Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
MODULE traldf_triad
!!======================================================================
!! *** MODULE traldf_triad ***
!! Ocean tracers: horizontal component of the lateral tracer mixing trend
!!======================================================================
!! History : 3.3 ! 2010-10 (G. Nurser, C. Harris, G. Madec) Griffies operator (original code)
!! 3.7 ! 2013-12 (F. Lemarie, G. Madec) triad operator (Griffies) + Method of Stabilizing Correction
!!----------------------------------------------------------------------
!!----------------------------------------------------------------------
!! tra_ldf_triad : update the tracer trend with the iso-neutral laplacian triad-operator
!!----------------------------------------------------------------------
USE oce ! ocean dynamics and active tracers
USE dom_oce ! ocean space and time domain
USE domutl, ONLY : is_tile
USE phycst ! physical constants
USE trc_oce ! share passive tracers/Ocean variables
USE zdf_oce ! ocean vertical physics
USE ldftra ! lateral physics: eddy diffusivity
USE ldfslp ! lateral physics: iso-neutral slopes
USE traldf_iso ! lateral diffusion (Madec operator) (tra_ldf_iso routine)
USE diaptr ! poleward transport diagnostics
USE diaar5 ! AR5 diagnostics
!
USE in_out_manager ! I/O manager
USE iom ! I/O library
USE lbclnk ! ocean lateral boundary conditions (or mpp link)
USE lib_mpp ! MPP library
IMPLICIT NONE
PRIVATE
PUBLIC tra_ldf_triad ! routine called by traldf.F90
LOGICAL :: l_ptr ! flag to compute poleward transport
LOGICAL :: l_hst ! flag to compute heat transport
!! * Substitutions
# include "do_loop_substitute.h90"
# include "domzgr_substitute.h90"
!!----------------------------------------------------------------------
!! NEMO/OCE 4.0 , NEMO Consortium (2018)
!! $Id: traldf_triad.F90 15062 2021-06-28 11:19:48Z jchanut $
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
SUBROUTINE tra_ldf_triad( kt, Kmm, kit000, cdtype, pahu, pahv, &
& pgu , pgv , pgui, pgvi, &
& pt, pt2, pt_rhs, kjpt, kpass )
!!
INTEGER , INTENT(in ) :: kt ! ocean time-step index
INTEGER , INTENT(in ) :: kit000 ! first time step index
CHARACTER(len=3) , INTENT(in ) :: cdtype ! =TRA or TRC (tracer indicator)
INTEGER , INTENT(in ) :: kjpt ! number of tracers
INTEGER , INTENT(in ) :: kpass ! =1/2 first or second passage
INTEGER , INTENT(in ) :: Kmm ! ocean time level indices
REAL(wp), DIMENSION(:,:,:) , INTENT(in ) :: pahu, pahv ! eddy diffusivity at u- and v-points [m2/s]
REAL(wp), DIMENSION(:,:,:) , INTENT(in ) :: pgu , pgv ! tracer gradient at pstep levels
REAL(wp), DIMENSION(:,:,:) , INTENT(in ) :: pgui, pgvi ! tracer gradient at top levels
REAL(wp), DIMENSION(:,:,:,:), INTENT(in ) :: pt ! tracer (kpass=1) or laplacian of tracer (kpass=2)
REAL(wp), DIMENSION(:,:,:,:), INTENT(in ) :: pt2 ! tracer (only used in kpass=2)
REAL(wp), DIMENSION(:,:,:,:), INTENT(inout) :: pt_rhs ! tracer trend
!!
CALL tra_ldf_triad_t( kt, Kmm, kit000, cdtype, pahu, pahv, is_tile(pahu), &
& pgu , pgv , is_tile(pgu) , pgui, pgvi, is_tile(pgui), &
& pt, is_tile(pt), pt2, is_tile(pt2), pt_rhs, is_tile(pt_rhs), kjpt, kpass )
END SUBROUTINE tra_ldf_triad
SUBROUTINE tra_ldf_triad_t( kt, Kmm, kit000, cdtype, pahu, pahv, ktah, &
& pgu , pgv , ktg , pgui, pgvi, ktgi, &
& pt, ktt, pt2, ktt2, pt_rhs, ktt_rhs, kjpt, kpass )
!!----------------------------------------------------------------------
!! *** ROUTINE tra_ldf_triad ***
!!
!! ** Purpose : Compute the before horizontal tracer (t & s) diffusive
!! trend for a laplacian tensor (ezxcept the dz[ dz[.] ] term) and
!! add it to the general trend of tracer equation.
!!
!! ** Method : The horizontal component of the lateral diffusive trends
!! is provided by a 2nd order operator rotated along neural or geopo-
!! tential surfaces to which an eddy induced advection can be added
!! It is computed using before fields (forward in time) and isopyc-
!! nal or geopotential slopes computed in routine ldfslp.
!!
!! see documentation for the desciption
!!
!! ** Action : pt_rhs updated with the before rotated diffusion
!! ah_wslp2 ....
!! akz stabilizing vertical diffusivity coefficient (used in trazdf_imp)
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: kt ! ocean time-step index
INTEGER , INTENT(in ) :: kit000 ! first time step index
CHARACTER(len=3) , INTENT(in ) :: cdtype ! =TRA or TRC (tracer indicator)
INTEGER , INTENT(in ) :: kjpt ! number of tracers
INTEGER , INTENT(in ) :: kpass ! =1/2 first or second passage
INTEGER , INTENT(in) :: Kmm ! ocean time level indices
INTEGER , INTENT(in ) :: ktah, ktg, ktgi, ktt, ktt2, ktt_rhs
REAL(wp), DIMENSION(A2D_T(ktah), JPK) , INTENT(in ) :: pahu, pahv ! eddy diffusivity at u- and v-points [m2/s]
REAL(wp), DIMENSION(A2D_T(ktg), KJPT), INTENT(in ) :: pgu , pgv ! tracer gradient at pstep levels
REAL(wp), DIMENSION(A2D_T(ktgi), KJPT), INTENT(in ) :: pgui, pgvi ! tracer gradient at top levels
REAL(wp), DIMENSION(A2D_T(ktt), JPK,KJPT), INTENT(in ) :: pt ! tracer (kpass=1) or laplacian of tracer (kpass=2)
REAL(wp), DIMENSION(A2D_T(ktt2), JPK,KJPT), INTENT(in ) :: pt2 ! tracer (only used in kpass=2)
REAL(wp), DIMENSION(A2D_T(ktt_rhs),JPK,KJPT), INTENT(inout) :: pt_rhs ! tracer trend
!
INTEGER :: ji, jj, jk, jn, kp, iij ! dummy loop indices
REAL(wp) :: zcoef0, ze3w_2, zsign ! - -
!
REAL(wp) :: zslope2, zbu, zbv, zbu1, zbv1, zslope21, zah, zah1, zah_ip1, zah_jp1, zbu_ip1, zbv_jp1
REAL(wp) :: ze1ur, ze2vr, ze3wr, zdxt, zdyt, zdzt, zdyt_jp1, ze3wr_jp1, zdzt_jp1, zah_slp1, zah_slp_jp1, zaei_slp_jp1
REAL(wp) :: zah_slp, zaei_slp, zdxt_ip1, ze3wr_ip1, zdzt_ip1, zah_slp_ip1, zaei_slp_ip1, zaei_slp1
REAL(wp), DIMENSION(A2D(nn_hls),0:1) :: zdkt3d ! vertical tracer gradient at 2 levels
REAL(wp), DIMENSION(A2D(nn_hls) ) :: z2d ! 2D workspace
REAL(wp), DIMENSION(A2D(nn_hls),jpk) :: zdit, zdjt, zftu, zftv, ztfw, zpsi_uw, zpsi_vw ! 3D -
!!----------------------------------------------------------------------
!
IF( .NOT. l_istiled .OR. ntile == 1 ) THEN ! Do only on the first tile
IF( kpass == 1 .AND. kt == kit000 ) THEN
IF(lwp) WRITE(numout,*)
IF(lwp) WRITE(numout,*) 'tra_ldf_triad : rotated laplacian diffusion operator on ', cdtype
IF(lwp) WRITE(numout,*) '~~~~~~~~~~~~~'
ENDIF
!
l_hst = .FALSE.
l_ptr = .FALSE.
IF( cdtype == 'TRA' ) THEN
IF( iom_use( 'sophtldf' ) .OR. iom_use( 'sopstldf') ) l_ptr = .TRUE.
IF( iom_use("uadv_heattr") .OR. iom_use("vadv_heattr") .OR. &
& iom_use("uadv_salttr") .OR. iom_use("vadv_salttr") ) l_hst = .TRUE.
ENDIF
ENDIF
!
! Define pt_rhs halo points for multi-point haloes in bilaplacian case
IF( nldf_tra == np_blp_it .AND. kpass == 1 ) THEN ; iij = nn_hls
ELSE ; iij = 1
ENDIF
!
IF( kpass == 1 ) THEN ; zsign = 1._wp ! bilaplacian operator require a minus sign (eddy diffusivity >0)
ELSE ; zsign = -1._wp
ENDIF
!
!!----------------------------------------------------------------------
!! 0 - calculate ah_wslp2, akz, and optionally zpsi_uw, zpsi_vw
!!----------------------------------------------------------------------
!
IF( kpass == 1 ) THEN !== first pass only and whatever the tracer is ==!
!
DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 1, jpk )
akz (ji,jj,jk) = 0._wp
ah_wslp2(ji,jj,jk) = 0._wp
END_3D
!
DO kp = 0, 1 ! i-k triads
DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 1, jpkm1 )
ze3wr = 1._wp / e3w(ji,jj,jk+kp,Kmm)
zbu = e1e2u(ji,jj) * e3u(ji,jj,jk,Kmm)
zbu1 = e1e2u(ji-1,jj) * e3u(ji-1,jj,jk,Kmm)
zah = 0.25_wp * pahu(ji,jj,jk)
zah1 = 0.25_wp * pahu(ji-1,jj,jk)
! Subtract s-coordinate slope at t-points to give slope rel to s-surfaces (do this by *adding* gradient of depth)
zslope2 = triadi_g(ji,jj,jk,1,kp) + ( gdept(ji+1,jj,jk,Kmm) - gdept(ji,jj,jk,Kmm) ) * r1_e1u(ji,jj) * umask(ji,jj,jk+kp)
zslope2 = zslope2 *zslope2
zslope21 = triadi_g(ji,jj,jk,0,kp) + ( gdept(ji,jj,jk,Kmm) - gdept(ji-1,jj,jk,Kmm) ) * r1_e1u(ji-1,jj) * umask(ji-1,jj,jk+kp)
zslope21 = zslope21 *zslope21
! round brackets added to fix the order of floating point operations
! needed to ensure halo 1 - halo 2 compatibility
ah_wslp2(ji,jj,jk+kp) = ah_wslp2(ji,jj,jk+kp) + ( zah * zbu * ze3wr * r1_e1e2t(ji,jj) * zslope2 &
& + zah1 * zbu1 * ze3wr * r1_e1e2t(ji,jj) * zslope21 &
& ) ! bracket for halo 1 - halo 2 compatibility
akz (ji,jj,jk+kp) = akz (ji,jj,jk+kp) + ( zah * r1_e1u(ji,jj) * r1_e1u(ji,jj) * umask(ji,jj,jk+kp) &
+ zah1 * r1_e1u(ji-1,jj) * r1_e1u(ji-1,jj) * umask(ji-1,jj,jk+kp) &
& ) ! bracket for halo 1 - halo 2 compatibility
END_3D
END DO
!
DO kp = 0, 1 ! j-k triads
DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 1, jpkm1 )
ze3wr = 1.0_wp / e3w(ji,jj,jk+kp,Kmm)
zbv = e1e2v(ji,jj) * e3v(ji,jj,jk,Kmm)
zbv1 = e1e2v(ji,jj-1) * e3v(ji,jj-1,jk,Kmm)
zah = 0.25_wp * pahv(ji,jj,jk)
zah1 = 0.25_wp * pahv(ji,jj-1,jk)
! Subtract s-coordinate slope at t-points to give slope rel to s surfaces
! (do this by *adding* gradient of depth)
zslope2 = triadj_g(ji,jj,jk,1,kp) + ( gdept(ji,jj+1,jk,Kmm) - gdept(ji,jj,jk,Kmm) ) * r1_e2v(ji,jj) * vmask(ji,jj,jk+kp)
zslope2 = zslope2 * zslope2
zslope21 = triadj_g(ji,jj,jk,0,kp) + ( gdept(ji,jj,jk,Kmm) - gdept(ji,jj-1,jk,Kmm) ) * r1_e2v(ji,jj-1) * vmask(ji,jj-1,jk+kp)
zslope21 = zslope21 * zslope21
! round brackets added to fix the order of floating point operations
! needed to ensure halo 1 - halo 2 compatibility
ah_wslp2(ji,jj,jk+kp) = ah_wslp2(ji,jj,jk+kp) + ( zah * zbv * ze3wr * r1_e1e2t(ji,jj) * zslope2 &
& + zah1 * zbv1 * ze3wr * r1_e1e2t(ji,jj) * zslope21 &
& ) ! bracket for halo 1 - halo 2 compatibility
akz (ji,jj,jk+kp) = akz (ji,jj,jk+kp) + ( zah * r1_e2v(ji,jj) * r1_e2v(ji,jj) * vmask(ji,jj,jk+kp) &
& + zah1 * r1_e2v(ji,jj-1) * r1_e2v(ji,jj-1) * vmask(ji,jj-1,jk+kp) &
& ) ! bracket for halo 1 - halo 2 compatibility
END_3D
END DO
!
IF( ln_traldf_msc ) THEN ! stabilizing vertical diffusivity coefficient
!
IF( ln_traldf_blp ) THEN ! bilaplacian operator
DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, jpkm1 )
akz(ji,jj,jk) = 16._wp &
& * ah_wslp2 (ji,jj,jk) &
& * ( akz (ji,jj,jk) &
& + ah_wslp2(ji,jj,jk) &
& / ( e3w(ji,jj,jk,Kmm) * e3w(ji,jj,jk,Kmm) ) )
END_3D
ELSEIF( ln_traldf_lap ) THEN ! laplacian operator
DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, jpkm1 )
ze3w_2 = e3w(ji,jj,jk,Kmm) * e3w(ji,jj,jk,Kmm)
zcoef0 = rDt * ( akz(ji,jj,jk) + ah_wslp2(ji,jj,jk) / ze3w_2 )
akz(ji,jj,jk) = MAX( zcoef0 - 0.5_wp , 0._wp ) * ze3w_2 * r1_Dt
END_3D
ENDIF
!
ELSE ! 33 flux set to zero with akz=ah_wslp2 ==>> computed in full implicit
DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 1, jpk )
akz(ji,jj,jk) = ah_wslp2(ji,jj,jk)
END_3D
ENDIF
!
IF( ln_ldfeiv_dia .AND. cdtype == 'TRA' ) THEN
zpsi_uw(:,:,:) = 0._wp
zpsi_vw(:,:,:) = 0._wp
DO kp = 0, 1
DO_3D( 1, 0, 1, 0, 1, jpkm1 )
! round brackets added to fix the order of floating point operations
! needed to ensure halo 1 - halo 2 compatibility
zpsi_uw(ji,jj,jk+kp) = zpsi_uw(ji,jj,jk+kp) &
& + ( 0.25_wp * aeiu(ji,jj,jk) * e2u(ji,jj) * triadi_g(ji,jj,jk,1,kp) &
& + 0.25_wp * aeiu(ji,jj,jk) * e2u(ji,jj) * triadi_g(ji+1,jj,jk,0,kp) &
& ) ! bracket for halo 1 - halo 2 compatibility
zpsi_vw(ji,jj,jk+kp) = zpsi_vw(ji,jj,jk+kp) &
& + ( 0.25_wp * aeiv(ji,jj,jk) * e1v(ji,jj) * triadj_g(ji,jj,jk,1,kp) &
& + 0.25_wp * aeiv(ji,jj,jk) * e1v(ji,jj) * triadj_g(ji,jj+1,jk,0,kp) &
& ) ! bracket for halo 1 - halo 2 compatibility
END_3D
END DO
CALL ldf_eiv_dia( zpsi_uw, zpsi_vw, Kmm )
ENDIF
!
ENDIF !== end 1st pass only ==!
!
! ! ===========
DO jn = 1, kjpt ! tracer loop
! ! ===========
! Zero fluxes for each tracer
!!gm this should probably be done outside the jn loop
ztfw(:,:,:) = 0._wp
zftu(:,:,:) = 0._wp
zftv(:,:,:) = 0._wp
zdit(:,:,:) = 0._wp
zdjt(:,:,:) = 0._wp
!
DO_3D( iij, iij-1, iij, iij-1, 1, jpkm1 ) !== before lateral T & S gradients at T-level jk ==!
zdit(ji,jj,jk) = ( pt(ji+1,jj ,jk,jn) - pt(ji,jj,jk,jn) ) * umask(ji,jj,jk)
zdjt(ji,jj,jk) = ( pt(ji ,jj+1,jk,jn) - pt(ji,jj,jk,jn) ) * vmask(ji,jj,jk)
END_3D
IF( ln_zps .AND. l_grad_zps ) THEN ! partial steps: correction at top/bottom ocean level
DO_2D( iij, iij-1, iij, iij-1 ) ! bottom level
zdit(ji,jj,mbku(ji,jj)) = pgu(ji,jj,jn)
zdjt(ji,jj,mbkv(ji,jj)) = pgv(ji,jj,jn)
END_2D
IF( ln_isfcav ) THEN ! top level (ocean cavities only)
DO_2D( iij, iij-1, iij, iij-1 )
IF( miku(ji,jj) > 1 ) zdit(ji,jj,miku(ji,jj) ) = pgui(ji,jj,jn)
IF( mikv(ji,jj) > 1 ) zdjt(ji,jj,mikv(ji,jj) ) = pgvi(ji,jj,jn)
END_2D
ENDIF
ENDIF
!
!!----------------------------------------------------------------------
!! II - horizontal trend (full)
!!----------------------------------------------------------------------
!
DO jk = 1, jpkm1
! !== Vertical tracer gradient at level jk and jk+1
DO_2D( iij, iij, iij, iij )
zdkt3d(ji,jj,1) = ( pt(ji,jj,jk,jn) - pt(ji,jj,jk+1,jn) ) * tmask(ji,jj,jk+1)
END_2D
!
! ! surface boundary condition: zdkt3d(jk=0)=zdkt3d(jk=1)
IF( jk == 1 ) THEN ; zdkt3d(:,:,0) = zdkt3d(:,:,1)
ELSE
DO_2D( iij, iij, iij, iij )
zdkt3d(ji,jj,0) = ( pt(ji,jj,jk-1,jn) - pt(ji,jj,jk,jn) ) * tmask(ji,jj,jk)
END_2D
ENDIF
!
zaei_slp = 0._wp
zaei_slp_ip1 = 0._wp
zaei_slp_jp1 = 0._wp
zaei_slp1 = 0._wp
!
IF( ln_botmix_triad ) THEN
DO kp = 0, 1 !== Horizontal & vertical fluxes
DO_2D( iij, iij-1, iij, iij-1 )
ze1ur = r1_e1u(ji,jj)
zdxt = zdit(ji,jj,jk) * ze1ur
zdxt_ip1 = zdit(ji+1,jj,jk) * r1_e1u(ji+1,jj)
ze3wr = 1._wp / e3w(ji,jj,jk+kp,Kmm)
ze3wr_ip1 = 1._wp / e3w(ji+1,jj,jk+kp,Kmm)
zdzt = zdkt3d(ji,jj,kp) * ze3wr
zdzt_ip1 = zdkt3d(ji+1,jj,kp) * ze3wr_ip1
!
zbu = 0.25_wp * e1e2u(ji,jj) * e3u(ji,jj,jk,Kmm)
zbu_ip1 = 0.25_wp * e1e2u(ji+1,jj) * e3u(ji+1,jj,jk,Kmm)
! ln_botmix_triad is .T. don't mask zah for bottom half cells !!gm ????? ahu is masked....
zah = pahu(ji,jj,jk)
zah_ip1 = pahu(ji+1,jj,jk)
zah_slp = zah * triadi(ji,jj,jk,1,kp)
zah_slp_ip1 = zah_ip1 * triadi(ji+1,jj,jk,1,kp)
zah_slp1 = zah * triadi(ji+1,jj,jk,0,kp)
IF( ln_ldfeiv ) THEN
zaei_slp = aeiu(ji,jj,jk) * triadi_g(ji,jj,jk,1,kp)
zaei_slp_ip1 = aeiu(ji+1,jj,jk) * triadi_g(ji+1,jj,jk,1,kp)
zaei_slp1 = aeiu(ji,jj,jk) * triadi_g(ji+1,jj,jk,0,kp)
ENDIF
! round brackets added to fix the order of floating point operations
! needed to ensure halo 1 - halo 2 compatibility
zftu(ji ,jj,jk ) = zftu(ji ,jj,jk ) &
& - ( ( zah * zdxt + ( zah_slp - zaei_slp ) * zdzt ) * zbu * ze1ur &
& + ( zah * zdxt + zah_slp1 * zdzt_ip1 - zaei_slp1 * zdzt_ip1 ) * zbu * ze1ur &
& ) ! bracket for halo 1 - halo 2 compatibility
ztfw(ji+1,jj,jk+kp) = ztfw(ji+1,jj,jk+kp) &
& - ( (zah_slp_ip1 + zaei_slp_ip1) * zdxt_ip1 * zbu_ip1 * ze3wr_ip1 &
& + ( zah_slp1 + zaei_slp1) * zdxt * zbu * ze3wr_ip1 &
& ) ! bracket for halo 1 - halo 2 compatibility
END_2D
END DO
!
DO kp = 0, 1
DO_2D( iij, iij-1, iij, iij-1 )
ze2vr = r1_e2v(ji,jj)
zdyt = zdjt(ji,jj,jk) * ze2vr
zdyt_jp1 = zdjt(ji,jj+1,jk) * r1_e2v(ji,jj+1)
ze3wr = 1._wp / e3w(ji,jj,jk+kp,Kmm)
ze3wr_jp1 = 1._wp / e3w(ji,jj+1,jk+kp,Kmm)
zdzt = zdkt3d(ji,jj,kp) * ze3wr
zdzt_jp1 = zdkt3d(ji,jj+1,kp) * ze3wr_jp1
zbv = 0.25_wp * e1e2v(ji,jj) * e3v(ji,jj,jk,Kmm)
zbv_jp1 = 0.25_wp * e1e2v(ji,jj+1) * e3v(ji,jj+1,jk,Kmm)
! ln_botmix_triad is .T. don't mask zah for bottom half cells !!gm ????? ahu is masked....
zah = pahv(ji,jj,jk) ! pahv(ji,jj+jp,jk) ????
zah_jp1 = pahv(ji,jj+1,jk)
zah_slp = zah * triadj(ji,jj,jk,1,kp)
zah_slp1 = zah * triadj(ji,jj+1,jk,0,kp)
zah_slp_jp1 = zah_jp1 * triadj(ji,jj+1,jk,1,kp)
IF( ln_ldfeiv ) THEN
zaei_slp = aeiv(ji,jj,jk) * triadj_g(ji,jj,jk,1,kp)
zaei_slp_jp1 = aeiv(ji,jj+1,jk) * triadj_g(ji,jj+1,jk,1,kp)
zaei_slp1 = aeiv(ji,jj,jk) * triadj_g(ji,jj+1,jk,0,kp)
ENDIF
! round brackets added to fix the order of floating point operations
! needed to ensure halo 1 - halo 2 compatibility
zftv(ji,jj ,jk ) = zftv(ji,jj ,jk ) &
& - ( ( zah * zdyt + ( zah_slp - zaei_slp ) * zdzt ) * zbv * ze2vr &
& + ( zah * zdyt + zah_slp1 * zdzt_jp1 - zaei_slp1 * zdzt_jp1 ) * zbv * ze2vr &
& ) ! bracket for halo 1 - halo 2 compatibility
ztfw(ji,jj+1,jk+kp) = ztfw(ji,jj+1,jk+kp) &
& - ( ( zah_slp_jp1 + zaei_slp_jp1) * zdyt_jp1 * zbv_jp1 * ze3wr_jp1 &
& + ( zah_slp1 + zaei_slp1) * zdyt * zbv * ze3wr_jp1 &
& ) ! bracket for halo 1 - halo 2 compatibility
END_2D
END DO
!
ELSE
!
DO kp = 0, 1 !== Horizontal & vertical fluxes
DO_2D( iij, iij-1, iij, iij-1 )
ze1ur = r1_e1u(ji,jj)
zdxt = zdit(ji,jj,jk) * ze1ur
zdxt_ip1 = zdit(ji+1,jj,jk) * r1_e1u(ji+1,jj)
ze3wr = 1._wp / e3w(ji,jj,jk+kp,Kmm)
ze3wr_ip1 = 1._wp / e3w(ji+1,jj,jk+kp,Kmm)
zdzt = zdkt3d(ji,jj,kp) * ze3wr
zdzt_ip1 = zdkt3d(ji+1,jj,kp) * ze3wr_ip1
!
zbu = 0.25_wp * e1e2u(ji,jj) * e3u(ji,jj,jk,Kmm)
zbu_ip1 = 0.25_wp * e1e2u(ji+1,jj) * e3u(ji+1,jj,jk,Kmm)
! ln_botmix_triad is .F. mask zah for bottom half cells
zah = pahu(ji,jj,jk) * umask(ji,jj,jk+kp) ! pahu(ji+ip,jj,jk) ===>> ????
zah_ip1 = pahu(ji+1,jj,jk) * umask(ji+1,jj,jk+kp)
zah_slp = zah * triadi(ji,jj,jk,1,kp)
zah_slp_ip1 = zah_ip1 * triadi(ji+1,jj,jk,1,kp)
zah_slp1 = zah * triadi(ji+1,jj,jk,0,kp)
IF( ln_ldfeiv ) THEN
zaei_slp = aeiu(ji,jj,jk) * triadi_g(ji,jj,jk,1,kp)
zaei_slp_ip1 = aeiu(ji+1,jj,jk) * triadi_g(ji+1,jj,jk,1,kp)
zaei_slp1 = aeiu(ji,jj,jk) * triadi_g(ji+1,jj,jk,0,kp)
ENDIF
! round brackets added to fix the order of floating point operations
! needed to ensure halo 1 - halo 2 compatibility
zftu(ji ,jj,jk ) = zftu(ji ,jj,jk ) &
& - ( ( zah * zdxt + ( zah_slp - zaei_slp ) * zdzt ) * zbu * ze1ur &
& + ( zah * zdxt + zah_slp1 * zdzt_ip1 - zaei_slp1 * zdzt_ip1 ) * zbu * ze1ur &
& ) ! bracket for halo 1 - halo 2 compatibility
ztfw(ji+1,jj,jk+kp) = ztfw(ji+1,jj,jk+kp) &
& - ( (zah_slp_ip1 + zaei_slp_ip1) * zdxt_ip1 * zbu_ip1 * ze3wr_ip1 &
& + ( zah_slp1 + zaei_slp1) * zdxt * zbu * ze3wr_ip1 &
& ) ! bracket for halo 1 - halo 2 compatibility
END_2D
END DO
!
DO kp = 0, 1
DO_2D( iij, iij-1, iij, iij-1 )
ze2vr = r1_e2v(ji,jj)
zdyt = zdjt(ji,jj,jk) * ze2vr
zdyt_jp1 = zdjt(ji,jj+1,jk) * r1_e2v(ji,jj+1)
ze3wr = 1._wp / e3w(ji,jj,jk+kp,Kmm)
ze3wr_jp1 = 1._wp / e3w(ji,jj+1,jk+kp,Kmm)
zdzt = zdkt3d(ji,jj,kp) * ze3wr
zdzt_jp1 = zdkt3d(ji,jj+1,kp) * ze3wr_jp1
zbv = 0.25_wp * e1e2v(ji,jj) * e3v(ji,jj,jk,Kmm)
zbv_jp1 = 0.25_wp * e1e2v(ji,jj+1) * e3v(ji,jj+1,jk,Kmm)
! ln_botmix_triad is .F. mask zah for bottom half cells
zah = pahv(ji,jj,jk) * vmask(ji,jj,jk+kp) ! pahv(ji,jj+jp,jk) ????
zah_jp1 = pahv(ji,jj+1,jk) * vmask(ji,jj+1,jk+kp)
zah_slp = zah * triadj(ji,jj,jk,1,kp)
zah_slp1 = zah * triadj(ji,jj+1,jk,0,kp)
zah_slp_jp1 = zah_jp1 * triadj(ji,jj+1,jk,1,kp)
IF( ln_ldfeiv ) THEN
zaei_slp = aeiv(ji,jj,jk) * triadj_g(ji,jj,jk,1,kp)
zaei_slp_jp1 = aeiv(ji,jj+1,jk) * triadj_g(ji,jj+1,jk,1,kp)
zaei_slp1 = aeiv(ji,jj,jk) * triadj_g(ji,jj+1,jk,0,kp)
ENDIF
! round brackets added to fix the order of floating point operations
! needed to ensure halo 1 - halo 2 compatibility
zftv(ji,jj ,jk ) = zftv(ji,jj ,jk ) &
& - ( ( zah * zdyt + ( zah_slp - zaei_slp ) * zdzt ) * zbv * ze2vr &
& + ( zah * zdyt + zah_slp1 * zdzt_jp1 - zaei_slp1 * zdzt_jp1 ) * zbv * ze2vr &
& ) ! bracket for halo 1 - halo 2 compatibility
ztfw(ji,jj+1,jk+kp) = ztfw(ji,jj+1,jk+kp) &
& - ( ( zah_slp_jp1 + zaei_slp_jp1) * zdyt_jp1 * zbv_jp1 * ze3wr_jp1 &
& + ( zah_slp1 + zaei_slp1) * zdyt * zbv * ze3wr_jp1 &
& ) ! bracket for halo 1 - halo 2 compatibility
END_2D
END DO
ENDIF
! !== horizontal divergence and add to the general trend ==!
DO_2D( iij-1, iij-1, iij-1, iij-1 )
! round brackets added to fix the order of floating point operations
! needed to ensure halo 1 - halo 2 compatibility
pt_rhs(ji,jj,jk,jn) = pt_rhs(ji,jj,jk,jn) &
& + zsign * ( ( zftu(ji-1,jj ,jk) - zftu(ji,jj,jk) &
& ) & ! bracket for halo 1 - halo 2 compatibility
& + ( zftv(ji,jj-1,jk) - zftv(ji,jj,jk) &
& ) & ! bracket for halo 1 - halo 2 compatibility
& ) / ( e1e2t(ji,jj) * e3t(ji,jj,jk,Kmm) )
END_2D
!
END DO
!
! !== add the vertical 33 flux ==!
IF( ln_traldf_lap ) THEN ! laplacian case: eddy coef = ah_wslp2 - akz
DO_3D( iij-1, iij-1, iij-1, iij-1, 2, jpkm1 )
ztfw(ji,jj,jk) = ztfw(ji,jj,jk) - e1e2t(ji,jj) / e3w(ji,jj,jk,Kmm) * tmask(ji,jj,jk) &
& * ( ah_wslp2(ji,jj,jk) - akz(ji,jj,jk) ) &
& * ( pt(ji,jj,jk-1,jn) - pt(ji,jj,jk,jn) )
END_3D
ELSE ! bilaplacian
SELECT CASE( kpass )
CASE( 1 ) ! 1st pass : eddy coef = ah_wslp2
DO_3D( iij-1, iij-1, iij-1, iij-1, 2, jpkm1 )
ztfw(ji,jj,jk) = ztfw(ji,jj,jk) - e1e2t(ji,jj) / e3w(ji,jj,jk,Kmm) * tmask(ji,jj,jk) &
& * ah_wslp2(ji,jj,jk) * ( pt(ji,jj,jk-1,jn) - pt(ji,jj,jk,jn) )
END_3D
CASE( 2 ) ! 2nd pass : eddy flux = ah_wslp2 and akz applied on pt and pt2 gradients, resp.
DO_3D( 0, 0, 0, 0, 2, jpkm1 )
ztfw(ji,jj,jk) = ztfw(ji,jj,jk) - e1e2t(ji,jj) / e3w(ji,jj,jk,Kmm) * tmask(ji,jj,jk) &
& * ( ah_wslp2(ji,jj,jk) * ( pt (ji,jj,jk-1,jn) - pt (ji,jj,jk,jn) ) &
& + akz (ji,jj,jk) * ( pt2(ji,jj,jk-1,jn) - pt2(ji,jj,jk,jn) ) )
END_3D
END SELECT
ENDIF
!
DO_3D( iij-1, iij-1, iij-1, iij-1, 1, jpkm1 ) !== Divergence of vertical fluxes added to pta ==!
pt_rhs(ji,jj,jk,jn) = pt_rhs(ji,jj,jk,jn) &
& + zsign * ( ztfw(ji,jj,jk+1) - ztfw(ji,jj,jk) ) &
& / ( e1e2t(ji,jj) * e3t(ji,jj,jk,Kmm) )
END_3D
!
IF( ( kpass == 1 .AND. ln_traldf_lap ) .OR. & !== first pass only ( laplacian) ==!
( kpass == 2 .AND. ln_traldf_blp ) ) THEN !== 2nd pass (bilaplacian) ==!
!
! ! "Poleward" diffusive heat or salt transports (T-S case only)
IF( l_ptr ) CALL dia_ptr_hst( jn, 'ldf', zftv(:,:,:) )
! ! Diffusive heat transports
IF( l_hst ) CALL dia_ar5_hst( jn, 'ldf', zftu(:,:,:), zftv(:,:,:) )
!
ENDIF !== end pass selection ==!
!
! ! ===============
END DO ! end tracer loop
! ! ===============
END SUBROUTINE tra_ldf_triad_t
!!==============================================================================
END MODULE traldf_triad