Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
MODULE bdyini
!!======================================================================
!! *** MODULE bdyini ***
!! Unstructured open boundaries : initialisation
!!======================================================================
!! History : 1.0 ! 2005-01 (J. Chanut, A. Sellar) Original code
!! - ! 2007-01 (D. Storkey) Update to use IOM module
!! - ! 2007-01 (D. Storkey) Tidal forcing
!! 3.0 ! 2008-04 (NEMO team) add in the reference version
!! 3.3 ! 2010-09 (E.O'Dea) updates for Shelf configurations
!! 3.3 ! 2010-09 (D.Storkey) add ice boundary conditions
!! 3.4 ! 2011 (D. Storkey) rewrite in preparation for OBC-BDY merge
!! 3.4 ! 2012 (J. Chanut) straight open boundary case update
!! 3.5 ! 2012 (S. Mocavero, I. Epicoco) optimization of BDY communications
!! 3.7 ! 2016 (T. Lovato) Remove bdy macro, call here init for dta and tides
!!----------------------------------------------------------------------
!! bdy_init : Initialization of unstructured open boundaries
!!----------------------------------------------------------------------
USE oce ! ocean dynamics and tracers variables
USE dom_oce ! ocean space and time domain
USE sbc_oce , ONLY: nn_ice
USE bdy_oce ! unstructured open boundary conditions
USE bdydta ! open boundary cond. setting (bdy_dta_init routine)
USE bdytides ! open boundary cond. setting (bdytide_init routine)
USE tide_mod, ONLY: ln_tide ! tidal forcing
USE phycst , ONLY: rday
!
USE in_out_manager ! I/O units
USE lbclnk ! ocean lateral boundary conditions (or mpp link)
USE lib_mpp ! for mpp_sum
USE iom ! I/O
IMPLICIT NONE
PRIVATE
PUBLIC bdy_init ! routine called in nemo_init
PUBLIC find_neib ! routine called in bdy_nmn
INTEGER, PARAMETER :: jp_nseg = 100 !
! Straight open boundary segment parameters:
INTEGER :: nbdysege, nbdysegw, nbdysegn, nbdysegs
INTEGER, DIMENSION(jp_nseg) :: jpieob, jpjedt, jpjeft, npckge !
INTEGER, DIMENSION(jp_nseg) :: jpiwob, jpjwdt, jpjwft, npckgw !
INTEGER, DIMENSION(jp_nseg) :: jpjnob, jpindt, jpinft, npckgn !
INTEGER, DIMENSION(jp_nseg) :: jpjsob, jpisdt, jpisft, npckgs !
!! * Substitutions
# include "do_loop_substitute.h90"
!!----------------------------------------------------------------------
!! NEMO/OCE 4.0 , NEMO Consortium (2018)
!! $Id: bdyini.F90 15368 2021-10-14 08:25:34Z smasson $
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
SUBROUTINE bdy_init
!!----------------------------------------------------------------------
!! *** ROUTINE bdy_init ***
!!
!! ** Purpose : Initialization of the dynamics and tracer fields with
!! unstructured open boundaries.
!!
!! ** Method : Read initialization arrays (mask, indices) to identify
!! an unstructured open boundary
!!
!! ** Input : bdy_init.nc, input file for unstructured open boundaries
!!----------------------------------------------------------------------
NAMELIST/nambdy/ ln_bdy, nb_bdy, ln_coords_file, cn_coords_file, &
& ln_mask_file, cn_mask_file, cn_dyn2d, nn_dyn2d_dta, &
& cn_dyn3d, nn_dyn3d_dta, cn_tra, nn_tra_dta, &
& ln_tra_dmp, ln_dyn3d_dmp, rn_time_dmp, rn_time_dmp_out, &
& cn_ice, nn_ice_dta, &
& ln_vol, nn_volctl, nn_rimwidth
!
INTEGER :: ios ! Local integer output status for namelist read
!!----------------------------------------------------------------------
! ------------------------
! Read namelist parameters
! ------------------------
READ ( numnam_ref, nambdy, IOSTAT = ios, ERR = 901)
901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'nambdy in reference namelist' )
! make sur that all elements of the namelist variables have a default definition from namelist_ref
ln_coords_file (2:jp_bdy) = ln_coords_file (1)
cn_coords_file (2:jp_bdy) = cn_coords_file (1)
cn_dyn2d (2:jp_bdy) = cn_dyn2d (1)
nn_dyn2d_dta (2:jp_bdy) = nn_dyn2d_dta (1)
cn_dyn3d (2:jp_bdy) = cn_dyn3d (1)
nn_dyn3d_dta (2:jp_bdy) = nn_dyn3d_dta (1)
cn_tra (2:jp_bdy) = cn_tra (1)
nn_tra_dta (2:jp_bdy) = nn_tra_dta (1)
ln_tra_dmp (2:jp_bdy) = ln_tra_dmp (1)
ln_dyn3d_dmp (2:jp_bdy) = ln_dyn3d_dmp (1)
rn_time_dmp (2:jp_bdy) = rn_time_dmp (1)
rn_time_dmp_out(2:jp_bdy) = rn_time_dmp_out(1)
cn_ice (2:jp_bdy) = cn_ice (1)
nn_ice_dta (2:jp_bdy) = nn_ice_dta (1)
READ ( numnam_cfg, nambdy, IOSTAT = ios, ERR = 902 )
902 IF( ios > 0 ) CALL ctl_nam ( ios , 'nambdy in configuration namelist' )
IF(lwm) WRITE ( numond, nambdy )
IF( .NOT. Agrif_Root() ) ln_bdy = .FALSE. ! forced for Agrif children
IF( nb_bdy == 0 ) ln_bdy = .FALSE.
! -----------------------------------------
! unstructured open boundaries use control
! -----------------------------------------
IF ( ln_bdy ) THEN
IF(lwp) WRITE(numout,*)
IF(lwp) WRITE(numout,*) 'bdy_init : initialization of open boundaries'
IF(lwp) WRITE(numout,*) '~~~~~~~~'
!
! Open boundaries definition (arrays and masks)
CALL bdy_def
IF( ln_meshmask ) CALL bdy_meshwri()
!
! Open boundaries initialisation of external data arrays
CALL bdy_dta_init
!
! Open boundaries initialisation of tidal harmonic forcing
IF( ln_tide ) CALL bdytide_init
!
ELSE
IF(lwp) WRITE(numout,*)
IF(lwp) WRITE(numout,*) 'bdy_init : open boundaries not used (ln_bdy = F)'
IF(lwp) WRITE(numout,*) '~~~~~~~~'
!
ENDIF
!
END SUBROUTINE bdy_init
SUBROUTINE bdy_def
!!----------------------------------------------------------------------
!! *** ROUTINE bdy_init ***
!!
!! ** Purpose : Definition of unstructured open boundaries.
!!
!! ** Method : Read initialization arrays (mask, indices) to identify
!! an unstructured open boundary
!!
!! ** Input : bdy_init.nc, input file for unstructured open boundaries
!!----------------------------------------------------------------------
INTEGER :: ji, jj ! dummy loop indices
INTEGER :: ib_bdy, ii, ij, igrd, ib, ir, iseg ! dummy loop indices
INTEGER :: icount, icountr, icountr0, ibr_max ! local integers
INTEGER :: ilen1 ! - -
INTEGER :: iiRst, iiRnd, iiSst, iiSnd, iiSstdiag, iiSnddiag, iiSstsono, iiSndsono
INTEGER :: ijRst, ijRnd, ijSst, ijSnd, ijSstdiag, ijSnddiag, ijSstsono, ijSndsono
INTEGER :: iiout, ijout, iioutdir, ijoutdir, icnt
INTEGER :: iRnei, iRdiag, iRsono
INTEGER :: iSnei, iSdiag, iSsono ! - -
INTEGER :: iwe, ies, iso, ino, inum, id_dummy ! - -
INTEGER :: jpbdta ! - -
INTEGER :: ib_bdy1, ib_bdy2, ib1, ib2 ! - -
INTEGER :: ii1, ii2, ii3, ij1, ij2, ij3 ! - -
INTEGER :: iibe, ijbe, iibi, ijbi ! - -
INTEGER :: flagu, flagv ! short cuts
INTEGER :: nbdyind, nbdybeg, nbdyend
INTEGER , DIMENSION(4) :: kdimsz
INTEGER , DIMENSION(jpbgrd,jp_bdy) :: nblendta ! Length of index arrays
INTEGER, ALLOCATABLE, DIMENSION(:,:,:) :: nbidta, nbjdta ! Index arrays: i and j indices of bdy dta
INTEGER, ALLOCATABLE, DIMENSION(:,:,:) :: nbrdta ! Discrete distance from rim points
CHARACTER(LEN=1) , DIMENSION(jpbgrd) :: cgrid
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zz_read ! work space for 2D global boundary data
REAL(wp), POINTER , DIMENSION(:,:) :: zmask ! pointer to 2D mask fields
REAL(wp) , DIMENSION(jpi,jpj) :: zfmask ! temporary fmask array excluding coastal boundary condition (shlat)
REAL(wp) , DIMENSION(jpi,jpj) :: ztmask, zumask, zvmask ! temporary u/v mask array
REAL(wp) , DIMENSION(jpi,jpj) :: zzbdy
!!----------------------------------------------------------------------
!
cgrid = (/'t','u','v'/)
! -----------------------------------------
! Check and write out namelist parameters
! -----------------------------------------
IF(lwp) WRITE(numout,*) 'Number of open boundary sets : ', nb_bdy
DO ib_bdy = 1,nb_bdy
IF(lwp) THEN
WRITE(numout,*) ' '
WRITE(numout,*) '------ Open boundary data set ',ib_bdy,' ------'
IF( ln_coords_file(ib_bdy) ) THEN
WRITE(numout,*) 'Boundary definition read from file '//TRIM(cn_coords_file(ib_bdy))
ELSE
WRITE(numout,*) 'Boundary defined in namelist.'
ENDIF
WRITE(numout,*)
ENDIF
! barotropic bdy
!----------------
IF(lwp) THEN
WRITE(numout,*) 'Boundary conditions for barotropic solution: '
SELECT CASE( cn_dyn2d(ib_bdy) )
CASE( 'none' ) ; WRITE(numout,*) ' no open boundary condition'
CASE( 'frs' ) ; WRITE(numout,*) ' Flow Relaxation Scheme'
CASE( 'flather' ) ; WRITE(numout,*) ' Flather radiation condition'
CASE( 'orlanski' ) ; WRITE(numout,*) ' Orlanski (fully oblique) radiation condition with adaptive nudging'
CASE( 'orlanski_npo' ) ; WRITE(numout,*) ' Orlanski (NPO) radiation condition with adaptive nudging'
CASE DEFAULT ; CALL ctl_stop( 'unrecognised value for cn_dyn2d' )
END SELECT
ENDIF
dta_bdy(ib_bdy)%lneed_ssh = cn_dyn2d(ib_bdy) == 'flather'
dta_bdy(ib_bdy)%lneed_dyn2d = cn_dyn2d(ib_bdy) /= 'none'
IF( lwp .AND. dta_bdy(ib_bdy)%lneed_dyn2d ) THEN
SELECT CASE( nn_dyn2d_dta(ib_bdy) ) !
CASE( 0 ) ; WRITE(numout,*) ' initial state used for bdy data'
CASE( 1 ) ; WRITE(numout,*) ' boundary data taken from file'
CASE( 2 ) ; WRITE(numout,*) ' tidal harmonic forcing taken from file'
CASE( 3 ) ; WRITE(numout,*) ' boundary data AND tidal harmonic forcing taken from files'
CASE DEFAULT ; CALL ctl_stop( 'nn_dyn2d_dta must be between 0 and 3' )
END SELECT
ENDIF
IF ( dta_bdy(ib_bdy)%lneed_dyn2d .AND. nn_dyn2d_dta(ib_bdy) .GE. 2 .AND. .NOT.ln_tide ) THEN
CALL ctl_stop( 'You must activate with ln_tide to add tidal forcing at open boundaries' )
ENDIF
IF(lwp) WRITE(numout,*)
! baroclinic bdy
!----------------
IF(lwp) THEN
WRITE(numout,*) 'Boundary conditions for baroclinic velocities: '
SELECT CASE( cn_dyn3d(ib_bdy) )
CASE('none') ; WRITE(numout,*) ' no open boundary condition'
CASE('frs') ; WRITE(numout,*) ' Flow Relaxation Scheme'
CASE('specified') ; WRITE(numout,*) ' Specified value'
CASE('neumann') ; WRITE(numout,*) ' Neumann conditions'
CASE('zerograd') ; WRITE(numout,*) ' Zero gradient for baroclinic velocities'
CASE('zero') ; WRITE(numout,*) ' Zero baroclinic velocities (runoff case)'
CASE('orlanski') ; WRITE(numout,*) ' Orlanski (fully oblique) radiation condition with adaptive nudging'
CASE('orlanski_npo') ; WRITE(numout,*) ' Orlanski (NPO) radiation condition with adaptive nudging'
CASE DEFAULT ; CALL ctl_stop( 'unrecognised value for cn_dyn3d' )
END SELECT
ENDIF
dta_bdy(ib_bdy)%lneed_dyn3d = cn_dyn3d(ib_bdy) == 'frs' .OR. cn_dyn3d(ib_bdy) == 'specified' &
& .OR. cn_dyn3d(ib_bdy) == 'orlanski' .OR. cn_dyn3d(ib_bdy) == 'orlanski_npo'
IF( lwp .AND. dta_bdy(ib_bdy)%lneed_dyn3d ) THEN
SELECT CASE( nn_dyn3d_dta(ib_bdy) ) !
CASE( 0 ) ; WRITE(numout,*) ' initial state used for bdy data'
CASE( 1 ) ; WRITE(numout,*) ' boundary data taken from file'
CASE DEFAULT ; CALL ctl_stop( 'nn_dyn3d_dta must be 0 or 1' )
END SELECT
END IF
IF ( ln_dyn3d_dmp(ib_bdy) ) THEN
IF ( cn_dyn3d(ib_bdy) == 'none' ) THEN
IF(lwp) WRITE(numout,*) 'No open boundary condition for baroclinic velocities: ln_dyn3d_dmp is set to .false.'
ln_dyn3d_dmp(ib_bdy) = .false.
ELSEIF ( cn_dyn3d(ib_bdy) == 'frs' ) THEN
CALL ctl_stop( 'Use FRS OR relaxation' )
ELSE
IF(lwp) WRITE(numout,*) ' + baroclinic velocities relaxation zone'
IF(lwp) WRITE(numout,*) ' Damping time scale: ',rn_time_dmp(ib_bdy),' days'
IF(rn_time_dmp(ib_bdy)<0) CALL ctl_stop( 'Time scale must be positive' )
dta_bdy(ib_bdy)%lneed_dyn3d = .TRUE.
ENDIF
ELSE
IF(lwp) WRITE(numout,*) ' NO relaxation on baroclinic velocities'
ENDIF
IF(lwp) WRITE(numout,*)
! tra bdy
!----------------
IF(lwp) THEN
WRITE(numout,*) 'Boundary conditions for temperature and salinity: '
SELECT CASE( cn_tra(ib_bdy) )
CASE('none') ; WRITE(numout,*) ' no open boundary condition'
CASE('frs') ; WRITE(numout,*) ' Flow Relaxation Scheme'
CASE('specified') ; WRITE(numout,*) ' Specified value'
CASE('neumann') ; WRITE(numout,*) ' Neumann conditions'
CASE('runoff') ; WRITE(numout,*) ' Runoff conditions : Neumann for T and specified to 0.1 for salinity'
CASE('orlanski') ; WRITE(numout,*) ' Orlanski (fully oblique) radiation condition with adaptive nudging'
CASE('orlanski_npo') ; WRITE(numout,*) ' Orlanski (NPO) radiation condition with adaptive nudging'
CASE DEFAULT ; CALL ctl_stop( 'unrecognised value for cn_tra' )
END SELECT
ENDIF
dta_bdy(ib_bdy)%lneed_tra = cn_tra(ib_bdy) == 'frs' .OR. cn_tra(ib_bdy) == 'specified' &
& .OR. cn_tra(ib_bdy) == 'orlanski' .OR. cn_tra(ib_bdy) == 'orlanski_npo'
IF( lwp .AND. dta_bdy(ib_bdy)%lneed_tra ) THEN
SELECT CASE( nn_tra_dta(ib_bdy) ) !
CASE( 0 ) ; WRITE(numout,*) ' initial state used for bdy data'
CASE( 1 ) ; WRITE(numout,*) ' boundary data taken from file'
CASE DEFAULT ; CALL ctl_stop( 'nn_tra_dta must be 0 or 1' )
END SELECT
ENDIF
IF ( ln_tra_dmp(ib_bdy) ) THEN
IF ( cn_tra(ib_bdy) == 'none' ) THEN
IF(lwp) WRITE(numout,*) 'No open boundary condition for tracers: ln_tra_dmp is set to .false.'
ln_tra_dmp(ib_bdy) = .false.
ELSEIF ( cn_tra(ib_bdy) == 'frs' ) THEN
CALL ctl_stop( 'Use FRS OR relaxation' )
ELSE
IF(lwp) WRITE(numout,*) ' + T/S relaxation zone'
IF(lwp) WRITE(numout,*) ' Damping time scale: ',rn_time_dmp(ib_bdy),' days'
IF(lwp) WRITE(numout,*) ' Outflow damping time scale: ',rn_time_dmp_out(ib_bdy),' days'
IF(lwp.AND.rn_time_dmp(ib_bdy)<0) CALL ctl_stop( 'Time scale must be positive' )
dta_bdy(ib_bdy)%lneed_tra = .TRUE.
ENDIF
ELSE
IF(lwp) WRITE(numout,*) ' NO T/S relaxation'
ENDIF
IF(lwp) WRITE(numout,*)
#if defined key_si3
IF(lwp) THEN
WRITE(numout,*) 'Boundary conditions for sea ice: '
SELECT CASE( cn_ice(ib_bdy) )
CASE('none') ; WRITE(numout,*) ' no open boundary condition'
CASE('frs') ; WRITE(numout,*) ' Flow Relaxation Scheme'
CASE DEFAULT ; CALL ctl_stop( 'unrecognised value for cn_ice' )
END SELECT
ENDIF
dta_bdy(ib_bdy)%lneed_ice = cn_ice(ib_bdy) /= 'none'
IF( dta_bdy(ib_bdy)%lneed_ice .AND. nn_ice /= 2 ) THEN
WRITE(ctmp1,*) 'bdy number ', ib_bdy,', needs ice model but nn_ice = ', nn_ice
CALL ctl_stop( ctmp1 )
ENDIF
IF( lwp .AND. dta_bdy(ib_bdy)%lneed_ice ) THEN
SELECT CASE( nn_ice_dta(ib_bdy) ) !
CASE( 0 ) ; WRITE(numout,*) ' initial state used for bdy data'
CASE( 1 ) ; WRITE(numout,*) ' boundary data taken from file'
CASE DEFAULT ; CALL ctl_stop( 'nn_ice_dta must be 0 or 1' )
END SELECT
ENDIF
#else
dta_bdy(ib_bdy)%lneed_ice = .FALSE.
#endif
!
IF(lwp) WRITE(numout,*)
IF(lwp) WRITE(numout,*) ' Width of relaxation zone = ', nn_rimwidth(ib_bdy)
IF(lwp) WRITE(numout,*)
!
END DO ! nb_bdy
IF( lwp ) THEN
IF( ln_vol ) THEN ! check volume conservation (nn_volctl value)
WRITE(numout,*) 'Volume correction applied at open boundaries'
WRITE(numout,*)
SELECT CASE ( nn_volctl )
CASE( 1 ) ; WRITE(numout,*) ' The total volume will be constant'
CASE( 0 ) ; WRITE(numout,*) ' The total volume will vary according to the surface E-P flux'
CASE DEFAULT ; CALL ctl_stop( 'nn_volctl must be 0 or 1' )
END SELECT
WRITE(numout,*)
!
! sanity check if used with tides
IF( ln_tide ) THEN
WRITE(numout,*) ' The total volume correction is not working with tides. '
WRITE(numout,*) ' Set ln_vol to .FALSE. '
WRITE(numout,*) ' or '
WRITE(numout,*) ' equilibriate your bdy input files '
CALL ctl_stop( 'The total volume correction is not working with tides.' )
END IF
ELSE
WRITE(numout,*) 'No volume correction applied at open boundaries'
WRITE(numout,*)
ENDIF
ENDIF
! -------------------------------------------------
! Initialise indices arrays for open boundaries
! -------------------------------------------------
nblendta(:,:) = 0
nbdysege = 0
nbdysegw = 0
nbdysegn = 0
nbdysegs = 0
! Define all boundaries
! ---------------------
DO ib_bdy = 1, nb_bdy
!
IF( .NOT. ln_coords_file(ib_bdy) ) THEN ! build bdy coordinates with segments defined in namelist
CALL bdy_read_seg( ib_bdy, nblendta(:,ib_bdy) )
ELSE ! Read size of arrays in boundary coordinates file.
CALL iom_open( cn_coords_file(ib_bdy), inum )
DO igrd = 1, jpbgrd
id_dummy = iom_varid( inum, 'nbi'//cgrid(igrd), kdimsz=kdimsz )
nblendta(igrd,ib_bdy) = MAXVAL(kdimsz)
END DO
CALL iom_close( inum )
ENDIF
!
END DO ! ib_bdy
! Now look for crossings in user (namelist) defined open boundary segments:
IF( nbdysege > 0 .OR. nbdysegw > 0 .OR. nbdysegn > 0 .OR. nbdysegs > 0) CALL bdy_ctl_seg
! Allocate arrays
!---------------
jpbdta = MAXVAL(nblendta(1:jpbgrd,1:nb_bdy))
ALLOCATE( nbidta(jpbdta, jpbgrd, nb_bdy), nbjdta(jpbdta, jpbgrd, nb_bdy), nbrdta(jpbdta, jpbgrd, nb_bdy) )
nbrdta(:,:,:) = 0 ! initialize nbrdta as it may not be completely defined for each bdy
! Calculate global boundary index arrays or read in from file
!------------------------------------------------------------
! 1. Read global index arrays from boundary coordinates file.
DO ib_bdy = 1, nb_bdy
!
IF( ln_coords_file(ib_bdy) ) THEN
!
ALLOCATE( zz_read( MAXVAL(nblendta), 1 ) )
CALL iom_open( cn_coords_file(ib_bdy), inum )
!
DO igrd = 1, jpbgrd
CALL iom_get( inum, jpdom_unknown, 'nbi'//cgrid(igrd), zz_read(1:nblendta(igrd,ib_bdy),:) )
DO ii = 1,nblendta(igrd,ib_bdy)
nbidta(ii,igrd,ib_bdy) = NINT( zz_read(ii,1) ) + nn_hls
END DO
CALL iom_get( inum, jpdom_unknown, 'nbj'//cgrid(igrd), zz_read(1:nblendta(igrd,ib_bdy),:) )
DO ii = 1,nblendta(igrd,ib_bdy)
nbjdta(ii,igrd,ib_bdy) = NINT( zz_read(ii,1) ) + nn_hls
END DO
CALL iom_get( inum, jpdom_unknown, 'nbr'//cgrid(igrd), zz_read(1:nblendta(igrd,ib_bdy),:) )
DO ii = 1,nblendta(igrd,ib_bdy)
nbrdta(ii,igrd,ib_bdy) = NINT( zz_read(ii,1) )
END DO
!
ibr_max = MAXVAL( nbrdta(:,igrd,ib_bdy) )
IF(lwp) WRITE(numout,*)
IF(lwp) WRITE(numout,*) ' Maximum rimwidth in file is ', ibr_max
IF(lwp) WRITE(numout,*) ' nn_rimwidth from namelist is ', nn_rimwidth(ib_bdy)
IF (ibr_max < nn_rimwidth(ib_bdy)) &
CALL ctl_stop( 'nn_rimwidth is larger than maximum rimwidth in file',cn_coords_file(ib_bdy) )
END DO
!
CALL iom_close( inum )
DEALLOCATE( zz_read )
!
ENDIF
!
END DO
! 2. Now fill indices corresponding to straight open boundary arrays:
CALL bdy_coords_seg( nbidta, nbjdta, nbrdta )
! Deal with duplicated points
!-----------------------------
! We assign negative indices to duplicated points (to remove them from bdy points to be updated)
! if their distance to the bdy is greater than the other
! If their distance are the same, just keep only one to avoid updating a point twice
DO igrd = 1, jpbgrd
DO ib_bdy1 = 1, nb_bdy
DO ib_bdy2 = 1, nb_bdy
IF (ib_bdy1/=ib_bdy2) THEN
DO ib1 = 1, nblendta(igrd,ib_bdy1)
DO ib2 = 1, nblendta(igrd,ib_bdy2)
IF ((nbidta(ib1, igrd, ib_bdy1)==nbidta(ib2, igrd, ib_bdy2)).AND. &
& (nbjdta(ib1, igrd, ib_bdy1)==nbjdta(ib2, igrd, ib_bdy2))) THEN
! IF ((lwp).AND.(igrd==1)) WRITE(numout,*) ' found coincident point ji, jj:', &
! & nbidta(ib1, igrd, ib_bdy1), &
! & nbjdta(ib2, igrd, ib_bdy2)
! keep only points with the lowest distance to boundary:
IF (nbrdta(ib1, igrd, ib_bdy1)<nbrdta(ib2, igrd, ib_bdy2)) THEN
nbidta(ib2, igrd, ib_bdy2) =-ib_bdy2
nbjdta(ib2, igrd, ib_bdy2) =-ib_bdy2
ELSEIF (nbrdta(ib1, igrd, ib_bdy1)>nbrdta(ib2, igrd, ib_bdy2)) THEN
nbidta(ib1, igrd, ib_bdy1) =-ib_bdy1
nbjdta(ib1, igrd, ib_bdy1) =-ib_bdy1
! Arbitrary choice if distances are the same:
ELSE
nbidta(ib1, igrd, ib_bdy1) =-ib_bdy1
nbjdta(ib1, igrd, ib_bdy1) =-ib_bdy1
ENDIF
END IF
END DO
END DO
ENDIF
END DO
END DO
END DO
!
! Find lenght of boundaries and rim on local mpi domain
!------------------------------------------------------
!
iwe = mig(1)
ies = mig(jpi)
iso = mjg(1)
ino = mjg(jpj)
!
DO ib_bdy = 1, nb_bdy
DO igrd = 1, jpbgrd
icount = 0 ! initialization of local bdy length
icountr = 0 ! initialization of local rim 0 and rim 1 bdy length
icountr0 = 0 ! initialization of local rim 0 bdy length
idx_bdy(ib_bdy)%nblen(igrd) = 0
idx_bdy(ib_bdy)%nblenrim(igrd) = 0
idx_bdy(ib_bdy)%nblenrim0(igrd) = 0
DO ib = 1, nblendta(igrd,ib_bdy)
! check that data is in correct order in file
IF( ib > 1 ) THEN
IF( nbrdta(ib,igrd,ib_bdy) < nbrdta(ib-1,igrd,ib_bdy) ) THEN
CALL ctl_stop('bdy_segs : ERROR : boundary data in file must be defined ', &
& ' in order of distance from edge nbr A utility for re-ordering ', &
& ' boundary coordinates and data files exists in the TOOLS/OBC directory')
ENDIF
ENDIF
! check if point is in local domain
IF( nbidta(ib,igrd,ib_bdy) >= iwe .AND. nbidta(ib,igrd,ib_bdy) <= ies .AND. &
& nbjdta(ib,igrd,ib_bdy) >= iso .AND. nbjdta(ib,igrd,ib_bdy) <= ino ) THEN
!
icount = icount + 1
IF( nbrdta(ib,igrd,ib_bdy) == 1 .OR. nbrdta(ib,igrd,ib_bdy) == 0 ) icountr = icountr + 1
IF( nbrdta(ib,igrd,ib_bdy) == 0 ) icountr0 = icountr0 + 1
ENDIF
END DO
idx_bdy(ib_bdy)%nblen (igrd) = icount !: length of boundary data on each proc
idx_bdy(ib_bdy)%nblenrim (igrd) = icountr !: length of rim 0 and rim 1 boundary data on each proc
idx_bdy(ib_bdy)%nblenrim0(igrd) = icountr0 !: length of rim 0 boundary data on each proc
END DO ! igrd
! Allocate index arrays for this boundary set
!--------------------------------------------
ilen1 = MAXVAL( idx_bdy(ib_bdy)%nblen(:) )
ALLOCATE( idx_bdy(ib_bdy)%nbi (ilen1,jpbgrd) , &
& idx_bdy(ib_bdy)%nbj (ilen1,jpbgrd) , &
& idx_bdy(ib_bdy)%nbr (ilen1,jpbgrd) , &
& idx_bdy(ib_bdy)%nbd (ilen1,jpbgrd) , &
& idx_bdy(ib_bdy)%nbdout(ilen1,jpbgrd) , &
& idx_bdy(ib_bdy)%ntreat(ilen1,jpbgrd) , &
& idx_bdy(ib_bdy)%nbmap (ilen1,jpbgrd) , &
& idx_bdy(ib_bdy)%nbw (ilen1,jpbgrd) , &
& idx_bdy(ib_bdy)%flagu (ilen1,jpbgrd) , &
& idx_bdy(ib_bdy)%flagv (ilen1,jpbgrd) )
! Dispatch mapping indices and discrete distances on each processor
! -----------------------------------------------------------------
DO igrd = 1, jpbgrd
icount = 0
! Outer loop on rimwidth to ensure outermost points come first in the local arrays.
DO ir = 0, nn_rimwidth(ib_bdy)
DO ib = 1, nblendta(igrd,ib_bdy)
! check if point is in local domain and equals ir
IF( nbidta(ib,igrd,ib_bdy) >= iwe .AND. nbidta(ib,igrd,ib_bdy) <= ies .AND. &
& nbjdta(ib,igrd,ib_bdy) >= iso .AND. nbjdta(ib,igrd,ib_bdy) <= ino .AND. &
& nbrdta(ib,igrd,ib_bdy) == ir ) THEN
!
icount = icount + 1
idx_bdy(ib_bdy)%nbi(icount,igrd) = nbidta(ib,igrd,ib_bdy) - mig(1) + 1 ! global to local indexes
idx_bdy(ib_bdy)%nbj(icount,igrd) = nbjdta(ib,igrd,ib_bdy) - mjg(1) + 1 ! global to local indexes
idx_bdy(ib_bdy)%nbr(icount,igrd) = nbrdta(ib,igrd,ib_bdy)
idx_bdy(ib_bdy)%nbmap(icount,igrd) = ib
ENDIF
END DO
END DO
END DO ! igrd
END DO ! ib_bdy
! Initialize array indicating communications in bdy
! -------------------------------------------------
ALLOCATE( lsend_bdyolr(nb_bdy,jpbgrd,8,0:1), lrecv_bdyolr(nb_bdy,jpbgrd,8,0:1) )
lsend_bdyolr(:,:,:,:) = .false.
lrecv_bdyolr(:,:,:,:) = .false.
DO ib_bdy = 1, nb_bdy
DO igrd = 1, jpbgrd
DO ib = 1, idx_bdy(ib_bdy)%nblenrim(igrd) ! only the rim triggers communications, see bdy routines
ii = idx_bdy(ib_bdy)%nbi(ib,igrd)
ij = idx_bdy(ib_bdy)%nbj(ib,igrd)
IF( ib .LE. idx_bdy(ib_bdy)%nblenrim0(igrd) ) THEN ; ir = 0
ELSE ; ir = 1
END IF
!
! check if point has to be sent to a neighbour
IF( ii >= Nis0 .AND. ii < Nis0 + nn_hls .AND. ij >= Njs0 .AND. ij <= Nje0 ) THEN ! we inner side
IF( mpiSnei(nn_hls,jpwe) > -1 ) lsend_bdyolr(ib_bdy,igrd,jpwe,ir) = .TRUE.
ENDIF
IF( ii <= Nie0 .AND. ii > Nie0 - nn_hls .AND. ij >= Njs0 .AND. ij <= Nje0 ) THEN ! ea inner side
IF( mpiSnei(nn_hls,jpea) > -1 ) lsend_bdyolr(ib_bdy,igrd,jpea,ir) = .TRUE.
ENDIF
IF( ii >= Nis0 .AND. ii <= Nie0 .AND. ij >= Njs0 .AND. ij < Njs0 + nn_hls ) THEN ! so inner side
IF( mpiSnei(nn_hls,jpso) > -1 ) lsend_bdyolr(ib_bdy,igrd,jpso,ir) = .TRUE.
ENDIF
IF( ii < Nis0 .AND. ij >= Njs0 .AND. ij < Njs0 + nn_hls ) THEN ! so side we-halo
IF( mpiSnei(nn_hls,jpso) > -1 .AND. nn_comm == 1 ) lsend_bdyolr(ib_bdy,igrd,jpso,ir) = .TRUE.
ENDIF
IF( ii > Nie0 .AND. ij >= Njs0 .AND. ij < Njs0 + nn_hls ) THEN ! so side ea-halo
IF( mpiSnei(nn_hls,jpso) > -1 .AND. nn_comm == 1 ) lsend_bdyolr(ib_bdy,igrd,jpso,ir) = .TRUE.
ENDIF
IF( ii >= Nis0 .AND. ii <= Nie0 .AND. ij <= Nje0 .AND. ij > Nje0 - nn_hls ) THEN ! no inner side
IF( mpiSnei(nn_hls,jpno) > -1 ) lsend_bdyolr(ib_bdy,igrd,jpno,ir) = .TRUE.
ENDIF
IF( ii < Nis0 .AND. ij <= Nje0 .AND. ij > Nje0 - nn_hls ) THEN ! no side we-halo
IF( mpiSnei(nn_hls,jpno) > -1 .AND. nn_comm == 1 ) lsend_bdyolr(ib_bdy,igrd,jpno,ir) = .TRUE.
ENDIF
IF( ii > Nie0 .AND. ij <= Nje0 .AND. ij > Nje0 - nn_hls ) THEN ! no side ea-halo
IF( mpiSnei(nn_hls,jpno) > -1 .AND. nn_comm == 1 ) lsend_bdyolr(ib_bdy,igrd,jpno,ir) = .TRUE.
ENDIF
IF( ii >= Nis0 .AND. ii < Nis0 + nn_hls .AND. ij >= Njs0 .AND. ij < Njs0 + nn_hls ) THEN ! sw inner corner
IF( mpiSnei(nn_hls,jpsw) > -1 ) lsend_bdyolr(ib_bdy,igrd,jpsw,ir) = .TRUE.
ENDIF
IF( ii <= Nie0 .AND. ii > Nie0 - nn_hls .AND. ij >= Njs0 .AND. ij < Njs0 + nn_hls ) THEN ! se inner corner
IF( mpiSnei(nn_hls,jpse) > -1 ) lsend_bdyolr(ib_bdy,igrd,jpse,ir) = .TRUE.
ENDIF
IF( ii >= Nis0 .AND. ii < Nis0 + nn_hls .AND. ij <= Nje0 .AND. ij > Nje0 - nn_hls ) THEN ! nw inner corner
IF( mpiSnei(nn_hls,jpnw) > -1 ) lsend_bdyolr(ib_bdy,igrd,jpnw,ir) = .TRUE.
ENDIF
IF( ii <= Nie0 .AND. ii > Nie0 - nn_hls .AND. ij <= Nje0 .AND. ij > Nje0 - nn_hls ) THEN ! ne inner corner
IF( mpiSnei(nn_hls,jpne) > -1 ) lsend_bdyolr(ib_bdy,igrd,jpne,ir) = .TRUE.
ENDIF
!
! check if point has to be received from a neighbour
IF( ii < Nis0 .AND. ij >= Njs0 .AND. ij <= Nje0 ) THEN ! we side
IF( mpiRnei(nn_hls,jpwe) > -1 ) lrecv_bdyolr(ib_bdy,igrd,jpwe,ir) = .TRUE.
ENDIF
IF( ii > Nie0 .AND. ij >= Njs0 .AND. ij <= Nje0 ) THEN ! ea side
IF( mpiRnei(nn_hls,jpea) > -1 ) lrecv_bdyolr(ib_bdy,igrd,jpea,ir) = .TRUE.
ENDIF
IF( ii >= Nis0 .AND. ii <= Nie0 .AND. ij < Njs0 ) THEN ! so side
IF( mpiRnei(nn_hls,jpso) > -1 ) lrecv_bdyolr(ib_bdy,igrd,jpso,ir) = .TRUE.
ENDIF
IF( ii >= Nis0 .AND. ii <= Nie0 .AND. ij > Nje0 ) THEN ! no side
IF( mpiRnei(nn_hls,jpno) > -1 ) lrecv_bdyolr(ib_bdy,igrd,jpno,ir) = .TRUE.
ENDIF
IF( ii < Nis0 .AND. ij < Njs0 ) THEN ! sw corner
IF( mpiRnei(nn_hls,jpsw) > -1 ) lrecv_bdyolr(ib_bdy,igrd,jpsw,ir) = .TRUE.
IF( mpiRnei(nn_hls,jpso) > -1 .AND. nn_comm == 1 ) lrecv_bdyolr(ib_bdy,igrd,jpso,ir) = .TRUE.
ENDIF
IF( ii > Nie0 .AND. ij < Njs0 ) THEN ! se corner
IF( mpiRnei(nn_hls,jpse) > -1 ) lrecv_bdyolr(ib_bdy,igrd,jpse,ir) = .TRUE.
IF( mpiRnei(nn_hls,jpso) > -1 .AND. nn_comm == 1 ) lrecv_bdyolr(ib_bdy,igrd,jpso,ir) = .TRUE.
ENDIF
IF( ii < Nis0 .AND. ij > Nje0 ) THEN ! nw corner
IF( mpiRnei(nn_hls,jpnw) > -1 ) lrecv_bdyolr(ib_bdy,igrd,jpnw,ir) = .TRUE.
IF( mpiRnei(nn_hls,jpno) > -1 .AND. nn_comm == 1 ) lrecv_bdyolr(ib_bdy,igrd,jpno,ir) = .TRUE.
ENDIF
IF( ii > Nie0 .AND. ij > Nje0 ) THEN ! ne corner
IF( mpiRnei(nn_hls,jpne) > -1 ) lrecv_bdyolr(ib_bdy,igrd,jpne,ir) = .TRUE.
IF( mpiRnei(nn_hls,jpno) > -1 .AND. nn_comm == 1 ) lrecv_bdyolr(ib_bdy,igrd,jpno,ir) = .TRUE.
ENDIF
!
END DO
END DO ! igrd
! Comment out for debug
!!$ DO ir = 0,1
!!$ zzbdy(:,:) = narea ; CALL lbc_lnk('bdy debug', zzbdy, 'T', 1._wp, kfillmode = jpfillnothing, &
!!$ & lsend = lsend_bdyolr(ib_bdy,1,:,ir), lrecv = lrecv_bdyolr(ib_bdy,1,:,ir) )
!!$ IF(lwp) WRITE(numout,*) ' seb bdy debug olr T', ir ; CALL FLUSH(numout)
!!$ zzbdy(:,:) = narea ; CALL lbc_lnk('bdy debug', zzbdy, 'U', 1._wp, kfillmode = jpfillnothing, &
!!$ & lsend = lsend_bdyolr(ib_bdy,2,:,ir), lrecv = lrecv_bdyolr(ib_bdy,2,:,ir) )
!!$ IF(lwp) WRITE(numout,*) ' seb bdy debug olr U', ir ; CALL FLUSH(numout)
!!$ zzbdy(:,:) = narea ; CALL lbc_lnk('bdy debug', zzbdy, 'V', 1._wp, kfillmode = jpfillnothing, &
!!$ & lsend = lsend_bdyolr(ib_bdy,3,:,ir), lrecv = lrecv_bdyolr(ib_bdy,3,:,ir) )
!!$ IF(lwp) WRITE(numout,*) ' seb bdy debug olr V', ir ; CALL FLUSH(numout)
!!$ END DO
! Compute rim weights for FRS scheme
! ----------------------------------
DO igrd = 1, jpbgrd
DO ib = 1, idx_bdy(ib_bdy)%nblen(igrd)
ir = MAX( 1, idx_bdy(ib_bdy)%nbr(ib,igrd) ) ! both rim 0 and rim 1 have the same weights
idx_bdy(ib_bdy)%nbw(ib,igrd) = 1.- TANH( REAL( ir - 1 ) *0.5 ) ! tanh formulation
! idx_bdy(ib_bdy)%nbw(ib,igrd) = (REAL(nn_rimwidth(ib_bdy)+1-ir)/REAL(nn_rimwidth(ib_bdy)))**2. ! quadratic
! idx_bdy(ib_bdy)%nbw(ib,igrd) = REAL(nn_rimwidth(ib_bdy)+1-ir)/REAL(nn_rimwidth(ib_bdy)) ! linear
END DO
END DO
! Compute damping coefficients
! ----------------------------
DO igrd = 1, jpbgrd
DO ib = 1, idx_bdy(ib_bdy)%nblen(igrd)
ir = MAX( 1, idx_bdy(ib_bdy)%nbr(ib,igrd) ) ! both rim 0 and rim 1 have the same damping coefficients
idx_bdy(ib_bdy)%nbd(ib,igrd) = 1. / ( rn_time_dmp(ib_bdy) * rday ) &
& *(REAL(nn_rimwidth(ib_bdy)+1-ir)/REAL(nn_rimwidth(ib_bdy)))**2. ! quadratic
idx_bdy(ib_bdy)%nbdout(ib,igrd) = 1. / ( rn_time_dmp_out(ib_bdy) * rday ) &
& *(REAL(nn_rimwidth(ib_bdy)+1-ir)/REAL(nn_rimwidth(ib_bdy)))**2. ! quadratic
END DO
END DO
END DO ! ib_bdy
! ------------------------------------------------------
! Initialise masks and find normal/tangential directions
! ------------------------------------------------------
! ------------------------------------------
! handle rim0, do as if rim 1 was free ocean
! ------------------------------------------
ztmask(:,:) = tmask(:,:,1) ; zumask(:,:) = umask(:,:,1) ; zvmask(:,:) = vmask(:,:,1)
! For the flagu/flagv calculation below we require a version of fmask without
! the land boundary condition (shlat) included:
DO_2D( 0, 0, 0, 0 )
zfmask(ji,jj) = ztmask(ji,jj ) * ztmask(ji+1,jj ) &
& * ztmask(ji,jj+1) * ztmask(ji+1,jj+1)
END_2D
CALL lbc_lnk( 'bdyini', zfmask, 'F', 1.0_wp )
! Read global 2D mask at T-points: bdytmask
! -----------------------------------------
! bdytmask = 1 on the computational domain but not on open boundaries
! = 0 elsewhere
bdytmask(:,:) = ssmask(:,:)
! Derive mask on U and V grid from mask on T grid
DO_2D( 0, 0, 0, 0 )
bdyumask(ji,jj) = bdytmask(ji,jj) * bdytmask(ji+1,jj )
bdyvmask(ji,jj) = bdytmask(ji,jj) * bdytmask(ji ,jj+1)
END_2D
CALL lbc_lnk( 'bdyini', bdyumask, 'U', 1.0_wp , bdyvmask, 'V', 1.0_wp ) ! Lateral boundary cond.
! bdy masks are now set to zero on rim 0 points:
DO ib_bdy = 1, nb_bdy
DO ib = 1, idx_bdy(ib_bdy)%nblenrim0(1) ! extent of rim 0
bdytmask(idx_bdy(ib_bdy)%nbi(ib,1), idx_bdy(ib_bdy)%nbj(ib,1)) = 0._wp
END DO
DO ib = 1, idx_bdy(ib_bdy)%nblenrim0(2) ! extent of rim 0
bdyumask(idx_bdy(ib_bdy)%nbi(ib,2), idx_bdy(ib_bdy)%nbj(ib,2)) = 0._wp
END DO
DO ib = 1, idx_bdy(ib_bdy)%nblenrim0(3) ! extent of rim 0
bdyvmask(idx_bdy(ib_bdy)%nbi(ib,3), idx_bdy(ib_bdy)%nbj(ib,3)) = 0._wp
END DO
END DO
CALL bdy_rim_treat( zumask, zvmask, zfmask, .true. ) ! compute flagu, flagv, ntreat on rim 0
! ------------------------------------
! handle rim1, do as if rim 0 was land
! ------------------------------------
! z[tuv]mask are now set to zero on rim 0 points:
DO ib_bdy = 1, nb_bdy
DO ib = 1, idx_bdy(ib_bdy)%nblenrim0(1) ! extent of rim 0
ztmask(idx_bdy(ib_bdy)%nbi(ib,1), idx_bdy(ib_bdy)%nbj(ib,1)) = 0._wp
END DO
DO ib = 1, idx_bdy(ib_bdy)%nblenrim0(2) ! extent of rim 0
zumask(idx_bdy(ib_bdy)%nbi(ib,2), idx_bdy(ib_bdy)%nbj(ib,2)) = 0._wp
END DO
DO ib = 1, idx_bdy(ib_bdy)%nblenrim0(3) ! extent of rim 0
zvmask(idx_bdy(ib_bdy)%nbi(ib,3), idx_bdy(ib_bdy)%nbj(ib,3)) = 0._wp
END DO
END DO
! Recompute zfmask
DO_2D( 0, 0, 0, 0 )
zfmask(ji,jj) = ztmask(ji,jj ) * ztmask(ji+1,jj ) &
& * ztmask(ji,jj+1) * ztmask(ji+1,jj+1)
END_2D
CALL lbc_lnk( 'bdyini', zfmask, 'F', 1.0_wp )
! bdy masks are now set to zero on rim1 points:
DO ib_bdy = 1, nb_bdy
DO ib = idx_bdy(ib_bdy)%nblenrim0(1) + 1, idx_bdy(ib_bdy)%nblenrim(1) ! extent of rim 1
bdytmask(idx_bdy(ib_bdy)%nbi(ib,1), idx_bdy(ib_bdy)%nbj(ib,1)) = 0._wp
END DO
DO ib = idx_bdy(ib_bdy)%nblenrim0(2) + 1, idx_bdy(ib_bdy)%nblenrim(2) ! extent of rim 1
bdyumask(idx_bdy(ib_bdy)%nbi(ib,2), idx_bdy(ib_bdy)%nbj(ib,2)) = 0._wp
END DO
DO ib = idx_bdy(ib_bdy)%nblenrim0(3) + 1, idx_bdy(ib_bdy)%nblenrim(3) ! extent of rim 1
bdyvmask(idx_bdy(ib_bdy)%nbi(ib,3), idx_bdy(ib_bdy)%nbj(ib,3)) = 0._wp
END DO
END DO
CALL bdy_rim_treat( zumask, zvmask, zfmask, .false. ) ! compute flagu, flagv, ntreat on rim 1
!
! Check which boundaries might need communication
ALLOCATE( lsend_bdyint(nb_bdy,jpbgrd,8,0:1), lrecv_bdyint(nb_bdy,jpbgrd,8,0:1) )
lsend_bdyint(:,:,:,:) = .false.
lrecv_bdyint(:,:,:,:) = .false.
ALLOCATE( lsend_bdyext(nb_bdy,jpbgrd,8,0:1), lrecv_bdyext(nb_bdy,jpbgrd,8,0:1) )
lsend_bdyext(:,:,:,:) = .false.
lrecv_bdyext(:,:,:,:) = .false.
!
DO ib_bdy = 1, nb_bdy
DO igrd = 1, jpbgrd
DO ib = 1, idx_bdy(ib_bdy)%nblenrim(igrd)
IF( idx_bdy(ib_bdy)%ntreat(ib,igrd) == -1 ) CYCLE
ii = idx_bdy(ib_bdy)%nbi(ib,igrd)
ij = idx_bdy(ib_bdy)%nbj(ib,igrd)
ir = idx_bdy(ib_bdy)%nbr(ib,igrd)
flagu = NINT(idx_bdy(ib_bdy)%flagu(ib,igrd))
flagv = NINT(idx_bdy(ib_bdy)%flagv(ib,igrd))
iibe = ii - flagu ! neighbouring point towards the exterior of the computational domain
ijbe = ij - flagv
iibi = ii + flagu ! neighbouring point towards the interior of the computational domain
ijbi = ij + flagv
CALL find_neib( ii, ij, idx_bdy(ib_bdy)%ntreat(ib,igrd), ii1, ij1, ii2, ij2, ii3, ij3 ) ! free ocean neighbours
!
! take care of the 4 sides
!
DO icnt = 1, 4
SELECT CASE( icnt )
! ... _____
CASE( 1 ) ! x: rim on rcvwe/sndea-side o| :
! o: potential neighbour(s) o|x :
! outside of the MPI domain ..o|__:__
iRnei = jpwe ; iSnei = jpea
iiRst = 1 ; ijRst = Njs0 ! Rcv we-side starting point, excluding sw-corner
iiRnd = nn_hls ; ijRnd = Nje0 ! Rcv we-side ending point, excluding nw-corner
iiSst = Nie0-nn_hls+1 ; ijSst = Njs0 ! Snd ea-side starting point, excluding se-corner
iiSnd = Nie0 ; ijSnd = Nje0 ! Snd ea-side ending point, excluding ne-corner
iioutdir = -1 ; ijoutdir = -999 ! outside MPI domain: westward
! ______....
CASE( 2 ) ! x: rim on rcvea/sndwe-side : |o
! o: potential neighbour(s) : x|o
! outside of the MPI domain ___:__|o..
iRnei = jpea ; iSnei = jpwe
iiRst = Nie0+1 ; ijRst = Njs0 ! Rcv ea-side starting point, excluding se-corner
iiRnd = jpi ; ijRnd = Nje0 ! Rcv ea-side ending point, excluding ne-corner
iiSst = Nis0 ; ijSst = Njs0 ! Snd we-side starting point, excluding sw-corner
iiSnd = Nis0+nn_hls-1 ; ijSnd = Nje0 ! Snd we-side ending point, excluding nw-corner
iioutdir = 1 ; ijoutdir = -999 ! outside MPI domain: eastward
!
CASE( 3 ) ! x: rim on rcvso/sndno-side | |
! o: potential neighbour(s) |¨¨¨¨¨¨¨|
! outside of the MPI domain |___x___|
! : o o o :
! : :
iRnei = jpso ; iSnei = jpno
iiRst = Nis0 ; ijRst = 1 ! Rcv so-side starting point, excluding sw-corner
iiRnd = Nie0 ; ijRnd = nn_hls ! Rcv so-side ending point, excluding se-corner
iiSst = Nis0 ; ijSst = Nje0-nn_hls+1 ! Snd no-side starting point, excluding nw-corner
iiSnd = Nie0 ; ijSnd = Nje0 ! Snd no-side ending point, excluding ne-corner
iioutdir = -999 ; ijoutdir = -1 ! outside MPI domain: southward
! : :
CASE( 4 ) ! x: rim on rcvno/sndso-side :_o_o_o_:
! o: potential neighbour(s) | x |
! outside of the MPI domain | |
! |¨¨¨¨¨¨¨|
iRnei = jpno ; iSnei = jpso
iiRst = Nis0 ; ijRst = Nje0+1 ! Rcv no-side starting point, excluding nw-corner
iiRnd = Nie0 ; ijRnd = jpj ! Rcv no-side ending point, excluding ne-corner
iiSst = Nis0 ; ijSst = Njs0 ! Snd so-side starting point, excluding sw-corner
iiSnd = Nie0 ; ijSnd = Njs0+nn_hls-1 ! Snd so-side ending point, excluding se-corner
iioutdir = -999 ; ijoutdir = 1 ! outside MPI domain: northward
END SELECT
!
IF( ii >= iiRst .AND. ii <= iiRnd .AND. ij >= ijRst .AND. ij <= ijRnd ) THEN ! rim point in recv side
iiout = ii+iioutdir ; ijout = ij+ijoutdir ! in which direction do we go outside of the MPI domain?
! take care of neighbourg(s) in the interior of the computational domain
IF( iibi==iiout .OR. ii1==iiout .OR. ii2==iiout .OR. ii3==iiout .OR. & ! Neib outside of the MPI domain
& ijbi==ijout .OR. ij1==ijout .OR. ij2==ijout .OR. ij3==ijout ) THEN ! -> I cannot compute it -> recv it
IF( mpiRnei(nn_hls,iRnei) > -1 ) lrecv_bdyint(ib_bdy,igrd,iRnei,ir) = .TRUE.
ENDIF
! take care of neighbourg in the exterior of the computational domain
IF( iibe==iiout .OR. ijbe==ijout ) THEN ! Neib outside of the MPI domain -> I cannot compute it -> recv it
IF( mpiRnei(nn_hls,iRnei) > -1 ) lrecv_bdyext(ib_bdy,igrd,iRnei,ir) = .TRUE.
ENDIF
ENDIF
IF( ii >= iiSst .AND. ii <= iiSnd .AND. ij >= ijSst .AND. ij <= ijSnd ) THEN ! rim point in send side
iiout = ii+iioutdir ; ijout = ij+ijoutdir ! in which direction do we go outside of the nei MPI domain?
! take care of neighbourg(s) in the interior of the computational domain
IF( iibi==iiout .OR. ii1==iiout .OR. ii2==iiout .OR. ii3==iiout .OR. & ! Neib outside of nei MPI domain
& ijbi==ijout .OR. ij1==ijout .OR. ij2==ijout .OR. ij3==ijout ) THEN ! -> nei cannot compute it
IF( mpiSnei(nn_hls,iSnei) > -1 ) lsend_bdyint(ib_bdy,igrd,iSnei,ir) = .TRUE. ! -> send to nei
ENDIF
! take care of neighbourg in the exterior of the computational domain
IF( iibe == iiout .OR. ijbe == ijout ) THEN ! Neib outside of the nei MPI domain -> nei cannot compute it
IF( mpiSnei(nn_hls,iSnei) > -1 ) lsend_bdyext(ib_bdy,igrd,iSnei,ir) = .TRUE. ! -> send to nei
ENDIF
END IF
END DO ! 4 sides
!
! specific treatment for the corners
!
DO icnt = 1, 4
SELECT CASE( icnt )
! ...|....
CASE( 1 ) ! x: rim on sw-corner o| :
! o: potential neighbour(s) o|x__:__
! outside of the MPI domain o o o:
! :
iRdiag = jpsw ; iRsono = jpso ! Recv: for sw or so
iSdiag = jpne ; iSsono = jpno ! Send: to ne or no
iiRst = 1 ; ijRst = 1 ! Rcv sw-corner starting point
iiRnd = nn_hls ; ijRnd = nn_hls ! Rcv sw-corner ending point
iiSstdiag = Nie0-nn_hls+1 ; ijSstdiag = Nje0-nn_hls+1 ! send to sw-corner of ne neighbourg
iiSnddiag = Nie0 ; ijSnddiag = Nje0 ! send to sw-corner of ne neighbourg
iiSstsono = 1 ; ijSstsono = Nje0-nn_hls+1 ! send to sw-corner of no neighbourg
iiSndsono = nn_hls ; ijSndsono = Nje0 ! send to sw-corner of no neighbourg
iioutdir = -1 ; ijoutdir = -1 ! outside MPI domain: westward or southward
! ....|...
CASE( 2 ) ! x: rim on se-corner : |o
! o: potential neighbour(s) __:__x|o
! outside of the MPI domain :o o o
! :
iRdiag = jpse ; iRsono = jpso ! Recv: for se or so
iSdiag = jpnw ; iSsono = jpno ! Send: to nw or no
iiRst = Nie0+1 ; ijRst = 1 ! Rcv se-corner starting point
iiRnd = jpi ; ijRnd = nn_hls ! Rcv se-corner ending point
iiSstdiag = Nis0 ; ijSstdiag = Nje0-nn_hls+1 ! send to se-corner of nw neighbourg
iiSnddiag = Nis0+nn_hls-1 ; ijSnddiag = Nje0 ! send to se-corner of nw neighbourg
iiSstsono = Nie0+1 ; ijSstsono = Nje0-nn_hls+1 ! send to se-corner of no neighbourg
iiSndsono = jpi ; ijSndsono = Nje0 ! send to se-corner of no neighbourg
iioutdir = 1 ; ijoutdir = -1 ! outside MPI domain: eastward or southward
! :
! o o_o:___
CASE( 3 ) ! x: rim on nw-corner o|x :
! o: potential neighbour(s) ..o|...:
! outside of the MPI domain |
iRdiag = jpnw ; iRsono = jpno ! Recv: for nw or no
iSdiag = jpse ; iSsono = jpso ! Send: to se or so
iiRst = 1 ; ijRst = Nje0+1 ! Rcv nw-corner starting point
iiRnd = nn_hls ; ijRnd = jpj ! Rcv nw-corner ending point
iiSstdiag = Nie0-nn_hls+1 ; ijSstdiag = Njs0 ! send to nw-corner of se neighbourg
iiSnddiag = Nie0 ; ijSnddiag = Njs0+nn_hls-1 ! send to nw-corner of se neighbourg
iiSstsono = 1 ; ijSstsono = Njs0 ! send to nw-corner of so neighbourg
iiSndsono = nn_hls ; ijSndsono = Njs0+nn_hls-1 ! send to nw-corner of so neighbourg
iioutdir = -1 ; ijoutdir = 1 ! outside MPI domain: westward or northward
! :
! ___:o_o o
CASE( 4 ) ! x: rim on ne-corner : x|o
! o: potential neighbour(s) :...|o...
! outside of the MPI domain |
iRdiag = jpne ; iRsono = jpno ! Recv: for ne or no
iSdiag = jpsw ; iSsono = jpso ! Send: to sw or so
iiRst = Nie0+1 ; ijRst = Nje0+1 ! Rcv ne-corner starting point
iiRnd = jpi ; ijRnd = jpj ! Rcv ne-corner ending point
iiSstdiag = Nis0 ; ijSstdiag = Njs0 ! send to ne-corner of sw neighbourg
iiSnddiag = Nis0+nn_hls-1 ; ijSnddiag = Njs0+nn_hls-1 ! send to ne-corner of sw neighbourg
iiSstsono = Nie0+1 ; ijSstsono = Njs0 ! send to ne-corner of so neighbourg
iiSndsono = jpi ; ijSndsono = Njs0+nn_hls-1 ! send to ne-corner of so neighbourg
iioutdir = 1 ; ijoutdir = 1 ! outside MPI domain: eastward or southward
END SELECT
!
! Check if we need to receive data for this rim point
IF( ii >= iiRst .AND. ii <= iiRnd .AND. ij >= ijRst .AND. ij <= ijRnd ) THEN ! rim point on the corner
iiout = ii+iioutdir ; ijout = ij+ijoutdir ! in which direction do we go outside of the MPI domain?
! take care of neighbourg(s) in the interior of the computational domain
IF( iibi==iiout .OR. ii1==iiout .OR. ii2==iiout .OR. ii3==iiout .OR. & ! Neib outside of the MPI domain
& ijbi==ijout .OR. ij1==ijout .OR. ij2==ijout .OR. ij3==ijout ) THEN ! -> I cannot compute it -> recv it
IF( mpiRnei(nn_hls,iRdiag) > -1 ) lrecv_bdyint(ib_bdy,igrd,iRdiag,ir) = .TRUE. ! Receive directly from diagonal neighbourg
IF( mpiRnei(nn_hls,iRsono) > -1 .AND. nn_comm == 1 ) lrecv_bdyint(ib_bdy,igrd,iRsono,ir) = .TRUE. ! Receive through the South/North neighbourg
ENDIF
! take care of neighbourg in the exterior of the computational domain
IF( iibe==iiout .OR. ijbe==ijout ) THEN ! Neib outside of the MPI domain -> I cannot compute it -> recv it
IF( mpiRnei(nn_hls,iRdiag) > -1 ) lrecv_bdyext(ib_bdy,igrd,iRdiag,ir) = .TRUE. ! Receive directly from diagonal neighbourg
IF( mpiRnei(nn_hls,iRsono) > -1 .AND. nn_comm == 1 ) lrecv_bdyext(ib_bdy,igrd,iRsono,ir) = .TRUE. ! Receive through the South/North neighbourg
ENDIF
ENDIF
!
! Check if this rim point corresponds to the corner of one neighbourg. if yes, do we need to send data?
! Direct send to diag: Is this rim point the corner point of a diag neighbour with which we communicate?
IF( ii >= iiSstdiag .AND. ii <= iiSnddiag .AND. ij >= ijSstdiag .AND. ij <= ijSnddiag &
& .AND. mpiSnei(nn_hls,iSdiag) > -1 ) THEN
iiout = ii+iioutdir ; ijout = ij+ijoutdir ! in which direction do we go outside of the nei MPI domain?
! take care of neighbourg(s) in the interior of the computational domain
IF( iibi==iiout .OR. ii1==iiout .OR. ii2==iiout .OR. ii3==iiout .OR. & ! Neib outside of diag nei MPI
& ijbi==ijout .OR. ij1==ijout .OR. ij2==ijout .OR. ij3==ijout ) & ! domain -> nei cannot compute it
& lsend_bdyint(ib_bdy,igrd,iSdiag,ir) = .TRUE. ! send rim point data to diag nei
! take care of neighbourg in the exterior of the computational domain
IF( iibe==iiout .OR. ijbe==ijout ) &
& lsend_bdyext(ib_bdy,igrd,iSdiag,ir) = .TRUE.
ENDIF
! Indirect send to diag (through so/no): rim point is the corner point of a so/no nei with which we communicate
IF( ii >= iiSstsono .AND. ii <= iiSndsono .AND. ij >= ijSstsono .AND. ij <= ijSndsono &
& .AND. mpiSnei(nn_hls,iSsono) > -1 .AND. nn_comm == 1 ) THEN
iiout = ii+iioutdir ; ijout = ij+ijoutdir ! in which direction do we go outside of the nei MPI domain?
! take care of neighbourg(s) in the interior of the computational domain
IF( iibi==iiout .OR. ii1==iiout .OR. ii2==iiout .OR. ii3==iiout .OR. & ! Neib outside of so/no nei MPI
& ijbi==ijout .OR. ij1==ijout .OR. ij2==ijout .OR. ij3==ijout ) & ! domain -> nei cannot compute it
& lsend_bdyint(ib_bdy,igrd,iSsono,ir) = .TRUE. ! send rim point data to so/no nei
! take care of neighbourg in the exterior of the computational domain
IF( iibe==iiout .OR. ijbe==ijout ) &
& lsend_bdyext(ib_bdy,igrd,iSsono,ir) = .TRUE.
ENDIF
!
END DO ! 4 corners
END DO ! ib
END DO ! igrd
! Comment out for debug
!!$ DO ir = 0,1
!!$ zzbdy(:,:) = narea ; CALL lbc_lnk('bdy debug', zzbdy, 'T', 1._wp, kfillmode = jpfillnothing, &
!!$ & lsend = lsend_bdyint(ib_bdy,1,:,ir), lrecv = lrecv_bdyint(ib_bdy,1,:,ir) )
!!$ IF(lwp) WRITE(numout,*) ' bdy debug int T', ir ; CALL FLUSH(numout)
!!$ zzbdy(:,:) = narea ; CALL lbc_lnk('bdy debug', zzbdy, 'U', 1._wp, kfillmode = jpfillnothing, &
!!$ & lsend = lsend_bdyint(ib_bdy,2,:,ir), lrecv = lrecv_bdyint(ib_bdy,2,:,ir) )
!!$ IF(lwp) WRITE(numout,*) ' bdy debug int U', ir ; CALL FLUSH(numout)
!!$ zzbdy(:,:) = narea ; CALL lbc_lnk('bdy debug', zzbdy, 'V', 1._wp, kfillmode = jpfillnothing, &
!!$ & lsend = lsend_bdyint(ib_bdy,3,:,ir), lrecv = lrecv_bdyint(ib_bdy,3,:,ir) )
!!$ IF(lwp) WRITE(numout,*) ' bdy debug int V', ir ; CALL FLUSH(numout)
!!$ zzbdy(:,:) = narea ; CALL lbc_lnk('bdy debug', zzbdy, 'T', 1._wp, kfillmode = jpfillnothing, &
!!$ & lsend = lsend_bdyext(ib_bdy,1,:,ir), lrecv = lrecv_bdyext(ib_bdy,1,:,ir) )
!!$ IF(lwp) WRITE(numout,*) ' bdy debug ext T', ir ; CALL FLUSH(numout)
!!$ zzbdy(:,:) = narea ; CALL lbc_lnk('bdy debug', zzbdy, 'U', 1._wp, kfillmode = jpfillnothing, &
!!$ & lsend = lsend_bdyext(ib_bdy,2,:,ir), lrecv = lrecv_bdyext(ib_bdy,2,:,ir) )