Skip to content
Snippets Groups Projects
zdfmfc.F90 22.8 KiB
Newer Older
Guillaume Samson's avatar
Guillaume Samson committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
 MODULE zdfmfc
   !!======================================================================
   !!                       ***  MODULE  zdfmfc  ***
   !! Ocean physics: Mass-Flux scheme parameterization of Convection:
   !!                Non-local transport for the convective ocean boundary
   !!                layer. Subgrid-scale large eddies are represented by a
   !!                mass-flux contribution (ln_zdfmfc = .TRUE.)
   !!======================================================================
   !! History : NEMO  !
   !!            3.6  !  2016-06  (H. Giordani, R. Bourdallé-Badie)  Original code
   !!            4.2  !  2020-12  (H. Giordani, R. Bourdallé-Badie)  adapt to NEM04.2
   !!----------------------------------------------------------------------
   !!----------------------------------------------------------------------
   !!   tra_mfc       : Compute the Mass Flux and trends of T/S
   !!   diag_mfc      : Modify diagonal of trazdf Matrix
   !!   rhs_mfc       : Modify RHS of trazdf Matrix
   !!   zdf_mfc_init  : initialization, namelist read, and parameters control
   !!----------------------------------------------------------------------
   !
   USE oce            ! ocean dynamics and active tracers
   USE dom_oce        ! ocean space and time domain
   USE domvvl         ! ocean space and time domain : variable volume layer
   USE domzgr
   USE zdf_oce        ! ocean vertical physics
   USE sbc_oce        ! surface boundary condition: ocean
   USE phycst         ! physical constants
   USE eosbn2         ! equation of state (eos routine)
   USE zdfmxl         ! mixed layer
   USE lbclnk         ! ocean lateral boundary conditions (or mpp link)
   USE lib_mpp        ! MPP manager
   USE prtctl         ! Print control
   USE in_out_manager ! I/O manager
   USE iom            ! I/O manager library
   USE timing         ! Timing
   USE lib_fortran    ! Fortran utilities (allows no signed zero when 'key_nosignedzero' defined) 

   IMPLICIT NONE
   PRIVATE

   PUBLIC   tra_mfc         ! routine called in step module
   PUBLIC   diag_mfc        ! routine called in trazdf module
   PUBLIC   rhs_mfc         ! routine called in trazdf module
   PUBLIC   zdf_mfc_init    ! routine called in nemo module
   !
   REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:)   ::  edmfa, edmfb, edmfc   !: diagonal term of the matrix.
   REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:,:) ::  edmftra               !: y term for matrix inversion
   REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:)   ::  edmfm               !: y term for matrix inversion
   !
   !! ** Namelist  namzdf_edmf  **
   REAL(wp) ::   rn_cemf           ! entrain of T/S
   REAL(wp) ::   rn_cwmf           ! detrain of T/S
   REAL(wp) ::   rn_cent           ! entrain of the convective mass flux
   REAL(wp) ::   rn_cdet           ! detrain of the convective mass flux
   REAL(wp) ::   rn_cap            ! Factor of computation for convective area (negative => area constant)
   REAL(wp) ::   App_max           ! Maximum of the convective area
   LOGICAL, PUBLIC, SAVE  ::   ln_edmfuv         !: EDMF flag for velocity  !
   !
   !! * Substitutions
#  include "do_loop_substitute.h90"
#  include "domzgr_substitute.h90"
   !!----------------------------------------------------------------------
   !! NEMO/OCE 4.2 , NEMO Consortium (2018)
   !! $Id: zdfmfc.F90 13783 2020-20-02 15:30:22Z rbourdal $
   !! Software governed by the CeCILL license (see ./LICENSE)
   !!----------------------------------------------------------------------
CONTAINS

   INTEGER FUNCTION zdf_mfc_alloc()
      !!----------------------------------------------------------------------
      !!                ***  FUNCTION zdf_edmf_alloc  ***
      !!----------------------------------------------------------------------
      ALLOCATE( edmfa(jpi,jpj,jpk) , edmfb(jpi,jpj,jpk) , edmfc(jpi,jpj,jpk)      &
         &      , edmftra(jpi,jpj,jpk,2), edmfm(jpi,jpj,jpk) ,  STAT= zdf_mfc_alloc )
         !
      IF( lk_mpp             )   CALL mpp_sum ( 'zdfmfc', zdf_mfc_alloc )
      IF( zdf_mfc_alloc /= 0 )   CALL ctl_warn('zdf_mfc_alloc: failed to allocate arrays')
   END FUNCTION zdf_mfc_alloc


   SUBROUTINE tra_mfc( kt, Kmm, pts, Krhs )
      !!----------------------------------------------------------------------
      !!                   ***  ROUTINE zdf_mfc  ***
      !!
      !! ** Purpose :      Compute a mass flux, depending on surface flux, over
      !!            the instable part of the water column.
      !!
      !! ** Method  :     Compute surface instability and mix tracers until stable level
      !!           
      !!
      !! ** Action  :      Compute convection plume and (ta,sa)-trends for trazdf (EDMF scheme)
      !!
      !! References :      
      !!                   Giordani, Bourdallé-Badie and Madec JAMES 2020
      !!----------------------------------------------------------------------
      !!----------------------------------------------------------------------
      INTEGER                                  , INTENT(in)    :: Kmm, Krhs ! time level indices
      REAL(wp), DIMENSION(jpi,jpj,jpk,jpts,jpt), INTENT(inout) :: pts       ! active tracers and RHS of tracer equation
      REAL(wp), DIMENSION(A2D(nn_hls),jpk,2) ::   ztsp         ! T/S of the plume
      REAL(wp), DIMENSION(A2D(nn_hls),jpk,2) ::   ztse         ! T/S at W point
      REAL(wp), DIMENSION(A2D(nn_hls),jpk) :: zrwp          !
      REAL(wp), DIMENSION(A2D(nn_hls),jpk) :: zrwp2         !
      REAL(wp), DIMENSION(A2D(nn_hls),jpk) :: zapp          !
      REAL(wp), DIMENSION(A2D(nn_hls),jpk) :: zedmf         !
      REAL(wp), DIMENSION(A2D(nn_hls),jpk) :: zepsT, zepsW  !
      !
      REAL(wp), DIMENSION(A2D(nn_hls)) :: zustar, zustar2   !
      REAL(wp), DIMENSION(A2D(nn_hls)) :: zuws, zvws, zsws, zfnet          !
      REAL(wp), DIMENSION(A2D(nn_hls)) :: zfbuo, zrautbm1, zrautb, zraupl
      REAL(wp), DIMENSION(A2D(nn_hls)) :: zwpsurf            !
      REAL(wp), DIMENSION(A2D(nn_hls)) :: zop0 , zsp0 !
      REAL(wp), DIMENSION(A2D(nn_hls)) :: zrwp_0, zrwp2_0  !
      REAL(wp), DIMENSION(A2D(nn_hls)) :: zapp0           !
      REAL(wp), DIMENSION(A2D(nn_hls)) :: zphp, zph, zphpm1, zphm1, zNHydro
      REAL(wp), DIMENSION(A2D(nn_hls)) :: zhcmo          !
      !
      REAL(wp), DIMENSION(A2D(nn_hls),jpk)   ::   zn2    ! N^2
      REAL(wp), DIMENSION(A2D(nn_hls),2  ) ::   zab, zabm1, zabp ! alpha and beta
     
      REAL(wp), PARAMETER :: zepsilon = 1.e-30                 ! local small value

      REAL(wp) :: zrho, zrhop
      REAL(wp) :: zcnh, znum, zden, zcoef1, zcoef2
      REAL(wp) :: zca, zcb, zcd, zrw, zxl, zcdet, zctre
      REAL(wp) :: zaw, zbw, zxw
      REAL(wp) :: alpha
     !
      INTEGER, INTENT(in   )    ::   kt   ! ocean time-step index      !
      !
      INTEGER  ::   ji, jj, jk  ! dummy  loop arguments   
      !
      !------------------------------------------------------------------
      ! Initialisation of coefficients
      !------------------------------------------------------------------
      zca          = 1._wp
      zcb          = 1._wp
      zcd          = 1._wp

      DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
         !------------------------------------------------------------------
         ! Surface boundary condition
         !------------------------------------------------------------------
         ! surface Stress
         !--------------------
         zuws(ji,jj) = utau(ji,jj) * r1_rho0
         zvws(ji,jj) = vtau(ji,jj) * r1_rho0
         zustar2(ji,jj) = SQRT(zuws(ji,jj)*zuws(ji,jj)+zvws(ji,jj)*zvws(ji,jj))
         zustar(ji,jj)  = SQRT(zustar2(ji,jj))

         ! Heat Flux
         !--------------------
         zfnet(ji,jj) = qns(ji,jj) + qsr(ji,jj)
         zfnet(ji,jj) = zfnet(ji,jj) / (rho0 * rcp)

         ! Water Flux
         !---------------------
         zsws(ji,jj) = emp(ji,jj)

         !-------------------------------------------
         ! Initialisation of prognostic variables
         !-------------------------------------------
         zrwp (ji,jj,:) =  0._wp ; zrwp2(ji,jj,:) =  0._wp ; zedmf(ji,jj,:) =  0._wp
         zph  (ji,jj)   =  0._wp ; zphm1(ji,jj)   =  0._wp ; zphpm1(ji,jj)  =  0._wp
         ztsp(ji,jj,:,:)=  0._wp

         ! Tracers inside plume (ztsp) and environment (ztse)
         ztsp(ji,jj,1,jp_tem) = pts(ji,jj,1,jp_tem,Kmm) * tmask(ji,jj,1)
         ztsp(ji,jj,1,jp_sal) = pts(ji,jj,1,jp_sal,Kmm) * tmask(ji,jj,1)
         ztse(ji,jj,1,jp_tem) = pts(ji,jj,1,jp_tem,Kmm) * tmask(ji,jj,1)
         ztse(ji,jj,1,jp_sal) = pts(ji,jj,1,jp_sal,Kmm) * tmask(ji,jj,1)
      END_2D

      CALL eos( ztse(:,:,1,:) ,  zrautb(:,:) )
      CALL eos( ztsp(:,:,1,:) ,  zraupl(:,:) )

      !-------------------------------------------
      ! Boundary Condition of Mass Flux (plume velo.; convective area, entrain/detrain)
      !-------------------------------------------
      zhcmo(:,:) = e3t(A1Di(nn_hls),A1Dj(nn_hls),1,Kmm)
      zfbuo(:,:)   = 0._wp
      WHERE ( ABS(zrautb(:,:)) > 1.e-20 ) zfbuo(:,:)   =   &
         &      grav * ( 2.e-4_wp *zfnet(:,:)              &
         &      - 7.6E-4_wp*pts(A2D(nn_hls),1,jp_sal,Kmm)  &
         &      * zsws(:,:)/zrautb(:,:)) * zhcmo(:,:)

      zedmf(:,:,1) = -0.065_wp*(ABS(zfbuo(:,:)))**(1._wp/3._wp)*SIGN(1.,zfbuo(:,:))
      zedmf(:,:,1) = MAX(0., zedmf(:,:,1))

      zwpsurf(:,:) = 2._wp/3._wp*zustar(:,:) + 2._wp/3._wp*ABS(zfbuo(:,:))**(1._wp/3._wp)
      zwpsurf(:,:) = MAX(1.e-5_wp,zwpsurf(:,:))
      zwpsurf(:,:) = MIN(1.,zwpsurf(:,:))

      zapp(:,:,:)  = App_max
      WHERE(zwpsurf .NE. 0.) zapp(:,:,1)   = MIN(MAX(0.,zedmf(:,:,1)/zwpsurf(:,:)), App_max)

      zedmf(:,:,1) = 0._wp 
      zrwp (:,:,1) = 0._wp 
      zrwp2(:,:,1) = 0._wp
      zepsT(:,:,:) = 0.001_wp
      zepsW(:,:,:) = 0.001_wp


      !--------------------------------------------------------------
      ! Compute plume properties 
      ! In the same loop on vert. levels computation of:
      !    - Vertical velocity: zWp
      !    - Convective Area: zAp
      !    - Tracers properties inside the plume (if necessary): ztp
      !---------------------------------------------------------------

      DO jk= 2, jpk

         ! Compute the buoyancy acceleration on T-points at jk-1
         zrautbm1(:,:) = zrautb(:,:)
         CALL eos( pts (:,:,jk  ,:,Kmm) ,  zrautb(:,:)   )
         CALL eos( ztsp(:,:,jk-1,:    ) ,  zraupl(:,:)   )

         DO_2D( 0, 0, 0, 0 )
            zphm1(ji,jj)  = zphm1(ji,jj)  + grav * zrautbm1(ji,jj) * e3t(ji,jj,jk-1, Kmm)
            zphpm1(ji,jj) = zphpm1(ji,jj) + grav * zraupl(ji,jj)   * e3t(ji,jj,jk-1, Kmm)
            zph(ji,jj)    = zphm1(ji,jj)  + grav * zrautb(ji,jj)   * e3t(ji,jj,jk  , Kmm)
            zph(ji,jj)    = MAX( zph(ji,jj), zepsilon)
         END_2D

         WHERE(zrautbm1 .NE. 0.) zfbuo(:,:)  =  grav * (zraupl(:,:) - zrautbm1(:,:)) / zrautbm1(:,:)

         DO_2D( 0, 0, 0, 0 )

            ! Compute Environment of Plume. Interpolation T/S (before time step) on W-points
            zrw              =  (gdept(ji,jj,jk,Kmm) - gdepw(ji,jj,jk,Kmm)) &
               &              / (gdept(ji,jj,jk,Kmm) - gdept(ji,jj,jk-1,Kmm))
            ztse(ji,jj,jk,:) = (pts(ji,jj,jk,:,Kmm) * zrw + pts(ji,jj,jk-1,:,Kmm)*(1._wp - zrw) )*tmask(ji,jj,jk)

            !---------------------------------------------------------------
            ! Compute the vertical velocity on W-points
            !---------------------------------------------------------------

            ! Non-hydrostatic pressure terms in the wp2 equation
            zcnh = 0.2_wp 
            znum = 0.5_wp  + zcnh - &
                   (zcnh*grav*zraupl(ji,jj)/zph(ji,jj)+zcb*zepsW(ji,jj,jk-1)) &
                   *e3t(ji,jj,jk-1,Kmm)*0.5_wp   
            zden = 0.5_wp + zcnh + &
                   (zcnh*grav*zraupl(ji,jj)/zph(ji,jj)+zcb*zepsW(ji,jj,jk-1)) &
                   *e3t(ji,jj,jk-1,Kmm)*0.5_wp   

            zcoef1 = zca*e3t(ji,jj,jk-1,Kmm) / zden
            zcoef2 = znum/zden

            ! compute wp2 
            zrwp2(ji,jj,jk) = zcoef1*zfbuo(ji,jj) &
                            + zcoef2*zrwp2(ji,jj,jk-1)
            zrwp2(ji,jj,jk) = MAX ( zrwp2(ji,jj,jk)*wmask(ji,jj,jk) , 0.)
            zrwp (ji,jj,jk) = SQRT( zrwp2(ji,jj,jk) )

            !----------------------------------------------------------------------------------
            ! Compute convective area on W-point
            ! Compute vertical profil of the convective area with mass conservation hypothesis
            ! If rn_cap negative => constant value on the water column.
            !----------------------------------------------------------------------------------
            IF( rn_cap .GT. 0. ) THEN

               zxw = MAX(zrwp(ji,jj,jk-1), zrwp(ji,jj,jk) )
               IF( zxw > 0. ) THEN

                  zxl = (zrwp(ji,jj,jk-1)-zrwp(ji,jj,jk))/(e3t(ji,jj,jk-1,Kmm)*zxw)
                  IF (zxl .LT. 0._wp) THEN
                     zctre  = -1.*rn_cap*zxl 
                     zcdet  =  0._wp
                  ELSE
                     zctre  =  0._wp
                     zcdet  =  rn_cap*zxl 
                  END IF
                     zapp(ji,jj,jk) = zapp(ji,jj,jk-1)*     &
                     &                (1._wp + (zxl + zctre - zcdet )*e3t(ji,jj,jk-1,Kmm))
                  ELSE
                     zapp(ji,jj,jk) = App_max
                  END IF
                  zapp(ji,jj,jk) = MIN( MAX(zapp(ji,jj,jk),0.), App_max)
               ELSE
                  zapp(ji,jj,jk) = -1. * rn_cap
               END IF

            ! Compute Mass Flux on W-point
            zedmf(ji,jj,jk)   = -zapp(ji,jj,jk) * zrwp(ji,jj,jk)* wmask(ji,jj,jk)

            ! Compute Entrainment coefficient
            IF(rn_cemf .GT. 0.) THEN
               zxw = 0.5_wp*(zrwp(ji,jj,jk-1)+ zrwp(ji,jj,jk) )
               zepsT(ji,jj,jk)  =  0.01_wp
               IF( zxw > 0.  ) THEN
                  zepsT(ji,jj,jk)  =  zepsT(ji,jj,jk) +                       &
                                   &  ABS( zrwp(ji,jj,jk-1)-zrwp(ji,jj,jk) )  &
                                   &  / ( e3t(ji,jj,jk-1,Kmm) * zxw )
                  zepsT(ji,jj,jk)  = zepsT(ji,jj,jk) * rn_cemf * wmask(ji,jj,jk)
               ENDIF
            ELSE
               zepsT(ji,jj,jk)  = -rn_cemf
            ENDIF

            ! Compute the detrend coef for velocity (on W-point and not T-points, bug ???)
            IF(rn_cwmf .GT. 0.) THEN
               zepsW(ji,jj,jk)  =  rn_cwmf * zepsT(ji,jj,jk)
            ELSE
               zepsW(ji,jj,jk)  = -rn_cwmf
            ENDIF

            !---------------------------------------------------------------
            ! Compute the plume properties on T-points
            !---------------------------------------------------------------
            IF(zrwp (ji,jj,jk) .LT. 1.e-12_wp .AND. zrwp (ji,jj,jk-1) .LT. 1.e-12_wp) THEN
               ztsp(ji,jj,jk-1,jp_tem) = pts(ji,jj,jk-1,jp_tem,Kmm)
               ztsp(ji,jj,jk-1,jp_sal) = pts(ji,jj,jk-1,jp_sal,Kmm)
            ENDIF

            zcoef1 =  (1._wp-zepsT(ji,jj,jk)*(1._wp-zrw)*e3w(ji,jj,jk,Kmm)*wmask(ji,jj,jk ) ) &
            &       / (1._wp+zepsT(ji,jj,jk)*zrw*e3w(ji,jj,jk,Kmm)*wmask(ji,jj,jk) )
            !
            zcoef2 =  zepsT(ji,jj,jk)*e3w(ji,jj,jk,Kmm)*wmask(ji,jj,jk)                       &
            &       / (1._wp+zepsT(ji,jj,jk)*zrw*e3w(ji,jj,jk,Kmm)*wmask(ji,jj,jk))
            !
            ztsp(ji,jj,jk,jp_tem) = (zcoef1 * ztsp(ji,jj,jk-1,jp_tem) +  &
            &                        zcoef2 * ztse(ji,jj,jk  ,jp_tem) )*tmask(ji,jj,jk)
            ztsp(ji,jj,jk,jp_sal) = (zcoef1 * ztsp(ji,jj,jk-1,jp_sal) +  &
            &                        zcoef2 * ztse(ji,jj,jk  ,jp_sal) )*tmask(ji,jj,jk)

         END_2D 
      END DO ! end of loop on jpk

      ! Compute Mass Flux on T-point
      DO_3D( 0, 0, 0, 0, 1, jpkm1 )
         edmfm(ji,jj,jk) = (zedmf(ji,jj,jk+1)  + zedmf(ji,jj,jk) )*0.5_wp
      END_3D
      DO_2D( 0, 0, 0, 0 )
         edmfm(ji,jj,jpk) = zedmf(ji,jj,jpk)
      END_2D

      ! Save variable (on T point)
      CALL iom_put( "mf_Tp" , ztsp(:,:,:,jp_tem) )  ! Save plume temperature
      CALL iom_put( "mf_Sp" , ztsp(:,:,:,jp_sal) )  ! Save plume salinity
      CALL iom_put( "mf_mf" , edmfm(:,:,:)       )  ! Save Mass Flux
      ! Save variable (on W point)
      CALL iom_put( "mf_wp" , zrwp (:,:,:)       )  ! Save convective velocity in the plume
      CALL iom_put( "mf_app", zapp (:,:,:)       )  ! Save convective area

      !=================================================================================
      !  Computation of a tridiagonal matrix and right hand side terms of the linear system
      !=================================================================================
      DO_3D( 0, 0, 0, 0, 1, jpk )
         edmfa(ji,jj,jk)     = 0._wp
         edmfb(ji,jj,jk)     = 0._wp
         edmfc(ji,jj,jk)     = 0._wp
         edmftra(ji,jj,jk,:) = 0._wp
      END_3D

      !---------------------------------------------------------------
      ! Diagonal terms 
      !---------------------------------------------------------------
      DO_3D( 0, 0, 0, 0, 1, jpkm1 )
         edmfa(ji,jj,jk) =  0._wp
         edmfb(ji,jj,jk) = -edmfm(ji,jj,jk  ) / e3w(ji,jj,jk+1,Kmm)
         edmfc(ji,jj,jk) =  edmfm(ji,jj,jk+1) / e3w(ji,jj,jk+1,Kmm)
      END_3D
      DO_2D( 0, 0, 0, 0 )
         edmfa(ji,jj,jpk)   = -edmfm(ji,jj,jpk-1) / e3w(ji,jj,jpk,Kmm)
         edmfb(ji,jj,jpk)   =  edmfm(ji,jj,jpk  ) / e3w(ji,jj,jpk,Kmm)
         edmfc(ji,jj,jpk)   =  0._wp
      END_2D

      !---------------------------------------------------------------
      ! right hand side term for Temperature
      !---------------------------------------------------------------
      DO_3D( 0, 0, 0, 0, 1, jpkm1 )
        edmftra(ji,jj,jk,1) = - edmfm(ji,jj,jk  ) * ztsp(ji,jj,jk  ,jp_tem) / e3w(ji,jj,jk+1,Kmm) &
                            & + edmfm(ji,jj,jk+1) * ztsp(ji,jj,jk+1,jp_tem) / e3w(ji,jj,jk+1,Kmm)
      END_3D
      DO_2D( 0, 0, 0, 0 )
         edmftra(ji,jj,jpk,1) = - edmfm(ji,jj,jpk-1) * ztsp(ji,jj,jpk-1,jp_tem) / e3w(ji,jj,jpk,Kmm) &
                              & + edmfm(ji,jj,jpk  ) * ztsp(ji,jj,jpk  ,jp_tem) / e3w(ji,jj,jpk,Kmm)
      END_2D

      !---------------------------------------------------------------
      ! Right hand side term for Salinity
      !---------------------------------------------------------------
      DO_3D( 0, 0, 0, 0, 1, jpkm1 )
         edmftra(ji,jj,jk,2) =  - edmfm(ji,jj,jk  ) * ztsp(ji,jj,jk  ,jp_sal) / e3w(ji,jj,jk+1,Kmm) &
                             &  + edmfm(ji,jj,jk+1) * ztsp(ji,jj,jk+1,jp_sal) / e3w(ji,jj,jk+1,Kmm)
      END_3D
      DO_2D( 0, 0, 0, 0 )
         edmftra(ji,jj,jpk,2) = - edmfm(ji,jj,jpk-1) * ztsp(ji,jj,jpk-1,jp_sal) / e3w(ji,jj,jpk,Kmm) &
                              & + edmfm(ji,jj,jpk  ) * ztsp(ji,jj,jpk  ,jp_sal) / e3w(ji,jj,jpk,Kmm)
      END_2D
      !
   END SUBROUTINE tra_mfc

   
   SUBROUTINE diag_mfc( zdiagi, zdiagd, zdiags, p2dt, Kaa )

      REAL(wp), DIMENSION(A2D(nn_hls),jpk), INTENT(inout) ::  zdiagi, zdiagd, zdiags  ! inout: tridaig. terms
      REAL(wp)                            , INTENT(in   ) ::   p2dt                   ! tracer time-step
      INTEGER                             , INTENT(in   ) ::   Kaa                    ! ocean time level indices

      INTEGER  ::   ji, jj, jk  ! dummy  loop arguments   

         DO_3D( 0, 0, 0, 0, 1, jpkm1 )
            zdiagi(ji,jj,jk) = zdiagi(ji,jj,jk) + e3t(ji,jj,jk,Kaa) * p2dt *edmfa(ji,jj,jk)
            zdiags(ji,jj,jk) = zdiags(ji,jj,jk) + e3t(ji,jj,jk,Kaa) * p2dt *edmfc(ji,jj,jk)
            zdiagd(ji,jj,jk) = zdiagd(ji,jj,jk) + e3t(ji,jj,jk,Kaa) * p2dt *edmfb(ji,jj,jk)
         END_3D

   END SUBROUTINE diag_mfc

   SUBROUTINE rhs_mfc( zrhs, jjn )

      REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) ::   zrhs                   ! inout: rhs trend 
      INTEGER                         , INTENT(in   ) ::   jjn                    ! tracer indices

      INTEGER  ::   ji, jj, jk  ! dummy  loop arguments   

      DO_3D( 0, 0, 0, 0, 1, jpkm1 )
         zrhs(ji,jj,jk) = zrhs(ji,jj,jk) + edmftra(ji,jj,jk,jjn)
      END_3D

   END SUBROUTINE rhs_mfc



   SUBROUTINE zdf_mfc_init
      !!----------------------------------------------------------------------
      !!                  ***  ROUTINE zdf_mfc_init  ***
      !!                    
      !! ** Purpose :   Initialization of the vertical eddy diffivity and
      !!      mass flux
      !!
      !! ** Method  :   Read the namzdf_mfc namelist and check the parameters
      !!      called at the first timestep (nit000)
      !!
      !! ** input   :   Namlist namzdf_mfc
      !!
      !! ** Action  :   Increase by 1 the nstop flag is setting problem encounter
      !!
      !!----------------------------------------------------------------------
      !
      INTEGER ::   jk    ! dummy loop indices
      INTEGER ::   ios   ! Local integer output status for namelist read
      REAL(wp)::   zcr   ! local scalar
      !!
      NAMELIST/namzdf_mfc/ ln_edmfuv, rn_cemf, rn_cwmf, rn_cent, rn_cdet, rn_cap, App_max
      !!----------------------------------------------------------
      !
      !
!      REWIND( numnam_ref )              ! Namelist namzdf_mfc in reference namelist : Vertical eddy diffivity mass flux
      READ  ( numnam_ref, namzdf_mfc, IOSTAT = ios, ERR = 901)
901   IF( ios /= 0 ) CALL ctl_nam ( ios , 'namzdf_edmf in reference namelist' )

!      REWIND( numnam_cfg )              ! Namelist namzdf_mfc in configuration namelist : Vertical eddy diffivity mass flux
      READ  ( numnam_cfg, namzdf_mfc, IOSTAT = ios, ERR = 902 )
902   IF( ios /= 0 ) CALL ctl_nam ( ios , 'namzdf_edmf in configuration namelist' )
      IF(lwm) WRITE ( numond, namzdf_mfc )

      IF(lwp) THEN                     !* Control print
         WRITE(numout,*)
         WRITE(numout,*) 'zdf_mfc_init'
         WRITE(numout,*) '~~~~~~~~~~~~~'
         WRITE(numout,*) '   Namelist namzdf_mfc : set eddy diffusivity Mass Flux Convection'
         WRITE(numout,*) '   Apply mass flux on velocities (Not yet avail.)     ln_edmfuv = ', ln_edmfuv
         WRITE(numout,*) '   Coeff for entrain/detrain T/S of plume (Neg => cte) rn_cemf  = ', rn_cemf
         WRITE(numout,*) '   Coeff for entrain/detrain Wp of plume  (Neg => cte) rn_cwmf  = ', rn_cwmf
         WRITE(numout,*) '   Coeff for entrain/detrain area of plume             rn_cap   = ', rn_cap
         WRITE(numout,*) '   Coeff for entrain area of plume                     rn_cent  = ', rn_cent
         WRITE(numout,*) '   Coeff for detrain area of plume                     rn_cdet  = ', rn_cdet
         WRITE(numout,*) '   Max convective area                                 App_max  = ', App_max
       ENDIF
                                     !* allocate edmf arrays
      IF( zdf_mfc_alloc() /= 0 )   CALL ctl_stop( 'STOP', 'zdf_edmf_init : unable to allocate arrays' )
      edmfa(:,:,:)     = 0._wp
      edmfb(:,:,:)     = 0._wp
      edmfc(:,:,:)     = 0._wp
      edmftra(:,:,:,:) = 0._wp
      !
   END SUBROUTINE zdf_mfc_init

   !!======================================================================
 
   !!======================================================================
END MODULE zdfmfc