Skip to content
Snippets Groups Projects
zpshde.F90 27.8 KiB
Newer Older
Guillaume Samson's avatar
Guillaume Samson committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
MODULE zpshde
   !!======================================================================
   !!                       ***  MODULE zpshde   ***
   !! z-coordinate + partial step : Horizontal Derivative at ocean bottom level
   !!======================================================================
   !! History :  OPA  !  2002-04  (A. Bozec)  Original code
   !!   NEMO     1.0  !  2002-08  (G. Madec E. Durand)  Optimization and Free form
   !!             -   !  2004-03  (C. Ethe)  adapted for passive tracers
   !!            3.3  !  2010-05  (C. Ethe, G. Madec)  merge TRC-TRA
   !!            3.6  !  2014-11  (P. Mathiot) Add zps_hde_isf (needed to open a cavity)
   !!======================================================================

   !!----------------------------------------------------------------------
   !!   zps_hde      :  Horizontal DErivative of T, S and rd at the last
   !!                   ocean level (Z-coord. with Partial Steps)
   !!----------------------------------------------------------------------
   USE oce             ! ocean: dynamics and tracers variables
   USE dom_oce         ! domain: ocean variables
   USE domutl, ONLY : is_tile
   USE phycst          ! physical constants
   USE eosbn2          ! ocean equation of state
   USE in_out_manager  ! I/O manager
   USE lbclnk          ! lateral boundary conditions (or mpp link)
   USE lib_mpp         ! MPP library
   USE timing          ! Timing

   IMPLICIT NONE
   PRIVATE

   PUBLIC   zps_hde     ! routine called by step.F90
   PUBLIC   zps_hde_isf ! routine called by step.F90

   !! * Substitutions
#  include "do_loop_substitute.h90"
#  include "domzgr_substitute.h90"
   !!----------------------------------------------------------------------
   !! NEMO/OCE 4.0 , NEMO Consortium (2018)
   !! $Id: zpshde.F90 14834 2021-05-11 09:24:44Z hadcv $
   !! Software governed by the CeCILL license (see ./LICENSE)
   !!----------------------------------------------------------------------
CONTAINS

   SUBROUTINE zps_hde( kt, Kmm, kjpt, pta, pgtu, pgtv,  &
      &                               prd, pgru, pgrv )
      !!
      INTEGER                     , INTENT(in   )           ::  kt          ! ocean time-step index
      INTEGER                     , INTENT(in   )           ::  Kmm         ! ocean time level index
      INTEGER                     , INTENT(in   )           ::  kjpt        ! number of tracers
      REAL(wp), DIMENSION(:,:,:,:), INTENT(in   )           ::  pta         ! 4D tracers fields
      REAL(wp), DIMENSION(:,:,:)  , INTENT(  out)           ::  pgtu, pgtv  ! hor. grad. of ptra at u- & v-pts
      REAL(wp), DIMENSION(:,:,:)  , INTENT(in   ), OPTIONAL ::  prd         ! 3D density anomaly fields
      REAL(wp), DIMENSION(:,:)    , INTENT(  out), OPTIONAL ::  pgru, pgrv  ! hor. grad of prd at u- & v-pts (bottom)
      !
      INTEGER :: itrd, itgr
      !!
      IF( PRESENT(prd)  ) THEN ; itrd = is_tile(prd)  ; ELSE ; itrd = 0 ; ENDIF
      IF( PRESENT(pgru) ) THEN ; itgr = is_tile(pgru) ; ELSE ; itgr = 0 ; ENDIF

      CALL zps_hde_t( kt, Kmm, kjpt, pta, is_tile(pta), pgtu, pgtv, is_tile(pgtu), &
         &                           prd, itrd,         pgru, pgrv, itgr )
   END SUBROUTINE zps_hde


   SUBROUTINE zps_hde_t( kt, Kmm, kjpt, pta, ktta, pgtu, pgtv, ktgt,   &
      &                                 prd, ktrd, pgru, pgrv, ktgr )
      !!----------------------------------------------------------------------
      !!                     ***  ROUTINE zps_hde  ***
      !!
      !! ** Purpose :   Compute the horizontal derivative of T, S and rho
      !!      at u- and v-points with a linear interpolation for z-coordinate
      !!      with partial steps.
      !!
      !! ** Method  :   In z-coord with partial steps, scale factors on last
      !!      levels are different for each grid point, so that T, S and rd
      !!      points are not at the same depth as in z-coord. To have horizontal
      !!      gradients again, we interpolate T and S at the good depth :
      !!      Linear interpolation of T, S
      !!         Computation of di(tb) and dj(tb) by vertical interpolation:
      !!          di(t) = t~ - t(i,j,k) or t(i+1,j,k) - t~
      !!          dj(t) = t~ - t(i,j,k) or t(i,j+1,k) - t~
      !!         This formulation computes the two cases:
      !!                 CASE 1                   CASE 2
      !!         k-1  ___ ___________   k-1   ___ ___________
      !!                    Ti  T~                  T~  Ti+1
      !!                  _____                        _____
      !!         k        |   |Ti+1     k           Ti |   |
      !!                  |   |____                ____|   |
      !!              ___ |   |   |           ___  |   |   |
      !!
      !!      case 1->   e3w(i+1,:,:,Kmm) >= e3w(i,:,:,Kmm) ( and e3w(:,j+1,:,Kmm) >= e3w(:,j,:,Kmm) ) then
      !!          t~ = t(i+1,j  ,k) + (e3w(i+1,j,k,Kmm) - e3w(i,j,k,Kmm)) * dk(Ti+1)/e3w(i+1,j,k,Kmm)
      !!        ( t~ = t(i  ,j+1,k) + (e3w(i,j+1,k,Kmm) - e3w(i,j,k,Kmm)) * dk(Tj+1)/e3w(i,j+1,k,Kmm)  )
      !!          or
      !!      case 2->   e3w(i+1,:,:,Kmm) <= e3w(i,:,:,Kmm) ( and e3w(:,j+1,:,Kmm) <= e3w(:,j,:,Kmm) ) then
      !!          t~ = t(i,j,k) + (e3w(i,j,k,Kmm) - e3w(i+1,j,k,Kmm)) * dk(Ti)/e3w(i,j,k,Kmm)
      !!        ( t~ = t(i,j,k) + (e3w(i,j,k,Kmm) - e3w(i,j+1,k,Kmm)) * dk(Tj)/e3w(i,j,k,Kmm) )
      !!          Idem for di(s) and dj(s)
      !!
      !!      For rho, we call eos which will compute rd~(t~,s~) at the right
      !!      depth zh from interpolated T and S for the different formulations
      !!      of the equation of state (eos).
      !!      Gradient formulation for rho :
      !!          di(rho) = rd~ - rd(i,j,k)   or   rd(i+1,j,k) - rd~
      !!
      !! ** Action  : compute for top interfaces
      !!              - pgtu, pgtv: horizontal gradient of tracer at u- & v-points
      !!              - pgru, pgrv: horizontal gradient of rho (if present) at u- & v-points
      !!----------------------------------------------------------------------
      INTEGER                                , INTENT(in   )           ::  kt          ! ocean time-step index
      INTEGER                                , INTENT(in   )           ::  Kmm         ! ocean time level index
      INTEGER                                , INTENT(in   )           ::  kjpt        ! number of tracers
      INTEGER                                , INTENT(in   )           ::  ktta, ktgt, ktrd, ktgr
      REAL(wp), DIMENSION(A2D_T(ktta),JPK,KJPT), INTENT(in   )           ::  pta         ! 4D tracers fields
      REAL(wp), DIMENSION(A2D_T(ktgt)    ,KJPT), INTENT(  out)           ::  pgtu, pgtv  ! hor. grad. of ptra at u- & v-pts
      REAL(wp), DIMENSION(A2D_T(ktrd),JPK     ), INTENT(in   ), OPTIONAL ::  prd         ! 3D density anomaly fields
      REAL(wp), DIMENSION(A2D_T(ktgr)         ), INTENT(  out), OPTIONAL ::  pgru, pgrv  ! hor. grad of prd at u- & v-pts (bottom)
      !
      INTEGER  ::   ji, jj, jn                  ! Dummy loop indices
      INTEGER  ::   iku, ikv, ikum1, ikvm1      ! partial step level (ocean bottom level) at u- and v-points
      REAL(wp) ::   ze3wu, ze3wv, zmaxu, zmaxv  ! local scalars
      REAL(wp), DIMENSION(A2D(nn_hls))      ::   zri, zrj, zhi, zhj   ! NB: 3rd dim=1 to use eos
      REAL(wp), DIMENSION(A2D(nn_hls),kjpt) ::   zti, ztj             !
      !!----------------------------------------------------------------------
      !
      IF( ln_timing )   CALL timing_start( 'zps_hde')
      !
      pgtu(:,:,:) = 0._wp   ;   zti (:,:,:) = 0._wp   ;   zhi (:,:) = 0._wp
      pgtv(:,:,:) = 0._wp   ;   ztj (:,:,:) = 0._wp   ;   zhj (:,:) = 0._wp
      !
      DO jn = 1, kjpt      !==   Interpolation of tracers at the last ocean level   ==!
         !
         DO_2D( nn_hls, nn_hls-1, nn_hls, nn_hls-1 )              ! Gradient of density at the last level
            iku = mbku(ji,jj)   ;   ikum1 = MAX( iku - 1 , 1 )    ! last and before last ocean level at u- & v-points
            ikv = mbkv(ji,jj)   ;   ikvm1 = MAX( ikv - 1 , 1 )    ! if level first is a p-step, ik.m1=1
!!gm BUG ? when applied to before fields, e3w(:,:,k,Kbb) should be used....
            ze3wu = e3w(ji+1,jj  ,iku,Kmm) - e3w(ji,jj,iku,Kmm)
            ze3wv = e3w(ji  ,jj+1,ikv,Kmm) - e3w(ji,jj,ikv,Kmm)
            !
            ! i- direction
            IF( ze3wu >= 0._wp ) THEN      ! case 1
               zmaxu =  ze3wu / e3w(ji+1,jj,iku,Kmm)
               ! interpolated values of tracers
               zti (ji,jj,jn) = pta(ji+1,jj,iku,jn) + zmaxu * ( pta(ji+1,jj,ikum1,jn) - pta(ji+1,jj,iku,jn) )
               ! gradient of  tracers
               pgtu(ji,jj,jn) = umask(ji,jj,1) * ( zti(ji,jj,jn) - pta(ji,jj,iku,jn) )
            ELSE                           ! case 2
               zmaxu = -ze3wu / e3w(ji,jj,iku,Kmm)
               ! interpolated values of tracers
               zti (ji,jj,jn) = pta(ji,jj,iku,jn) + zmaxu * ( pta(ji,jj,ikum1,jn) - pta(ji,jj,iku,jn) )
               ! gradient of tracers
               pgtu(ji,jj,jn) = umask(ji,jj,1) * ( pta(ji+1,jj,iku,jn) - zti(ji,jj,jn) )
            ENDIF
            !
            ! j- direction
            IF( ze3wv >= 0._wp ) THEN      ! case 1
               zmaxv =  ze3wv / e3w(ji,jj+1,ikv,Kmm)
               ! interpolated values of tracers
               ztj (ji,jj,jn) = pta(ji,jj+1,ikv,jn) + zmaxv * ( pta(ji,jj+1,ikvm1,jn) - pta(ji,jj+1,ikv,jn) )
               ! gradient of tracers
               pgtv(ji,jj,jn) = vmask(ji,jj,1) * ( ztj(ji,jj,jn) - pta(ji,jj,ikv,jn) )
            ELSE                           ! case 2
               zmaxv =  -ze3wv / e3w(ji,jj,ikv,Kmm)
               ! interpolated values of tracers
               ztj (ji,jj,jn) = pta(ji,jj,ikv,jn) + zmaxv * ( pta(ji,jj,ikvm1,jn) - pta(ji,jj,ikv,jn) )
               ! gradient of tracers
               pgtv(ji,jj,jn) = vmask(ji,jj,1) * ( pta(ji,jj+1,ikv,jn) - ztj(ji,jj,jn) )
            ENDIF
         END_2D
      END DO
      !
      IF (nn_hls==1) CALL lbc_lnk( 'zpshde', pgtu(:,:,:), 'U', -1.0_wp , pgtv(:,:,:), 'V', -1.0_wp )   ! Lateral boundary cond.
      !
      IF( PRESENT( prd ) ) THEN    !==  horizontal derivative of density anomalies (rd)  ==!    (optional part)
         pgru(:,:) = 0._wp
         pgrv(:,:) = 0._wp                ! depth of the partial step level
         DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
            iku = mbku(ji,jj)
            ikv = mbkv(ji,jj)
            ze3wu  = e3w(ji+1,jj  ,iku,Kmm) - e3w(ji,jj,iku,Kmm)
            ze3wv  = e3w(ji  ,jj+1,ikv,Kmm) - e3w(ji,jj,ikv,Kmm)
            IF( ze3wu >= 0._wp ) THEN   ;   zhi(ji,jj) = gdept(ji  ,jj,iku,Kmm)     ! i-direction: case 1
            ELSE                        ;   zhi(ji,jj) = gdept(ji+1,jj,iku,Kmm)     ! -     -      case 2
            ENDIF
            IF( ze3wv >= 0._wp ) THEN   ;   zhj(ji,jj) = gdept(ji,jj  ,ikv,Kmm)     ! j-direction: case 1
            ELSE                        ;   zhj(ji,jj) = gdept(ji,jj+1,ikv,Kmm)     ! -     -      case 2
            ENDIF
         END_2D
         !
         CALL eos( zti, zhi, zri )        ! interpolated density from zti, ztj
         CALL eos( ztj, zhj, zrj )        ! at the partial step depth output in  zri, zrj
         !
         DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )              ! Gradient of density at the last level
            iku = mbku(ji,jj)
            ikv = mbkv(ji,jj)
            ze3wu  = e3w(ji+1,jj  ,iku,Kmm) - e3w(ji,jj,iku,Kmm)
            ze3wv  = e3w(ji  ,jj+1,ikv,Kmm) - e3w(ji,jj,ikv,Kmm)
            IF( ze3wu >= 0._wp ) THEN   ;   pgru(ji,jj) = umask(ji,jj,1) * ( zri(ji  ,jj    ) - prd(ji,jj,iku) )   ! i: 1
            ELSE                        ;   pgru(ji,jj) = umask(ji,jj,1) * ( prd(ji+1,jj,iku) - zri(ji,jj    ) )   ! i: 2
            ENDIF
            IF( ze3wv >= 0._wp ) THEN   ;   pgrv(ji,jj) = vmask(ji,jj,1) * ( zrj(ji,jj      ) - prd(ji,jj,ikv) )   ! j: 1
            ELSE                        ;   pgrv(ji,jj) = vmask(ji,jj,1) * ( prd(ji,jj+1,ikv) - zrj(ji,jj    ) )   ! j: 2
            ENDIF
         END_2D
         IF (nn_hls==1) CALL lbc_lnk( 'zpshde', pgru , 'U', -1.0_wp , pgrv , 'V', -1.0_wp )   ! Lateral boundary conditions
         !
      END IF
      !
      IF( ln_timing )   CALL timing_stop( 'zps_hde')
      !
   END SUBROUTINE zps_hde_t


   SUBROUTINE zps_hde_isf( kt, Kmm, kjpt, pta, pgtu, pgtv, pgtui, pgtvi,  &
      &                                   prd, pgru, pgrv, pgrui, pgrvi )
      !!
      INTEGER                     , INTENT(in   )           ::  kt           ! ocean time-step index
      INTEGER                     , INTENT(in   )           ::  Kmm          ! ocean time level index
      INTEGER                     , INTENT(in   )           ::  kjpt         ! number of tracers
      REAL(wp), DIMENSION(:,:,:,:), INTENT(in   )           ::  pta          ! 4D tracers fields
      REAL(wp), DIMENSION(:,:,:)  , INTENT(  out)           ::  pgtu, pgtv   ! hor. grad. of ptra at u- & v-pts
      REAL(wp), DIMENSION(:,:,:)  , INTENT(  out)           ::  pgtui, pgtvi ! hor. grad. of stra at u- & v-pts (ISF)
      REAL(wp), DIMENSION(:,:,:)  , INTENT(in   ), OPTIONAL ::  prd          ! 3D density anomaly fields
      REAL(wp), DIMENSION(:,:)    , INTENT(  out), OPTIONAL ::  pgru, pgrv   ! hor. grad of prd at u- & v-pts (bottom)
      REAL(wp), DIMENSION(:,:)    , INTENT(  out), OPTIONAL ::  pgrui, pgrvi ! hor. grad of prd at u- & v-pts (top)
      !
      INTEGER :: itrd, itgr, itgri
      !!
      IF( PRESENT(prd)   ) THEN ; itrd  = is_tile(prd)   ; ELSE ; itrd  = 0 ; ENDIF
      IF( PRESENT(pgru)  ) THEN ; itgr  = is_tile(pgru)  ; ELSE ; itgr  = 0 ; ENDIF
      IF( PRESENT(pgrui) ) THEN ; itgri = is_tile(pgrui) ; ELSE ; itgri = 0 ; ENDIF

      CALL zps_hde_isf_t( kt, Kmm, kjpt, pta, is_tile(pta), pgtu, pgtv, is_tile(pgtu), pgtui, pgtvi, is_tile(pgtui),  &
      &                                  prd, itrd,         pgru, pgrv, itgr,          pgrui, pgrvi, itgri )
   END SUBROUTINE zps_hde_isf


   SUBROUTINE zps_hde_isf_t( kt, Kmm, kjpt, pta, ktta, pgtu, pgtv, ktgt, pgtui, pgtvi, ktgti,  &
      &                                     prd, ktrd, pgru, pgrv, ktgr, pgrui, pgrvi, ktgri )
      !!----------------------------------------------------------------------
      !!                     ***  ROUTINE zps_hde_isf  ***
      !!
      !! ** Purpose :   Compute the horizontal derivative of T, S and rho
      !!      at u- and v-points with a linear interpolation for z-coordinate
      !!      with partial steps for top (ice shelf) and bottom.
      !!
      !! ** Method  :   In z-coord with partial steps, scale factors on last
      !!      levels are different for each grid point, so that T, S and rd
      !!      points are not at the same depth as in z-coord. To have horizontal
      !!      gradients again, we interpolate T and S at the good depth :
      !!      For the bottom case:
      !!      Linear interpolation of T, S
      !!         Computation of di(tb) and dj(tb) by vertical interpolation:
      !!          di(t) = t~ - t(i,j,k) or t(i+1,j,k) - t~
      !!          dj(t) = t~ - t(i,j,k) or t(i,j+1,k) - t~
      !!         This formulation computes the two cases:
      !!                 CASE 1                   CASE 2
      !!         k-1  ___ ___________   k-1   ___ ___________
      !!                    Ti  T~                  T~  Ti+1
      !!                  _____                        _____
      !!         k        |   |Ti+1     k           Ti |   |
      !!                  |   |____                ____|   |
      !!              ___ |   |   |           ___  |   |   |
      !!
      !!      case 1->   e3w(i+1,j,k,Kmm) >= e3w(i,j,k,Kmm) ( and e3w(i,j+1,k,Kmm) >= e3w(i,j,k,Kmm) ) then
      !!          t~ = t(i+1,j  ,k) + (e3w(i+1,j  ,k,Kmm) - e3w(i,j,k,Kmm)) * dk(Ti+1)/e3w(i+1,j  ,k,Kmm)
      !!        ( t~ = t(i  ,j+1,k) + (e3w(i  ,j+1,k,Kmm) - e3w(i,j,k,Kmm)) * dk(Tj+1)/e3w(i  ,j+1,k,Kmm)  )
      !!          or
      !!      case 2->   e3w(i+1,j,k,Kmm) <= e3w(i,j,k,Kmm) ( and e3w(i,j+1,k,Kmm) <= e3w(i,j,k,Kmm) ) then
      !!          t~ = t(i,j,k) + (e3w(i,j,k,Kmm) - e3w(i+1,j  ,k,Kmm)) * dk(Ti)/e3w(i,j,k,Kmm)
      !!        ( t~ = t(i,j,k) + (e3w(i,j,k,Kmm) - e3w(i  ,j+1,k,Kmm)) * dk(Tj)/e3w(i,j,k,Kmm) )
      !!          Idem for di(s) and dj(s)
      !!
      !!      For rho, we call eos which will compute rd~(t~,s~) at the right
      !!      depth zh from interpolated T and S for the different formulations
      !!      of the equation of state (eos).
      !!      Gradient formulation for rho :
      !!          di(rho) = rd~ - rd(i,j,k)   or   rd(i+1,j,k) - rd~
      !!
      !!      For the top case (ice shelf): As for the bottom case but upside down
      !!
      !! ** Action  : compute for top and bottom interfaces
      !!              - pgtu, pgtv, pgtui, pgtvi: horizontal gradient of tracer at u- & v-points
      !!              - pgru, pgrv, pgrui, pgtvi: horizontal gradient of rho (if present) at u- & v-points
      !!----------------------------------------------------------------------
      INTEGER                                , INTENT(in   )           ::  kt           ! ocean time-step index
      INTEGER                                , INTENT(in   )           ::  Kmm          ! ocean time level index
      INTEGER                                , INTENT(in   )           ::  kjpt         ! number of tracers
      INTEGER                                , INTENT(in   )           ::  ktta, ktgt, ktgti, ktrd, ktgr, ktgri
      REAL(wp), DIMENSION(A2D_T(ktta),JPK,KJPT), INTENT(in   )           ::  pta          ! 4D tracers fields
      REAL(wp), DIMENSION(A2D_T(ktgt)    ,KJPT), INTENT(  out)           ::  pgtu, pgtv   ! hor. grad. of ptra at u- & v-pts
      REAL(wp), DIMENSION(A2D_T(ktgti)   ,KJPT), INTENT(  out)           ::  pgtui, pgtvi ! hor. grad. of stra at u- & v-pts (ISF)
      REAL(wp), DIMENSION(A2D_T(ktrd),JPK     ), INTENT(in   ), OPTIONAL ::  prd          ! 3D density anomaly fields
      REAL(wp), DIMENSION(A2D_T(ktgr)         ), INTENT(  out), OPTIONAL ::  pgru, pgrv   ! hor. grad of prd at u- & v-pts (bottom)
      REAL(wp), DIMENSION(A2D_T(ktgri)        ), INTENT(  out), OPTIONAL ::  pgrui, pgrvi ! hor. grad of prd at u- & v-pts (top)
      !
      INTEGER  ::   ji, jj, jn      ! Dummy loop indices
      INTEGER  ::   iku, ikv, ikum1, ikvm1,ikup1, ikvp1   ! partial step level (ocean bottom level) at u- and v-points
      REAL(wp) ::  ze3wu, ze3wv, zmaxu, zmaxv             ! temporary scalars
      REAL(wp), DIMENSION(A2D(nn_hls))      ::  zri, zrj, zhi, zhj   ! NB: 3rd dim=1 to use eos
      REAL(wp), DIMENSION(A2D(nn_hls),kjpt) ::  zti, ztj             !
      !!----------------------------------------------------------------------
      !
      IF( ln_timing )   CALL timing_start( 'zps_hde_isf')
      !
      pgtu (:,:,:) = 0._wp   ;   pgtv (:,:,:) =0._wp
      pgtui(:,:,:) = 0._wp   ;   pgtvi(:,:,:) =0._wp
      zti  (:,:,:) = 0._wp   ;   ztj  (:,:,:) =0._wp
      zhi  (:,:  ) = 0._wp   ;   zhj  (:,:  ) =0._wp
      !
      DO jn = 1, kjpt      !==   Interpolation of tracers at the last ocean level   ==!
         !
         DO_2D( nn_hls, nn_hls-1, nn_hls, nn_hls-1 )

            iku = mbku(ji,jj); ikum1 = MAX( iku - 1 , 1 )    ! last and before last ocean level at u- & v-points
            ikv = mbkv(ji,jj); ikvm1 = MAX( ikv - 1 , 1 )    ! if level first is a p-step, ik.m1=1
            ze3wu = gdept(ji+1,jj,iku,Kmm) - gdept(ji,jj,iku,Kmm)
            ze3wv = gdept(ji,jj+1,ikv,Kmm) - gdept(ji,jj,ikv,Kmm)
            !
            ! i- direction
            IF( ze3wu >= 0._wp ) THEN      ! case 1
               zmaxu =  ze3wu / e3w(ji+1,jj,iku,Kmm)
               ! interpolated values of tracers
               zti (ji,jj,jn) = pta(ji+1,jj,iku,jn) + zmaxu * ( pta(ji+1,jj,ikum1,jn) - pta(ji+1,jj,iku,jn) )
               ! gradient of  tracers
               pgtu(ji,jj,jn) = ssumask(ji,jj) * ( zti(ji,jj,jn) - pta(ji,jj,iku,jn) )
            ELSE                           ! case 2
               zmaxu = -ze3wu / e3w(ji,jj,iku,Kmm)
               ! interpolated values of tracers
               zti (ji,jj,jn) = pta(ji,jj,iku,jn) + zmaxu * ( pta(ji,jj,ikum1,jn) - pta(ji,jj,iku,jn) )
               ! gradient of tracers
               pgtu(ji,jj,jn) = ssumask(ji,jj) * ( pta(ji+1,jj,iku,jn) - zti(ji,jj,jn) )
            ENDIF
            !
            ! j- direction
            IF( ze3wv >= 0._wp ) THEN      ! case 1
               zmaxv =  ze3wv / e3w(ji,jj+1,ikv,Kmm)
               ! interpolated values of tracers
               ztj (ji,jj,jn) = pta(ji,jj+1,ikv,jn) + zmaxv * ( pta(ji,jj+1,ikvm1,jn) - pta(ji,jj+1,ikv,jn) )
               ! gradient of tracers
               pgtv(ji,jj,jn) = ssvmask(ji,jj) * ( ztj(ji,jj,jn) - pta(ji,jj,ikv,jn) )
            ELSE                           ! case 2
               zmaxv =  -ze3wv / e3w(ji,jj,ikv,Kmm)
               ! interpolated values of tracers
               ztj (ji,jj,jn) = pta(ji,jj,ikv,jn) + zmaxv * ( pta(ji,jj,ikvm1,jn) - pta(ji,jj,ikv,jn) )
               ! gradient of tracers
               pgtv(ji,jj,jn) = ssvmask(ji,jj) * ( pta(ji,jj+1,ikv,jn) - ztj(ji,jj,jn) )
            ENDIF

         END_2D
      END DO
      !
      IF (nn_hls==1) CALL lbc_lnk( 'zpshde', pgtu(:,:,:), 'U', -1.0_wp , pgtv(:,:,:), 'V', -1.0_wp )   ! Lateral boundary cond.

      ! horizontal derivative of density anomalies (rd)
      IF( PRESENT( prd ) ) THEN         ! depth of the partial step level
         pgru(:,:)=0.0_wp   ; pgrv(:,:)=0.0_wp ;
         !
         DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )

            iku = mbku(ji,jj)
            ikv = mbkv(ji,jj)
            ze3wu = gdept(ji+1,jj,iku,Kmm) - gdept(ji,jj,iku,Kmm)
            ze3wv = gdept(ji,jj+1,ikv,Kmm) - gdept(ji,jj,ikv,Kmm)
            !
            IF( ze3wu >= 0._wp ) THEN   ;   zhi(ji,jj) = gdept(ji  ,jj,iku,Kmm)    ! i-direction: case 1
            ELSE                        ;   zhi(ji,jj) = gdept(ji+1,jj,iku,Kmm)    ! -     -      case 2
            ENDIF
            IF( ze3wv >= 0._wp ) THEN   ;   zhj(ji,jj) = gdept(ji,jj  ,ikv,Kmm)    ! j-direction: case 1
            ELSE                        ;   zhj(ji,jj) = gdept(ji,jj+1,ikv,Kmm)    ! -     -      case 2
            ENDIF

         END_2D

         ! Compute interpolated rd from zti, ztj for the 2 cases at the depth of the partial
         ! step and store it in  zri, zrj for each  case
         CALL eos( zti, zhi, zri )
         CALL eos( ztj, zhj, zrj )

         DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
            iku = mbku(ji,jj)
            ikv = mbkv(ji,jj)
            ze3wu = gdept(ji+1,jj,iku,Kmm) - gdept(ji,jj,iku,Kmm)
            ze3wv = gdept(ji,jj+1,ikv,Kmm) - gdept(ji,jj,ikv,Kmm)

            IF( ze3wu >= 0._wp ) THEN   ;   pgru(ji,jj) = ssumask(ji,jj) * ( zri(ji  ,jj    ) - prd(ji,jj,iku) )   ! i: 1
            ELSE                        ;   pgru(ji,jj) = ssumask(ji,jj) * ( prd(ji+1,jj,iku) - zri(ji,jj    ) )   ! i: 2
            ENDIF
            IF( ze3wv >= 0._wp ) THEN   ;   pgrv(ji,jj) = ssvmask(ji,jj) * ( zrj(ji,jj      ) - prd(ji,jj,ikv) )   ! j: 1
            ELSE                        ;   pgrv(ji,jj) = ssvmask(ji,jj) * ( prd(ji,jj+1,ikv) - zrj(ji,jj    ) )   ! j: 2
            ENDIF

         END_2D

         IF (nn_hls==1) CALL lbc_lnk( 'zpshde', pgru , 'U', -1.0_wp , pgrv , 'V', -1.0_wp )   ! Lateral boundary conditions
         !
      END IF
      !
      !     !==  (ISH)  compute grui and gruvi  ==!
      !
      DO jn = 1, kjpt      !==   Interpolation of tracers at the last ocean level   ==!            !
         DO_2D( nn_hls, nn_hls-1, nn_hls, nn_hls-1 )
            iku = miku(ji,jj); ikup1 = miku(ji,jj) + 1
            ikv = mikv(ji,jj); ikvp1 = mikv(ji,jj) + 1
            !
            ! (ISF) case partial step top and bottom in adjacent cell in vertical
            ! cannot used e3w because if 2 cell water column, we have ps at top and bottom
            ! in this case e3w(i,j,k,Kmm) - e3w(i,j+1,k,Kmm) is not the distance between Tj~ and Tj
            ! the only common depth between cells (i,j) and (i,j+1) is gdepw_0
            ze3wu  =  gdept(ji,jj,iku,Kmm) - gdept(ji+1,jj,iku,Kmm)
            ze3wv  =  gdept(ji,jj,ikv,Kmm) - gdept(ji,jj+1,ikv,Kmm)

            ! i- direction
            IF( ze3wu >= 0._wp ) THEN      ! case 1
               zmaxu = ze3wu / e3w(ji+1,jj,ikup1,Kmm)
               ! interpolated values of tracers
               zti(ji,jj,jn) = pta(ji+1,jj,iku,jn) + zmaxu * ( pta(ji+1,jj,ikup1,jn) - pta(ji+1,jj,iku,jn) )
               ! gradient of tracers
               pgtui(ji,jj,jn) = ssumask(ji,jj) * ( zti(ji,jj,jn) - pta(ji,jj,iku,jn) )
            ELSE                           ! case 2
               zmaxu = - ze3wu / e3w(ji,jj,ikup1,Kmm)
               ! interpolated values of tracers
               zti(ji,jj,jn) = pta(ji,jj,iku,jn) + zmaxu * ( pta(ji,jj,ikup1,jn) - pta(ji,jj,iku,jn) )
               ! gradient of  tracers
               pgtui(ji,jj,jn) = ssumask(ji,jj) * ( pta(ji+1,jj,iku,jn) - zti(ji,jj,jn) )
            ENDIF
            !
            ! j- direction
            IF( ze3wv >= 0._wp ) THEN      ! case 1
               zmaxv =  ze3wv / e3w(ji,jj+1,ikvp1,Kmm)
               ! interpolated values of tracers
               ztj(ji,jj,jn) = pta(ji,jj+1,ikv,jn) + zmaxv * ( pta(ji,jj+1,ikvp1,jn) - pta(ji,jj+1,ikv,jn) )
               ! gradient of tracers
               pgtvi(ji,jj,jn) = ssvmask(ji,jj) * ( ztj(ji,jj,jn) - pta(ji,jj,ikv,jn) )
            ELSE                           ! case 2
               zmaxv =  - ze3wv / e3w(ji,jj,ikvp1,Kmm)
               ! interpolated values of tracers
               ztj(ji,jj,jn) = pta(ji,jj,ikv,jn) + zmaxv * ( pta(ji,jj,ikvp1,jn) - pta(ji,jj,ikv,jn) )
               ! gradient of tracers
               pgtvi(ji,jj,jn) = ssvmask(ji,jj) * ( pta(ji,jj+1,ikv,jn) - ztj(ji,jj,jn) )
            ENDIF

         END_2D
         !
      END DO
      IF (nn_hls==1) CALL lbc_lnk( 'zpshde', pgtui(:,:,:), 'U', -1.0_wp , pgtvi(:,:,:), 'V', -1.0_wp )   ! Lateral boundary cond.

      IF( PRESENT( prd ) ) THEN    !==  horizontal derivative of density anomalies (rd)  ==!    (optional part)
         !
         pgrui(:,:)  =0.0_wp; pgrvi(:,:)  =0.0_wp;
         DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )

            iku = miku(ji,jj)
            ikv = mikv(ji,jj)
            ze3wu  =  gdept(ji,jj,iku,Kmm) - gdept(ji+1,jj,iku,Kmm)
            ze3wv  =  gdept(ji,jj,ikv,Kmm) - gdept(ji,jj+1,ikv,Kmm)
            !
            IF( ze3wu >= 0._wp ) THEN   ;   zhi(ji,jj) = gdept(ji  ,jj,iku,Kmm)    ! i-direction: case 1
            ELSE                        ;   zhi(ji,jj) = gdept(ji+1,jj,iku,Kmm)    ! -     -      case 2
            ENDIF

            IF( ze3wv >= 0._wp ) THEN   ;   zhj(ji,jj) = gdept(ji,jj  ,ikv,Kmm)    ! j-direction: case 1
            ELSE                        ;   zhj(ji,jj) = gdept(ji,jj+1,ikv,Kmm)    ! -     -      case 2
            ENDIF

         END_2D
         !
         CALL eos( zti, zhi, zri )        ! interpolated density from zti, ztj
         CALL eos( ztj, zhj, zrj )        ! at the partial step depth output in  zri, zrj
         !
         DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
            iku = miku(ji,jj)
            ikv = mikv(ji,jj)
            ze3wu  =  gdept(ji,jj,iku,Kmm) - gdept(ji+1,jj,iku,Kmm)
            ze3wv  =  gdept(ji,jj,ikv,Kmm) - gdept(ji,jj+1,ikv,Kmm)

            IF( ze3wu >= 0._wp ) THEN ; pgrui(ji,jj) = ssumask(ji,jj) * ( zri(ji  ,jj      ) - prd(ji,jj,iku) ) ! i: 1
            ELSE                      ; pgrui(ji,jj) = ssumask(ji,jj) * ( prd(ji+1,jj  ,iku) - zri(ji,jj    ) ) ! i: 2
            ENDIF
            IF( ze3wv >= 0._wp ) THEN ; pgrvi(ji,jj) = ssvmask(ji,jj) * ( zrj(ji  ,jj      ) - prd(ji,jj,ikv) ) ! j: 1
            ELSE                      ; pgrvi(ji,jj) = ssvmask(ji,jj) * ( prd(ji  ,jj+1,ikv) - zrj(ji,jj    ) ) ! j: 2
            ENDIF

         END_2D
         IF (nn_hls==1) CALL lbc_lnk( 'zpshde', pgrui, 'U', -1.0_wp , pgrvi, 'V', -1.0_wp )   ! Lateral boundary conditions
         !
      END IF
      !
      IF( ln_timing )   CALL timing_stop( 'zps_hde_isf')
      !
   END SUBROUTINE zps_hde_isf_t

   !!======================================================================
END MODULE zpshde