neural or geopo-
      !!      tential surfaces to which an eddy induced advection can be added
      !!      It is computed using before fields (forward in time) and isopyc-
      !!      nal or geopotential slopes computed in routine ldfslp.
      !!
      !!      see documentation for the desciption
      !!
      !! ** Action :   pt_rhs   updated with the before rotated diffusion
      !!               ah_wslp2 ....
      !!               akz   stabilizing vertical diffusivity coefficient (used in trazdf_imp)
      !!----------------------------------------------------------------------
      INTEGER                              , INTENT(in   ) ::   kt         ! ocean time-step index
      INTEGER                              , INTENT(in   ) ::   kit000     ! first time step index
      CHARACTER(len=3)                     , INTENT(in   ) ::   cdtype     ! =TRA or TRC (tracer indicator)
      INTEGER                              , INTENT(in   ) ::   kjpt       ! number of tracers
      INTEGER                              , INTENT(in   ) ::   kpass      ! =1/2 first or second passage
      INTEGER                              , INTENT(in)    ::   Kmm        ! ocean time level indices
      INTEGER                              , INTENT(in   ) ::   ktah, ktg, ktgi, ktt, ktt2, ktt_rhs
      REAL(wp), DIMENSION(A2D_T(ktah),   JPK)     , INTENT(in   ) ::   pahu, pahv ! eddy diffusivity at u- and v-points  [m2/s]
      REAL(wp), DIMENSION(A2D_T(ktg),        KJPT), INTENT(in   ) ::   pgu , pgv  ! tracer gradient at pstep levels
      REAL(wp), DIMENSION(A2D_T(ktgi),       KJPT), INTENT(in   ) ::   pgui, pgvi ! tracer gradient at top   levels
      REAL(wp), DIMENSION(A2D_T(ktt),    JPK,KJPT), INTENT(in   ) ::   pt         ! tracer (kpass=1) or laplacian of tracer (kpass=2)
      REAL(wp), DIMENSION(A2D_T(ktt2),   JPK,KJPT), INTENT(in   ) ::   pt2        ! tracer (only used in kpass=2)
      REAL(wp), DIMENSION(A2D_T(ktt_rhs),JPK,KJPT), INTENT(inout) ::   pt_rhs     ! tracer trend
      !
      INTEGER  ::  ji, jj, jk, jn, kp, iij   ! dummy loop indices
      REAL(wp) ::  zcoef0, ze3w_2, zsign          !   -      -
      !
      REAL(wp) ::   zslope2, zbu, zbv, zbu1, zbv1, zslope21, zah, zah1, zah_ip1, zah_jp1, zbu_ip1, zbv_jp1
      REAL(wp) ::   ze1ur, ze2vr, ze3wr, zdxt, zdyt, zdzt, zdyt_jp1, ze3wr_jp1, zdzt_jp1, zah_slp1, zah_slp_jp1, zaei_slp_jp1
      REAL(wp) ::   zah_slp, zaei_slp, zdxt_ip1, ze3wr_ip1, zdzt_ip1, zah_slp_ip1, zaei_slp_ip1, zaei_slp1
      REAL(wp), DIMENSION(A2D(nn_hls),0:1) ::   zdkt3d                                           ! vertical tracer gradient at 2 levels
      REAL(wp), DIMENSION(A2D(nn_hls)    ) ::   z2d                                              ! 2D workspace
      REAL(wp), DIMENSION(A2D(nn_hls),jpk) ::   zdit, zdjt, zftu, zftv, ztfw, zpsi_uw, zpsi_vw   ! 3D     -
      !!----------------------------------------------------------------------
      !
      IF( .NOT. l_istiled .OR. ntile == 1 )  THEN                       ! Do only on the first tile
         IF( kpass == 1 .AND. kt == kit000 )  THEN
            IF(lwp) WRITE(numout,*)
            IF(lwp) WRITE(numout,*) 'tra_ldf_triad : rotated laplacian diffusion operator on ', cdtype
            IF(lwp) WRITE(numout,*) '~~~~~~~~~~~~~'
         ENDIF
         !
         l_hst = .FALSE.
         l_ptr = .FALSE.
         IF( cdtype == 'TRA' ) THEN
            IF( iom_use( 'sophtldf' ) .OR. iom_use( 'sopstldf') )      l_ptr = .TRUE.
            IF( iom_use("uadv_heattr") .OR. iom_use("vadv_heattr") .OR.                   &
            &   iom_use("uadv_salttr") .OR. iom_use("vadv_salttr")  )   l_hst = .TRUE.
         ENDIF
      ENDIF
      !
      ! Define pt_rhs halo points for multi-point haloes in bilaplacian case
      IF( nldf_tra == np_blp_it .AND. kpass == 1 ) THEN ; iij = nn_hls
      ELSE                                              ; iij = 1
      ENDIF

      !
      IF( kpass == 1 ) THEN   ;   zsign =  1._wp      ! bilaplacian operator require a minus sign (eddy diffusivity >0)
      ELSE                    ;   zsign = -1._wp
      ENDIF
      !
      !!----------------------------------------------------------------------
      !!   0 - calculate  ah_wslp2, akz, and optionally zpsi_uw, zpsi_vw
      !!----------------------------------------------------------------------
      !
      IF( kpass == 1 ) THEN         !==  first pass only  and whatever the tracer is  ==!
         !
         DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 1, jpk )
            akz     (ji,jj,jk) = 0._wp
            ah_wslp2(ji,jj,jk) = 0._wp
         END_3D
         !
         DO kp = 0, 1                            ! i-k triads
            DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 1, jpkm1 )
               ze3wr = 1._wp / e3w(ji,jj,jk+kp,Kmm)
               zbu   = e1e2u(ji,jj) * e3u(ji,jj,jk,Kmm)
               zbu1  = e1e2u(ji-1,jj) * e3u(ji-1,jj,jk,Kmm)
               zah   = 0.25_wp * pahu(ji,jj,jk)
               zah1  = 0.25_wp * pahu(ji-1,jj,jk)
               ! Subtract s-coordinate slope at t-points to give slope rel to s-surfaces (do this by *adding* gradient of depth)
               zslope2 = triadi_g(ji,jj,jk,1,kp) + ( gdept(ji+1,jj,jk,Kmm) - gdept(ji,jj,jk,Kmm) ) * r1_e1u(ji,jj) * umask(ji,jj,jk+kp)
               zslope2 = zslope2 *zslope2
               zslope21 = triadi_g(ji,jj,jk,0,kp) + ( gdept(ji,jj,jk,Kmm) - gdept(ji-1,jj,jk,Kmm) ) * r1_e1u(ji-1,jj) * umask(ji-1,jj,jk+kp)
               zslope21 = zslope21 *zslope21
               ! round brackets added to fix the order of floating point operations
               ! needed to ensure halo 1 - halo 2 compatibility
               ah_wslp2(ji,jj,jk+kp) =  ah_wslp2(ji,jj,jk+kp) + ( zah * zbu * ze3wr * r1_e1e2t(ji,jj) * zslope2                    &
                        &                                       + zah1 * zbu1 * ze3wr * r1_e1e2t(ji,jj) * zslope21                 &
                        &                                       )                                                                  ! bracket for halo 1 - halo 2 compatibility
               akz     (ji,jj,jk+kp) =  akz     (ji,jj,jk+kp) + ( zah * r1_e1u(ji,jj) * r1_e1u(ji,jj) * umask(ji,jj,jk+kp)         &
                                                                + zah1 * r1_e1u(ji-1,jj) * r1_e1u(ji-1,jj) * umask(ji-1,jj,jk+kp)  &
                        &                                       )                                                                  ! bracket for halo 1 - halo 2 compatibility
            END_3D
         END DO
         !
         DO kp = 0, 1                            ! j-k triads
            DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 1, jpkm1 )
               ze3wr = 1.0_wp / e3w(ji,jj,jk+kp,Kmm)
               zbv   = e1e2v(ji,jj) * e3v(ji,jj,jk,Kmm)
               zbv1   = e1e2v(ji,jj-1) * e3v(ji,jj-1,jk,Kmm)
               zah   = 0.25_wp * pahv(ji,jj,jk)
               zah1   = 0.25_wp * pahv(ji,jj-1,jk)
               ! Subtract s-coordinate slope at t-points to give slope rel to s surfaces
               !    (do this by *adding* gradient of depth)
               zslope2 = triadj_g(ji,jj,jk,1,kp) + ( gdept(ji,jj+1,jk,Kmm) - gdept(ji,jj,jk,Kmm) ) * r1_e2v(ji,jj) * vmask(ji,jj,jk+kp)
               zslope2 = zslope2 * zslope2
               zslope21 = triadj_g(ji,jj,jk,0,kp) + ( gdept(ji,jj,jk,Kmm) - gdept(ji,jj-1,jk,Kmm) ) * r1_e2v(ji,jj-1) * vmask(ji,jj-1,jk+kp)
               zslope21 = zslope21 * zslope21
               ! round brackets added to fix the order of floating point operations
               ! needed to ensure halo 1 - halo 2 compatibility
               ah_wslp2(ji,jj,jk+kp) = ah_wslp2(ji,jj,jk+kp) + ( zah * zbv * ze3wr * r1_e1e2t(ji,jj) * zslope2                     &
                        &                                      + zah1 * zbv1 * ze3wr * r1_e1e2t(ji,jj) * zslope21                  &
                        &                                      )                                                                   ! bracket for halo 1 - halo 2 compatibility
               akz     (ji,jj,jk+kp) = akz     (ji,jj,jk+kp) + ( zah * r1_e2v(ji,jj) * r1_e2v(ji,jj) * vmask(ji,jj,jk+kp)          &
                        &                                      + zah1 * r1_e2v(ji,jj-1) * r1_e2v(ji,jj-1) * vmask(ji,jj-1,jk+kp)   &
                        &                                      )                                                                   ! bracket for halo 1 - halo 2 compatibility
            END_3D
         END DO
         !
         IF( ln_traldf_msc ) THEN                ! stabilizing vertical diffusivity coefficient
            !
            IF( ln_traldf_blp ) THEN                ! bilaplacian operator
               DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, jpkm1 )
                  akz(ji,jj,jk) = 16._wp           &
                     &   * ah_wslp2   (ji,jj,jk)   &
                     &   * (  akz     (ji,jj,jk)   &
                     &      + ah_wslp2(ji,jj,jk)   &
                     &        / ( e3w(ji,jj,jk,Kmm) * e3w(ji,jj,jk,Kmm) )  )
               END_3D
            ELSEIF( ln_traldf_lap ) THEN              ! laplacian operator
               DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, jpkm1 )
                  ze3w_2 = e3w(ji,jj,jk,Kmm) * e3w(ji,jj,jk,Kmm)
                  zcoef0 = rDt * (  akz(ji,jj,jk) + ah_wslp2(ji,jj,jk) / ze3w_2  )
                  akz(ji,jj,jk) = MAX( zcoef0 - 0.5_wp , 0._wp ) * ze3w_2 * r1_Dt
               END_3D
           ENDIF
           !
         ELSE                                    ! 33 flux set to zero with akz=ah_wslp2 ==>> computed in full implicit
            DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 1, jpk )
               akz(ji,jj,jk) = ah_wslp2(ji,jj,jk)
            END_3D
         ENDIF
         !
         IF( ln_ldfeiv_dia .AND. cdtype == 'TRA' ) THEN
            zpsi_uw(:,:,:) = 0._wp
            zpsi_vw(:,:,:) = 0._wp

            DO kp = 0, 1
               DO_3D( 1, 0, 1, 0, 1, jpkm1 )
                  ! round brackets added to fix the order of floating point operations
                  ! needed to ensure halo 1 - halo 2 compatibility
                  zpsi_uw(ji,jj,jk+kp) = zpsi_uw(ji,jj,jk+kp)                                     &
                     & + ( 0.25_wp * aeiu(ji,jj,jk) * e2u(ji,jj) * triadi_g(ji,jj,jk,1,kp)        &
                     &   + 0.25_wp * aeiu(ji,jj,jk) * e2u(ji,jj) * triadi_g(ji+1,jj,jk,0,kp)      &
                     &   )                                                                        ! bracket for halo 1 - halo 2 compatibility
                  zpsi_vw(ji,jj,jk+kp) = zpsi_vw(ji,jj,jk+kp)                                     &
                     & + ( 0.25_wp * aeiv(ji,jj,jk) * e1v(ji,jj) * triadj_g(ji,jj,jk,1,kp)        &
                     &   + 0.25_wp * aeiv(ji,jj,jk) * e1v(ji,jj) * triadj_g(ji,jj+1,jk,0,kp)      &
                     &   )                                                                        ! bracket for halo 1 - halo 2 compatibility
               END_3D
            END DO
            CALL ldf_eiv_dia( zpsi_uw, zpsi_vw, Kmm )
         ENDIF
         !
      ENDIF                                  !==  end 1st pass only  ==!
      !
      !                                                           ! ===========
      DO jn = 1, kjpt                                             ! tracer loop
         !                                                        ! ===========
         ! Zero fluxes for each tracer
!!gm  this should probably be done outside the jn loop
         ztfw(:,:,:) = 0._wp
         zftu(:,:,:) = 0._wp
         zftv(:,:,:) = 0._wp
         zdit(:,:,:) = 0._wp
         zdjt(:,:,:) = 0._wp
         !
         DO_3D( iij, iij-1, iij, iij-1, 1, jpkm1 )    !==  before lateral T & S gradients at T-level jk  ==!
            zdit(ji,jj,jk) = ( pt(ji+1,jj  ,jk,jn) - pt(ji,jj,jk,jn) ) * umask(ji,jj,jk)
            zdjt(ji,jj,jk) = ( pt(ji  ,jj+1,jk,jn) - pt(ji,jj,jk,jn) ) * vmask(ji,jj,jk)
         END_3D
         IF( ln_zps .AND. l_grad_zps ) THEN    ! partial steps: correction at top/bottom ocean level
            DO_2D( iij, iij-1, iij, iij-1 )                    ! bottom level
               zdit(ji,jj,mbku(ji,jj)) = pgu(ji,jj,jn)
               zdjt(ji,jj,mbkv(ji,jj)) = pgv(ji,jj,jn)
            END_2D
            IF( ln_isfcav ) THEN                   ! top level (ocean cavities only)
               DO_2D( iij, iij-1, iij, iij-1 )
                  IF( miku(ji,jj)  > 1 )   zdit(ji,jj,miku(ji,jj) ) = pgui(ji,jj,jn)
                  IF( mikv(ji,jj)  > 1 )   zdjt(ji,jj,mikv(ji,jj) ) = pgvi(ji,jj,jn)
               END_2D
            ENDIF
         ENDIF
         !
         !!----------------------------------------------------------------------
         !!   II - horizontal trend  (full)
         !!----------------------------------------------------------------------
         !
         DO jk = 1, jpkm1
            !                    !==  Vertical tracer gradient at level jk and jk+1
            DO_2D( iij, iij, iij, iij )
               zdkt3d(ji,jj,1) = ( pt(ji,jj,jk,jn) - pt(ji,jj,jk+1,jn) ) * tmask(ji,jj,jk+1)
            END_2D
            !
            !                    ! surface boundary condition: zdkt3d(jk=0)=zdkt3d(jk=1)
            IF( jk == 1 ) THEN   ;   zdkt3d(:,:,0) = zdkt3d(:,:,1)
            ELSE
               DO_2D( iij, iij, iij, iij )
                  zdkt3d(ji,jj,0) = ( pt(ji,jj,jk-1,jn) - pt(ji,jj,jk,jn) ) * tmask(ji,jj,jk)
               END_2D
            ENDIF
            !
            zaei_slp = 0._wp
            zaei_slp_ip1 = 0._wp
            zaei_slp_jp1 = 0._wp
            zaei_slp1 = 0._wp
            !
            IF( ln_botmix_triad ) THEN
               DO kp = 0, 1              !==  Horizontal & vertical fluxes
                  DO_2D( iij, iij-1, iij, iij-1 )
                     ze1ur = r1_e1u(ji,jj)
                     zdxt  = zdit(ji,jj,jk) * ze1ur
                     zdxt_ip1  = zdit(ji+1,jj,jk) * r1_e1u(ji+1,jj)
                     ze3wr = 1._wp / e3w(ji,jj,jk+kp,Kmm)
                     ze3wr_ip1 = 1._wp / e3w(ji+1,jj,jk+kp,Kmm)
                     zdzt  = zdkt3d(ji,jj,kp) * ze3wr
                     zdzt_ip1  = zdkt3d(ji+1,jj,kp) * ze3wr_ip1
                     !
                     zbu = 0.25_wp * e1e2u(ji,jj) * e3u(ji,jj,jk,Kmm)
                     zbu_ip1 = 0.25_wp * e1e2u(ji+1,jj) * e3u(ji+1,jj,jk,Kmm)
                     ! ln_botmix_triad is .T. don't mask zah for bottom half cells    !!gm ?????   ahu is masked....
                     zah = pahu(ji,jj,jk)
                     zah_ip1 = pahu(ji+1,jj,jk)
                     zah_slp  = zah * triadi(ji,jj,jk,1,kp)
                     zah_slp_ip1  = zah_ip1 * triadi(ji+1,jj,jk,1,kp)
                     zah_slp1  = zah * triadi(ji+1,jj,jk,0,kp)
                     IF( ln_ldfeiv )   THEN
                        zaei_slp = aeiu(ji,jj,jk) * triadi_g(ji,jj,jk,1,kp)
                        zaei_slp_ip1 = aeiu(ji+1,jj,jk) * triadi_g(ji+1,jj,jk,1,kp)
                        zaei_slp1 = aeiu(ji,jj,jk) * triadi_g(ji+1,jj,jk,0,kp)
                     ENDIF
                     ! round brackets added to fix the order of floating point operations
                     ! needed to ensure halo 1 - halo 2 compatibility
                     zftu(ji   ,jj,jk  ) =  zftu(ji   ,jj,jk )                                                               &
                                         &    - ( ( zah * zdxt + ( zah_slp - zaei_slp ) * zdzt ) * zbu * ze1ur               &
                                         &      + ( zah * zdxt + zah_slp1 * zdzt_ip1 - zaei_slp1 * zdzt_ip1 ) * zbu * ze1ur  &
                                         &      )                                                                            ! bracket for halo 1 - halo 2 compatibility
                     ztfw(ji+1,jj,jk+kp) =  ztfw(ji+1,jj,jk+kp)                                                              &
                                         &    - ( (zah_slp_ip1 + zaei_slp_ip1) * zdxt_ip1 * zbu_ip1 * ze3wr_ip1              &
                                         &      + ( zah_slp1 + zaei_slp1) * zdxt * zbu * ze3wr_ip1                           &
                                         &      )                                                                            ! bracket for halo 1 - halo 2 compatibility
                  END_2D
               END DO
               !
               DO kp = 0, 1
                  DO_2D( iij, iij-1, iij, iij-1 )
                     ze2vr = r1_e2v(ji,jj)
                     zdyt  = zdjt(ji,jj,jk) * ze2vr
                     zdyt_jp1  = zdjt(ji,jj+1,jk) * r1_e2v(ji,jj+1)
                     ze3wr = 1._wp / e3w(ji,jj,jk+kp,Kmm)
                     ze3wr_jp1 = 1._wp / e3w(ji,jj+1,jk+kp,Kmm)
                     zdzt  = zdkt3d(ji,jj,kp) * ze3wr
                     zdzt_jp1  = zdkt3d(ji,jj+1,kp) * ze3wr_jp1
                     zbv = 0.25_wp * e1e2v(ji,jj) * e3v(ji,jj,jk,Kmm)
                     zbv_jp1 = 0.25_wp * e1e2v(ji,jj+1) * e3v(ji,jj+1,jk,Kmm)
                     ! ln_botmix_triad is .T. don't mask zah for bottom half cells    !!gm ?????   ahu is masked....
                     zah = pahv(ji,jj,jk)          ! pahv(ji,jj+jp,jk)  ????
                     zah_jp1 = pahv(ji,jj+1,jk)
                     zah_slp = zah * triadj(ji,jj,jk,1,kp)
                     zah_slp1 = zah * triadj(ji,jj+1,jk,0,kp)
                     zah_slp_jp1 = zah_jp1 * triadj(ji,jj+1,jk,1,kp)
                     IF( ln_ldfeiv )   THEN
                        zaei_slp = aeiv(ji,jj,jk) * triadj_g(ji,jj,jk,1,kp)
                        zaei_slp_jp1 = aeiv(ji,jj+1,jk) * triadj_g(ji,jj+1,jk,1,kp)
                        zaei_slp1 = aeiv(ji,jj,jk) * triadj_g(ji,jj+1,jk,0,kp)
                     ENDIF
                     ! round brackets added to fix the order of floating point operations
                     ! needed to ensure halo 1 - halo 2 compatibility
                     zftv(ji,jj  ,jk   ) =  zftv(ji,jj  ,jk   )                                                              &
                                         &    - ( ( zah * zdyt + ( zah_slp - zaei_slp ) * zdzt ) * zbv * ze2vr               &
                                         &      + ( zah * zdyt + zah_slp1 * zdzt_jp1 - zaei_slp1 * zdzt_jp1 ) * zbv * ze2vr  &
                                         &      )                                                                            ! bracket for halo 1 - halo 2 compatibility
                     ztfw(ji,jj+1,jk+kp) =  ztfw(ji,jj+1,jk+kp)                                                              &
                                         &    - ( ( zah_slp_jp1 + zaei_slp_jp1) * zdyt_jp1 * zbv_jp1 * ze3wr_jp1             &
                                         &      + ( zah_slp1 + zaei_slp1) * zdyt * zbv * ze3wr_jp1                           &
                                         &      )                                                                            ! bracket for halo 1 - halo 2 compatibility
                  END_2D
               END DO
               !
            ELSE
               !
               DO kp = 0, 1               !==  Horizontal & vertical fluxes
                  DO_2D( iij, iij-1, iij, iij-1 )
                     ze1ur = r1_e1u(ji,jj)
                     zdxt  = zdit(ji,jj,jk) * ze1ur
                     zdxt_ip1  = zdit(ji+1,jj,jk) * r1_e1u(ji+1,jj)
                     ze3wr = 1._wp / e3w(ji,jj,jk+kp,Kmm)
                     ze3wr_ip1 = 1._wp / e3w(ji+1,jj,jk+kp,Kmm)
                     zdzt  = zdkt3d(ji,jj,kp) * ze3wr
                     zdzt_ip1  = zdkt3d(ji+1,jj,kp) * ze3wr_ip1
                     !
                     zbu = 0.25_wp * e1e2u(ji,jj) * e3u(ji,jj,jk,Kmm)
                     zbu_ip1 = 0.25_wp * e1e2u(ji+1,jj) * e3u(ji+1,jj,jk,Kmm)
                     ! ln_botmix_triad is .F. mask zah for bottom half cells
                     zah = pahu(ji,jj,jk) * umask(ji,jj,jk+kp)         ! pahu(ji+ip,jj,jk)   ===>>  ????
                     zah_ip1 = pahu(ji+1,jj,jk) * umask(ji+1,jj,jk+kp)
                     zah_slp  = zah * triadi(ji,jj,jk,1,kp)
                     zah_slp_ip1  = zah_ip1 * triadi(ji+1,jj,jk,1,kp)
                     zah_slp1  = zah * triadi(ji+1,jj,jk,0,kp)
                     IF( ln_ldfeiv )   THEN
                        zaei_slp = aeiu(ji,jj,jk) * triadi_g(ji,jj,jk,1,kp)
                        zaei_slp_ip1 = aeiu(ji+1,jj,jk) * triadi_g(ji+1,jj,jk,1,kp)
                        zaei_slp1 = aeiu(ji,jj,jk) * triadi_g(ji+1,jj,jk,0,kp)
                     ENDIF
                     ! round brackets added to fix the order of floating point operations
                     ! needed to ensure halo 1 - halo 2 compatibility
                     zftu(ji   ,jj,jk  ) =  zftu(ji   ,jj,jk )                                                               &
                                         &    - ( ( zah * zdxt + ( zah_slp - zaei_slp ) * zdzt ) * zbu * ze1ur               &
                                         &      + ( zah * zdxt + zah_slp1 * zdzt_ip1 - zaei_slp1 * zdzt_ip1 ) * zbu * ze1ur  &
                                         &      )                                                                            ! bracket for halo 1 - halo 2 compatibility
                     ztfw(ji+1,jj,jk+kp) =  ztfw(ji+1,jj,jk+kp)                                                              &
                                         &    - ( (zah_slp_ip1 + zaei_slp_ip1) * zdxt_ip1 * zbu_ip1 * ze3wr_ip1              &
                                         &      + ( zah_slp1 + zaei_slp1) * zdxt * zbu * ze3wr_ip1                           &
                                         &      )                                                                            ! bracket for halo 1 - halo 2 compatibility
                  END_2D
               END DO
               !
               DO kp = 0, 1
                  DO_2D( iij, iij-1, iij, iij-1 )
                     ze2vr = r1_e2v(ji,jj)
                     zdyt  = zdjt(ji,jj,jk) * ze2vr
                     zdyt_jp1  = zdjt(ji,jj+1,jk) * r1_e2v(ji,jj+1)
                     ze3wr = 1._wp / e3w(ji,jj,jk+kp,Kmm)
                     ze3wr_jp1 = 1._wp / e3w(ji,jj+1,jk+kp,Kmm)
                     zdzt  = zdkt3d(ji,jj,kp) * ze3wr
                     zdzt_jp1  = zdkt3d(ji,jj+1,kp) * ze3wr_jp1
                     zbv = 0.25_wp * e1e2v(ji,jj) * e3v(ji,jj,jk,Kmm)
                     zbv_jp1 = 0.25_wp * e1e2v(ji,jj+1) * e3v(ji,jj+1,jk,Kmm)
                     ! ln_botmix_triad is .F. mask zah for bottom half cells
                     zah = pahv(ji,jj,jk) * vmask(ji,jj,jk+kp)         ! pahv(ji,jj+jp,jk)  ????
                     zah_jp1 = pahv(ji,jj+1,jk) * vmask(ji,jj+1,jk+kp)
                     zah_slp = zah * triadj(ji,jj,jk,1,kp)
                     zah_slp1 = zah * triadj(ji,jj+1,jk,0,kp)
                     zah_slp_jp1 = zah_jp1 * triadj(ji,jj+1,jk,1,kp)
                     IF( ln_ldfeiv )   THEN
                        zaei_slp = aeiv(ji,jj,jk) * triadj_g(ji,jj,jk,1,kp)
                        zaei_slp_jp1 = aeiv(ji,jj+1,jk) * triadj_g(ji,jj+1,jk,1,kp)
                        zaei_slp1 = aeiv(ji,jj,jk) * triadj_g(ji,jj+1,jk,0,kp)
                     ENDIF
                     ! round brackets added to fix the order of floating point operations
                     ! needed to ensure halo 1 - halo 2 compatibility
                     zftv(ji,jj  ,jk   ) =  zftv(ji,jj  ,jk   )                                                              &
                                         &    - ( ( zah * zdyt + ( zah_slp - zaei_slp ) * zdzt ) * zbv * ze2vr               &
                                         &      + ( zah * zdyt + zah_slp1 * zdzt_jp1 - zaei_slp1 * zdzt_jp1 ) * zbv * ze2vr  &
                                         &      )                                                                            ! bracket for halo 1 - halo 2 compatibility
                     ztfw(ji,jj+1,jk+kp) =  ztfw(ji,jj+1,jk+kp)                                                              &
                                         &    - ( ( zah_slp_jp1 + zaei_slp_jp1) * zdyt_jp1 * zbv_jp1 * ze3wr_jp1             &
                                         &      + ( zah_slp1 + zaei_slp1) * zdyt * zbv * ze3wr_jp1                           &
                                         &      )                                                                            ! bracket for halo 1 - halo 2 compatibility
                  END_2D
               END DO
            ENDIF
            !                             !==  horizontal divergence and add to the general trend  ==!
            DO_2D( iij-1, iij-1, iij-1, iij-1 )
               ! round brackets added to fix the order of floating point operations
               ! needed to ensure halo 1 - halo 2 compatibility
               pt_rhs(ji,jj,jk,jn) = pt_rhs(ji,jj,jk,jn)                                                &
                  &                       + zsign * ( ( zftu(ji-1,jj  ,jk) - zftu(ji,jj,jk)             &
                  &                                   )                                                 & ! bracket for halo 1 - halo 2 compatibility
                  &                                 + ( zftv(ji,jj-1,jk) - zftv(ji,jj,jk)               &
                  &                                   )                                                 & ! bracket for halo 1 - halo 2 compatibility
                  &                                 ) / (  e1e2t(ji,jj) * e3t(ji,jj,jk,Kmm)  )
            END_2D
            !
         END DO
         !
         !                                !==  add the vertical 33 flux  ==!
         IF( ln_traldf_lap ) THEN               ! laplacian case: eddy coef = ah_wslp2 - akz
            DO_3D( iij-1, iij-1, iij-1, iij-1, 2, jpkm1 )
               ztfw(ji,jj,jk) = ztfw(ji,jj,jk) - e1e2t(ji,jj) / e3w(ji,jj,jk,Kmm) * tmask(ji,jj,jk)   &
                  &                            * ( ah_wslp2(ji,jj,jk) - akz(ji,jj,jk) )             &
                  &                            * (  pt(ji,jj,jk-1,jn) - pt(ji,jj,jk,jn) )
            END_3D
         ELSE                                   ! bilaplacian
            SELECT CASE( kpass )
            CASE(  1  )                            ! 1st pass : eddy coef = ah_wslp2
               DO_3D( iij-1, iij-1, iij-1, iij-1, 2, jpkm1 )
                  ztfw(ji,jj,jk) = ztfw(ji,jj,jk) - e1e2t(ji,jj) / e3w(ji,jj,jk,Kmm) * tmask(ji,jj,jk)             &
                     &                            * ah_wslp2(ji,jj,jk) * ( pt(ji,jj,jk-1,jn) - pt(ji,jj,jk,jn) )
               END_3D
            CASE(  2  )                            ! 2nd pass : eddy flux = ah_wslp2 and akz applied on pt  and pt2 gradients, resp.
               DO_3D( 0, 0, 0, 0, 2, jpkm1 )
                  ztfw(ji,jj,jk) = ztfw(ji,jj,jk) - e1e2t(ji,jj) / e3w(ji,jj,jk,Kmm) * tmask(ji,jj,jk)                      &
                     &                            * (  ah_wslp2(ji,jj,jk) * ( pt (ji,jj,jk-1,jn) - pt (ji,jj,jk,jn) )   &
                     &                               + akz     (ji,jj,jk) * ( pt2(ji,jj,jk-1,jn) - pt2(ji,jj,jk,jn) )   )
               END_3D
            END SELECT
         ENDIF
         !
         DO_3D( iij-1, iij-1, iij-1, iij-1, 1, jpkm1 )      !==  Divergence of vertical fluxes added to pta  ==!
            pt_rhs(ji,jj,jk,jn) = pt_rhs(ji,jj,jk,jn)    &
            &                                  + zsign * (  ztfw(ji,jj,jk+1) - ztfw(ji,jj,jk)  )   &
               &                                              / ( e1e2t(ji,jj) * e3t(ji,jj,jk,Kmm) )
         END_3D
         !
         IF( ( kpass == 1 .AND. ln_traldf_lap ) .OR.  &     !==  first pass only (  laplacian)  ==!
             ( kpass == 2 .AND. ln_traldf_blp ) ) THEN      !==  2nd   pass      (bilaplacian)  ==!
            !
            !                          ! "Poleward" diffusive heat or salt transports (T-S case only)
            IF( l_ptr )  CALL dia_ptr_hst( jn, 'ldf', zftv(:,:,:)  )
            !                          ! Diffusive heat transports
            IF( l_hst )  CALL dia_ar5_hst( jn, 'ldf', zftu(:,:,:), zftv(:,:,:) )
            !
         ENDIF                                                    !== end pass selection  ==!
         !
         !                                                        ! ===============
      END DO                                                      ! end tracer loop
      !                                                           ! ===============
   END SUBROUTINE tra_ldf_triad_t

   !!==============================================================================
END MODULE traldf_triad