Skip to content
Snippets Groups Projects
bdyice.F90 25.8 KiB
Newer Older
Guillaume Samson's avatar
Guillaume Samson committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
MODULE bdyice
   !!======================================================================
   !!                       ***  MODULE  bdyice  ***
   !! Unstructured Open Boundary Cond. :  Open boundary conditions for sea-ice (SI3)
   !!======================================================================
   !!  History :  3.3  !  2010-09 (D. Storkey)  Original code
   !!             3.4  !  2012-01 (C. Rousset)  add new sea ice model 
   !!             4.0  !  2018    (C. Rousset)  SI3 compatibility 
   !!----------------------------------------------------------------------
#if defined key_si3
   !!----------------------------------------------------------------------
   !!   'key_si3'                                          SI3 sea ice model
   !!----------------------------------------------------------------------
   !!   bdy_ice        : Application of open boundaries to ice
   !!   bdy_ice_frs    : Application of Flow Relaxation Scheme
   !!----------------------------------------------------------------------
   USE oce             ! ocean dynamics and tracers variables
   USE ice             ! sea-ice: variables
   USE icevar          ! sea-ice: operations
   USE icecor          ! sea-ice: corrections
   USE icectl          ! sea-ice: control prints
   USE phycst          ! physical constant
   USE eosbn2          ! equation of state
   USE par_oce         ! ocean parameters
   USE dom_oce         ! ocean space and time domain variables 
   USE sbc_oce         ! Surface boundary condition: ocean fields
   USE bdy_oce         ! ocean open boundary conditions
   !
   USE lbclnk          ! ocean lateral boundary conditions (or mpp link)
   USE in_out_manager  ! write to numout file
   USE lib_mpp         ! distributed memory computing
   USE lib_fortran     ! to use key_nosignedzero
   USE timing          ! Timing

   IMPLICIT NONE
   PRIVATE

   PUBLIC   bdy_ice     ! routine called in sbcmod
   PUBLIC   bdy_ice_dyn ! routine called in icedyn_rhg_evp

   !!----------------------------------------------------------------------
   !! NEMO/OCE 4.0 , NEMO Consortium (2018)
   !! $Id: bdyice.F90 15368 2021-10-14 08:25:34Z smasson $
   !! Software governed by the CeCILL license (see ./LICENSE)
   !!----------------------------------------------------------------------
CONTAINS

   SUBROUTINE bdy_ice( kt )
      !!----------------------------------------------------------------------
      !!                  ***  SUBROUTINE bdy_ice  ***
      !!
      !! ** Purpose : Apply open boundary conditions for sea ice
      !!
      !!----------------------------------------------------------------------
      INTEGER, INTENT(in) ::   kt   ! Main time step counter
      !
      INTEGER ::   jbdy, ir                             ! BDY set index, rim index
      INTEGER ::   ibeg, iend                           ! length of rim to be treated (rim 0 or rim 1)
      LOGICAL ::   llrim0                               ! indicate if rim 0 is treated
      LOGICAL, DIMENSION(8)  :: llsend1, llrecv1        ! indicate how communications are to be carried out
      !!----------------------------------------------------------------------
      ! controls
      IF( ln_timing )   CALL timing_start('bdy_ice_thd')   ! timing
      !
      CALL ice_var_glo2eqv
      !
      llsend1(:) = .false.   ;   llrecv1(:) = .false.
      DO ir = 1, 0, -1   ! treat rim 1 before rim 0
         IF( ir == 0 ) THEN   ;   llrim0 = .TRUE.
         ELSE                 ;   llrim0 = .FALSE.
         END IF
         DO jbdy = 1, nb_bdy
            !
            SELECT CASE( cn_ice(jbdy) )
            CASE('none')   ;   CYCLE
            CASE('frs' )   ;   CALL bdy_ice_frs( idx_bdy(jbdy), dta_bdy(jbdy), kt, jbdy, llrim0 )
            CASE DEFAULT
               CALL ctl_stop( 'bdy_ice : unrecognised option for open boundaries for ice fields' )
            END SELECT
            !
         END DO
         !
         ! Update bdy points        
         IF( nn_hls > 1 .AND. ir == 1 ) CYCLE   ! at least 2 halos will be corrected -> no need to correct rim 1 before rim 0
         IF( nn_hls == 1 ) THEN   ;   llsend1(:) = .false.   ;   llrecv1(:) = .false.   ;   END IF
         DO jbdy = 1, nb_bdy
            IF( cn_ice(jbdy) == 'frs' ) THEN
               llsend1(:) = llsend1(:) .OR. lsend_bdyint(jbdy,1,:,ir)   ! possibly every direction, T points
               llrecv1(:) = llrecv1(:) .OR. lrecv_bdyint(jbdy,1,:,ir)   ! possibly every direction, T points
            END IF
         END DO   ! jbdy
         IF( ANY(llsend1) .OR. ANY(llrecv1) ) THEN   ! if need to send/recv in at least one direction
            ! exchange 3d arrays
            CALL lbc_lnk('bdyice', a_i , 'T', 1._wp, h_i , 'T', 1._wp, h_s , 'T', 1._wp, oa_i, 'T', 1._wp                   &
               &                 , s_i , 'T', 1._wp, t_su, 'T', 1._wp, v_i , 'T', 1._wp, v_s , 'T', 1._wp, sv_i, 'T', 1._wp &
               &                 , a_ip, 'T', 1._wp, v_ip, 'T', 1._wp, v_il, 'T', 1._wp                                     &
               &                 , kfillmode=jpfillnothing ,lsend=llsend1, lrecv=llrecv1 )
            ! exchange 4d arrays :   third dimension = 1   and then   third dimension = jpk
            CALL lbc_lnk('bdyice', t_s , 'T', 1._wp, e_s , 'T', 1._wp, kfillmode=jpfillnothing ,lsend=llsend1, lrecv=llrecv1 )
            CALL lbc_lnk('bdyice', t_i , 'T', 1._wp, e_i , 'T', 1._wp, kfillmode=jpfillnothing ,lsend=llsend1, lrecv=llrecv1 )
         END IF
      END DO   ! ir
      !
      CALL ice_cor( kt , 0 )      ! -- In case categories are out of bounds, do a remapping
      !                           !    i.e. inputs have not the same ice thickness distribution (set by rn_himean)
      !                           !         than the regional simulation
      CALL ice_var_agg(1)
      !
      ! controls
      IF( ln_icectl )   CALL ice_prt     ( kt, iiceprt, jiceprt, 1, ' - ice thermo bdy - ' )   ! prints
      IF( ln_timing )   CALL timing_stop ('bdy_ice_thd')                                       ! timing
      !
   END SUBROUTINE bdy_ice


   SUBROUTINE bdy_ice_frs( idx, dta, kt, jbdy, llrim0 )
      !!------------------------------------------------------------------------------
      !!                 ***  SUBROUTINE bdy_ice_frs  ***
      !!                    
      !! ** Purpose : Apply the Flow Relaxation Scheme for sea-ice fields
      !! 
      !! Reference : Engedahl H., 1995: Use of the flow relaxation scheme in a three-
      !!             dimensional baroclinic ocean model with realistic topography. Tellus, 365-382.
      !!------------------------------------------------------------------------------
      TYPE(OBC_INDEX), INTENT(in) ::   idx      ! OBC indices
      TYPE(OBC_DATA),  INTENT(in) ::   dta      ! OBC external data
      INTEGER,         INTENT(in) ::   kt       ! main time-step counter
      INTEGER,         INTENT(in) ::   jbdy     ! BDY set index
      LOGICAL,         INTENT(in) ::   llrim0   ! indicate if rim 0 is treated
      !
      INTEGER  ::   jpbound            ! 0 = incoming ice
      !                                ! 1 = outgoing ice
      INTEGER  ::   ibeg, iend         ! length of rim to be treated (rim 0 or rim 1)
      INTEGER  ::   i_bdy, jgrd        ! dummy loop indices
      INTEGER  ::   ji, jj, jk, jl, ib, jb
      REAL(wp) ::   zwgt, zwgt1        ! local scalar
      REAL(wp) ::   ztmelts, zdh
      REAL(wp), POINTER  :: flagu, flagv              ! short cuts
      !!------------------------------------------------------------------------------
      !
      jgrd = 1      ! Everything is at T-points here
      IF( llrim0 ) THEN   ;   ibeg = 1                       ;   iend = idx%nblenrim0(jgrd)
      ELSE                ;   ibeg = idx%nblenrim0(jgrd)+1   ;   iend = idx%nblenrim(jgrd)
      END IF
      !
      DO jl = 1, jpl
         DO i_bdy = ibeg, iend
            ji    = idx%nbi(i_bdy,jgrd)
            jj    = idx%nbj(i_bdy,jgrd)
            zwgt  = idx%nbw(i_bdy,jgrd)
            zwgt1 = 1.e0 - idx%nbw(i_bdy,jgrd)
            a_i (ji,jj,  jl) = ( a_i (ji,jj,  jl) * zwgt1 + dta%a_i(i_bdy,jl) * zwgt ) * tmask(ji,jj,1)  ! Ice  concentration 
            h_i (ji,jj,  jl) = ( h_i (ji,jj,  jl) * zwgt1 + dta%h_i(i_bdy,jl) * zwgt ) * tmask(ji,jj,1)  ! Ice  depth 
            h_s (ji,jj,  jl) = ( h_s (ji,jj,  jl) * zwgt1 + dta%h_s(i_bdy,jl) * zwgt ) * tmask(ji,jj,1)  ! Snow depth
            t_i (ji,jj,:,jl) =                              dta%t_i(i_bdy,jl)          * tmask(ji,jj,1)  ! Ice  temperature
            t_s (ji,jj,:,jl) =                              dta%t_s(i_bdy,jl)          * tmask(ji,jj,1)  ! Snow temperature
            t_su(ji,jj,  jl) =                              dta%tsu(i_bdy,jl)          * tmask(ji,jj,1)  ! Surf temperature
            s_i (ji,jj,  jl) =                              dta%s_i(i_bdy,jl)          * tmask(ji,jj,1)  ! Ice  salinity
            a_ip(ji,jj,  jl) = ( a_ip(ji,jj,  jl) * zwgt1 + dta%aip(i_bdy,jl) * zwgt ) * tmask(ji,jj,1)  ! Ice  pond concentration
            h_ip(ji,jj,  jl) = ( h_ip(ji,jj,  jl) * zwgt1 + dta%hip(i_bdy,jl) * zwgt ) * tmask(ji,jj,1)  ! Ice  pond depth
            h_il(ji,jj,  jl) = ( h_il(ji,jj,  jl) * zwgt1 + dta%hil(i_bdy,jl) * zwgt ) * tmask(ji,jj,1)  ! Ice  pond lid depth
            !
            sz_i(ji,jj,:,jl) = s_i(ji,jj,jl)
            !
            ! make sure ponds = 0 if no ponds scheme
            IF( .NOT.ln_pnd ) THEN
               a_ip(ji,jj,jl) = 0._wp
               h_ip(ji,jj,jl) = 0._wp
               h_il(ji,jj,jl) = 0._wp
            ENDIF

            IF( .NOT.ln_pnd_lids ) THEN
               h_il(ji,jj,jl) = 0._wp
            ENDIF
            !
            ! -----------------
            ! Pathological case
            ! -----------------
            ! In case a) snow load would be in excess or b) ice is coming into a warmer environment that would lead to 
            ! very large transformation from snow to ice (see icethd_dh.F90)

            ! Then, a) transfer the snow excess into the ice (different from icethd_dh)
            zdh = MAX( 0._wp, ( rhos * h_s(ji,jj,jl) + ( rhoi - rho0 ) * h_i(ji,jj,jl) ) * r1_rho0 )
            ! Or, b) transfer all the snow into ice (if incoming ice is likely to melt as it comes into a warmer environment)
            !zdh = MAX( 0._wp, h_s(ji,jj,jl) * rhos / rhoi )

            ! recompute h_i, h_s
            h_i(ji,jj,jl) = MIN( hi_max(jl), h_i(ji,jj,jl) + zdh )
            h_s(ji,jj,jl) = MAX( 0._wp, h_s(ji,jj,jl) - zdh * rhoi / rhos ) 
            !
         ENDDO
      ENDDO

      DO jl = 1, jpl
         DO i_bdy = ibeg, iend
            ji = idx%nbi(i_bdy,jgrd)
            jj = idx%nbj(i_bdy,jgrd)
            flagu => idx%flagu(i_bdy,jgrd)
            flagv => idx%flagv(i_bdy,jgrd)
            ! condition on ice thickness depends on the ice velocity
            ! if velocity is outward (strictly), then ice thickness, volume... must be equal to adjacent values
            jpbound = 0   ;   ib = ji   ;   jb = jj
            !
            IF( flagu ==  1. )   THEN
               IF( ji+1 > jpi )   CYCLE
               IF( u_ice(ji  ,jj  ) < 0. )   jpbound = 1 ; ib = ji+1
            END IF
            IF( flagu == -1. )   THEN
               IF( ji-1 < 1   )   CYCLE
               IF( u_ice(ji-1,jj  ) < 0. )   jpbound = 1 ; ib = ji-1
            END IF
            IF( flagv ==  1. )   THEN
               IF( jj+1 > jpj )   CYCLE
               IF( v_ice(ji  ,jj  ) < 0. )   jpbound = 1 ; jb = jj+1
            END IF
            IF( flagv == -1. )   THEN
               IF( jj-1 < 1   )   CYCLE
               IF( v_ice(ji  ,jj-1) < 0. )   jpbound = 1 ; jb = jj-1
            END IF
            !
            IF( nn_ice_dta(jbdy) == 0 )   jpbound = 0 ; ib = ji ; jb = jj   ! case ice boundaries = initial conditions
            !                                                               !      do not make state variables dependent on velocity
            !
            IF( a_i(ib,jb,jl) > 0._wp ) THEN   ! there is ice at the boundary
               !
               a_i (ji,jj,  jl) = a_i (ib,jb,  jl)
               h_i (ji,jj,  jl) = h_i (ib,jb,  jl)
               h_s (ji,jj,  jl) = h_s (ib,jb,  jl)
               t_i (ji,jj,:,jl) = t_i (ib,jb,:,jl)
               t_s (ji,jj,:,jl) = t_s (ib,jb,:,jl)
               t_su(ji,jj,  jl) = t_su(ib,jb,  jl)
               s_i (ji,jj,  jl) = s_i (ib,jb,  jl)
               a_ip(ji,jj,  jl) = a_ip(ib,jb,  jl)
               h_ip(ji,jj,  jl) = h_ip(ib,jb,  jl)
               h_il(ji,jj,  jl) = h_il(ib,jb,  jl)
               !
               sz_i(ji,jj,:,jl) = sz_i(ib,jb,:,jl)
               !
               ! ice age
               IF    ( jpbound == 0 ) THEN  ! velocity is inward
                  oa_i(ji,jj,jl) = rice_age(jbdy) * a_i(ji,jj,jl)
               ELSEIF( jpbound == 1 ) THEN  ! velocity is outward
                  oa_i(ji,jj,jl) = oa_i(ib,jb,jl)
               ENDIF
               !
               IF( nn_icesal == 1 ) THEN     ! if constant salinity
                  s_i (ji,jj  ,jl) = rn_icesal
                  sz_i(ji,jj,:,jl) = rn_icesal
               ENDIF
               !
               ! global fields
               v_i (ji,jj,jl) = h_i(ji,jj,jl) * a_i(ji,jj,jl)                       ! volume ice
               v_s (ji,jj,jl) = h_s(ji,jj,jl) * a_i(ji,jj,jl)                       ! volume snw
               sv_i(ji,jj,jl) = MIN( s_i(ji,jj,jl) , sss_m(ji,jj) ) * v_i(ji,jj,jl) ! salt content
               DO jk = 1, nlay_s
                  t_s(ji,jj,jk,jl) = MIN( t_s(ji,jj,jk,jl), -0.15_wp + rt0 )           ! Force t_s to be lower than -0.15deg (arbitrary) => likely conservation issue
                  !                                                                    !       otherwise instant melting can occur
                  e_s(ji,jj,jk,jl) = rhos * ( rcpi * ( rt0 - t_s(ji,jj,jk,jl) ) + rLfus )   ! enthalpy in J/m3
                  e_s(ji,jj,jk,jl) = e_s(ji,jj,jk,jl) * v_s(ji,jj,jl) * r1_nlay_s           ! enthalpy in J/m2
               END DO               
               t_su(ji,jj,jl) = MIN( t_su(ji,jj,jl), -0.15_wp + rt0 )                  ! Force t_su to be lower than -0.15deg (arbitrary)
               DO jk = 1, nlay_i
                  ztmelts          = - rTmlt  * sz_i(ji,jj,jk,jl)             ! Melting temperature in C
                  t_i(ji,jj,jk,jl) = MIN( t_i(ji,jj,jk,jl), (ztmelts-0.15_wp) + rt0 )  ! Force t_i to be lower than melting point (-0.15) => likely conservation issue
                  !
                  e_i(ji,jj,jk,jl) = rhoi * ( rcpi  * ( ztmelts - ( t_i(ji,jj,jk,jl) - rt0 ) )           &   ! enthalpy in J/m3
                     &                      + rLfus * ( 1._wp - ztmelts / ( t_i(ji,jj,jk,jl) - rt0 ) )   &
                     &                      - rcp   *   ztmelts )                  
                  e_i(ji,jj,jk,jl) = e_i(ji,jj,jk,jl) * v_i(ji,jj,jl) * r1_nlay_i                            ! enthalpy in J/m2
               END DO
               !
               ! melt ponds
               v_ip(ji,jj,jl) = h_ip(ji,jj,jl) * a_ip(ji,jj,jl)
               v_il(ji,jj,jl) = h_il(ji,jj,jl) * a_ip(ji,jj,jl)
               !
            ELSE   ! no ice at the boundary
               !
               a_i (ji,jj,  jl) = 0._wp
               h_i (ji,jj,  jl) = 0._wp
               h_s (ji,jj,  jl) = 0._wp
               oa_i(ji,jj,  jl) = 0._wp
               t_su(ji,jj,  jl) = rt0
               t_s (ji,jj,:,jl) = rt0
               t_i (ji,jj,:,jl) = rt0 

               a_ip(ji,jj,jl) = 0._wp
               h_ip(ji,jj,jl) = 0._wp
               h_il(ji,jj,jl) = 0._wp
               
               IF( nn_icesal == 1 ) THEN     ! if constant salinity
                  s_i (ji,jj  ,jl) = rn_icesal
                  sz_i(ji,jj,:,jl) = rn_icesal
               ELSE                          ! if variable salinity
                  s_i (ji,jj,jl)   = rn_simin
                  sz_i(ji,jj,:,jl) = rn_simin
               ENDIF
               !
               ! global fields
               v_i (ji,jj,  jl) = 0._wp
               v_s (ji,jj,  jl) = 0._wp
               sv_i(ji,jj,  jl) = 0._wp
               e_s (ji,jj,:,jl) = 0._wp
               e_i (ji,jj,:,jl) = 0._wp
               v_ip(ji,jj,  jl) = 0._wp
               v_il(ji,jj,  jl) = 0._wp

            ENDIF
                        
         END DO
         !
      END DO ! jl
      !      
   END SUBROUTINE bdy_ice_frs


   SUBROUTINE bdy_ice_dyn( cd_type )
      !!------------------------------------------------------------------------------
      !!                 ***  SUBROUTINE bdy_ice_dyn  ***
      !!                    
      !! ** Purpose : Apply dynamics boundary conditions for sea-ice.
      !!
      !! ** Method :  if this adjacent grid point is not ice free, then u_ice and v_ice take its value
      !!              if                          is     ice free, then u_ice and v_ice are unchanged by BDY
      !!                                                           they keep values calculated in rheology
      !!
      !!------------------------------------------------------------------------------
      CHARACTER(len=1), INTENT(in)  ::   cd_type   ! nature of velocity grid-points
      !
      INTEGER               ::   i_bdy, jgrd       ! dummy loop indices
      INTEGER               ::   ji, jj            ! local scalar
      INTEGER               ::   jbdy, ir          ! BDY set index, rim index
      INTEGER               ::   ibeg, iend        ! length of rim to be treated (rim 0 or rim 1)
      INTEGER, DIMENSION(3) ::   idir3
      REAL(wp)              ::   zmsk1, zmsk2, zflag
      LOGICAL, DIMENSION(8) :: llsend2, llrecv2, llsend3, llrecv3  ! indicate how communications are to be carried out
      !!------------------------------------------------------------------------------
      IF( ln_timing )   CALL timing_start('bdy_ice_dyn')
      !
      llsend2(:) = .false.   ;   llrecv2(:) = .false.
      llsend3(:) = .false.   ;   llrecv3(:) = .false.
      DO ir = 1, 0, -1
         DO jbdy = 1, nb_bdy
            !
            SELECT CASE( cn_ice(jbdy) )
               !
            CASE('none')
               CYCLE
               !
            CASE('frs')
               !
               IF( nn_ice_dta(jbdy) == 0 ) CYCLE            ! case ice boundaries = initial conditions 
               !                                            !      do not change ice velocity (it is only computed by rheology)
               SELECT CASE ( cd_type )
                  !     
               CASE ( 'U' )  
                  jgrd = 2      ! u velocity
                  IF( ir == 0 ) THEN   ;   ibeg = 1                                 ;   iend = idx_bdy(jbdy)%nblenrim0(jgrd)
                  ELSE                 ;   ibeg = idx_bdy(jbdy)%nblenrim0(jgrd)+1   ;   iend = idx_bdy(jbdy)%nblenrim(jgrd)
                  END IF
                  DO i_bdy = ibeg, iend
                     ji    = idx_bdy(jbdy)%nbi(i_bdy,jgrd)
                     jj    = idx_bdy(jbdy)%nbj(i_bdy,jgrd)
                     zflag = idx_bdy(jbdy)%flagu(i_bdy,jgrd)
                     !     i-1  i   i    |  !        i  i i+1 |  !          i  i i+1 |
                     !      >  ice  >    |  !        o  > ice |  !          o  >  o  |      
                     ! => set at u_ice(i-1) !  => set to O       !  => unchanged
                     IF( zflag == -1. .AND. ji > 1 .AND. ji < jpi )   THEN  
                        IF    ( vt_i(ji  ,jj) > 0. )   THEN   ;   u_ice(ji,jj) = u_ice(ji-1,jj) 
                        ELSEIF( vt_i(ji+1,jj) > 0. )   THEN   ;   u_ice(ji,jj) = u_oce(ji,jj)
                        END IF
                     END IF
                     ! |    i  i+1 i+1        !  |  i   i i+1        !  | i  i i+1
                     ! |    >  ice  >         !  | ice  >  o         !  | o  >  o   
                     ! => set at u_ice(i+1)   !     => set to O      !     =>  unchanged
                     IF( zflag ==  1. .AND. ji+1 < jpi+1 )   THEN
                        IF    ( vt_i(ji+1,jj) > 0. )   THEN   ;   u_ice(ji,jj) = u_ice(ji+1,jj)
                        ELSEIF( vt_i(ji  ,jj) > 0. )   THEN   ;   u_ice(ji,jj) = u_oce(ji,jj)
                        END IF
                     END IF
                     !
                     IF( zflag ==  0. )   u_ice(ji,jj) = 0._wp   ! u_ice = 0  if north/south bdy  
                     !
                  END DO
                  !
               CASE ( 'V' )
                  jgrd = 3      ! v velocity
                  IF( ir == 0 ) THEN   ;   ibeg = 1                                 ;   iend = idx_bdy(jbdy)%nblenrim0(jgrd)
                  ELSE                 ;   ibeg = idx_bdy(jbdy)%nblenrim0(jgrd)+1   ;   iend = idx_bdy(jbdy)%nblenrim(jgrd)
                  END IF
                  DO i_bdy = ibeg, iend
                     ji    = idx_bdy(jbdy)%nbi(i_bdy,jgrd)
                     jj    = idx_bdy(jbdy)%nbj(i_bdy,jgrd)
                     zflag = idx_bdy(jbdy)%flagv(i_bdy,jgrd)
                     !                         !      ice   (jj+1)       !       o    (jj+1)
                     !       ^    (jj  )       !       ^    (jj  )       !       ^    (jj  )       
                     !      ice   (jj  )       !       o    (jj  )       !       o    (jj  )       
                     !       ^    (jj-1)       !                         !
                     ! => set to u_ice(jj-1)   !  =>   set to 0          !   => unchanged        
                     IF( zflag == -1. .AND. jj > 1 .AND. jj < jpj )   THEN                 
                        IF    ( vt_i(ji,jj  ) > 0. )   THEN   ;   v_ice(ji,jj) = v_ice(ji,jj-1)
                        ELSEIF( vt_i(ji,jj+1) > 0. )   THEN   ;   v_ice(ji,jj) = v_oce(ji,jj)
                        END IF
                     END IF
                     !       ^    (jj+1)       !                         !              
                     !      ice   (jj+1)       !       o    (jj+1)       !       o    (jj+1)       
                     !       ^    (jj  )       !       ^    (jj  )       !       ^    (jj  )
                     !   ________________      !  ____ice___(jj  )_      !  _____o____(jj  ) 
                     ! => set to u_ice(jj+1)   !    => set to 0          !    => unchanged  
                     IF( zflag ==  1. .AND. jj < jpj )   THEN              
                        IF    ( vt_i(ji,jj+1) > 0. )   THEN   ;   v_ice(ji,jj) = v_ice(ji,jj+1)
                        ELSEIF( vt_i(ji,jj  ) > 0. )   THEN   ;   v_ice(ji,jj) = v_oce(ji,jj)
                        END IF
                     END IF
                     !
                     IF( zflag ==  0. )   v_ice(ji,jj) = 0._wp   ! v_ice = 0  if west/east bdy  
                     !
                  END DO
                  !
               END SELECT
               !
            CASE DEFAULT
               CALL ctl_stop( 'bdy_ice_dyn : unrecognised option for open boundaries for ice fields' )
            END SELECT
            !
         END DO    ! jbdy
         !
         SELECT CASE ( cd_type )        
         CASE ( 'U' ) 
         IF( nn_hls > 1 .AND. ir == 1 ) CYCLE   ! at least 2 halos will be corrected -> no need to correct rim 1 before rim 0
         IF( nn_hls == 1 ) THEN   ;   llsend2(:) = .false.   ;   llrecv2(:) = .false.   ;   END IF
            DO jbdy = 1, nb_bdy
               IF( cn_ice(jbdy) == 'frs' .AND. nn_ice_dta(jbdy) /= 0 ) THEN
                  llsend2(  :  ) = llsend2(  :  ) .OR. lsend_bdyint(jbdy,2,  :  ,ir)   ! possibly every direction, U points
                  idir3 = (/ jpwe, jpsw, jpnw /)
                  llsend2(idir3) = llsend2(idir3) .OR. lsend_bdyext(jbdy,2,idir3,ir)   ! nei might search point towards its ea bdy
                  llrecv2(  :  ) = llrecv2(  :  ) .OR. lrecv_bdyint(jbdy,2,  :  ,ir)   ! possibly every direction, U points
                  idir3 = (/ jpea, jpse, jpne /)
                  llrecv2(idir3) = llrecv2(idir3) .OR. lrecv_bdyext(jbdy,2,idir3,ir)   ! might search point towards east bdy
               END IF
            END DO
            IF( ANY(llsend2) .OR. ANY(llrecv2) ) THEN   ! if need to send/recv in at least one direction
               CALL lbc_lnk( 'bdyice', u_ice, 'U', -1.0_wp, kfillmode=jpfillnothing ,lsend=llsend2, lrecv=llrecv2 )
            END IF
         CASE ( 'V' )
         IF( nn_hls > 1 .AND. ir == 1 ) CYCLE   ! at least 2 halos will be corrected -> no need to correct rim 1 before rim 0
         IF( nn_hls == 1 ) THEN   ;   llsend3(:) = .false.   ;   llrecv3(:) = .false.   ;   END IF
            DO jbdy = 1, nb_bdy
               IF( cn_ice(jbdy) == 'frs' .AND. nn_ice_dta(jbdy) /= 0 ) THEN
                  llsend3(  :  ) = llsend3(  :  ) .OR. lsend_bdyint(jbdy,3,  :  ,ir)   ! possibly every direction, V points
                  idir3 = (/ jpso, jpsw, jpse /)
                  llsend3(idir3) = llsend3(idir3) .OR. lsend_bdyext(jbdy,3,idir3,ir)   ! nei might search point towards its no bdy
                  llrecv3(  :  ) = llrecv3(  :  ) .OR. lrecv_bdyint(jbdy,3,  :  ,ir)   ! possibly every direction, V points
                  idir3 = (/ jpno, jpnw, jpne /)
                  llrecv3(idir3) = llrecv3(idir3) .OR. lrecv_bdyext(jbdy,3,idir3,ir)   ! might search point towards north bdy
               END IF
            END DO
            IF( ANY(llsend3) .OR. ANY(llrecv3) ) THEN   ! if need to send/recv in at least one direction
               CALL lbc_lnk( 'bdyice', v_ice, 'V', -1.0_wp, kfillmode=jpfillnothing ,lsend=llsend3, lrecv=llrecv3 )
            END IF
         END SELECT
      END DO   ! ir
      !
      IF( ln_timing )   CALL timing_stop('bdy_ice_dyn')
      !
    END SUBROUTINE bdy_ice_dyn

#else
   !!---------------------------------------------------------------------------------
   !!   Default option                                                    Empty module
   !!---------------------------------------------------------------------------------
CONTAINS
   SUBROUTINE bdy_ice( kt )      ! Empty routine
      IMPLICIT NONE
      INTEGER, INTENT( in ) :: kt
      WRITE(*,*) 'bdy_ice: You should not have seen this print! error?', kt
   END SUBROUTINE bdy_ice
#endif

   !!=================================================================================
END MODULE bdyice