Skip to content
Snippets Groups Projects
p4zche.F90 35.2 KiB
Newer Older
Guillaume Samson's avatar
Guillaume Samson committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
MODULE p4zche
   !!======================================================================
   !!                         ***  MODULE p4zche  ***
   !! TOP :   PISCES Sea water chemistry computed following OCMIP protocol
   !!======================================================================
   !! History :   OPA  !  1988     (E. Maier-Reimer)  Original code
   !!              -   !  1998     (O. Aumont)  addition
   !!              -   !  1999     (C. Le Quere)  modification
   !!   NEMO      1.0  !  2004     (O. Aumont)  modification
   !!              -   !  2006     (R. Gangsto)  modification
   !!             2.0  !  2007-12  (C. Ethe, G. Madec)  F90
   !!                  !  2011-02  (J. Simeon, J.Orr ) update O2 solubility constants
   !!             3.6  !  2016-03  (O. Aumont) Change chemistry to MOCSY standards
   !!----------------------------------------------------------------------
   !!   p4z_che      :  Sea water chemistry computed following OCMIP protocol
   !!----------------------------------------------------------------------
   USE oce_trc       !  shared variables between ocean and passive tracers
   USE trc           !  passive tracers common variables
   USE sms_pisces    !  PISCES Source Minus Sink variables
   USE lib_mpp       !  MPP library
   USE eosbn2, ONLY : neos

   IMPLICIT NONE
   PRIVATE

   PUBLIC   p4z_che          !
   PUBLIC   p4z_che_alloc    !
   PUBLIC   ahini_for_at     !
   PUBLIC   solve_at_general !

   REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:)   :: sio3eq   ! chemistry of Si
   REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:)   :: fekeq    ! chemistry of Fe
   REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:)   :: chemc    ! Solubilities of O2 and CO2
   REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:)   :: chemo2    ! Solubilities of O2 and CO2
   REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:,:) :: fesol    ! solubility of Fe
   REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) ::   salinprac  ! Practical salinity
   REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) ::   tempis   ! In situ temperature

   REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) ::   akb3       !: ???
   REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) ::   akw3       !: ???
   REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) ::   akf3       !: ???
   REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) ::   aks3       !: ???
   REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) ::   ak1p3      !: ???
   REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) ::   ak2p3      !: ???
   REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) ::   ak3p3      !: ???
   REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) ::   aksi3      !: ???
   REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) ::   borat      !: ???
   REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) ::   fluorid    !: ???
   REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) ::   sulfat     !: ???

   !!* Variable for chemistry of the CO2 cycle

   REAL(wp), PUBLIC ::   atcox  = 0.20946         ! units atm

   REAL(wp) ::   o2atm  = 1. / ( 1000. * 0.20946 )  

   REAL(wp) ::   rgas   = 83.14472      ! universal gas constants
   REAL(wp) ::   oxyco  = 1. / 22.4144  ! converts from liters of an ideal gas to moles
   !                                    ! coeff. for seawater pressure correction : millero 95
   !                                    ! AGRIF doesn't like the DATA instruction
   REAL(wp) :: devk10  = -25.5
   REAL(wp) :: devk11  = -15.82
   REAL(wp) :: devk12  = -29.48
   REAL(wp) :: devk13  = -20.02
   REAL(wp) :: devk14  = -18.03
   REAL(wp) :: devk15  = -9.78
   REAL(wp) :: devk16  = -48.76
   REAL(wp) :: devk17  = -14.51
   REAL(wp) :: devk18  = -23.12
   REAL(wp) :: devk19  = -26.57
   REAL(wp) :: devk110  = -29.48
   !
   REAL(wp) :: devk20  = 0.1271
   REAL(wp) :: devk21  = -0.0219
   REAL(wp) :: devk22  = 0.1622
   REAL(wp) :: devk23  = 0.1119
   REAL(wp) :: devk24  = 0.0466
   REAL(wp) :: devk25  = -0.0090
   REAL(wp) :: devk26  = 0.5304
   REAL(wp) :: devk27  = 0.1211
   REAL(wp) :: devk28  = 0.1758
   REAL(wp) :: devk29  = 0.2020
   REAL(wp) :: devk210  = 0.1622
   !
   REAL(wp) :: devk30  = 0.
   REAL(wp) :: devk31  = 0.
   REAL(wp) :: devk32  = 2.608E-3
   REAL(wp) :: devk33  = -1.409e-3
   REAL(wp) :: devk34  = 0.316e-3
   REAL(wp) :: devk35  = -0.942e-3
   REAL(wp) :: devk36  = 0.
   REAL(wp) :: devk37  = -0.321e-3
   REAL(wp) :: devk38  = -2.647e-3
   REAL(wp) :: devk39  = -3.042e-3
   REAL(wp) :: devk310  = -2.6080e-3
   !
   REAL(wp) :: devk40  = -3.08E-3
   REAL(wp) :: devk41  = 1.13E-3
   REAL(wp) :: devk42  = -2.84E-3
   REAL(wp) :: devk43  = -5.13E-3
   REAL(wp) :: devk44  = -4.53e-3
   REAL(wp) :: devk45  = -3.91e-3
   REAL(wp) :: devk46  = -11.76e-3
   REAL(wp) :: devk47  = -2.67e-3
   REAL(wp) :: devk48  = -5.15e-3
   REAL(wp) :: devk49  = -4.08e-3
   REAL(wp) :: devk410  = -2.84e-3
   !
   REAL(wp) :: devk50  = 0.0877E-3
   REAL(wp) :: devk51  = -0.1475E-3     
   REAL(wp) :: devk52  = 0.
   REAL(wp) :: devk53  = 0.0794E-3      
   REAL(wp) :: devk54  = 0.09e-3
   REAL(wp) :: devk55  = 0.054e-3
   REAL(wp) :: devk56  = 0.3692E-3
   REAL(wp) :: devk57  = 0.0427e-3
   REAL(wp) :: devk58  = 0.09e-3
   REAL(wp) :: devk59  = 0.0714e-3
   REAL(wp) :: devk510  = 0.0
   !
   ! General parameters
   REAL(wp), PARAMETER :: pp_rdel_ah_target = 1.E-4_wp
   REAL(wp), PARAMETER :: pp_ln10 = 2.302585092994045684018_wp

   ! Maximum number of iterations for each method
   INTEGER, PARAMETER :: jp_maxniter_atgen    = 20

   ! Bookkeeping variables for each method
   ! - SOLVE_AT_GENERAL
   INTEGER :: niter_atgen    = jp_maxniter_atgen

   !! * Substitutions
#  include "do_loop_substitute.h90"
#  include "domzgr_substitute.h90"
   !!----------------------------------------------------------------------
   !! NEMO/TOP 4.0 , NEMO Consortium (2018)
   !! $Id: p4zche.F90 15459 2021-10-29 08:19:18Z cetlod $ 
   !! Software governed by the CeCILL license (see ./LICENSE)
   !!----------------------------------------------------------------------
CONTAINS

   SUBROUTINE p4z_che( Kbb, Kmm )
      !!---------------------------------------------------------------------
      !!                     ***  ROUTINE p4z_che  ***
      !!
      !! ** Purpose :   Sea water chemistry computed following OCMIP protocol
      !!
      !! ** Method  : - ...
      !!---------------------------------------------------------------------
      INTEGER, INTENT(in) ::   Kbb, Kmm  ! time level indices
      INTEGER  ::   ji, jj, jk
      REAL(wp) ::   ztkel, ztkel1, zt , zsal  , zsal2 , zbuf1 , zbuf2
      REAL(wp) ::   ztgg , ztgg2, ztgg3 , ztgg4 , ztgg5
      REAL(wp) ::   zpres, ztc  , zcl   , zcpexp, zoxy  , zcpexp2
      REAL(wp) ::   zsqrt, ztr  , zlogt , zcek1, zc1, zplat
      REAL(wp) ::   zis  , zis2 , zsal15, zisqrt, za1, za2
      REAL(wp) ::   zckb , zck1 , zck2  , zckw  , zak1 , zak2  , zakb , zaksp0, zakw
      REAL(wp) ::   zck1p, zck2p, zck3p, zcksi, zak1p, zak2p, zak3p, zaksi
      REAL(wp) ::   zst  , zft  , zcks  , zckf  , zaksp1
      REAL(wp) ::   total2free, free2SWS, total2SWS, SWS2total
      !!---------------------------------------------------------------------
      !
      IF( ln_timing )   CALL timing_start('p4z_che')
      !
      ! Computation of chemical constants require practical salinity
      ! Thus, when TEOS08 is used, absolute salinity is converted to 
      ! practical salinity
      ! -------------------------------------------------------------
      IF (neos == -1) THEN
         salinprac(:,:,:) = ts(:,:,:,jp_sal,Kmm) * 35.0 / 35.16504
      ELSE
         salinprac(:,:,:) = ts(:,:,:,jp_sal,Kmm)
      ENDIF

      !
      ! Computations of chemical constants require in situ temperature
      ! Here a quite simple formulation is used to convert 
      ! potential temperature to in situ temperature. The errors is less than 
      ! 0.04°C relative to an exact computation
      ! ---------------------------------------------------------------------
      DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, jpk )
         zpres = gdept(ji,jj,jk,Kmm) / 1000.
         za1 = 0.04 * ( 1.0 + 0.185 * ts(ji,jj,jk,jp_tem,Kmm) + 0.035 * (salinprac(ji,jj,jk) - 35.0) )
         za2 = 0.0075 * ( 1.0 - ts(ji,jj,jk,jp_tem,Kmm) / 30.0 )
         tempis(ji,jj,jk) = ts(ji,jj,jk,jp_tem,Kmm) - za1 * zpres + za2 * zpres**2
      END_3D
      !
      ! CHEMICAL CONSTANTS - SURFACE LAYER
      ! ----------------------------------
      DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
         !                             ! SET ABSOLUTE TEMPERATURE
         ztkel = tempis(ji,jj,1) + 273.15
         zt    = ztkel * 0.01
         zsal  = salinprac(ji,jj,1) + ( 1.- tmask(ji,jj,1) ) * 35.
         !                             ! LN(K0) OF SOLUBILITY OF CO2 (EQ. 12, WEISS, 1980)
         !                             !     AND FOR THE ATMOSPHERE FOR NON IDEAL GAS
         zcek1 = 9050.69/ztkel - 58.0931 + 22.2940 * LOG(zt) + zsal*(0.027766 - 0.00025888*ztkel    &
         &       + 0.0050578e-4*ztkel**2)
         chemc(ji,jj,1) = EXP( zcek1 ) * 1E-6    ! mol/(L atm)
         chemc(ji,jj,2) = -1636.75 + 12.0408*ztkel - 0.0327957*ztkel**2 + 0.0000316528*ztkel**3
         chemc(ji,jj,3) = 57.7 - 0.118*ztkel
      END_2D

      ! OXYGEN SOLUBILITY - DEEP OCEAN
      ! -------------------------------
      DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, jpk )
         ztkel = tempis(ji,jj,jk) + 273.15
         zsal  = salinprac(ji,jj,jk) + ( 1.- tmask(ji,jj,jk) ) * 35.
         zsal2 = zsal * zsal
         ztgg  = LOG( ( 298.15 - tempis(ji,jj,jk) ) / ztkel )  ! Set the GORDON & GARCIA scaled temperature
         ztgg2 = ztgg  * ztgg
         ztgg3 = ztgg2 * ztgg
         ztgg4 = ztgg3 * ztgg
         ztgg5 = ztgg4 * ztgg

         zoxy  = 2.00856 + 3.22400 * ztgg + 3.99063 * ztgg2 + 4.80299 * ztgg3    &
         &       + 9.78188e-1 * ztgg4 + 1.71069 * ztgg5 + zsal * ( -6.24097e-3   &
         &       - 6.93498e-3 * ztgg - 6.90358e-3 * ztgg2 - 4.29155e-3 * ztgg3 )   &
         &       - 3.11680e-7 * zsal2
         chemo2(ji,jj,jk) = ( EXP( zoxy ) * o2atm ) * oxyco * atcox     ! mol/(L atm)
      END_3D

      ! CHEMICAL CONSTANTS - DEEP OCEAN
      ! -------------------------------
      DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, jpk )
          ! SET PRESSION ACCORDING TO SAUNDER (1980)
          zplat   = SIN ( ABS(gphit(ji,jj)*3.141592654/180.) )
          zc1 = 5.92E-3 + zplat**2 * 5.25E-3
          zpres = ((1-zc1)-SQRT(((1-zc1)**2)-(8.84E-6*gdept(ji,jj,jk,Kmm)))) / 4.42E-6
          zpres = zpres / 10.0

          ! SET ABSOLUTE TEMPERATURE
          ztkel   = tempis(ji,jj,jk) + 273.15
          zsal    = salinprac(ji,jj,jk) + ( 1.-tmask(ji,jj,jk) ) * 35.
          zsqrt  = SQRT( zsal )
          zsal15  = zsqrt * zsal
          zlogt  = LOG( ztkel )
          ztr    = 1. / ztkel
          zis    = 19.924 * zsal / ( 1000.- 1.005 * zsal )
          zis2   = zis * zis
          zisqrt = SQRT( zis )
          ztc     = tempis(ji,jj,jk) + ( 1.- tmask(ji,jj,jk) ) * 20.

          ! CHLORINITY (WOOSTER ET AL., 1969)
          zcl     = zsal / 1.80655

          ! TOTAL SULFATE CONCENTR. [MOLES/kg soln]
          zst     = 0.14 * zcl /96.062

          ! TOTAL FLUORIDE CONCENTR. [MOLES/kg soln]
          zft     = 0.000067 * zcl /18.9984

          ! DISSOCIATION CONSTANT FOR SULFATES on free H scale (Dickson 1990)
          zcks    = EXP(-4276.1 * ztr + 141.328 - 23.093 * zlogt         &
          &         + (-13856. * ztr + 324.57 - 47.986 * zlogt) * zisqrt &
          &         + (35474. * ztr - 771.54 + 114.723 * zlogt) * zis    &
          &         - 2698. * ztr * zis**1.5 + 1776.* ztr * zis2         &
          &         + LOG(1.0 - 0.001005 * zsal))

          ! DISSOCIATION CONSTANT FOR FLUORIDES on free H scale (Dickson and Riley 79)
          zckf    = EXP( 1590.2*ztr - 12.641 + 1.525*zisqrt   &
          &         + LOG(1.0d0 - 0.001005d0*zsal)            &
          &         + LOG(1.0d0 + zst/zcks))

          ! DISSOCIATION CONSTANT FOR CARBONATE AND BORATE
          zckb=  (-8966.90 - 2890.53*zsqrt - 77.942*zsal        &
          &      + 1.728*zsal15 - 0.0996*zsal*zsal)*ztr         &
          &      + (148.0248 + 137.1942*zsqrt + 1.62142*zsal)   &
          &      + (-24.4344 - 25.085*zsqrt - 0.2474*zsal)      & 
          &      * zlogt + 0.053105*zsqrt*ztkel

          ! DISSOCIATION COEFFICIENT FOR CARBONATE ACCORDING TO 
          ! MEHRBACH (1973) REFIT BY MILLERO (1995), seawater scale
          zck1    = -1.0*(3633.86*ztr - 61.2172 + 9.6777*zlogt  &
             - 0.011555*zsal + 0.0001152*zsal*zsal)
          zck2    = -1.0*(471.78*ztr + 25.9290 - 3.16967*zlogt      &
             - 0.01781*zsal + 0.0001122*zsal*zsal)

          ! PKW (H2O) (MILLERO, 1995) from composite data
          zckw    = -13847.26 * ztr + 148.9652 - 23.6521 * zlogt + ( 118.67 * ztr    &
                    - 5.977 + 1.0495 * zlogt ) * zsqrt - 0.01615 * zsal

          ! CONSTANTS FOR PHOSPHATE (MILLERO, 1995)
         zck1p    = -4576.752*ztr + 115.540 - 18.453*zlogt   &
         &          + (-106.736*ztr + 0.69171) * zsqrt       &
         &          + (-0.65643*ztr - 0.01844) * zsal

         zck2p    = -8814.715*ztr + 172.1033 - 27.927*zlogt  &
         &          + (-160.340*ztr + 1.3566)*zsqrt          &
         &          + (0.37335*ztr - 0.05778)*zsal

         zck3p    = -3070.75*ztr - 18.126                    &
         &          + (17.27039*ztr + 2.81197) * zsqrt       &
         &          + (-44.99486*ztr - 0.09984) * zsal 

         ! CONSTANT FOR SILICATE, MILLERO (1995)
         zcksi    = -8904.2*ztr  + 117.400 - 19.334*zlogt   &
         &          + (-458.79*ztr + 3.5913) * zisqrt       &
         &          + (188.74*ztr - 1.5998) * zis           &
         &          + (-12.1652*ztr + 0.07871) * zis2       &
         &          + LOG(1.0 - 0.001005*zsal)

          ! APPARENT SOLUBILITY PRODUCT K'SP OF CALCITE IN SEAWATER
          !       (S=27-43, T=2-25 DEG C) at pres =0 (atmos. pressure) (MUCCI 1983)
          zaksp0  = -171.9065 -0.077993*ztkel + 2839.319*ztr + 71.595*LOG10( ztkel )   &
             &      + (-0.77712 + 0.00284263*ztkel + 178.34*ztr) * zsqrt  &
             &      - 0.07711*zsal + 0.0041249*zsal15

          ! CONVERT FROM DIFFERENT PH SCALES
          total2free  = 1.0/(1.0 + zst/zcks)
          free2SWS    = 1. + zst/zcks + zft/(zckf*total2free)
          total2SWS   = total2free * free2SWS
          SWS2total   = 1.0 / total2SWS

          ! K1, K2 OF CARBONIC ACID, KB OF BORIC ACID, KW (H2O) (LIT.?)
          zak1    = 10**(zck1) * total2SWS
          zak2    = 10**(zck2) * total2SWS
          zakb    = EXP( zckb ) * total2SWS
          zakw    = EXP( zckw )
          zaksp1  = 10**(zaksp0)
          zak1p   = exp( zck1p )
          zak2p   = exp( zck2p )
          zak3p   = exp( zck3p )
          zaksi   = exp( zcksi )
          zckf    = zckf * total2SWS

          ! FORMULA FOR CPEXP AFTER EDMOND & GIESKES (1970)
          !        (REFERENCE TO CULBERSON & PYTKOQICZ (1968) AS MADE
          !        IN BROECKER ET AL. (1982) IS INCORRECT; HERE RGAS IS
          !        TAKEN TENFOLD TO CORRECT FOR THE NOTATION OF pres  IN
          !        DBAR INSTEAD OF BAR AND THE EXPRESSION FOR CPEXP IS
          !        MULTIPLIED BY LN(10.) TO ALLOW USE OF EXP-FUNCTION
          !        WITH BASIS E IN THE FORMULA FOR AKSPP (CF. EDMOND
          !        & GIESKES (1970), P. 1285-1286 (THE SMALL
          !        FORMULA ON P. 1286 IS RIGHT AND CONSISTENT WITH THE
          !        SIGN IN PARTIAL MOLAR VOLUME CHANGE AS SHOWN ON P. 1285))
          zcpexp  = zpres / (rgas*ztkel)
          zcpexp2 = zpres * zcpexp

          ! KB OF BORIC ACID, K1,K2 OF CARBONIC ACID PRESSURE
          !        CORRECTION AFTER CULBERSON AND PYTKOWICZ (1968)
          !        (CF. BROECKER ET AL., 1982)

          zbuf1  = -     ( devk10 + devk20 * ztc + devk30 * ztc * ztc )
          zbuf2  = 0.5 * ( devk40 + devk50 * ztc )
          ak13(ji,jj,jk) = zak1 * EXP( zbuf1 * zcpexp + zbuf2 * zcpexp2 )

          zbuf1  =     - ( devk11 + devk21 * ztc + devk31 * ztc * ztc )
          zbuf2  = 0.5 * ( devk41 + devk51 * ztc )
          ak23(ji,jj,jk) = zak2 * EXP( zbuf1 * zcpexp + zbuf2 * zcpexp2 )

          zbuf1  =     - ( devk12 + devk22 * ztc + devk32 * ztc * ztc )
          zbuf2  = 0.5 * ( devk42 + devk52 * ztc )
          akb3(ji,jj,jk) = zakb * EXP( zbuf1 * zcpexp + zbuf2 * zcpexp2 )

          zbuf1  =     - ( devk13 + devk23 * ztc + devk33 * ztc * ztc )
          zbuf2  = 0.5 * ( devk43 + devk53 * ztc )
          akw3(ji,jj,jk) = zakw * EXP( zbuf1 * zcpexp + zbuf2 * zcpexp2 )

          zbuf1  =     - ( devk14 + devk24 * ztc + devk34 * ztc * ztc )
          zbuf2  = 0.5 * ( devk44 + devk54 * ztc )
          aks3(ji,jj,jk) = zcks * EXP( zbuf1 * zcpexp + zbuf2 * zcpexp2 )

          zbuf1  =     - ( devk15 + devk25 * ztc + devk35 * ztc * ztc )
          zbuf2  = 0.5 * ( devk45 + devk55 * ztc )
          akf3(ji,jj,jk) = zckf * EXP( zbuf1 * zcpexp + zbuf2 * zcpexp2 )

          zbuf1  =     - ( devk17 + devk27 * ztc + devk37 * ztc * ztc )
          zbuf2  = 0.5 * ( devk47 + devk57 * ztc )
          ak1p3(ji,jj,jk) = zak1p * EXP( zbuf1 * zcpexp + zbuf2 * zcpexp2 )

          zbuf1  =     - ( devk18 + devk28 * ztc + devk38 * ztc * ztc )
          zbuf2  = 0.5 * ( devk48 + devk58 * ztc )
          ak2p3(ji,jj,jk) = zak2p * EXP( zbuf1 * zcpexp + zbuf2 * zcpexp2 )

          zbuf1  =     - ( devk19 + devk29 * ztc + devk39 * ztc * ztc )
          zbuf2  = 0.5 * ( devk49 + devk59 * ztc )
          ak3p3(ji,jj,jk) = zak3p * EXP( zbuf1 * zcpexp + zbuf2 * zcpexp2 )

          zbuf1  =     - ( devk110 + devk210 * ztc + devk310 * ztc * ztc )
          zbuf2  = 0.5 * ( devk410 + devk510 * ztc )
          aksi3(ji,jj,jk) = zaksi * EXP( zbuf1 * zcpexp + zbuf2 * zcpexp2 )

          ! CONVERT FROM DIFFERENT PH SCALES
          total2free  = 1.0/(1.0 + zst/aks3(ji,jj,jk))
          free2SWS    = 1. + zst/aks3(ji,jj,jk) + zft/akf3(ji,jj,jk)
          total2SWS   = total2free * free2SWS
          SWS2total   = 1.0 / total2SWS

          ! Convert to total scale
          ak13(ji,jj,jk)  = ak13(ji,jj,jk)  * SWS2total
          ak23(ji,jj,jk)  = ak23(ji,jj,jk)  * SWS2total
          akb3(ji,jj,jk)  = akb3(ji,jj,jk)  * SWS2total
          akw3(ji,jj,jk)  = akw3(ji,jj,jk)  * SWS2total
          ak1p3(ji,jj,jk) = ak1p3(ji,jj,jk) * SWS2total
          ak2p3(ji,jj,jk) = ak2p3(ji,jj,jk) * SWS2total
          ak3p3(ji,jj,jk) = ak3p3(ji,jj,jk) * SWS2total
          aksi3(ji,jj,jk) = aksi3(ji,jj,jk) * SWS2total
          akf3(ji,jj,jk)  = akf3(ji,jj,jk)  / total2free

          ! APPARENT SOLUBILITY PRODUCT K'SP OF CALCITE 
          !        AS FUNCTION OF PRESSURE FOLLOWING MILLERO
          !        (P. 1285) AND BERNER (1976)
          zbuf1  =     - ( devk16 + devk26 * ztc + devk36 * ztc * ztc )
          zbuf2  = 0.5 * ( devk46 + devk56 * ztc )
          aksp(ji,jj,jk) = zaksp1 * EXP( zbuf1 * zcpexp + zbuf2 * zcpexp2 )

          ! TOTAL F, S, and BORATE CONCENTR. [MOLES/L]
          borat(ji,jj,jk) = 0.0002414 * zcl / 10.811
          sulfat(ji,jj,jk) = zst
          fluorid(ji,jj,jk) = zft 

          ! Iron and SIO3 saturation concentration from ...
          sio3eq(ji,jj,jk) = EXP(  LOG( 10.) * ( 6.44 - 968. / ztkel )  ) * 1.e-6
          fekeq (ji,jj,jk) = 10**( 17.27 - 1565.7 / ztkel ) 
          ! Liu and Millero (1999) only valid 5 - 50 degC
          ztkel1 = MAX( 5. , tempis(ji,jj,jk) ) + 273.16
          fesol(ji,jj,jk,1) = 10**(-13.486 - 0.1856* zis**0.5 + 0.3073*zis + 5254.0/ztkel1)
          fesol(ji,jj,jk,2) = 10**(2.517 - 0.8885*zis**0.5 + 0.2139 * zis - 1320.0/ztkel1 )
          fesol(ji,jj,jk,3) = 10**(0.4511 - 0.3305*zis**0.5 - 1996.0/ztkel1 )
          fesol(ji,jj,jk,4) = 10**(-0.2965 - 0.7881*zis**0.5 - 4086.0/ztkel1 )
          fesol(ji,jj,jk,5) = 10**(4.4466 - 0.8505*zis**0.5 - 7980.0/ztkel1 )
      END_3D
      !
      IF( ln_timing )  CALL timing_stop('p4z_che')
      !
   END SUBROUTINE p4z_che

   SUBROUTINE ahini_for_at(p_hini, Kbb )
      !!---------------------------------------------------------------------
      !!                     ***  ROUTINE ahini_for_at  ***
      !!
      !! Subroutine returns the root for the 2nd order approximation of the
      !! DIC -- B_T -- A_CB equation for [H+] (reformulated as a cubic 
      !! polynomial) around the local minimum, if it exists.
      !! Returns * 1E-03_wp if p_alkcb <= 0
      !!         * 1E-10_wp if p_alkcb >= 2*p_dictot + p_bortot
      !!         * 1E-07_wp if 0 < p_alkcb < 2*p_dictot + p_bortot
      !!                    and the 2nd order approximation does not have 
      !!                    a solution
      !!---------------------------------------------------------------------
      REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(OUT)  ::  p_hini
      INTEGER,                          INTENT(in)   ::  Kbb      ! time level indices
      INTEGER  ::   ji, jj, jk
      REAL(wp)  ::  zca1, zba1
      REAL(wp)  ::  zd, zsqrtd, zhmin
      REAL(wp)  ::  za2, za1, za0
      REAL(wp)  ::  p_dictot, p_bortot, p_alkcb 
      !!---------------------------------------------------------------------

      IF( ln_timing )  CALL timing_start('ahini_for_at')
      !
      DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, jpk )
      p_alkcb  = tr(ji,jj,jk,jptal,Kbb) * 1000. / (rhop(ji,jj,jk) + rtrn)
      p_dictot = tr(ji,jj,jk,jpdic,Kbb) * 1000. / (rhop(ji,jj,jk) + rtrn)
      p_bortot = borat(ji,jj,jk)
      IF (p_alkcb <= 0.) THEN
          p_hini(ji,jj,jk) = 1.e-3
      ELSEIF (p_alkcb >= (2.*p_dictot + p_bortot)) THEN
          p_hini(ji,jj,jk) = 1.e-10_wp
      ELSE
          zca1 = p_dictot/( p_alkcb + rtrn )
          zba1 = p_bortot/ (p_alkcb + rtrn )
     ! Coefficients of the cubic polynomial
          za2 = aKb3(ji,jj,jk)*(1. - zba1) + ak13(ji,jj,jk)*(1.-zca1)
          za1 = ak13(ji,jj,jk)*akb3(ji,jj,jk)*(1. - zba1 - zca1)    &
          &     + ak13(ji,jj,jk)*ak23(ji,jj,jk)*(1. - (zca1+zca1))
          za0 = ak13(ji,jj,jk)*ak23(ji,jj,jk)*akb3(ji,jj,jk)*(1. - zba1 - (zca1+zca1))
                                  ! Taylor expansion around the minimum
          zd = za2*za2 - 3.*za1   ! Discriminant of the quadratic equation
                                  ! for the minimum close to the root

          IF(zd > 0.) THEN        ! If the discriminant is positive
            zsqrtd = SQRT(zd)
            IF(za2 < 0) THEN
              zhmin = (-za2 + zsqrtd)/3.
            ELSE
              zhmin = -za1/(za2 + zsqrtd)
            ENDIF
            p_hini(ji,jj,jk) = zhmin + SQRT(-(za0 + zhmin*(za1 + zhmin*(za2 + zhmin)))/zsqrtd)
          ELSE
            p_hini(ji,jj,jk) = 1.e-7
          ENDIF
       !
       ENDIF
      END_3D
      !
      IF( ln_timing )  CALL timing_stop('ahini_for_at')
      !
   END SUBROUTINE ahini_for_at

   !===============================================================================

   SUBROUTINE anw_infsup( p_alknw_inf, p_alknw_sup, Kbb )

   ! Subroutine returns the lower and upper bounds of "non-water-selfionization"
   ! contributions to total alkalinity (the infimum and the supremum), i.e
   ! inf(TA - [OH-] + [H+]) and sup(TA - [OH-] + [H+])

   ! Argument variables
   REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(OUT) :: p_alknw_inf
   REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(OUT) :: p_alknw_sup
   INTEGER,                          INTENT(in)  ::  Kbb      ! time level indices

   p_alknw_inf(:,:,:) =  -tr(:,:,:,jppo4,Kbb) * 1000. / (rhop(:,:,:) + rtrn) - sulfat(:,:,:)  &
   &              - fluorid(:,:,:)
   p_alknw_sup(:,:,:) =   (2. * tr(:,:,:,jpdic,Kbb) + 2. * tr(:,:,:,jppo4,Kbb) + tr(:,:,:,jpsil,Kbb) )    &
   &               * 1000. / (rhop(:,:,:) + rtrn) + borat(:,:,:) 

   END SUBROUTINE anw_infsup


   SUBROUTINE solve_at_general( p_hini, zhi, Kbb )

   ! Universal pH solver that converges from any given initial value,
   ! determines upper an lower bounds for the solution if required

   ! Argument variables
   !--------------------
   REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(IN)   :: p_hini
   REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(OUT)  :: zhi
   INTEGER,                          INTENT(in)   :: Kbb  ! time level indices

   ! Local variables
   !-----------------
   INTEGER   ::  ji, jj, jk, jn
   REAL(wp)  ::  zh_ini, zh, zh_prev, zh_lnfactor
   REAL(wp)  ::  zdelta, zh_delta
   REAL(wp)  ::  zeqn, zdeqndh, zalka
   REAL(wp)  ::  aphscale
   REAL(wp)  ::  znumer_dic, zdnumer_dic, zdenom_dic, zalk_dic, zdalk_dic
   REAL(wp)  ::  znumer_bor, zdnumer_bor, zdenom_bor, zalk_bor, zdalk_bor
   REAL(wp)  ::  znumer_po4, zdnumer_po4, zdenom_po4, zalk_po4, zdalk_po4
   REAL(wp)  ::  znumer_sil, zdnumer_sil, zdenom_sil, zalk_sil, zdalk_sil
   REAL(wp)  ::  znumer_so4, zdnumer_so4, zdenom_so4, zalk_so4, zdalk_so4
   REAL(wp)  ::  znumer_flu, zdnumer_flu, zdenom_flu, zalk_flu, zdalk_flu
   REAL(wp)  ::  zalk_wat, zdalk_wat
   REAL(wp)  ::  zfact, p_alktot, zdic, zbot, zpt, zst, zft, zsit
   LOGICAL   ::  l_exitnow
   REAL(wp), PARAMETER :: pz_exp_threshold = 1.0
   REAL(wp), DIMENSION(jpi,jpj,jpk) :: zalknw_inf, zalknw_sup, rmask, zh_min, zh_max, zeqn_absmin

   IF( ln_timing )  CALL timing_start('solve_at_general')

   CALL anw_infsup( zalknw_inf, zalknw_sup, Kbb )

   rmask(:,:,:) = tmask(:,:,:)
   zhi(:,:,:)   = 0.

   ! TOTAL H+ scale: conversion factor for Htot = aphscale * Hfree
   DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, jpk )
      IF (rmask(ji,jj,jk) == 1.) THEN
         p_alktot = tr(ji,jj,jk,jptal,Kbb) * 1000. / (rhop(ji,jj,jk) + rtrn)
         aphscale = 1. + sulfat(ji,jj,jk)/aks3(ji,jj,jk)
         zh_ini = p_hini(ji,jj,jk)

         zdelta = (p_alktot-zalknw_inf(ji,jj,jk))**2 + 4.*akw3(ji,jj,jk)/aphscale

         IF(p_alktot >= zalknw_inf(ji,jj,jk)) THEN
           zh_min(ji,jj,jk) = 2.*akw3(ji,jj,jk) /( p_alktot-zalknw_inf(ji,jj,jk) + SQRT(zdelta) )
         ELSE
           zh_min(ji,jj,jk) = aphscale*(-(p_alktot-zalknw_inf(ji,jj,jk)) + SQRT(zdelta) ) / 2.
         ENDIF

         zdelta = (p_alktot-zalknw_sup(ji,jj,jk))**2 + 4.*akw3(ji,jj,jk)/aphscale

         IF(p_alktot <= zalknw_sup(ji,jj,jk)) THEN
           zh_max(ji,jj,jk) = aphscale*(-(p_alktot-zalknw_sup(ji,jj,jk)) + SQRT(zdelta) ) / 2.
         ELSE
           zh_max(ji,jj,jk) = 2.*akw3(ji,jj,jk) /( p_alktot-zalknw_sup(ji,jj,jk) + SQRT(zdelta) )
         ENDIF

         zhi(ji,jj,jk) = MAX(MIN(zh_max(ji,jj,jk), zh_ini), zh_min(ji,jj,jk))
      ENDIF
   END_3D

   zeqn_absmin(:,:,:) = HUGE(1._wp)

   DO jn = 1, jp_maxniter_atgen 
      DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, jpk )
      IF (rmask(ji,jj,jk) == 1.) THEN
         zfact = rhop(ji,jj,jk) / 1000. + rtrn
         p_alktot = tr(ji,jj,jk,jptal,Kbb) / zfact
         zdic  = tr(ji,jj,jk,jpdic,Kbb) / zfact
         zbot  = borat(ji,jj,jk)
         zpt = tr(ji,jj,jk,jppo4,Kbb) / zfact * po4r
         zsit = tr(ji,jj,jk,jpsil,Kbb) / zfact
         zst = sulfat (ji,jj,jk)
         zft = fluorid(ji,jj,jk)
         aphscale = 1. + sulfat(ji,jj,jk)/aks3(ji,jj,jk)
         zh = zhi(ji,jj,jk)
         zh_prev = zh

         ! H2CO3 - HCO3 - CO3 : n=2, m=0
         znumer_dic = 2.*ak13(ji,jj,jk)*ak23(ji,jj,jk) + zh*ak13(ji,jj,jk)
         zdenom_dic = ak13(ji,jj,jk)*ak23(ji,jj,jk) + zh*(ak13(ji,jj,jk) + zh)
         zalk_dic   = zdic * (znumer_dic/zdenom_dic)
         zdnumer_dic = ak13(ji,jj,jk)*ak13(ji,jj,jk)*ak23(ji,jj,jk) + zh     &
                       *(4.*ak13(ji,jj,jk)*ak23(ji,jj,jk) + zh*ak13(ji,jj,jk))
         zdalk_dic   = -zdic*(zdnumer_dic/zdenom_dic**2)


         ! B(OH)3 - B(OH)4 : n=1, m=0
         znumer_bor = akb3(ji,jj,jk)
         zdenom_bor = akb3(ji,jj,jk) + zh
         zalk_bor   = zbot * (znumer_bor/zdenom_bor)
         zdnumer_bor = akb3(ji,jj,jk)
         zdalk_bor   = -zbot*(zdnumer_bor/zdenom_bor**2)


         ! H3PO4 - H2PO4 - HPO4 - PO4 : n=3, m=1
         znumer_po4 = 3.*ak1p3(ji,jj,jk)*ak2p3(ji,jj,jk)*ak3p3(ji,jj,jk)  &
         &            + zh*(2.*ak1p3(ji,jj,jk)*ak2p3(ji,jj,jk) + zh* ak1p3(ji,jj,jk))
         zdenom_po4 = ak1p3(ji,jj,jk)*ak2p3(ji,jj,jk)*ak3p3(ji,jj,jk)     &
         &            + zh*( ak1p3(ji,jj,jk)*ak2p3(ji,jj,jk) + zh*(ak1p3(ji,jj,jk) + zh))
         zalk_po4   = zpt * (znumer_po4/zdenom_po4 - 1.) ! Zero level of H3PO4 = 1
         zdnumer_po4 = ak1p3(ji,jj,jk)*ak2p3(ji,jj,jk)*ak1p3(ji,jj,jk)*ak2p3(ji,jj,jk)*ak3p3(ji,jj,jk)  &
         &             + zh*(4.*ak1p3(ji,jj,jk)*ak1p3(ji,jj,jk)*ak2p3(ji,jj,jk)*ak3p3(ji,jj,jk)         &
         &             + zh*(9.*ak1p3(ji,jj,jk)*ak2p3(ji,jj,jk)*ak3p3(ji,jj,jk)                         &
         &             + ak1p3(ji,jj,jk)*ak1p3(ji,jj,jk)*ak2p3(ji,jj,jk)                                &
         &             + zh*(4.*ak1p3(ji,jj,jk)*ak2p3(ji,jj,jk) + zh * ak1p3(ji,jj,jk) ) ) )
         zdalk_po4   = -zpt * (zdnumer_po4/zdenom_po4**2)

         ! H4SiO4 - H3SiO4 : n=1, m=0
         znumer_sil = aksi3(ji,jj,jk)
         zdenom_sil = aksi3(ji,jj,jk) + zh
         zalk_sil   = zsit * (znumer_sil/zdenom_sil)
         zdnumer_sil = aksi3(ji,jj,jk)
         zdalk_sil   = -zsit * (zdnumer_sil/zdenom_sil**2)

         ! HSO4 - SO4 : n=1, m=1
         aphscale = 1.0 + zst/aks3(ji,jj,jk)
         znumer_so4 = aks3(ji,jj,jk) * aphscale
         zdenom_so4 = aks3(ji,jj,jk) * aphscale + zh
         zalk_so4   = zst * (znumer_so4/zdenom_so4 - 1.)
         zdnumer_so4 = aks3(ji,jj,jk)
         zdalk_so4   = -zst * (zdnumer_so4/zdenom_so4**2)

         ! HF - F : n=1, m=1
         znumer_flu =  akf3(ji,jj,jk)
         zdenom_flu =  akf3(ji,jj,jk) + zh
         zalk_flu   =  zft * (znumer_flu/zdenom_flu - 1.)
         zdnumer_flu = akf3(ji,jj,jk)
         zdalk_flu   = -zft * (zdnumer_flu/zdenom_flu**2)

         ! H2O - OH
         aphscale = 1.0 + zst/aks3(ji,jj,jk)
         zalk_wat   = akw3(ji,jj,jk)/zh - zh/aphscale
         zdalk_wat  = -akw3(ji,jj,jk)/zh**2 - 1./aphscale

         ! CALCULATE [ALK]([CO3--], [HCO3-])
         zeqn = zalk_dic + zalk_bor + zalk_po4 + zalk_sil   &
         &      + zalk_so4 + zalk_flu                       &
         &      + zalk_wat - p_alktot

         zalka = p_alktot - (zalk_bor + zalk_po4 + zalk_sil   &
         &       + zalk_so4 + zalk_flu + zalk_wat)

         zdeqndh = zdalk_dic + zdalk_bor + zdalk_po4 + zdalk_sil &
         &         + zdalk_so4 + zdalk_flu + zdalk_wat

         ! Adapt bracketing interval
         IF(zeqn > 0._wp) THEN
           zh_min(ji,jj,jk) = zh_prev
         ELSEIF(zeqn < 0._wp) THEN
           zh_max(ji,jj,jk) = zh_prev
         ENDIF

         IF(ABS(zeqn) >= 0.5_wp*zeqn_absmin(ji,jj,jk)) THEN
         ! if the function evaluation at the current point is
         ! not decreasing faster than with a bisection step (at least linearly)
         ! in absolute value take one bisection step on [ph_min, ph_max]
         ! ph_new = (ph_min + ph_max)/2d0
         !
         ! In terms of [H]_new:
         ! [H]_new = 10**(-ph_new)
         !         = 10**(-(ph_min + ph_max)/2d0)
         !         = SQRT(10**(-(ph_min + phmax)))
         !         = SQRT(zh_max * zh_min)
            zh = SQRT(zh_max(ji,jj,jk) * zh_min(ji,jj,jk))
            zh_lnfactor = (zh - zh_prev)/zh_prev ! Required to test convergence below
         ELSE
         ! dzeqn/dpH = dzeqn/d[H] * d[H]/dpH
         !           = -zdeqndh * LOG(10) * [H]
         ! \Delta pH = -zeqn/(zdeqndh*d[H]/dpH) = zeqn/(zdeqndh*[H]*LOG(10))
         !
         ! pH_new = pH_old + \deltapH
         !
         ! [H]_new = 10**(-pH_new)
         !         = 10**(-pH_old - \Delta pH)
         !         = [H]_old * 10**(-zeqn/(zdeqndh*[H]_old*LOG(10)))
         !         = [H]_old * EXP(-LOG(10)*zeqn/(zdeqndh*[H]_old*LOG(10)))
         !         = [H]_old * EXP(-zeqn/(zdeqndh*[H]_old))

            zh_lnfactor = -zeqn/(zdeqndh*zh_prev)

            IF(ABS(zh_lnfactor) > pz_exp_threshold) THEN
               zh          = zh_prev*EXP(zh_lnfactor)
            ELSE
               zh_delta    = zh_lnfactor*zh_prev
               zh          = zh_prev + zh_delta
            ENDIF

            IF( zh < zh_min(ji,jj,jk) ) THEN
               ! if [H]_new < [H]_min
               ! i.e., if ph_new > ph_max then
               ! take one bisection step on [ph_prev, ph_max]
               ! ph_new = (ph_prev + ph_max)/2d0
               ! In terms of [H]_new:
               ! [H]_new = 10**(-ph_new)
               !         = 10**(-(ph_prev + ph_max)/2d0)
               !         = SQRT(10**(-(ph_prev + phmax)))
               !         = SQRT([H]_old*10**(-ph_max))
               !         = SQRT([H]_old * zh_min)
               zh                = SQRT(zh_prev * zh_min(ji,jj,jk))
               zh_lnfactor       = (zh - zh_prev)/zh_prev ! Required to test convergence below
            ENDIF

            IF( zh > zh_max(ji,jj,jk) ) THEN
               ! if [H]_new > [H]_max
               ! i.e., if ph_new < ph_min, then
               ! take one bisection step on [ph_min, ph_prev]
               ! ph_new = (ph_prev + ph_min)/2d0
               ! In terms of [H]_new:
               ! [H]_new = 10**(-ph_new)
               !         = 10**(-(ph_prev + ph_min)/2d0)
               !         = SQRT(10**(-(ph_prev + ph_min)))
               !         = SQRT([H]_old*10**(-ph_min))
               !         = SQRT([H]_old * zhmax)
               zh                = SQRT(zh_prev * zh_max(ji,jj,jk))
               zh_lnfactor       = (zh - zh_prev)/zh_prev ! Required to test convergence below
            ENDIF
         ENDIF

         zeqn_absmin(ji,jj,jk) = MIN( ABS(zeqn), zeqn_absmin(ji,jj,jk))

         ! Stop iterations once |\delta{[H]}/[H]| < rdel
         ! <=> |(zh - zh_prev)/zh_prev| = |EXP(-zeqn/(zdeqndh*zh_prev)) -1| < rdel
         ! |EXP(-zeqn/(zdeqndh*zh_prev)) -1| ~ |zeqn/(zdeqndh*zh_prev)|

         ! Alternatively:
         ! |\Delta pH| = |zeqn/(zdeqndh*zh_prev*LOG(10))|
         !             ~ 1/LOG(10) * |\Delta [H]|/[H]
         !             < 1/LOG(10) * rdel

         ! Hence |zeqn/(zdeqndh*zh)| < rdel

         ! rdel <-- pp_rdel_ah_target
         l_exitnow = (ABS(zh_lnfactor) < pp_rdel_ah_target)

         IF(l_exitnow) THEN 
            rmask(ji,jj,jk) = 0.
         ENDIF

         zhi(ji,jj,jk) =  zh

         IF(jn >= jp_maxniter_atgen) THEN
            zhi(ji,jj,jk) = -1._wp
         ENDIF

      ENDIF
   END_3D
   END DO
   !

      IF( ln_timing )   CALL timing_stop('solve_at_general')
      !
   END SUBROUTINE solve_at_general


   INTEGER FUNCTION p4z_che_alloc()
      !!----------------------------------------------------------------------
      !!                     ***  ROUTINE p4z_che_alloc  ***
      !!----------------------------------------------------------------------
      INTEGER ::   ierr(3)        ! Local variables
      !!----------------------------------------------------------------------

      ierr(:) = 0

      ALLOCATE( sio3eq(jpi,jpj,jpk), fekeq(jpi,jpj,jpk), chemc(jpi,jpj,3), chemo2(jpi,jpj,jpk), STAT=ierr(1) )

      ALLOCATE( akb3(jpi,jpj,jpk)     , tempis(jpi, jpj, jpk),       &
         &      akw3(jpi,jpj,jpk)     , borat (jpi,jpj,jpk)  ,       &
         &      aks3(jpi,jpj,jpk)     , akf3(jpi,jpj,jpk)    ,       &
         &      ak1p3(jpi,jpj,jpk)    , ak2p3(jpi,jpj,jpk)   ,       &
         &      ak3p3(jpi,jpj,jpk)    , aksi3(jpi,jpj,jpk)   ,       &
         &      fluorid(jpi,jpj,jpk)  , sulfat(jpi,jpj,jpk)  ,       &
         &      salinprac(jpi,jpj,jpk),                 STAT=ierr(2) )

      ALLOCATE( fesol(jpi,jpj,jpk,5), STAT=ierr(3) )

      !* Variable for chemistry of the CO2 cycle
      p4z_che_alloc = MAXVAL( ierr )
      !
      IF( p4z_che_alloc /= 0 )   CALL ctl_stop( 'STOP', 'p4z_che_alloc : failed to allocate arrays.' )
      !
   END FUNCTION p4z_che_alloc

   !!======================================================================
END MODULE p4zche