Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
SUBROUTINE ultimate_y( kloop, pamsk, kn_umx, pdt, pt, pv, pt_v, pfv_ho )
!!---------------------------------------------------------------------
!! *** ROUTINE ultimate_y ***
!!
!! ** Purpose : compute tracer at v-points
!!
!! ** Method : ...
!!
!! Reference : Leonard, B.P., 1991, Comput. Methods Appl. Mech. Eng., 88, 17-74.
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: kloop ! either 0 or nn_hls depending on the order of the call
REAL(wp) , INTENT(in ) :: pamsk ! advection of concentration (1) or other tracers (0)
INTEGER , INTENT(in ) :: kn_umx ! order of the scheme (1-5=UM or 20=CEN2)
REAL(wp) , INTENT(in ) :: pdt ! tracer time-step
REAL(wp), DIMENSION(:,: ) , INTENT(in ) :: pv ! ice j-velocity component
REAL(wp), DIMENSION(:,:,:) , INTENT(in ) :: pt ! tracer fields
REAL(wp), DIMENSION(jpi,jpj,jpl), INTENT( out) :: pt_v ! tracer at v-point
REAL(wp), DIMENSION(jpi,jpj,jpl), INTENT( out) :: pfv_ho ! high order flux
!
INTEGER :: ji, jj, jl ! dummy loop indices
REAL(wp) :: zcv, zdy2, zdy4 ! - -
REAL(wp), DIMENSION(jpi,jpj,jpl) :: ztv1, ztv2, ztv3, ztv4
!!----------------------------------------------------------------------
!
! !-- Laplacian in j-direction --!
DO jl = 1, jpl
DO_2D( kloop, kloop, nn_hls, nn_hls-1 ) ! First derivative (gradient)
ztv1(ji,jj,jl) = ( pt(ji,jj+1,jl) - pt(ji,jj,jl) ) * r1_e2v(ji,jj) * vmask(ji,jj,1)
END_2D
DO_2D( kloop, kloop, nn_hls-1, nn_hls-1 ) ! Second derivative (Laplacian)
ztv2(ji,jj,jl) = ( ztv1(ji,jj,jl) - ztv1(ji,jj-1,jl) ) * r1_e2t(ji,jj)
END_2D
END DO
IF( nn_hls == 1 ) CALL lbc_lnk( 'icedyn_adv_umx', ztv2, 'T', 1.0_wp )
!
! !-- BiLaplacian in j-direction --!
DO jl = 1, jpl
DO_2D( kloop, kloop, 1, 0 ) ! Third derivative
ztv3(ji,jj,jl) = ( ztv2(ji,jj+1,jl) - ztv2(ji,jj,jl) ) * r1_e2v(ji,jj) * vmask(ji,jj,1)
END_2D
DO_2D( kloop, kloop, 0, 0 ) ! Fourth derivative
ztv4(ji,jj,jl) = ( ztv3(ji,jj,jl) - ztv3(ji,jj-1,jl) ) * r1_e2t(ji,jj)
END_2D
END DO
!
!
SELECT CASE (kn_umx )
!
CASE( 1 ) !== 1st order central TIM ==! (Eq. 21)
DO jl = 1, jpl
DO_2D( kloop, kloop, 1, 0 )
pt_v(ji,jj,jl) = 0.5_wp * vmask(ji,jj,1) * ( pt(ji,jj+1,jl) + pt(ji,jj,jl) &
& - SIGN( 1._wp, pv(ji,jj) ) * ( pt(ji,jj+1,jl) - pt(ji,jj,jl) ) )
END_2D
END DO
!
CASE( 2 ) !== 2nd order central TIM ==! (Eq. 23)
DO jl = 1, jpl
DO_2D( kloop, kloop, 1, 0 )
zcv = pv(ji,jj) * r1_e1v(ji,jj) * pdt * r1_e2v(ji,jj)
pt_v(ji,jj,jl) = 0.5_wp * vmask(ji,jj,1) * ( pt(ji,jj+1,jl) + pt(ji,jj,jl) &
& - zcv * ( pt(ji,jj+1,jl) - pt(ji,jj,jl) ) )
END_2D
END DO
!
CASE( 3 ) !== 3rd order central TIM ==! (Eq. 24)
DO jl = 1, jpl
DO_2D( kloop, kloop, 1, 0 )
zcv = pv(ji,jj) * r1_e1v(ji,jj) * pdt * r1_e2v(ji,jj)
zdy2 = e2v(ji,jj) * e2v(ji,jj)
!!rachid zdy2 = e2v(ji,jj) * e2t(ji,jj)
pt_v(ji,jj,jl) = 0.5_wp * vmask(ji,jj,1) * ( ( pt (ji,jj+1,jl) + pt (ji,jj,jl) &
& - zcv * ( pt (ji,jj+1,jl) - pt (ji,jj,jl) ) ) &
Clement Rousset
committed
& + r1_6 * zdy2 * ( zcv*zcv - 1._wp ) * ( ztv2(ji,jj+1,jl) + ztv2(ji,jj,jl) &
& - SIGN( 1._wp, zcv ) * ( ztv2(ji,jj+1,jl) - ztv2(ji,jj,jl) ) ) )
END_2D
END DO
!
CASE( 4 ) !== 4th order central TIM ==! (Eq. 27)
DO jl = 1, jpl
DO_2D( kloop, kloop, 1, 0 )
zcv = pv(ji,jj) * r1_e1v(ji,jj) * pdt * r1_e2v(ji,jj)
zdy2 = e2v(ji,jj) * e2v(ji,jj)
!!rachid zdy2 = e2v(ji,jj) * e2t(ji,jj)
pt_v(ji,jj,jl) = 0.5_wp * vmask(ji,jj,1) * ( ( pt (ji,jj+1,jl) + pt (ji,jj,jl) &
& - zcv * ( pt (ji,jj+1,jl) - pt (ji,jj,jl) ) ) &
Clement Rousset
committed
& + r1_6 * zdy2 * ( zcv*zcv - 1._wp ) * ( ztv2(ji,jj+1,jl) + ztv2(ji,jj,jl) &
& - 0.5_wp * zcv * ( ztv2(ji,jj+1,jl) - ztv2(ji,jj,jl) ) ) )
END_2D
END DO
!
CASE( 5 ) !== 5th order central TIM ==! (Eq. 29)
!
CALL lbc_lnk( 'icedyn_adv_umx', ztv4, 'T', 1.0_wp )
!
DO jl = 1, jpl
DO_2D( kloop, kloop, 1, 0 )
zcv = pv(ji,jj) * r1_e1v(ji,jj) * pdt * r1_e2v(ji,jj)
zdy2 = e2v(ji,jj) * e2v(ji,jj)
!!rachid zdy2 = e2v(ji,jj) * e2t(ji,jj)
zdy4 = zdy2 * zdy2
pt_v(ji,jj,jl) = 0.5_wp * vmask(ji,jj,1) * ( ( pt (ji,jj+1,jl) + pt (ji,jj,jl) &
& - zcv * ( pt (ji,jj+1,jl) - pt (ji,jj,jl) ) ) &
Clement Rousset
committed
& + r1_6 * zdy2 * ( zcv*zcv - 1._wp ) * ( ztv2(ji,jj+1,jl) + ztv2(ji,jj,jl) &
& - 0.5_wp * zcv * ( ztv2(ji,jj+1,jl) - ztv2(ji,jj,jl) ) ) &
Clement Rousset
committed
& + r1_120 * zdy4 * ( zcv*zcv - 1._wp ) * ( zcv*zcv - 4._wp ) * ( ztv4(ji,jj+1,jl) + ztv4(ji,jj,jl) &
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
& - SIGN( 1._wp, zcv ) * ( ztv4(ji,jj+1,jl) - ztv4(ji,jj,jl) ) ) )
END_2D
END DO
!
END SELECT
!
! if pt at v-point is negative then use the upstream value
! this should not be necessary if a proper sea-ice mask is set in Ultimate
! to degrade the order of the scheme when necessary (for ex. at the ice edge)
IF( ll_neg ) THEN
DO jl = 1, jpl
DO_2D( kloop, kloop, 1, 0 )
IF( pt_v(ji,jj,jl) < 0._wp .OR. ( jmsk_small(ji,jj,jl) == 0 .AND. pamsk == 0. ) ) THEN
pt_v(ji,jj,jl) = 0.5_wp * vmask(ji,jj,1) * ( ( pt(ji,jj+1,jl) + pt(ji,jj,jl) ) &
& - SIGN( 1._wp, pv(ji,jj) ) * ( pt(ji,jj+1,jl) - pt(ji,jj,jl) ) )
ENDIF
END_2D
END DO
ENDIF
! !-- High order flux in j-direction --!
DO jl = 1, jpl
DO_2D( 0, 0, 1, 0 )
pfv_ho(ji,jj,jl) = pv(ji,jj) * pt_v(ji,jj,jl)
END_2D
END DO
!
END SUBROUTINE ultimate_y
SUBROUTINE nonosc_ice( pamsk, pdt, pu, pv, pt, pt_ups, pfu_ups, pfv_ups, pfu_ho, pfv_ho )
!!---------------------------------------------------------------------
!! *** ROUTINE nonosc_ice ***
!!
!! ** Purpose : compute monotonic tracer fluxes from the upstream
!! scheme and the before field by a non-oscillatory algorithm
!!
!! ** Method : ...
!!----------------------------------------------------------------------
REAL(wp) , INTENT(in ) :: pamsk ! advection of concentration (1) or other tracers (0)
REAL(wp) , INTENT(in ) :: pdt ! tracer time-step
REAL(wp), DIMENSION (:,: ), INTENT(in ) :: pu ! ice i-velocity => u*e2
REAL(wp), DIMENSION (:,: ), INTENT(in ) :: pv ! ice j-velocity => v*e1
REAL(wp), DIMENSION (:,:,:), INTENT(in ) :: pt, pt_ups ! before field & upstream guess of after field
REAL(wp), DIMENSION (:,:,:), INTENT(in ) :: pfv_ups, pfu_ups ! upstream flux
REAL(wp), DIMENSION (:,:,:), INTENT(inout) :: pfv_ho, pfu_ho ! monotonic flux
!
INTEGER :: ji, jj, jl ! dummy loop indices
REAL(wp) :: zpos, zneg, zbig, zup, zdo, z1_dt ! local scalars
REAL(wp) :: zau, zbu, zcu, zav, zbv, zcv, zcoef, zzt ! - -
REAL(wp), DIMENSION(jpi,jpj ) :: zbup, zbdo
REAL(wp), DIMENSION(jpi,jpj,jpl) :: zbetup, zbetdo, zti_ups, ztj_ups
!!----------------------------------------------------------------------
zbig = 1.e+20_wp ! works ok with simple/double precison
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
! antidiffusive flux : high order minus low order
! --------------------------------------------------
DO jl = 1, jpl
DO_2D( 1, 0, 0, 0 )
pfu_ho(ji,jj,jl) = pfu_ho(ji,jj,jl) - pfu_ups(ji,jj,jl)
END_2D
DO_2D( 0, 0, 1, 0 )
pfv_ho(ji,jj,jl) = pfv_ho(ji,jj,jl) - pfv_ups(ji,jj,jl)
END_2D
END DO
! extreme case where pfu_ho has to be zero
! ----------------------------------------
! pfu_ho
! * --->
! | | * | |
! | | | * |
! | | | | *
! t_ups : i-1 i i+1 i+2
IF( ll_prelim ) THEN
DO jl = 1, jpl
DO_2D( 0, 0, 0, 0 )
zti_ups(ji,jj,jl)= pt_ups(ji+1,jj ,jl)
ztj_ups(ji,jj,jl)= pt_ups(ji ,jj+1,jl)
END_2D
END DO
CALL lbc_lnk( 'icedyn_adv_umx', zti_ups, 'T', 1.0_wp, ztj_ups, 'T', 1.0_wp )
DO jl = 1, jpl
DO_2D( 0, 0, 0, 0 )
IF ( pfu_ho(ji,jj,jl) * ( pt_ups(ji+1,jj ,jl) - pt_ups(ji,jj,jl) ) <= 0._wp .AND. &
& pfv_ho(ji,jj,jl) * ( pt_ups(ji ,jj+1,jl) - pt_ups(ji,jj,jl) ) <= 0._wp ) THEN
!
IF( pfu_ho(ji,jj,jl) * ( zti_ups(ji+1,jj ,jl) - zti_ups(ji,jj,jl) ) <= 0._wp .AND. &
& pfv_ho(ji,jj,jl) * ( ztj_ups(ji ,jj+1,jl) - ztj_ups(ji,jj,jl) ) <= 0._wp ) THEN
pfu_ho(ji,jj,jl)=0._wp
pfv_ho(ji,jj,jl)=0._wp
ENDIF
!
IF( pfu_ho(ji,jj,jl) * ( pt_ups(ji,jj,jl) - pt_ups(ji-1,jj ,jl) ) <= 0._wp .AND. &
& pfv_ho(ji,jj,jl) * ( pt_ups(ji,jj,jl) - pt_ups(ji ,jj-1,jl) ) <= 0._wp ) THEN
pfu_ho(ji,jj,jl)=0._wp
pfv_ho(ji,jj,jl)=0._wp
ENDIF
!
ENDIF
END_2D
END DO
CALL lbc_lnk( 'icedyn_adv_umx', pfu_ho, 'U', -1.0_wp, pfv_ho, 'V', -1.0_wp ) ! lateral boundary cond.
ENDIF
! Search local extrema
! --------------------
! max/min of pt & pt_ups with large negative/positive value (-/+zbig) outside ice cover
z1_dt = 1._wp / pdt
DO jl = 1, jpl
DO_2D( 1, 1, 1, 1 )
IF ( pt(ji,jj,jl) <= 0._wp .AND. pt_ups(ji,jj,jl) <= 0._wp ) THEN
zbup(ji,jj) = -zbig
zbdo(ji,jj) = zbig
ELSEIF( pt(ji,jj,jl) <= 0._wp .AND. pt_ups(ji,jj,jl) > 0._wp ) THEN
zbup(ji,jj) = pt_ups(ji,jj,jl)
zbdo(ji,jj) = pt_ups(ji,jj,jl)
ELSEIF( pt(ji,jj,jl) > 0._wp .AND. pt_ups(ji,jj,jl) <= 0._wp ) THEN
zbup(ji,jj) = pt(ji,jj,jl)
zbdo(ji,jj) = pt(ji,jj,jl)
ELSE
zbup(ji,jj) = MAX( pt(ji,jj,jl) , pt_ups(ji,jj,jl) )
zbdo(ji,jj) = MIN( pt(ji,jj,jl) , pt_ups(ji,jj,jl) )
ENDIF
END_2D
DO_2D( 0, 0, 0, 0 )
!
zup = MAX( zbup(ji,jj), zbup(ji-1,jj), zbup(ji+1,jj), zbup(ji,jj-1), zbup(ji,jj+1) ) ! search max/min in neighbourhood
zdo = MIN( zbdo(ji,jj), zbdo(ji-1,jj), zbdo(ji+1,jj), zbdo(ji,jj-1), zbdo(ji,jj+1) )
!
zpos = MAX( 0._wp, pfu_ho(ji-1,jj ,jl) ) - MIN( 0._wp, pfu_ho(ji ,jj ,jl) ) & ! positive/negative part of the flux
& + MAX( 0._wp, pfv_ho(ji ,jj-1,jl) ) - MIN( 0._wp, pfv_ho(ji ,jj ,jl) )
zneg = MAX( 0._wp, pfu_ho(ji ,jj ,jl) ) - MIN( 0._wp, pfu_ho(ji-1,jj ,jl) ) &
& + MAX( 0._wp, pfv_ho(ji ,jj ,jl) ) - MIN( 0._wp, pfv_ho(ji ,jj-1,jl) )
!
zpos = zpos - (pt(ji,jj,jl) * MIN( 0., pu(ji,jj) - pu(ji-1,jj) ) + pt(ji,jj,jl) * MIN( 0., pv(ji,jj) - pv(ji,jj-1) ) &
& ) * ( 1. - pamsk )
zneg = zneg + (pt(ji,jj,jl) * MAX( 0., pu(ji,jj) - pu(ji-1,jj) ) + pt(ji,jj,jl) * MAX( 0., pv(ji,jj) - pv(ji,jj-1) ) &
& ) * ( 1. - pamsk )
!
! ! up & down beta terms
! clem: zbetup and zbetdo must be 0 for zpos>1.e-10 & zneg>1.e-10 (do not put 0 instead of 1.e-10 !!!)
IF( zpos > epsi10 ) THEN ; zbetup(ji,jj,jl) = MAX( 0._wp, zup - pt_ups(ji,jj,jl) ) / zpos * e1e2t(ji,jj) * z1_dt
ELSE ; zbetup(ji,jj,jl) = 0._wp ! zbig
ENDIF
!
IF( zneg > epsi10 ) THEN ; zbetdo(ji,jj,jl) = MAX( 0._wp, pt_ups(ji,jj,jl) - zdo ) / zneg * e1e2t(ji,jj) * z1_dt
ELSE ; zbetdo(ji,jj,jl) = 0._wp ! zbig
ENDIF
!
! if all the points are outside ice cover
IF( zup == -zbig ) zbetup(ji,jj,jl) = 0._wp ! zbig
IF( zdo == zbig ) zbetdo(ji,jj,jl) = 0._wp ! zbig
!
END_2D
END DO
CALL lbc_lnk( 'icedyn_adv_umx', zbetup, 'T', 1.0_wp, zbetdo, 'T', 1.0_wp ) ! lateral boundary cond. (unchanged sign)
! monotonic flux in the y direction
! ---------------------------------
DO jl = 1, jpl
DO_2D( 1, 0, 0, 0 )
zau = MIN( 1._wp , zbetdo(ji,jj,jl) , zbetup(ji+1,jj,jl) )
zbu = MIN( 1._wp , zbetup(ji,jj,jl) , zbetdo(ji+1,jj,jl) )
zcu = 0.5_wp + SIGN( 0.5_wp , pfu_ho(ji,jj,jl) )
!
zcoef = ( zcu * zau + ( 1._wp - zcu ) * zbu )
!
pfu_ho(ji,jj,jl) = pfu_ho(ji,jj,jl) * zcoef + pfu_ups(ji,jj,jl)
!
END_2D
DO_2D( 0, 0, 1, 0 )
zav = MIN( 1._wp , zbetdo(ji,jj,jl) , zbetup(ji,jj+1,jl) )
zbv = MIN( 1._wp , zbetup(ji,jj,jl) , zbetdo(ji,jj+1,jl) )
zcv = 0.5_wp + SIGN( 0.5_wp , pfv_ho(ji,jj,jl) )
!
zcoef = ( zcv * zav + ( 1._wp - zcv ) * zbv )
!
pfv_ho(ji,jj,jl) = pfv_ho(ji,jj,jl) * zcoef + pfv_ups(ji,jj,jl)
!
END_2D
END DO
!
END SUBROUTINE nonosc_ice
SUBROUTINE limiter_x( pdt, pu, pt, pfu_ups, pfu_ho )
!!---------------------------------------------------------------------
!! *** ROUTINE limiter_x ***
!!
!! ** Purpose : compute flux limiter
!!----------------------------------------------------------------------
REAL(wp) , INTENT(in ) :: pdt ! tracer time-step
REAL(wp), DIMENSION(:,: ), INTENT(in ) :: pu ! ice i-velocity => u*e2
REAL(wp), DIMENSION(:,:,:), INTENT(in ) :: pt ! ice tracer
REAL(wp), DIMENSION(:,:,:), INTENT(in ) :: pfu_ups ! upstream flux
REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: pfu_ho ! high order flux
!
REAL(wp) :: Cr, Rjm, Rj, Rjp, uCFL, zpsi, zh3, zlimiter, Rr
INTEGER :: ji, jj, jl ! dummy loop indices
REAL(wp), DIMENSION (jpi,jpj,jpl) :: zslpx ! tracer slopes
!!----------------------------------------------------------------------
!
DO jl = 1, jpl
DO_2D( nn_hls, nn_hls-1, 0, 0 )
zslpx(ji,jj,jl) = ( pt(ji+1,jj,jl) - pt(ji,jj,jl) ) * umask(ji,jj,1)
END_2D
END DO
IF( nn_hls == 1 ) CALL lbc_lnk( 'icedyn_adv_umx', zslpx, 'U', -1.0_wp) ! lateral boundary cond.
DO jl = 1, jpl
DO_2D( nn_hls-1, 0, 0, 0 )
uCFL = pdt * ABS( pu(ji,jj) ) * r1_e1e2t(ji,jj)
Rjm = zslpx(ji-1,jj,jl)
Rj = zslpx(ji ,jj,jl)
Rjp = zslpx(ji+1,jj,jl)
IF( np_limiter == 3 ) THEN
IF( pu(ji,jj) > 0. ) THEN ; Rr = Rjm
ELSE ; Rr = Rjp
ENDIF
zh3 = pfu_ho(ji,jj,jl) - pfu_ups(ji,jj,jl)
IF( Rj > 0. ) THEN
zlimiter = MAX( 0., MIN( zh3, MAX(-Rr * 0.5 * ABS(pu(ji,jj)), &
& MIN( 2. * Rr * 0.5 * ABS(pu(ji,jj)), zh3, 1.5 * Rj * 0.5 * ABS(pu(ji,jj)) ) ) ) )
ELSE
zlimiter = -MAX( 0., MIN(-zh3, MAX( Rr * 0.5 * ABS(pu(ji,jj)), &
& MIN(-2. * Rr * 0.5 * ABS(pu(ji,jj)), -zh3, -1.5 * Rj * 0.5 * ABS(pu(ji,jj)) ) ) ) )
ENDIF
pfu_ho(ji,jj,jl) = pfu_ups(ji,jj,jl) + zlimiter
ELSEIF( np_limiter == 2 ) THEN
IF( Rj /= 0. ) THEN
IF( pu(ji,jj) > 0. ) THEN ; Cr = Rjm / Rj
ELSE ; Cr = Rjp / Rj
ENDIF
ELSE
Cr = 0.
ENDIF
! -- superbee --
zpsi = MAX( 0., MAX( MIN(1.,2.*Cr), MIN(2.,Cr) ) )
! -- van albada 2 --
!!zpsi = 2.*Cr / (Cr*Cr+1.)
! -- sweby (with beta=1) --
!!zpsi = MAX( 0., MAX( MIN(1.,1.*Cr), MIN(1.,Cr) ) )
! -- van Leer --
!!zpsi = ( Cr + ABS(Cr) ) / ( 1. + ABS(Cr) )
! -- ospre --
!!zpsi = 1.5 * ( Cr*Cr + Cr ) / ( Cr*Cr + Cr + 1. )
! -- koren --
!!zpsi = MAX( 0., MIN( 2.*Cr, MIN( (1.+2*Cr)/3., 2. ) ) )
! -- charm --
!IF( Cr > 0. ) THEN ; zpsi = Cr * (3.*Cr + 1.) / ( (Cr + 1.) * (Cr + 1.) )
!ELSE ; zpsi = 0.
!ENDIF
! -- van albada 1 --
!!zpsi = (Cr*Cr + Cr) / (Cr*Cr +1)
! -- smart --
!!zpsi = MAX( 0., MIN( 2.*Cr, MIN( 0.25+0.75*Cr, 4. ) ) )
! -- umist --
!!zpsi = MAX( 0., MIN( 2.*Cr, MIN( 0.25+0.75*Cr, MIN(0.75+0.25*Cr, 2. ) ) ) )
! high order flux corrected by the limiter
pfu_ho(ji,jj,jl) = pfu_ho(ji,jj,jl) - ABS( pu(ji,jj) ) * ( (1.-zpsi) + uCFL*zpsi ) * Rj * 0.5
ENDIF
END_2D
END DO
IF( nn_hls == 1 ) CALL lbc_lnk( 'icedyn_adv_umx', pfu_ho, 'U', -1.0_wp) ! lateral boundary cond.
!
END SUBROUTINE limiter_x
SUBROUTINE limiter_y( pdt, pv, pt, pfv_ups, pfv_ho )
!!---------------------------------------------------------------------
!! *** ROUTINE limiter_y ***
!!
!! ** Purpose : compute flux limiter
!!----------------------------------------------------------------------
REAL(wp) , INTENT(in ) :: pdt ! tracer time-step
REAL(wp), DIMENSION (:,: ), INTENT(in ) :: pv ! ice i-velocity => u*e2
REAL(wp), DIMENSION (:,:,:), INTENT(in ) :: pt ! ice tracer
REAL(wp), DIMENSION (:,:,:), INTENT(in ) :: pfv_ups ! upstream flux
REAL(wp), DIMENSION (:,:,:), INTENT(inout) :: pfv_ho ! high order flux
!
REAL(wp) :: Cr, Rjm, Rj, Rjp, vCFL, zpsi, zh3, zlimiter, Rr
INTEGER :: ji, jj, jl ! dummy loop indices
REAL(wp), DIMENSION (jpi,jpj,jpl) :: zslpy ! tracer slopes
!!----------------------------------------------------------------------
!
DO jl = 1, jpl
DO_2D( 0, 0, nn_hls, nn_hls-1 )
zslpy(ji,jj,jl) = ( pt(ji,jj+1,jl) - pt(ji,jj,jl) ) * vmask(ji,jj,1)
END_2D
END DO
IF( nn_hls == 1 ) CALL lbc_lnk( 'icedyn_adv_umx', zslpy, 'V', -1.0_wp) ! lateral boundary cond.
DO jl = 1, jpl
DO_2D( 0, 0, nn_hls-1, 0 )
vCFL = pdt * ABS( pv(ji,jj) ) * r1_e1e2t(ji,jj)
Rjm = zslpy(ji,jj-1,jl)
Rj = zslpy(ji,jj ,jl)
Rjp = zslpy(ji,jj+1,jl)
IF( np_limiter == 3 ) THEN
IF( pv(ji,jj) > 0. ) THEN ; Rr = Rjm
ELSE ; Rr = Rjp
ENDIF
zh3 = pfv_ho(ji,jj,jl) - pfv_ups(ji,jj,jl)
IF( Rj > 0. ) THEN
zlimiter = MAX( 0., MIN( zh3, MAX(-Rr * 0.5 * ABS(pv(ji,jj)), &
& MIN( 2. * Rr * 0.5 * ABS(pv(ji,jj)), zh3, 1.5 * Rj * 0.5 * ABS(pv(ji,jj)) ) ) ) )
ELSE
zlimiter = -MAX( 0., MIN(-zh3, MAX( Rr * 0.5 * ABS(pv(ji,jj)), &
& MIN(-2. * Rr * 0.5 * ABS(pv(ji,jj)), -zh3, -1.5 * Rj * 0.5 * ABS(pv(ji,jj)) ) ) ) )
ENDIF
pfv_ho(ji,jj,jl) = pfv_ups(ji,jj,jl) + zlimiter
ELSEIF( np_limiter == 2 ) THEN
IF( Rj /= 0. ) THEN
IF( pv(ji,jj) > 0. ) THEN ; Cr = Rjm / Rj
ELSE ; Cr = Rjp / Rj
ENDIF
ELSE
Cr = 0.
ENDIF
! -- superbee --
zpsi = MAX( 0., MAX( MIN(1.,2.*Cr), MIN(2.,Cr) ) )
! -- van albada 2 --
!!zpsi = 2.*Cr / (Cr*Cr+1.)
! -- sweby (with beta=1) --
!!zpsi = MAX( 0., MAX( MIN(1.,1.*Cr), MIN(1.,Cr) ) )
! -- van Leer --
!!zpsi = ( Cr + ABS(Cr) ) / ( 1. + ABS(Cr) )
! -- ospre --
!!zpsi = 1.5 * ( Cr*Cr + Cr ) / ( Cr*Cr + Cr + 1. )
! -- koren --
!!zpsi = MAX( 0., MIN( 2.*Cr, MIN( (1.+2*Cr)/3., 2. ) ) )
! -- charm --
!IF( Cr > 0. ) THEN ; zpsi = Cr * (3.*Cr + 1.) / ( (Cr + 1.) * (Cr + 1.) )
!ELSE ; zpsi = 0.
!ENDIF
! -- van albada 1 --
!!zpsi = (Cr*Cr + Cr) / (Cr*Cr +1)
! -- smart --
!!zpsi = MAX( 0., MIN( 2.*Cr, MIN( 0.25+0.75*Cr, 4. ) ) )
! -- umist --
!!zpsi = MAX( 0., MIN( 2.*Cr, MIN( 0.25+0.75*Cr, MIN(0.75+0.25*Cr, 2. ) ) ) )
! high order flux corrected by the limiter
pfv_ho(ji,jj,jl) = pfv_ho(ji,jj,jl) - ABS( pv(ji,jj) ) * ( (1.-zpsi) + vCFL*zpsi ) * Rj * 0.5
ENDIF
END_2D
END DO
IF( nn_hls == 1 ) CALL lbc_lnk( 'icedyn_adv_umx', pfv_ho, 'V', -1.0_wp) ! lateral boundary cond.
!
END SUBROUTINE limiter_y
SUBROUTINE Hbig( pdt, phi_max, phs_max, phip_max, psi_max, pes_max, pei_max, &
& pv_i, pv_s, pa_i, pa_ip, pv_ip, psv_i, pe_s, pe_i )
!!-------------------------------------------------------------------
!! *** ROUTINE Hbig ***
!!
!! ** Purpose : Thickness correction in case advection scheme creates
!! abnormally tick ice or snow
!!
!! ** Method : 1- check whether ice thickness is larger than the surrounding 9-points
!! (before advection) and reduce it by adapting ice concentration
!! 2- check whether snow thickness is larger than the surrounding 9-points
!! (before advection) and reduce it by sending the excess in the ocean
!!
!! ** input : Max thickness of the surrounding 9-points
!!-------------------------------------------------------------------
REAL(wp) , INTENT(in ) :: pdt ! tracer time-step
REAL(wp), DIMENSION(:,:,:) , INTENT(in ) :: phi_max, phs_max, phip_max, psi_max ! max ice thick from surrounding 9-pts
REAL(wp), DIMENSION(:,:,:,:), INTENT(in ) :: pes_max
REAL(wp), DIMENSION(:,:,:,:), INTENT(in ) :: pei_max
REAL(wp), DIMENSION(:,:,:) , INTENT(inout) :: pv_i, pv_s, pa_i, pa_ip, pv_ip, psv_i
REAL(wp), DIMENSION(:,:,:,:), INTENT(inout) :: pe_s
REAL(wp), DIMENSION(:,:,:,:), INTENT(inout) :: pe_i
!
INTEGER :: ji, jj, jk, jl ! dummy loop indices
REAL(wp) :: z1_dt, zhip, zhi, zhs, zsi, zes, zei, zfra
!!-------------------------------------------------------------------
!
z1_dt = 1._wp / pdt
!
DO jl = 1, jpl
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
IF ( pv_i(ji,jj,jl) > 0._wp ) THEN
!
! ! -- check h_ip -- !
! if h_ip is larger than the surrounding 9 pts => reduce h_ip and increase a_ip
IF( ( ln_pnd_LEV .OR. ln_pnd_TOPO ) .AND. pv_ip(ji,jj,jl) > 0._wp ) THEN
zhip = pv_ip(ji,jj,jl) / MAX( epsi20, pa_ip(ji,jj,jl) )
IF( zhip > phip_max(ji,jj,jl) .AND. pa_ip(ji,jj,jl) < 0.15 ) THEN
pa_ip(ji,jj,jl) = pv_ip(ji,jj,jl) / phip_max(ji,jj,jl)
ENDIF
ENDIF
!
! ! -- check h_i -- !
! if h_i is larger than the surrounding 9 pts => reduce h_i and increase a_i
zhi = pv_i(ji,jj,jl) / pa_i(ji,jj,jl)
IF( zhi > phi_max(ji,jj,jl) .AND. pa_i(ji,jj,jl) < 0.15 ) THEN
pa_i(ji,jj,jl) = pv_i(ji,jj,jl) / MIN( phi_max(ji,jj,jl), hi_max(jpl) ) !-- bound h_i to hi_max (99 m)
ENDIF
!
! ! -- check h_s -- !
! if h_s is larger than the surrounding 9 pts => put the snow excess in the ocean
zhs = pv_s(ji,jj,jl) / pa_i(ji,jj,jl)
IF( pv_s(ji,jj,jl) > 0._wp .AND. zhs > phs_max(ji,jj,jl) .AND. pa_i(ji,jj,jl) < 0.15 ) THEN
zfra = phs_max(ji,jj,jl) / MAX( zhs, epsi20 )
!
wfx_res(ji,jj) = wfx_res(ji,jj) + ( pv_s(ji,jj,jl) - pa_i(ji,jj,jl) * phs_max(ji,jj,jl) ) * rhos * z1_dt
hfx_res(ji,jj) = hfx_res(ji,jj) - SUM( pe_s(ji,jj,1:nlay_s,jl) ) * ( 1._wp - zfra ) * z1_dt ! W.m-2 <0
!
pe_s(ji,jj,1:nlay_s,jl) = pe_s(ji,jj,1:nlay_s,jl) * zfra
pv_s(ji,jj,jl) = pa_i(ji,jj,jl) * phs_max(ji,jj,jl)
ENDIF
!
! ! -- check s_i -- !
! if s_i is larger than the surrounding 9 pts => put salt excess in the ocean
zsi = psv_i(ji,jj,jl) / pv_i(ji,jj,jl)
IF( zsi > psi_max(ji,jj,jl) .AND. pa_i(ji,jj,jl) < 0.15 ) THEN
zfra = psi_max(ji,jj,jl) / zsi
sfx_res(ji,jj) = sfx_res(ji,jj) + psv_i(ji,jj,jl) * ( 1._wp - zfra ) * rhoi * z1_dt
psv_i(ji,jj,jl) = psv_i(ji,jj,jl) * zfra
ENDIF
!
ENDIF
END_2D
END DO
!
! ! -- check e_i/v_i -- !
DO jl = 1, jpl
DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, nlay_i )
IF ( pv_i(ji,jj,jl) > 0._wp ) THEN
! if e_i/v_i is larger than the surrounding 9 pts => put the heat excess in the ocean
zei = pe_i(ji,jj,jk,jl) / pv_i(ji,jj,jl)
IF( zei > pei_max(ji,jj,jk,jl) .AND. pa_i(ji,jj,jl) < 0.15 ) THEN
zfra = pei_max(ji,jj,jk,jl) / zei
hfx_res(ji,jj) = hfx_res(ji,jj) - pe_i(ji,jj,jk,jl) * ( 1._wp - zfra ) * z1_dt ! W.m-2 <0
pe_i(ji,jj,jk,jl) = pe_i(ji,jj,jk,jl) * zfra
ENDIF
ENDIF
END_3D
END DO
! ! -- check e_s/v_s -- !
DO jl = 1, jpl
DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, nlay_s )
IF ( pv_s(ji,jj,jl) > 0._wp ) THEN
! if e_s/v_s is larger than the surrounding 9 pts => put the heat excess in the ocean
zes = pe_s(ji,jj,jk,jl) / pv_s(ji,jj,jl)
IF( zes > pes_max(ji,jj,jk,jl) .AND. pa_i(ji,jj,jl) < 0.15 ) THEN
zfra = pes_max(ji,jj,jk,jl) / zes
hfx_res(ji,jj) = hfx_res(ji,jj) - pe_s(ji,jj,jk,jl) * ( 1._wp - zfra ) * z1_dt ! W.m-2 <0
pe_s(ji,jj,jk,jl) = pe_s(ji,jj,jk,jl) * zfra
ENDIF
ENDIF
END_3D
END DO
!
END SUBROUTINE Hbig
SUBROUTINE Hsnow( pdt, pv_i, pv_s, pa_i, pa_ip, pe_s )
!!-------------------------------------------------------------------
!! *** ROUTINE Hsnow ***
!!
!! ** Purpose : 1- Check snow load after advection
!! 2- Correct pond concentration to avoid a_ip > a_i
!!
!! ** Method : If snow load makes snow-ice interface to deplet below the ocean surface
!! then put the snow excess in the ocean
!!
!! ** Notes : This correction is crucial because of the call to routine icecor afterwards
!! which imposes a mini of ice thick. (rn_himin). This imposed mini can artificially
!! make the snow very thick (if concentration decreases drastically)
!! This behavior has been seen in Ultimate-Macho and supposedly it can also be true for Prather
!!-------------------------------------------------------------------
REAL(wp) , INTENT(in ) :: pdt ! tracer time-step
REAL(wp), DIMENSION(:,:,:) , INTENT(inout) :: pv_i, pv_s, pa_i, pa_ip
REAL(wp), DIMENSION(:,:,:,:), INTENT(inout) :: pe_s
!
INTEGER :: ji, jj, jl ! dummy loop indices
REAL(wp) :: z1_dt, zvs_excess, zfra
!!-------------------------------------------------------------------
!
z1_dt = 1._wp / pdt
!
! -- check snow load -- !
DO jl = 1, jpl
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
IF ( pv_i(ji,jj,jl) > 0._wp ) THEN
!
zvs_excess = MAX( 0._wp, pv_s(ji,jj,jl) - pv_i(ji,jj,jl) * (rho0-rhoi) * r1_rhos )
!
IF( zvs_excess > 0._wp ) THEN ! snow-ice interface deplets below the ocean surface
! put snow excess in the ocean
zfra = ( pv_s(ji,jj,jl) - zvs_excess ) / MAX( pv_s(ji,jj,jl), epsi20 )
wfx_res(ji,jj) = wfx_res(ji,jj) + zvs_excess * rhos * z1_dt
hfx_res(ji,jj) = hfx_res(ji,jj) - SUM( pe_s(ji,jj,1:nlay_s,jl) ) * ( 1._wp - zfra ) * z1_dt ! W.m-2 <0
! correct snow volume and heat content
pe_s(ji,jj,1:nlay_s,jl) = pe_s(ji,jj,1:nlay_s,jl) * zfra
pv_s(ji,jj,jl) = pv_s(ji,jj,jl) - zvs_excess
ENDIF
!
ENDIF
END_2D
END DO
!
!-- correct pond concentration to avoid a_ip > a_i -- !
WHERE( pa_ip(:,:,:) > pa_i(:,:,:) ) pa_ip(:,:,:) = pa_i(:,:,:)
!
END SUBROUTINE Hsnow
SUBROUTINE icemax3D( pice , pmax )
!!---------------------------------------------------------------------
!! *** ROUTINE icemax3D ***
!! ** Purpose : compute the max of the 9 points around
!!----------------------------------------------------------------------
REAL(wp), DIMENSION(:,:,:), INTENT(in ) :: pice ! input
REAL(wp), DIMENSION(:,:,:), INTENT(out) :: pmax ! output
!
REAL(wp), DIMENSION(Nis0:Nie0) :: zmax1, zmax2
REAL(wp) :: zmax3
INTEGER :: ji, jj, jl ! dummy loop indices
!!----------------------------------------------------------------------
! basic version: get the max of epsi20 + 9 neighbours
!!$ DO jl = 1, jpl
!!$ DO_2D( 0, 0, 0, 0 )
!!$ pmax(ji,jj,jl) = MAX( epsi20, pice(ji-1,jj-1,jl), pice(ji,jj-1,jl), pice(ji+1,jj-1,jl), &
!!$ & pice(ji-1,jj ,jl), pice(ji,jj ,jl), pice(ji+1,jj ,jl), &
!!$ & pice(ji-1,jj+1,jl), pice(ji,jj+1,jl), pice(ji+1,jj+1,jl) )
!!$ END_2D
!!$ END DO
! optimized version : does a little bit more than 2 max of epsi20 + 3 neighbours
DO jl = 1, jpl
DO ji = Nis0, Nie0
zmax1(ji) = MAX( epsi20, pice(ji,Njs0-1,jl), pice(ji-1,Njs0-1,jl), pice(ji+1,Njs0-1,jl) )
zmax2(ji) = MAX( epsi20, pice(ji,Njs0 ,jl), pice(ji-1,Njs0 ,jl), pice(ji+1,Njs0 ,jl) )
END DO
DO_2D( 0, 0, 0, 0 )
zmax3 = MAX( epsi20, pice(ji,jj+1,jl), pice(ji-1,jj+1,jl), pice(ji+1,jj+1,jl) )
pmax(ji,jj,jl) = MAX( epsi20, zmax1(ji), zmax2(ji), zmax3 )
zmax1(ji) = zmax2(ji)
zmax2(ji) = zmax3
END_2D
END DO
END SUBROUTINE icemax3D
SUBROUTINE icemax4D( pice , pmax )
!!---------------------------------------------------------------------
!! *** ROUTINE icemax4D ***
!! ** Purpose : compute the max of the 9 points around
!!----------------------------------------------------------------------
REAL(wp), DIMENSION(:,:,:,:), INTENT(in ) :: pice ! input
REAL(wp), DIMENSION(:,:,:,:), INTENT(out) :: pmax ! output
!
REAL(wp), DIMENSION(Nis0:Nie0) :: zmax1, zmax2
REAL(wp) :: zmax3
INTEGER :: jlay, ji, jj, jk, jl ! dummy loop indices
!!----------------------------------------------------------------------
jlay = SIZE( pice , 3 ) ! size of input arrays
! basic version: get the max of epsi20 + 9 neighbours
!!$ DO jl = 1, jpl
!!$ DO jk = 1, jlay
!!$ DO_2D( 0, 0, 0, 0 )
!!$ pmax(ji,jj,jk,jl) = MAX( epsi20, pice(ji-1,jj-1,jk,jl), pice(ji,jj-1,jk,jl), pice(ji+1,jj-1,jk,jl), &
!!$ & pice(ji-1,jj ,jk,jl), pice(ji,jj ,jk,jl), pice(ji+1,jj ,jk,jl), &
!!$ & pice(ji-1,jj+1,jk,jl), pice(ji,jj+1,jk,jl), pice(ji+1,jj+1,jk,jl) )
!!$ END_2D
!!$ END DO
!!$ END DO
! optimized version : does a little bit more than 2 max of epsi20 + 3 neighbours
DO jl = 1, jpl
DO jk = 1, jlay
DO ji = Nis0, Nie0
zmax1(ji) = MAX( epsi20, pice(ji,Njs0-1,jk,jl), pice(ji-1,Njs0-1,jk,jl), pice(ji+1,Njs0-1,jk,jl) )
zmax2(ji) = MAX( epsi20, pice(ji,Njs0 ,jk,jl), pice(ji-1,Njs0 ,jk,jl), pice(ji+1,Njs0 ,jk,jl) )
END DO
DO_2D( 0, 0, 0, 0 )
zmax3 = MAX( epsi20, pice(ji,jj+1,jk,jl), pice(ji-1,jj+1,jk,jl), pice(ji+1,jj+1,jk,jl) )
pmax(ji,jj,jk,jl) = MAX( epsi20, zmax1(ji), zmax2(ji), zmax3 )
zmax1(ji) = zmax2(ji)
zmax2(ji) = zmax3
END_2D
END DO
END DO
END SUBROUTINE icemax4D
#else
!!----------------------------------------------------------------------
!! Default option Dummy module NO SI3 sea-ice model
!!----------------------------------------------------------------------
#endif
!!======================================================================
END MODULE icedyn_adv_umx