Skip to content
Snippets Groups Projects
zdfosm.F90 212 KiB
Newer Older
Guillaume Samson's avatar
Guillaume Samson committed
MODULE zdfosm
   !!======================================================================
   !!                       ***  MODULE  zdfosm  ***
   !! Ocean physics:  vertical mixing coefficient compute from the OSMOSIS
   !!                 turbulent closure parameterization
   !!=====================================================================
   !!  History : NEMO 4.0  ! A. Grant, G. Nurser
   !! 15/03/2017  Changed calculation of pycnocline thickness in unstable conditions and stable conditions AG
   !! 15/03/2017  Calculation of pycnocline gradients for stable conditions changed. Pycnocline gradients now depend on stability of the OSBL. A.G
   !! 06/06/2017  (1) Checks on sign of buoyancy jump in calculation of  OSBL depth.  A.G.
   !!             (2) Removed variable zbrad0, zbradh and zbradav since they are not used.
   !!             (3) Approximate treatment for shear turbulence.
   !!                        Minimum values for zustar and zustke.
   !!                        Add velocity scale, zvstr, that tends to zustar for large Langmuir numbers.
   !!                        Limit maximum value for Langmuir number.
   !!                        Use zvstr in definition of stability parameter zhol.
   !!             (4) Modified parametrization of entrainment flux, changing original coefficient 0.0485 for Langmuir contribution to 0.135 * zla
   !!             (5) For stable boundary layer add factor that depends on length of timestep to 'slow' collapse and growth. Make sure buoyancy jump not negative.
   !!             (6) For unstable conditions when growth is over multiple levels, limit change to maximum of one level per cycle through loop.
   !!             (7) Change lower limits for loops that calculate OSBL averages from 1 to 2. Large gradients between levels 1 and 2 can cause problems.
   !!             (8) Change upper limits from ibld-1 to ibld.
   !!             (9) Calculation of pycnocline thickness in unstable conditions. Check added to ensure that buoyancy jump is positive before calculating Ri.
   !!            (10) Thickness of interface layer at base of the stable OSBL set by Richardson number. Gives continuity in transition from unstable OSBL.
   !!            (11) Checks that buoyancy jump is poitive when calculating pycnocline profiles.
   !!            (12) Replace zwstrl with zvstr in calculation of eddy viscosity.
   !! 27/09/2017 (13) Calculate Stokes drift and Stokes penetration depth from wave information
   !!            (14) Buoyancy flux due to entrainment changed to include contribution from shear turbulence.
   !! 28/09/2017 (15) Calculation of Stokes drift moved into separate do-loops to allow for different options for the determining the Stokes drift to be added.
   !!            (16) Calculation of Stokes drift from windspeed for PM spectrum (for testing, commented out)
   !!            (17) Modification to Langmuir velocity scale to include effects due to the Stokes penetration depth (for testing, commented out)
   !! ??/??/2018 (18) Revision to code structure, selected using key_osmldpth1. Inline code moved into subroutines. Changes to physics made,
   !!                  (a) Pycnocline temperature and salinity profies changed for unstable layers
   !!                  (b) The stable OSBL depth parametrization changed.
   !! 16/05/2019 (19) Fox-Kemper parametrization of restratification through mixed layer eddies added to revised code.
   !! 23/05/19   (20) Old code where key_osmldpth1` is *not* set removed, together with the key key_osmldpth1
   !!             4.2  !  2021-05  (S. Mueller)  Efficiency improvements, source-code clarity enhancements, and adaptation to tiling
   !!----------------------------------------------------------------------

   !!----------------------------------------------------------------------
   !!   'ln_zdfosm'                                          OSMOSIS scheme
   !!----------------------------------------------------------------------
   !!   zdf_osm        : update momentum and tracer Kz from osm scheme
   !!      zdf_osm_vertical_average             : compute vertical averages over boundary layers
   !!      zdf_osm_velocity_rotation            : rotate velocity components
   !!         zdf_osm_velocity_rotation_2d      :    rotation of 2d fields
   !!         zdf_osm_velocity_rotation_3d      :    rotation of 3d fields
   !!      zdf_osm_osbl_state                   : determine the state of the OSBL
   !!      zdf_osm_external_gradients           : calculate gradients below the OSBL
   !!      zdf_osm_calculate_dhdt               : calculate rate of change of hbl
   !!      zdf_osm_timestep_hbl                 : hbl timestep
   !!      zdf_osm_pycnocline_thickness         : calculate thickness of pycnocline
   !!      zdf_osm_diffusivity_viscosity        : compute eddy diffusivity and viscosity profiles
   !!      zdf_osm_fgr_terms                    : compute flux-gradient relationship terms
   !!         zdf_osm_pycnocline_buoyancy_profiles : calculate pycnocline buoyancy profiles
   !!      zdf_osm_zmld_horizontal_gradients    : calculate horizontal buoyancy gradients for use with Fox-Kemper parametrization
   !!      zdf_osm_osbl_state_fk                : determine state of OSBL and MLE layers
   !!      zdf_osm_mle_parameters               : timestep MLE depth and calculate MLE fluxes
   !!   zdf_osm_init   : initialization, namelist read, and parameters control
   !!      zdf_osm_alloc                        : memory allocation
   !!   osm_rst        : read (or initialize) and write osmosis restart fields
   !!   tra_osm        : compute and add to the T & S trend the non-local flux
   !!   trc_osm        : compute and add to the passive tracer trend the non-local flux (TBD)
   !!   dyn_osm        : compute and add to u & v trensd the non-local flux
   !!   zdf_osm_iomput : iom_put wrapper that accepts arrays without halo
   !!      zdf_osm_iomput_2d                    : iom_put wrapper for 2D fields
   !!      zdf_osm_iomput_3d                    : iom_put wrapper for 3D fields
   !!----------------------------------------------------------------------
   USE oce                       ! Ocean dynamics and active tracers
   !                             ! Uses ww from previous time step (which is now wb) to calculate hbl
   USE dom_oce                   ! Ocean space and time domain
   USE zdf_oce                   ! Ocean vertical physics
   USE sbc_oce                   ! Surface boundary condition: ocean
   USE sbcwave                   ! Surface wave parameters
   USE phycst                    ! Physical constants
   USE eosbn2                    ! Equation of state
   USE traqsr                    ! Details of solar radiation absorption
   USE zdfdrg, ONLY : rCdU_bot   ! Bottom friction velocity
   USE zdfddm                    ! Double diffusion mixing (avs array)
   USE iom                       ! I/O library
   USE lib_mpp                   ! MPP library
   USE trd_oce                   ! Ocean trends definition
   USE trdtra                    ! Tracers trends
   USE in_out_manager            ! I/O manager
   USE lbclnk                    ! Ocean lateral boundary conditions (or mpp link)
   USE prtctl                    ! Print control
   USE lib_fortran               ! Fortran utilities (allows no signed zero when 'key_nosignedzero' defined)

   IMPLICIT NONE
   PRIVATE

   ! Public subroutines
   PUBLIC zdf_osm        ! Routine called by step.F90
   PUBLIC zdf_osm_init   ! Routine called by nemogcm.F90
   PUBLIC osm_rst        ! Routine called by step.F90
   PUBLIC tra_osm        ! Routine called by step.F90
   PUBLIC trc_osm        ! Routine called by trcstp.F90
   PUBLIC dyn_osm        ! Routine called by step.F90

   ! Public variables
   LOGICAL,  PUBLIC                                      ::   ln_osm_mle   !: Flag to activate the Mixed Layer Eddy (MLE)
   !                                                                       !     parameterisation, needed by tra_mle_init in
   !                                                                       !     tramle.F90
   REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) ::   ghamu        !: Non-local u-momentum flux
   REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) ::   ghamv        !: Non-local v-momentum flux
   REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) ::   ghamt        !: Non-local temperature flux (gamma/<ws>o)
   REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) ::   ghams        !: Non-local salinity flux (gamma/<ws>o)
   REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   hbl          !: Boundary layer depth
   REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   hml          !: ML depth
   REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   hmle         !: Depth of layer affexted by mixed layer eddies in Fox-Kemper parametrization
   REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   dbdx_mle     !: Zonal buoyancy gradient in ML
   REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   dbdy_mle     !: Meridional buoyancy gradient in ML
   INTEGER,  PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   mld_prof     !: Level of base of MLE layer

   INTERFACE zdf_osm_velocity_rotation
      !!---------------------------------------------------------------------
      !!              ***  INTERFACE zdf_velocity_rotation  ***
      !!---------------------------------------------------------------------
      MODULE PROCEDURE zdf_osm_velocity_rotation_2d
      MODULE PROCEDURE zdf_osm_velocity_rotation_3d
   END INTERFACE
   !
   INTERFACE zdf_osm_iomput
      !!---------------------------------------------------------------------
      !!                 ***  INTERFACE zdf_osm_iomput  ***
      !!---------------------------------------------------------------------
      MODULE PROCEDURE zdf_osm_iomput_2d
      MODULE PROCEDURE zdf_osm_iomput_3d
   END INTERFACE

   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) ::   etmean      ! Averaging operator for avt
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   dh          ! Depth of pycnocline
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   r1_ft       ! Inverse of the modified Coriolis parameter at t-pts
   ! Layer indices
   INTEGER,  ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   nbld        ! Level of boundary layer base
   INTEGER,  ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   nmld        ! Level of mixed-layer depth (pycnocline top)
   ! Layer type
   INTEGER,  ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   n_ddh       ! Type of shear layer
   !                                                              !    n_ddh=0: active shear layer
   !                                                              !    n_ddh=1: shear layer not active
   !                                                              !    n_ddh=2: shear production low
   ! Layer flags
   LOGICAL,  ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   l_conv      ! Unstable/stable bl
   LOGICAL,  ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   l_shear     ! Shear layers
   LOGICAL,  ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   l_coup      ! Coupling to bottom
   LOGICAL,  ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   l_pyc       ! OSBL pycnocline present
   LOGICAL,  ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   l_flux      ! Surface flux extends below OSBL into MLE layer
   LOGICAL,  ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   l_mle       ! MLE layer increases in hickness.
   ! Scales
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   swth0       ! Surface heat flux (Kinematic)
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   sws0        ! Surface freshwater flux
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   swb0        ! Surface buoyancy flux
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   suw0        ! Surface u-momentum flux
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   sustar      ! Friction velocity
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   scos_wind   ! Cos angle of surface stress
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   ssin_wind   ! Sin angle of surface stress
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   swthav      ! Heat flux - bl average
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   swsav       ! Freshwater flux - bl average
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   swbav       ! Buoyancy flux - bl average
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   sustke      ! Surface Stokes drift
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   dstokes     ! Penetration depth of the Stokes drift
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   swstrl      ! Langmuir velocity scale
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   swstrc      ! Convective velocity scale
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   sla         ! Trubulent Langmuir number
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   svstr       ! Velocity scale that tends to sustar for large Langmuir number
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   shol        ! Stability parameter for boundary layer
   ! Layer averages: BL
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   av_t_bl     ! Temperature average
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   av_s_bl     ! Salinity average
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   av_u_bl     ! Velocity average (u)
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   av_v_bl     ! Velocity average (v)
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   av_b_bl     ! Buoyancy average
   ! Difference between layer average and parameter at the base of the layer: BL
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   av_dt_bl    ! Temperature difference
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   av_ds_bl    ! Salinity difference
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   av_du_bl    ! Velocity difference (u)
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   av_dv_bl    ! Velocity difference (v)
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   av_db_bl    ! Buoyancy difference
   ! Layer averages: ML
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   av_t_ml     ! Temperature average
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   av_s_ml     ! Salinity average
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   av_u_ml     ! Velocity average (u)
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   av_v_ml     ! Velocity average (v)
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   av_b_ml     ! Buoyancy average
   ! Difference between layer average and parameter at the base of the layer: ML
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   av_dt_ml    ! Temperature difference
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   av_ds_ml    ! Salinity difference
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   av_du_ml    ! Velocity difference (u)
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   av_dv_ml    ! Velocity difference (v)
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   av_db_ml    ! Buoyancy difference
   ! Layer averages: MLE
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   av_t_mle    ! Temperature average
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   av_s_mle    ! Salinity average
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   av_u_mle    ! Velocity average (u)
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   av_v_mle    ! Velocity average (v)
   REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   av_b_mle    ! Buoyancy average
   ! Diagnostic output
   REAL(WP), ALLOCATABLE, SAVE, DIMENSION(:,:)   ::   osmdia2d    ! Auxiliary array for diagnostic output
   REAL(WP), ALLOCATABLE, SAVE, DIMENSION(:,:,:) ::   osmdia3d    ! Auxiliary array for diagnostic output
   LOGICAL  ::   ln_dia_pyc_scl = .FALSE.                         ! Output of pycnocline scalar-gradient profiles
   LOGICAL  ::   ln_dia_pyc_shr = .FALSE.                         ! Output of pycnocline velocity-shear  profiles
Guillaume Samson's avatar
Guillaume Samson committed
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922

   !                                               !!* namelist namzdf_osm *
   LOGICAL  ::   ln_use_osm_la                      ! Use namelist rn_osm_la
   REAL(wp) ::   rn_osm_la                          ! Turbulent Langmuir number
   REAL(wp) ::   rn_osm_dstokes                     ! Depth scale of Stokes drift
   REAL(wp) ::   rn_zdfosm_adjust_sd   = 1.0_wp     ! Factor to reduce Stokes drift by
   REAL(wp) ::   rn_osm_hblfrac        = 0.1_wp     ! For nn_osm_wave = 3/4 specify fraction in top of hbl
   LOGICAL  ::   ln_zdfosm_ice_shelter              ! Flag to activate ice sheltering
   REAL(wp) ::   rn_osm_hbl0           = 10.0_wp    ! Initial value of hbl for 1D runs
   INTEGER  ::   nn_ave                             ! = 0/1 flag for horizontal average on avt
   INTEGER  ::   nn_osm_wave = 0                    ! = 0/1/2 flag for getting stokes drift from La# / PM wind-waves/Inputs into
   !                                                !    sbcwave
   INTEGER  ::   nn_osm_SD_reduce                   ! = 0/1/2 flag for getting effective stokes drift from surface value
   LOGICAL  ::   ln_dia_osm                         ! Use namelist  rn_osm_la
   LOGICAL  ::   ln_kpprimix           = .TRUE.     ! Shear instability mixing
   REAL(wp) ::   rn_riinfty            = 0.7_wp     ! Local Richardson Number limit for shear instability
   REAL(wp) ::   rn_difri              = 0.005_wp   ! Maximum shear mixing at Rig = 0    (m2/s)
   LOGICAL  ::   ln_convmix            = .TRUE.     ! Convective instability mixing
   REAL(wp) ::   rn_difconv            = 1.0_wp     ! Diffusivity when unstable below BL  (m2/s)
   ! OSMOSIS mixed layer eddy parametrization constants
   INTEGER  ::   nn_osm_mle                         ! = 0/1 flag for horizontal average on avt
   REAL(wp) ::   rn_osm_mle_ce                      ! MLE coefficient
   !    Parameters used in nn_osm_mle = 0 case
   REAL(wp) ::   rn_osm_mle_lf                      ! Typical scale of mixed layer front
   REAL(wp) ::   rn_osm_mle_time                    ! Time scale for mixing momentum across the mixed layer
   !    Parameters used in nn_osm_mle = 1 case
   REAL(wp) ::   rn_osm_mle_lat                     ! Reference latitude for a 5 km scale of ML front
   LOGICAL  ::   ln_osm_hmle_limit                  ! If true arbitrarily restrict hmle to rn_osm_hmle_limit*zmld
   REAL(wp) ::   rn_osm_hmle_limit                  ! If ln_osm_hmle_limit true arbitrarily restrict hmle to rn_osm_hmle_limit*zmld
   REAL(wp) ::   rn_osm_mle_rho_c                   ! Density criterion for definition of MLD used by FK
   REAL(wp) ::   rb_c                               ! ML buoyancy criteria = g rho_c /rho0 where rho_c is defined in zdfmld
   REAL(wp) ::   rc_f                               ! MLE coefficient (= rn_ce / (5 km * fo) ) in nn_osm_mle=1 case
   REAL(wp) ::   rn_osm_mle_thresh                  ! Threshold buoyancy for deepening of MLE layer below OSBL base
   REAL(wp) ::   rn_osm_bl_thresh                   ! Threshold buoyancy for deepening of OSBL base
   REAL(wp) ::   rn_osm_mle_tau                     ! Adjustment timescale for MLE

   ! General constants
   REAL(wp) ::   epsln     = 1.0e-20_wp      ! A small positive number to ensure no div by zero
   REAL(wp) ::   depth_tol = 1.0e-6_wp       ! A small-ish positive number to give a hbl slightly shallower than gdepw
   REAL(wp) ::   pthird    = 1.0_wp/3.0_wp   ! 1/3
   REAL(wp) ::   p2third   = 2.0_wp/3.0_wp   ! 2/3

   !! * Substitutions
#  include "do_loop_substitute.h90"
#  include "domzgr_substitute.h90"
   !!----------------------------------------------------------------------
   !! NEMO/OCE 4.0 , NEMO Consortium (2018)
   !! $Id: zdfosm.F90 14921 2021-05-28 12:19:26Z smueller $
   !! Software governed by the CeCILL license (see ./LICENSE)
   !!----------------------------------------------------------------------
CONTAINS

   INTEGER FUNCTION zdf_osm_alloc()
      !!----------------------------------------------------------------------
      !!                 ***  FUNCTION zdf_osm_alloc  ***
      !!----------------------------------------------------------------------
      INTEGER ::   ierr
      !!----------------------------------------------------------------------
      !
      zdf_osm_alloc = 0
      !
      ALLOCATE( ghamu(jpi,jpj,jpk), ghamv(jpi,jpj,jpk), ghamt(jpi,jpj,jpk), ghams(jpi,jpj,jpk), hbl(jpi,jpj), hml(jpi,jpj),   &
         &      hmle(jpi,jpj),      dbdx_mle(jpi,jpj),  dbdy_mle(jpi,jpj),  mld_prof(jpi,jpj),  STAT=ierr )
      zdf_osm_alloc = zdf_osm_alloc + ierr
      !
      ALLOCATE( etmean(A2D(nn_hls-1),jpk), dh(jpi,jpj), r1_ft(A2D(nn_hls-1)), STAT=ierr )
      zdf_osm_alloc = zdf_osm_alloc + ierr
      !
      ALLOCATE( nbld(jpi,jpj), nmld(A2D(nn_hls-1)), STAT=ierr )
      zdf_osm_alloc = zdf_osm_alloc + ierr
      !
      ALLOCATE( n_ddh(A2D(nn_hls-1)), STAT=ierr )
      zdf_osm_alloc = zdf_osm_alloc + ierr
      !
      ALLOCATE( l_conv(A2D(nn_hls-1)), l_shear(A2D(nn_hls-1)), l_coup(A2D(nn_hls-1)), l_pyc(A2D(nn_hls-1)),   &
         &      l_flux(A2D(nn_hls-1)), l_mle(A2D(nn_hls-1)),   STAT=ierr )
      zdf_osm_alloc = zdf_osm_alloc + ierr
      !
      ALLOCATE( swth0(A2D(nn_hls-1)),  sws0(A2D(nn_hls-1)),      swb0(A2D(nn_hls-1)),      suw0(A2D(nn_hls-1)),      &
         &      sustar(A2D(nn_hls-1)), scos_wind(A2D(nn_hls-1)), ssin_wind(A2D(nn_hls-1)), swthav(A2D(nn_hls-1)),    &
         &      swsav(A2D(nn_hls-1)),  swbav(A2D(nn_hls-1)),     sustke(A2D(nn_hls-1)),    dstokes(A2D(nn_hls-1)),   &
         &      swstrl(A2D(nn_hls-1)), swstrc(A2D(nn_hls-1)),    sla(A2D(nn_hls-1)),       svstr(A2D(nn_hls-1)),     &
         &      shol(A2D(nn_hls-1)),   STAT=ierr )
      zdf_osm_alloc = zdf_osm_alloc + ierr
      !
      ALLOCATE( av_t_bl(jpi,jpj), av_s_bl(jpi,jpj), av_u_bl(jpi,jpj), av_v_bl(jpi,jpj),   &
         &      av_b_bl(jpi,jpj), STAT=ierr)
      zdf_osm_alloc = zdf_osm_alloc + ierr
      !
      ALLOCATE( av_dt_bl(jpi,jpj), av_ds_bl(jpi,jpj), av_du_bl(jpi,jpj), av_dv_bl(jpi,jpj),   &
         &      av_db_bl(jpi,jpj), STAT=ierr)
      zdf_osm_alloc = zdf_osm_alloc + ierr
      !
      ALLOCATE( av_t_ml(jpi,jpj), av_s_ml(jpi,jpj), av_u_ml(jpi,jpj), av_v_ml(jpi,jpj),   &
         &      av_b_ml(jpi,jpj), STAT=ierr)
      zdf_osm_alloc = zdf_osm_alloc + ierr
      !
      ALLOCATE( av_dt_ml(jpi,jpj), av_ds_ml(jpi,jpj), av_du_ml(jpi,jpj), av_dv_ml(jpi,jpj),   &
         &      av_db_ml(jpi,jpj), STAT=ierr)
      zdf_osm_alloc = zdf_osm_alloc + ierr
      !
      ALLOCATE( av_t_mle(jpi,jpj), av_s_mle(jpi,jpj), av_u_mle(jpi,jpj), av_v_mle(jpi,jpj),   &
         &      av_b_mle(jpi,jpj), STAT=ierr)
      zdf_osm_alloc = zdf_osm_alloc + ierr
      !
      IF ( ln_dia_osm ) THEN
         ALLOCATE( osmdia2d(jpi,jpj), osmdia3d(jpi,jpj,jpk), STAT=ierr )
         zdf_osm_alloc = zdf_osm_alloc + ierr
      END IF
      !
      CALL mpp_sum ( 'zdfosm', zdf_osm_alloc )
      IF( zdf_osm_alloc /= 0 ) CALL ctl_warn( 'zdf_osm_alloc: failed to allocate zdf_osm arrays' )
      !
   END FUNCTION zdf_osm_alloc

   SUBROUTINE zdf_osm( kt, Kbb, Kmm, Krhs, p_avm,   &
      &                p_avt )
      !!----------------------------------------------------------------------
      !!                   ***  ROUTINE zdf_osm  ***
      !!
      !! ** Purpose :   Compute the vertical eddy viscosity and diffusivity
      !!      coefficients and non local mixing using the OSMOSIS scheme
      !!
      !! ** Method :   The boundary layer depth hosm is diagnosed at tracer points
      !!      from profiles of buoyancy, and shear, and the surface forcing.
      !!      Above hbl (sigma=-z/hbl <1) the mixing coefficients are computed from
      !!
      !!                      Kx =  hosm  Wx(sigma) G(sigma)
      !!
      !!             and the non local term ghamt = Cs / Ws(sigma) / hosm
      !!      Below hosm  the coefficients are the sum of mixing due to internal waves
      !!      shear instability and double diffusion.
      !!
      !!      -1- Compute the now interior vertical mixing coefficients at all depths.
      !!      -2- Diagnose the boundary layer depth.
      !!      -3- Compute the now boundary layer vertical mixing coefficients.
      !!      -4- Compute the now vertical eddy vicosity and diffusivity.
      !!      -5- Smoothing
      !!
      !!        N.B. The computation is done from jk=2 to jpkm1
      !!             Surface value of avt are set once a time to zero
      !!             in routine zdf_osm_init.
      !!
      !! ** Action  :   update the non-local terms ghamts
      !!                update avt (before vertical eddy coef.)
      !!
      !! References : Large W.G., Mc Williams J.C. and Doney S.C.
      !!         Reviews of Geophysics, 32, 4, November 1994
      !!         Comments in the code refer to this paper, particularly
      !!         the equation number. (LMD94, here after)
      !!----------------------------------------------------------------------
      INTEGER                   , INTENT(in   ) ::  kt               ! Ocean time step
      INTEGER                   , INTENT(in   ) ::  Kbb, Kmm, Krhs   ! Ocean time level indices
      REAL(wp), DIMENSION(:,:,:), INTENT(inout) ::  p_avm, p_avt     ! Momentum and tracer Kz (w-points)
      !!
      INTEGER ::   ji, jj, jk, jl, jm, jkflt   ! Dummy loop indices
      !!
      REAL(wp) ::   zthermal, zbeta
      REAL(wp) ::   zesh2, zri, zfri   ! Interior Richardson mixing
      !! Scales
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   zrad0       ! Surface solar temperature flux (deg m/s)
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   zradh       ! Radiative flux at bl base (Buoyancy units)
      REAL(wp)                           ::   zradav      ! Radiative flux, bl average (Buoyancy Units)
      REAL(wp)                           ::   zvw0        ! Surface v-momentum flux
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   zwb0tot     ! Total surface buoyancy flux including insolation
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   zwb_ent     ! Buoyancy entrainment flux
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   zwb_min
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   zwb_fk_b    ! MLE buoyancy flux averaged over OSBL
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   zwb_fk      ! Max MLE buoyancy flux
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   zdiff_mle   ! Extra MLE vertical diff
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   zvel_mle    ! Velocity scale for dhdt with stable ML and FK
      !! Mixed-layer variables
      INTEGER,  DIMENSION(A2D(nn_hls-1)) ::   jk_nlev  ! Number of levels
      INTEGER,  DIMENSION(A2D(nn_hls-1)) ::   jk_ext   ! Offset for external level
      !!
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   zhbl   ! BL depth - grid
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   zhml   ! ML depth - grid
      !!
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   zhmle   ! MLE depth - grid
      REAL(wp), DIMENSION(A2D(nn_hls))   ::   zmld    ! ML depth on grid
      !!
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   zdh                          ! Pycnocline depth - grid
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   zdhdt                        ! BL depth tendency
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   zdtdz_bl_ext, zdsdz_bl_ext   ! External temperature/salinity gradients
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   zdbdz_bl_ext                 ! External buoyancy gradients
      REAL(wp), DIMENSION(A2D(nn_hls))   ::   zdtdx, zdtdy, zdsdx, zdsdy   ! Horizontal gradients for Fox-Kemper parametrization
      !!
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   zdbds_mle   ! Magnitude of horizontal buoyancy gradient
      !! Flux-gradient relationship variables
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   zshear   ! Shear production
      !!
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   zhbl_t   ! Holds boundary layer depth updated by full timestep
      !! For calculating Ri#-dependent mixing
      REAL(wp), DIMENSION(A2D(nn_hls)) ::   z2du     ! u-shear^2
      REAL(wp), DIMENSION(A2D(nn_hls)) ::   z2dv     ! v-shear^2
      REAL(wp)                         ::   zrimix   ! Spatial form of ri#-induced diffusion
      !! Temporary variables
      REAL(wp)                                 ::   znd              ! Temporary non-dimensional depth
      REAL(wp)                                 ::   zz0, zz1, zfac
      REAL(wp)                                 ::   zus_x, zus_y     ! Temporary Stokes drift
      REAL(wp), DIMENSION(A2D(nn_hls-1),jpk)   ::   zviscos          ! Viscosity
      REAL(wp), DIMENSION(A2D(nn_hls-1),jpk)   ::   zdiffut          ! t-diffusivity
      REAL(wp)                                 ::   zabsstke
      REAL(wp)                                 ::   zsqrtpi, z_two_thirds, zthickness
      REAL(wp)                                 ::   z2k_times_thickness, zsqrt_depth, zexp_depth, zf, zexperfc
      !! For debugging
      REAL(wp), PARAMETER ::   pp_large = -1e10_wp
      !!----------------------------------------------------------------------
      !
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         nmld(ji,jj)   = 0
         sustke(ji,jj) = pp_large
         l_pyc(ji,jj)  = .FALSE.
         l_flux(ji,jj) = .FALSE.
         l_mle(ji,jj)  = .FALSE.
      END_2D
      ! Mixed layer
      ! No initialization of zhbl or zhml (or zdh?)
      zhbl(:,:) = pp_large
      zhml(:,:) = pp_large
      zdh(:,:)  = pp_large
      !
      IF ( ln_osm_mle ) THEN   ! Only initialise arrays if needed
         zdtdx(:,:)  = pp_large ; zdtdy(:,:)    = pp_large ; zdsdx(:,:)     = pp_large
         zdsdy(:,:)  = pp_large
         zwb_fk(:,:) = pp_large ; zvel_mle(:,:) = pp_large
         zhmle(:,:)  = pp_large ; zmld(:,:)     = pp_large
         DO_2D_OVR( nn_hls, nn_hls, nn_hls, nn_hls )
            dbdx_mle(ji,jj) = pp_large
            dbdy_mle(ji,jj) = pp_large
         END_2D
      ENDIF
      zhbl_t(:,:)   = pp_large
      !
      zdiffut(:,:,:) = 0.0_wp
      zviscos(:,:,:) = 0.0_wp
      !
      DO_3D_OVR( nn_hls, nn_hls, nn_hls, nn_hls, 1, jpk )
         ghamt(ji,jj,jk) = pp_large
         ghams(ji,jj,jk) = pp_large
         ghamu(ji,jj,jk) = pp_large
         ghamv(ji,jj,jk) = pp_large
      END_3D
      DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 1, jpk )
         ghamt(ji,jj,jk) = 0.0_wp
         ghams(ji,jj,jk) = 0.0_wp
         ghamu(ji,jj,jk) = 0.0_wp
         ghamv(ji,jj,jk) = 0.0_wp
      END_3D
      !
      zdiff_mle(:,:) = 0.0_wp
      !
      ! Ensure only positive hbl values are accessed when using extended halo
      ! (nn_hls==2)
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         hbl(ji,jj) = MAX( hbl(ji,jj), epsln )
      END_2D
      !
      !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
      ! Calculate boundary layer scales
      !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
      !
      ! Turbulent surface fluxes and fluxes averaged over depth of the OSBL
      zz0 =           rn_abs   ! Assume two-band radiation model for depth of OSBL - surface equi-partition in 2-bands
      zz1 =  1.0_wp - rn_abs
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         zrad0(ji,jj)  = qsr(ji,jj) * r1_rho0_rcp   ! Surface downward irradiance (so always +ve)
         zradh(ji,jj)  = zrad0(ji,jj) *                                &   ! Downwards irradiance at base of boundary layer
            &            ( zz0 * EXP( -1.0_wp * hbl(ji,jj) / rn_si0 ) + zz1 * EXP( -1.0_wp * hbl(ji,jj) / rn_si1 ) )
         zradav        = zrad0(ji,jj) *                                              &            ! Downwards irradiance averaged
            &            ( zz0 * ( 1.0_wp - EXP( -hbl(ji,jj)/rn_si0 ) ) * rn_si0 +   &            !    over depth of the OSBL
            &              zz1 * ( 1.0_wp - EXP( -hbl(ji,jj)/rn_si1 ) ) * rn_si1 ) / hbl(ji,jj)
         swth0(ji,jj)  = - qns(ji,jj) * r1_rho0_rcp * tmask(ji,jj,1)   ! Upwards surface Temperature flux for non-local term
         swthav(ji,jj) = 0.5_wp * swth0(ji,jj) - ( 0.5_wp * ( zrad0(ji,jj) + zradh(ji,jj) ) -   &   ! Turbulent heat flux averaged
            &                                                 zradav )                              !    over depth of OSBL
      END_2D
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         sws0(ji,jj)    = -1.0_wp * ( ( emp(ji,jj) - rnf(ji,jj) ) * ts(ji,jj,1,jp_sal,Kmm) +   &   ! Upwards surface salinity flux
            &                         sfx(ji,jj) ) * r1_rho0 * tmask(ji,jj,1)                      !    for non-local term
         zthermal       = rab_n(ji,jj,1,jp_tem)
         zbeta          = rab_n(ji,jj,1,jp_sal)
         swb0(ji,jj)    = grav * zthermal * swth0(ji,jj) - grav * zbeta * sws0(ji,jj)   ! Non radiative upwards surface buoyancy flux
         zwb0tot(ji,jj) = swb0(ji,jj) - grav * zthermal * ( zrad0(ji,jj) - zradh(ji,jj) )   ! Total upwards surface buoyancy flux
         swsav(ji,jj)   = 0.5_wp * sws0(ji,jj)                              ! Turbulent salinity flux averaged over depth of the OBSL
         swbav(ji,jj)   = grav  * zthermal * swthav(ji,jj) -            &   ! Turbulent buoyancy flux averaged over the depth of the
            &             grav  * zbeta * swsav(ji,jj)                      ! OBSBL
      END_2D
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         suw0(ji,jj)    = -0.5_wp * (utau(ji-1,jj) + utau(ji,jj)) * r1_rho0 * tmask(ji,jj,1)   ! Surface upward velocity fluxes
         zvw0           = -0.5_wp * (vtau(ji,jj-1) + vtau(ji,jj)) * r1_rho0 * tmask(ji,jj,1)
         sustar(ji,jj)  = MAX( SQRT( SQRT( suw0(ji,jj) * suw0(ji,jj) + zvw0 * zvw0 ) ),   &   ! Friction velocity (sustar), at
            &                  1e-8_wp )                                                      !    T-point : LMD94 eq. 2
         scos_wind(ji,jj) = -1.0_wp * suw0(ji,jj) / ( sustar(ji,jj) * sustar(ji,jj) )
         ssin_wind(ji,jj) = -1.0_wp * zvw0        / ( sustar(ji,jj) * sustar(ji,jj) )
      END_2D
      ! Calculate Stokes drift in direction of wind (sustke) and Stokes penetration depth (dstokes)
      SELECT CASE (nn_osm_wave)
         ! Assume constant La#=0.3
      CASE(0)
         DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
            zus_x = scos_wind(ji,jj) * sustar(ji,jj) / 0.3_wp**2
            zus_y = ssin_wind(ji,jj) * sustar(ji,jj) / 0.3_wp**2
            ! Linearly
            sustke(ji,jj)  = MAX( SQRT( zus_x * zus_x + zus_y * zus_y ), 1e-8_wp )
            dstokes(ji,jj) = rn_osm_dstokes
         END_2D
         ! Assume Pierson-Moskovitz wind-wave spectrum
      CASE(1)
         DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
            ! Use wind speed wndm included in sbc_oce module
            sustke(ji,jj)  = MAX ( 0.016_wp * wndm(ji,jj), 1e-8_wp )
            dstokes(ji,jj) = MAX ( 0.12_wp * wndm(ji,jj)**2 / grav, 5e-1_wp )
         END_2D
         ! Use ECMWF wave fields as output from SBCWAVE
      CASE(2)
         zfac =  2.0_wp * rpi / 16.0_wp
         !
         DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
            IF ( hsw(ji,jj) > 1e-4_wp ) THEN
               ! Use  wave fields
               zabsstke       = SQRT( ut0sd(ji,jj)**2 + vt0sd(ji,jj)**2 )
               sustke(ji,jj)  = MAX( ( scos_wind(ji,jj) * ut0sd(ji,jj) + ssin_wind(ji,jj)  * vt0sd(ji,jj) ), 1e-8_wp )
               dstokes(ji,jj) = MAX( zfac * hsw(ji,jj) * hsw(ji,jj) / ( MAX( zabsstke * wmp(ji,jj), 1e-7 ) ), 5e-1_wp )
            ELSE
               ! Assume masking issue (e.g. ice in ECMWF reanalysis but not in model run)
               ! .. so default to Pierson-Moskowitz
               sustke(ji,jj)  = MAX( 0.016_wp * wndm(ji,jj), 1e-8_wp )
               dstokes(ji,jj) = MAX( 0.12_wp * wndm(ji,jj)**2 / grav, 5e-1_wp )
            END IF
         END_2D
      END SELECT
      !
      IF (ln_zdfosm_ice_shelter) THEN
         ! Reduce both Stokes drift and its depth scale by ocean fraction to represent sheltering by ice
         DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
            sustke(ji,jj)  = sustke(ji,jj)  * ( 1.0_wp - fr_i(ji,jj) )
            dstokes(ji,jj) = dstokes(ji,jj) * ( 1.0_wp - fr_i(ji,jj) )
         END_2D
      END IF
      !
      SELECT CASE (nn_osm_SD_reduce)
         ! Reduce surface Stokes drift by a constant factor or following Breivik (2016) + van Roekel (2012) or Grant (2020).
      CASE(0)
         ! The Langmur number from the ECMWF model (or from PM) appears to give La<0.3 for wind-driven seas.
         ! The coefficient rn_zdfosm_adjust_sd = 0.8 gives La=0.3 in this situation.
         ! It could represent the effects of the spread of wave directions around the mean wind. The effect of this adjustment needs to be tested.
         IF(nn_osm_wave > 0) THEN
            DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
               sustke(ji,jj) = rn_zdfosm_adjust_sd * sustke(ji,jj)
            END_2D
         END IF
      CASE(1)
         ! Van Roekel (2012): consider average SD over top 10% of boundary layer
         ! Assumes approximate depth profile of SD from Breivik (2016)
         zsqrtpi = SQRT(rpi)
         z_two_thirds = 2.0_wp / 3.0_wp
         DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
            zthickness = rn_osm_hblfrac*hbl(ji,jj)
            z2k_times_thickness =  zthickness * 2.0_wp / MAX( ABS( 5.97_wp * dstokes(ji,jj) ), 1e-7_wp )
            zsqrt_depth = SQRT( z2k_times_thickness )
            zexp_depth  = EXP( -1.0_wp * z2k_times_thickness )
            sustke(ji,jj) = sustke(ji,jj) * ( 1.0_wp - zexp_depth -   &
               &                              z_two_thirds * ( zsqrtpi * zsqrt_depth * z2k_times_thickness * ERFC(zsqrt_depth) +   &
               &                                               1.0_wp - ( 1.0_wp + z2k_times_thickness ) * zexp_depth ) ) /        &
               &            z2k_times_thickness
         END_2D
      CASE(2)
         ! Grant (2020): Match to exponential with same SD and d/dz(Sd) at depth 10% of boundary layer
         ! Assumes approximate depth profile of SD from Breivik (2016)
         zsqrtpi = SQRT(rpi)
         DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
            zthickness = rn_osm_hblfrac*hbl(ji,jj)
            z2k_times_thickness =  zthickness * 2.0_wp / MAX( ABS( 5.97_wp * dstokes(ji,jj) ), 1e-7_wp )
            IF( z2k_times_thickness < 50.0_wp ) THEN
               zsqrt_depth = SQRT( z2k_times_thickness )
               zexperfc    = zsqrtpi * zsqrt_depth * ERFC(zsqrt_depth) * EXP( z2k_times_thickness )
            ELSE
               ! Asymptotic expansion of sqrt(pi)*zsqrt_depth*EXP(z2k_times_thickness)*ERFC(zsqrt_depth) for large
               !    z2k_times_thickness
               ! See Abramowitz and Stegun, Eq. 7.1.23
               ! zexperfc = 1._wp - (1/2)/(z2k_times_thickness) + (3/4)/(z2k_times_thickness**2) - (15/8)/(z2k_times_thickness**3)
               zexperfc = ( ( -1.875_wp / z2k_times_thickness + 0.75_wp ) / z2k_times_thickness - 0.5_wp ) /   &
                  &       z2k_times_thickness + 1.0_wp
            END IF
            zf = z2k_times_thickness * ( 1.0_wp / zexperfc - 1.0_wp )
            dstokes(ji,jj) = 5.97_wp * zf * dstokes(ji,jj)
            sustke(ji,jj)  = sustke(ji,jj) * EXP( z2k_times_thickness * ( 1.0_wp / ( 2.0_wp * zf ) - 1.0_wp ) ) *   &
               &             ( 1.0_wp - zexperfc )
         END_2D
      END SELECT
      !
      ! Langmuir velocity scale (swstrl), La # (sla)
      ! Mixed scale (svstr), convective velocity scale (swstrc)
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         ! Langmuir velocity scale (swstrl), at T-point
         swstrl(ji,jj) = ( sustar(ji,jj) * sustar(ji,jj) * sustke(ji,jj) )**pthird
         sla(ji,jj)    = MAX( MIN( SQRT( sustar(ji,jj) / ( swstrl(ji,jj) + epsln ) )**3, 4.0_wp ), 0.2_wp )
         IF ( sla(ji,jj) > 0.45_wp ) dstokes(ji,jj) = MIN( dstokes(ji,jj), 0.5_wp * hbl(ji,jj) )
         ! Velocity scale that tends to sustar for large Langmuir numbers
         svstr(ji,jj)  = ( swstrl(ji,jj)**3 + ( 1.0_wp - EXP( -0.5_wp * sla(ji,jj)**2 ) ) * sustar(ji,jj) * sustar(ji,jj) *   &
            &                                 sustar(ji,jj) )**pthird
         !
         ! Limit maximum value of Langmuir number as approximate treatment for shear turbulence
         ! Note sustke and swstrl are not amended
         !
         ! Get convective velocity (swstrc), stabilty scale (shol) and logical conection flag l_conv
         IF ( swbav(ji,jj) > 0.0_wp ) THEN
            swstrc(ji,jj) = ( 2.0_wp * swbav(ji,jj) * 0.9_wp * hbl(ji,jj) )**pthird
            shol(ji,jj)   = -0.9_wp * hbl(ji,jj) * 2.0_wp * swbav(ji,jj) / ( svstr(ji,jj)**3 + epsln )
         ELSE
            swstrc(ji,jj) = 0.0_wp
            shol(ji,jj)   = -1.0_wp * hbl(ji,jj) * 2.0_wp * swbav(ji,jj) / ( svstr(ji,jj)**3  + epsln )
         ENDIF
      END_2D
      !
      !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
      ! Mixed-layer model - calculate averages over the boundary layer, and the change in the boundary layer depth
      !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
      ! BL must be always 4 levels deep.
      ! For calculation of lateral buoyancy gradients for FK in
      ! zdf_osm_zmld_horizontal_gradients need halo values for nbld
      !
      ! agn 23/6/20: not clear all this is needed, as hbl checked after it is re-calculated anyway
      ! ##########################################################################
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         hbl(ji,jj) = MAX(hbl(ji,jj), gdepw(ji,jj,4,Kmm) )
      END_2D
      DO_2D_OVR( nn_hls, nn_hls, nn_hls, nn_hls )
         nbld(ji,jj) = 4
      END_2D
      DO_3D_OVR( nn_hls, nn_hls, nn_hls, nn_hls, 5, jpkm1 )
         IF ( MAX( hbl(ji,jj), gdepw(ji,jj,4,Kmm) ) >= gdepw(ji,jj,jk,Kmm) ) THEN
            nbld(ji,jj) = MIN(mbkt(ji,jj)-2, jk)
         ENDIF
      END_3D
      ! ##########################################################################
      !
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         zhbl(ji,jj) = gdepw(ji,jj,nbld(ji,jj),Kmm)
         nmld(ji,jj) = MAX( 3, nbld(ji,jj) - MAX( INT( dh(ji,jj) / e3t(ji,jj,nbld(ji,jj)-1,Kmm) ), 1 ) )
         zhml(ji,jj) = gdepw(ji,jj,nmld(ji,jj),Kmm)
         zdh(ji,jj) = zhbl(ji,jj) - zhml(ji,jj)
      END_2D
      !
      ! Averages over well-mixed and boundary layer, note BL averages use jk_ext=2 everywhere
      jk_nlev(:,:) = nbld(A2D(nn_hls-1))
      jk_ext(:,:) = 1   ! ag 19/03
      CALL zdf_osm_vertical_average( Kbb,      Kmm,      jk_nlev,  av_t_bl,  av_s_bl,    &
         &                           av_b_bl,  av_u_bl,  av_v_bl,  jk_ext,   av_dt_bl,   &
         &                           av_ds_bl, av_db_bl, av_du_bl, av_dv_bl )
      jk_nlev(:,:) = nmld(A2D(nn_hls-1)) - 1
      jk_ext(:,:) = nbld(A2D(nn_hls-1)) - nmld(A2D(nn_hls-1)) + jk_ext(:,:) + 1   ! ag 19/03
      CALL zdf_osm_vertical_average( Kbb,      Kmm,      jk_nlev,  av_t_ml,  av_s_ml,    &
         &                           av_b_ml,  av_u_ml,  av_v_ml,  jk_ext,   av_dt_ml,   &
         &                           av_ds_ml, av_db_ml, av_du_ml, av_dv_ml )
      ! Velocity components in frame aligned with surface stress
      CALL zdf_osm_velocity_rotation( av_u_ml,  av_v_ml  )
      CALL zdf_osm_velocity_rotation( av_du_ml, av_dv_ml )
      CALL zdf_osm_velocity_rotation( av_u_bl,  av_v_bl  )
      CALL zdf_osm_velocity_rotation( av_du_bl, av_dv_bl )
      !
      ! Determine the state of the OSBL, stable/unstable, shear/no shear
      CALL zdf_osm_osbl_state( Kmm, zwb_ent, zwb_min, zshear, zhbl,     &
         &                     zhml, zdh )
      !
      IF ( ln_osm_mle ) THEN
         ! Fox-Kemper Scheme
         DO_2D_OVR( nn_hls, nn_hls, nn_hls, nn_hls )
            mld_prof(ji,jj) = 4
         END_2D
         DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 5, jpkm1 )
            IF ( hmle(ji,jj) >= gdepw(ji,jj,jk,Kmm) ) mld_prof(ji,jj) = MIN( mbkt(ji,jj), jk)
         END_3D
         jk_nlev(:,:) = mld_prof(A2D(nn_hls-1))
         CALL zdf_osm_vertical_average( Kbb,      Kmm,      jk_nlev,  av_t_mle, av_s_mle,   &
            &                           av_b_mle, av_u_mle, av_v_mle )
         !
         DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
            zhmle(ji,jj) = gdepw(ji,jj,mld_prof(ji,jj),Kmm)
         END_2D
         !
         ! Calculate fairly-well-mixed depth zmld & its index mld_prof + lateral zmld-averaged gradients
         CALL zdf_osm_zmld_horizontal_gradients( Kmm, zmld, zdtdx, zdtdy, zdsdx,   &
            &                                    zdsdy, zdbds_mle )
         ! Calculate max vertical FK flux zwb_fk & set logical descriptors
         CALL zdf_osm_osbl_state_fk( Kmm, zwb_fk, zhbl, zhmle, zwb_ent,   &
            &                        zdbds_mle )
         ! Recalculate hmle, zmle, zvel_mle, zdiff_mle & redefine mld_proc to be index for new hmle
         CALL zdf_osm_mle_parameters( Kmm, zmld, zhmle, zvel_mle, zdiff_mle,   &
            &                         zdbds_mle, zhbl, zwb0tot )
      ELSE    ! ln_osm_mle
         ! FK not selected, Boundary Layer only.
         DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
            l_pyc(ji,jj)  = .TRUE.
            l_flux(ji,jj) = .FALSE.
            l_mle(ji,jj)  = .FALSE.
            IF ( l_conv(ji,jj) .AND. av_db_bl(ji,jj) < rn_osm_bl_thresh ) l_pyc(ji,jj) = .FALSE.
         END_2D
      ENDIF   ! ln_osm_mle
      !
      !! External gradient below BL needed both with and w/o FK
      jk_ext(:,:) = nbld(A2D(nn_hls-1)) + 1
      CALL zdf_osm_external_gradients( Kmm, jk_ext, zdtdz_bl_ext, zdsdz_bl_ext, zdbdz_bl_ext )   ! ag 19/03
      !
      ! Test if pycnocline well resolved
      !      DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )                                         Removed with ag 19/03 changes. A change in eddy diffusivity/viscosity
      !         IF (l_conv(ji,jj) ) THEN                                  should account for this.
      !            ztmp = 0.2 * zhbl(ji,jj) / e3w(ji,jj,nbld(ji,jj),Kmm)
      !            IF ( ztmp > 6 ) THEN
      !               ! pycnocline well resolved
      !               jk_ext(ji,jj) = 1
      !            ELSE
      !               ! pycnocline poorly resolved
      !               jk_ext(ji,jj) = 0
      !            ENDIF
      !         ELSE
      !            ! Stable conditions
      !            jk_ext(ji,jj) = 0
      !         ENDIF
      !      END_2D
      !
      ! Recalculate bl averages using jk_ext & ml averages .... note no rotation of u & v here..
      jk_nlev(:,:) = nbld(A2D(nn_hls-1))
      jk_ext(:,:) = 1   ! ag 19/03
      CALL zdf_osm_vertical_average( Kbb,      Kmm,      jk_nlev,  av_t_bl,  av_s_bl,    &
         &                           av_b_bl,  av_u_bl,  av_v_bl,  jk_ext,   av_dt_bl,   &
         &                           av_ds_bl, av_db_bl, av_du_bl, av_dv_bl )
      jk_nlev(:,:) = nmld(A2D(nn_hls-1)) - 1
      jk_ext(:,:) = nbld(A2D(nn_hls-1)) - nmld(A2D(nn_hls-1)) + jk_ext(:,:) + 1   ! ag 19/03
      CALL zdf_osm_vertical_average( Kbb,      Kmm,      jk_nlev,  av_t_ml,  av_s_ml,    &
         &                           av_b_ml,  av_u_ml,  av_v_ml,  jk_ext,   av_dt_ml,   &
         &                           av_ds_ml, av_db_ml, av_du_ml, av_dv_ml )   ! ag 19/03
      !
      ! Rate of change of hbl
      CALL zdf_osm_calculate_dhdt( zdhdt, zhbl, zdh, zwb_ent, zwb_min,   &
         &                         zdbdz_bl_ext, zwb_fk_b, zwb_fk, zvel_mle )
      ! Test if surface boundary layer coupled to bottom
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         l_coup(ji,jj) = .FALSE.   ! ag 19/03
         zhbl_t(ji,jj) = hbl(ji,jj) + ( zdhdt(ji,jj) - ww(ji,jj,nbld(ji,jj)) ) * rn_Dt   ! Certainly need ww here, so subtract it
         ! Adjustment to represent limiting by ocean bottom
         IF ( mbkt(ji,jj) > 2 ) THEN   ! To ensure mbkt(ji,jj) - 2 > 0 so no incorrect array access
            IF ( zhbl_t(ji,jj) > gdepw(ji, jj,mbkt(ji,jj)-2,Kmm) ) THEN
               zhbl_t(ji,jj) = MIN( zhbl_t(ji,jj), gdepw(ji,jj,mbkt(ji,jj)-2,Kmm) )   ! ht(:,:))
               l_pyc(ji,jj)  = .FALSE.
               l_coup(ji,jj) = .TRUE.   ! ag 19/03
            END IF
         END IF
      END_2D
      !
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         nmld(ji,jj) = nbld(ji,jj)           ! use nmld to hold previous blayer index
         nbld(ji,jj) = 4
      END_2D
      !
      DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 4, jpkm1 )
         IF ( zhbl_t(ji,jj) >= gdepw(ji,jj,jk,Kmm) ) THEN
            nbld(ji,jj) = jk
         END IF
      END_3D
      !
      !
      ! Step through model levels taking account of buoyancy change to determine the effect on dhdt
      !
      CALL zdf_osm_timestep_hbl( Kmm, zdhdt, zhbl, zhbl_t, zwb_ent,   &
         &                       zwb_fk_b )
      ! Is external level in bounds?
      !
      ! Recalculate BL averages and differences using new BL depth
      jk_nlev(:,:) = nbld(A2D(nn_hls-1))
      jk_ext(:,:) = 1   ! ag 19/03
      CALL zdf_osm_vertical_average( Kbb,      Kmm,      jk_nlev,  av_t_bl,  av_s_bl,    &
         &                           av_b_bl,  av_u_bl,  av_v_bl,  jk_ext,   av_dt_bl,   &
         &                           av_ds_bl, av_db_bl, av_du_bl, av_dv_bl )
      !
      CALL zdf_osm_pycnocline_thickness( Kmm, zdh, zhml, zdhdt, zhbl,   &
         &                               zwb_ent, zdbdz_bl_ext, zwb_fk_b )
      !
      ! Reset l_pyc before calculating terms in the flux-gradient relationship
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         IF ( av_db_bl(ji,jj) < rn_osm_bl_thresh .OR. nbld(ji,jj) >= mbkt(ji,jj) - 2 .OR.   &
            & nbld(ji,jj) - nmld(ji,jj) == 1   .OR. zdhdt(ji,jj) < 0.0_wp ) THEN   ! ag 19/03
            l_pyc(ji,jj) = .FALSE.   ! ag 19/03
            IF ( nbld(ji,jj) >= mbkt(ji,jj) -2 ) THEN
               nmld(ji,jj) = nbld(ji,jj) - 1                                               ! ag 19/03
               zdh(ji,jj)  = gdepw(ji,jj,nbld(ji,jj),Kmm) - gdepw(ji,jj,nmld(ji,jj),Kmm)   ! ag 19/03
               zhml(ji,jj) = gdepw(ji,jj,nmld(ji,jj),Kmm)                                  ! ag 19/03
               dh(ji,jj)   = zdh(ji,jj)                                                    ! ag 19/03  
               hml(ji,jj)  = hbl(ji,jj) - dh(ji,jj)                                        ! ag 19/03
            ENDIF
         ENDIF                                              ! ag 19/03
      END_2D
      !
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )               ! Limit delta for shallow boundary layers for calculating
         dstokes(ji,jj) = MIN ( dstokes(ji,jj), hbl(ji,jj) / 3.0_wp )   !    flux-gradient terms
      END_2D
      !                                                       
      !
      ! Average over the depth of the mixed layer in the convective boundary layer
      !      jk_ext = nbld - nmld + 1
      ! Recalculate ML averages and differences using new ML depth
      jk_nlev(:,:) = nmld(A2D(nn_hls-1)) - 1
      jk_ext(:,:) = nbld(A2D(nn_hls-1)) - nmld(A2D(nn_hls-1)) + jk_ext(:,:) + 1   ! ag 19/03
      CALL zdf_osm_vertical_average( Kbb,      Kmm,      jk_nlev,  av_t_ml,  av_s_ml,    &
         &                           av_b_ml,  av_u_ml,  av_v_ml,  jk_ext,   av_dt_ml,   &
         &                           av_ds_ml, av_db_ml, av_du_ml, av_dv_ml )
      !
      jk_ext(:,:) = nbld(A2D(nn_hls-1)) + 1
      CALL zdf_osm_external_gradients( Kmm, jk_ext, zdtdz_bl_ext, zdsdz_bl_ext, zdbdz_bl_ext )
      ! Rotate mean currents and changes onto wind aligned co-ordinates
      CALL zdf_osm_velocity_rotation( av_u_ml,  av_v_ml  )
      CALL zdf_osm_velocity_rotation( av_du_ml, av_dv_ml )
      CALL zdf_osm_velocity_rotation( av_u_bl,  av_v_bl  )
      CALL zdf_osm_velocity_rotation( av_du_bl, av_dv_bl )
      !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
      ! Eddy viscosity/diffusivity and non-gradient terms in the flux-gradient relationship
      !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
      CALL zdf_osm_diffusivity_viscosity( Kbb, Kmm, zdiffut, zviscos, zhbl,    &
         &                                zhml, zdh, zdhdt, zshear, zwb_ent,   &
         &                                zwb_min )
      !
      ! Calculate non-gradient components of the flux-gradient relationships
      ! --------------------------------------------------------------------
      jk_ext(:,:) = 1   ! ag 19/03
      CALL zdf_osm_fgr_terms( Kmm, jk_ext, zhbl, zhml, zdh,                              &
         &                    zdhdt, zshear, zdtdz_bl_ext, zdsdz_bl_ext, zdbdz_bl_ext,   &
         &                    zdiffut, zviscos )
      !
      !>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
      ! Need to put in code for contributions that are applied explicitly to
      ! the prognostic variables
      !  1. Entrainment flux
      !<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
      !
      ! Rotate non-gradient velocity terms back to model reference frame
      jk_nlev(:,:) = nbld(A2D(nn_hls-1))
      CALL zdf_osm_velocity_rotation( ghamu, ghamv, .FALSE.,  2, jk_nlev )
      !
      ! KPP-style Ri# mixing
      IF ( ln_kpprimix ) THEN
         jkflt = jpk
         DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
            IF ( nbld(ji,jj) < jkflt ) jkflt = nbld(ji,jj)
         END_2D
         DO jk = jkflt+1, jpkm1
            ! Shear production at uw- and vw-points (energy conserving form)
            DO_2D( nn_hls, nn_hls-1, nn_hls, nn_hls-1 )
               z2du(ji,jj) = 0.5_wp * ( uu(ji,jj,jk-1,Kmm) - uu(ji,jj,jk,Kmm) ) * ( uu(ji,jj,jk-1,Kbb) - uu(ji,jj,jk,Kbb) ) *   &
                  &          wumask(ji,jj,jk) / ( e3uw(ji,jj,jk,Kmm) * e3uw(ji,jj,jk,Kbb) )
               z2dv(ji,jj) = 0.5_wp * ( vv(ji,jj,jk-1,Kmm) - vv(ji,jj,jk,Kmm) ) * ( vv(ji,jj,jk-1,Kbb) - vv(ji,jj,jk,Kbb) ) *   &
                  &          wvmask(ji,jj,jk) / ( e3vw(ji,jj,jk,Kmm) * e3vw(ji,jj,jk,Kbb) )
            END_2D
            DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
               IF ( jk > nbld(ji,jj) ) THEN
                  ! Shear prod. at w-point weightened by mask
                  zesh2 = ( z2du(ji-1,jj) + z2du(ji,jj) ) / MAX( 1.0_wp , umask(ji-1,jj,jk) + umask(ji,jj,jk) ) +   &
                     &    ( z2dv(ji,jj-1) + z2dv(ji,jj) ) / MAX( 1.0_wp , vmask(ji,jj-1,jk) + vmask(ji,jj,jk) )
                  ! Local Richardson number
                  zri     = MAX( rn2b(ji,jj,jk), 0.0_wp ) / MAX( zesh2, epsln )
                  zfri    = MIN( zri / rn_riinfty, 1.0_wp )
                  zfri    = ( 1.0_wp - zfri * zfri )
                  zrimix  =  zfri * zfri  * zfri * wmask(ji, jj, jk)
                  zdiffut(ji,jj,jk) = MAX( zdiffut(ji,jj,jk), zrimix*rn_difri )
                  zviscos(ji,jj,jk) = MAX( zviscos(ji,jj,jk), zrimix*rn_difri )
               END IF
            END_2D
         END DO
      END IF   ! ln_kpprimix = .true.
      !
      ! KPP-style set diffusivity large if unstable below BL
      IF ( ln_convmix) THEN
         DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
            DO jk = nbld(ji,jj) + 1, jpkm1
               IF ( MIN( rn2(ji,jj,jk), rn2b(ji,jj,jk) ) <= -1e-12_wp ) zdiffut(ji,jj,jk) = MAX( rn_difconv, zdiffut(ji,jj,jk) )
            END DO
         END_2D
      END IF   ! ln_convmix = .true.
      !
      IF ( ln_osm_mle ) THEN   ! Set up diffusivity and non-gradient mixing
         DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
            IF ( l_flux(ji,jj) ) THEN   ! MLE mixing extends below boundary layer
               ! Calculate MLE flux contribution from surface fluxes
               DO jk = 1, nbld(ji,jj)
                  znd = gdepw(ji,jj,jk,Kmm) / MAX( zhbl(ji,jj), epsln )
                  ghamt(ji,jj,jk) = ghamt(ji,jj,jk) - ( swth0(ji,jj) - zrad0(ji,jj) + zradh(ji,jj) ) * ( 1.0_wp - znd )
                  ghams(ji,jj,jk) = ghams(ji,jj,jk) - sws0(ji,jj) * ( 1.0_wp - znd )
               END DO
               DO jk = 1, mld_prof(ji,jj)
                  znd = gdepw(ji,jj,jk,Kmm) / MAX( zhmle(ji,jj), epsln )
                  ghamt(ji,jj,jk) = ghamt(ji,jj,jk) + ( swth0(ji,jj) - zrad0(ji,jj) + zradh(ji,jj) ) * ( 1.0_wp - znd )
                  ghams(ji,jj,jk) = ghams(ji,jj,jk) + sws0(ji,jj) * ( 1.0_wp -znd )
               END DO
               ! Viscosity for MLEs
               DO jk = 1, mld_prof(ji,jj)
                  znd = -1.0_wp * gdepw(ji,jj,jk,Kmm) / MAX( zhmle(ji,jj), epsln )
                  zdiffut(ji,jj,jk) = zdiffut(ji,jj,jk) + zdiff_mle(ji,jj) * ( 1.0_wp - ( 2.0_wp * znd + 1.0_wp )**2 ) *   &
                     &                                    ( 1.0_wp + 5.0_wp / 21.0_wp * ( 2.0_wp * znd + 1.0_wp )**2 )
               END DO
            ELSE   ! Surface transports limited to OSBL
               ! Viscosity for MLEs
               DO jk = 1, mld_prof(ji,jj)
                  znd = -1.0_wp * gdepw(ji,jj,jk,Kmm) / MAX( zhmle(ji,jj), epsln )
                  zdiffut(ji,jj,jk) = zdiffut(ji,jj,jk) + zdiff_mle(ji,jj) * ( 1.0_wp - ( 2.0_wp * znd + 1.0_wp )**2 ) *   &
                     &                                    ( 1.0_wp + 5.0_wp / 21.0_wp * ( 2.0_wp * znd + 1.0_wp )**2 )
               END DO
            END IF
         END_2D
      ENDIF
      !
      ! Lateral boundary conditions on zvicos (sign unchanged), needed to caclulate viscosities on u and v grids
      ! CALL lbc_lnk( 'zdfosm', zviscos(:,:,:), 'W', 1.0_wp )
      ! GN 25/8: need to change tmask --> wmask
      DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, jpkm1 )
         p_avt(ji,jj,jk) = MAX( zdiffut(ji,jj,jk), avtb(jk) ) * tmask(ji,jj,jk)
         p_avm(ji,jj,jk) = MAX( zviscos(ji,jj,jk), avmb(jk) ) * tmask(ji,jj,jk)
      END_3D
      !
      IF ( ln_dia_osm ) THEN
         SELECT CASE (nn_osm_wave)
            ! Stokes drift set by assumimg onstant La#=0.3 (=0) or Pierson-Moskovitz spectrum (=1)
         CASE(0:1)
            CALL zdf_osm_iomput( "us_x", tmask(A2D(0),1) * sustke(A2D(0)) * scos_wind(A2D(0)) )   ! x surface Stokes drift
            CALL zdf_osm_iomput( "us_y", tmask(A2D(0),1) * sustke(A2D(0)) * ssin_wind(A2D(0)) )   ! y surface Stokes drift
Guillaume Samson's avatar
Guillaume Samson committed
            CALL zdf_osm_iomput( "wind_wave_abs_power", 1000.0_wp * rho0 * tmask(A2D(0),1) * sustar(A2D(0))**2 * sustke(A2D(0)) )
            ! Stokes drift read in from sbcwave  (=2).
         CASE(2:3)
            CALL zdf_osm_iomput( "us_x",   ut0sd(A2D(0)) * umask(A2D(0),1) )                         ! x surface Stokes drift
            CALL zdf_osm_iomput( "us_y",   vt0sd(A2D(0)) * vmask(A2D(0),1) )                         ! y surface Stokes drift
            CALL zdf_osm_iomput( "wmp",    wmp(A2D(0)) * tmask(A2D(0),1) )                           ! Wave mean period
            CALL zdf_osm_iomput( "hsw",    hsw(A2D(0)) * tmask(A2D(0),1) )                           ! Significant wave height
            CALL zdf_osm_iomput( "wmp_NP", ( 2.0_wp * rpi * 1.026_wp / ( 0.877_wp * grav ) ) *   &   ! Wave mean period from NP
               &                           wndm(A2D(0)) * tmask(A2D(0),1) )                          !    spectrum
            CALL zdf_osm_iomput( "hsw_NP", ( 0.22_wp / grav ) * wndm(A2D(0))**2 * tmask(A2D(0),1) )  ! Significant wave height from
            !                                                                                        !    NP spectrum
            CALL zdf_osm_iomput( "wndm",   wndm(A2D(0)) * tmask(A2D(0),1) )                          ! U_10
            CALL zdf_osm_iomput( "wind_wave_abs_power", 1000.0_wp * rho0 * tmask(A2D(0),1) * sustar(A2D(0))**2 *   &
               &                                        SQRT( ut0sd(A2D(0))**2 + vt0sd(A2D(0))**2 ) )
         END SELECT
         CALL zdf_osm_iomput( "zwth0",           tmask(A2D(0),1) * swth0(A2D(0))     )      ! <Tw_0>
         CALL zdf_osm_iomput( "zws0",            tmask(A2D(0),1) * sws0(A2D(0))      )      ! <Sw_0>
         CALL zdf_osm_iomput( "zwb0",            tmask(A2D(0),1) * swb0(A2D(0))      )      ! <bw_0>
         CALL zdf_osm_iomput( "zwbav",           tmask(A2D(0),1) * swbav(A2D(0))     )      ! Upward BL-avged turb buoyancy flux
Guillaume Samson's avatar
Guillaume Samson committed
         CALL zdf_osm_iomput( "ibld",            tmask(A2D(0),1) * nbld(A2D(0))      )      ! Boundary-layer max k
         CALL zdf_osm_iomput( "zdt_bl",          tmask(A2D(0),1) * av_dt_bl(A2D(0))  )      ! dt at ml base
         CALL zdf_osm_iomput( "zds_bl",          tmask(A2D(0),1) * av_ds_bl(A2D(0))  )      ! ds at ml base
         CALL zdf_osm_iomput( "zdb_bl",          tmask(A2D(0),1) * av_db_bl(A2D(0))  )      ! db at ml base
         CALL zdf_osm_iomput( "zdu_bl",          tmask(A2D(0),1) * av_du_bl(A2D(0))  )      ! du at ml base
         CALL zdf_osm_iomput( "zdv_bl",          tmask(A2D(0),1) * av_dv_bl(A2D(0))  )      ! dv at ml base
         CALL zdf_osm_iomput( "dh",              tmask(A2D(0),1) * dh(A2D(0))        )      ! Initial boundary-layer depth
         CALL zdf_osm_iomput( "hml",             tmask(A2D(0),1) * hml(A2D(0))       )      ! Initial boundary-layer depth
         CALL zdf_osm_iomput( "zdt_ml",          tmask(A2D(0),1) * av_dt_ml(A2D(0))  )      ! dt at ml base
         CALL zdf_osm_iomput( "zds_ml",          tmask(A2D(0),1) * av_ds_ml(A2D(0))  )      ! ds at ml base
         CALL zdf_osm_iomput( "zdb_ml",          tmask(A2D(0),1) * av_db_ml(A2D(0))  )      ! db at ml base
         CALL zdf_osm_iomput( "dstokes",         tmask(A2D(0),1) * dstokes(A2D(0))   )      ! Stokes drift penetration depth
         CALL zdf_osm_iomput( "zustke",          tmask(A2D(0),1) * sustke(A2D(0))    )      ! Stokes drift magnitude at T-points
         CALL zdf_osm_iomput( "zwstrc",          tmask(A2D(0),1) * swstrc(A2D(0))    )      ! Convective velocity scale
         CALL zdf_osm_iomput( "zwstrl",          tmask(A2D(0),1) * swstrl(A2D(0))    )      ! Langmuir velocity scale
         CALL zdf_osm_iomput( "zustar",          tmask(A2D(0),1) * sustar(A2D(0))    )      ! Friction velocity scale
         CALL zdf_osm_iomput( "zvstr",           tmask(A2D(0),1) * svstr(A2D(0))     )      ! Mixed velocity scale
         CALL zdf_osm_iomput( "zla",             tmask(A2D(0),1) * sla(A2D(0))       )      ! Langmuir #
         CALL zdf_osm_iomput( "wind_power",      1000.0_wp * rho0 * tmask(A2D(0),1) *   &   ! BL depth internal to zdf_osm routine
            &                                    sustar(A2D(0))**3 )
         CALL zdf_osm_iomput( "wind_wave_power", 1000.0_wp * rho0 * tmask(A2D(0),1) *   &
            &                                    sustar(A2D(0))**2 * sustke(A2D(0))  )
         CALL zdf_osm_iomput( "zhbl",            tmask(A2D(0),1) * zhbl(A2D(0))      )      ! BL depth internal to zdf_osm routine
         CALL zdf_osm_iomput( "zhml",            tmask(A2D(0),1) * zhml(A2D(0))      )      ! ML depth internal to zdf_osm routine
         CALL zdf_osm_iomput( "imld",            tmask(A2D(0),1) * nmld(A2D(0))      )      ! Index for ML depth internal to zdf_osm
         !                                                                                  !    routine
         CALL zdf_osm_iomput( "jp_ext",          tmask(A2D(0),1) * jk_ext(A2D(0))    )      ! =1 if pycnocline resolved internal to
         !                                                                                  !    zdf_osm routine
         CALL zdf_osm_iomput( "j_ddh",           tmask(A2D(0),1) * n_ddh(A2D(0))     )      ! Index forpyc thicknessh internal to
         !                                                                                  !    zdf_osm routine
         CALL zdf_osm_iomput( "zshear",          tmask(A2D(0),1) * zshear(A2D(0))    )      ! Shear production of TKE internal to
         !                                                                                  !    zdf_osm routine
         CALL zdf_osm_iomput( "zdh",             tmask(A2D(0),1) * zdh(A2D(0))       )      ! Pyc thicknessh internal to zdf_osm
         !                                                                                  !    routine
         CALL zdf_osm_iomput( "zhol",            tmask(A2D(0),1) * shol(A2D(0))      )      ! ML depth internal to zdf_osm routine
         CALL zdf_osm_iomput( "zwb_ent",         tmask(A2D(0),1) * zwb_ent(A2D(0))   )      ! Upward turb buoyancy entrainment flux
         CALL zdf_osm_iomput( "zt_ml",           tmask(A2D(0),1) * av_t_ml(A2D(0))   )      ! Average T in ML
         CALL zdf_osm_iomput( "zmld",            tmask(A2D(0),1) * zmld(A2D(0))      )      ! FK target layer depth
         CALL zdf_osm_iomput( "zwb_fk",          tmask(A2D(0),1) * zwb_fk(A2D(0))    )      ! FK b flux
         CALL zdf_osm_iomput( "zwb_fk_b",        tmask(A2D(0),1) * zwb_fk_b(A2D(0))  )      ! FK b flux averaged over ML
         CALL zdf_osm_iomput( "mld_prof",        tmask(A2D(0),1) * mld_prof(A2D(0))  )      ! FK layer max k
         CALL zdf_osm_iomput( "zdtdx",           umask(A2D(0),1) * zdtdx(A2D(0))     )      ! FK dtdx at u-pt
         CALL zdf_osm_iomput( "zdtdy",           vmask(A2D(0),1) * zdtdy(A2D(0))     )      ! FK dtdy at v-pt
         CALL zdf_osm_iomput( "zdsdx",           umask(A2D(0),1) * zdsdx(A2D(0))     )      ! FK dtdx at u-pt
         CALL zdf_osm_iomput( "zdsdy",           vmask(A2D(0),1) * zdsdy(A2D(0))     )      ! FK dsdy at v-pt
         CALL zdf_osm_iomput( "dbdx_mle",        umask(A2D(0),1) * dbdx_mle(A2D(0))  )      ! FK dbdx at u-pt
         CALL zdf_osm_iomput( "dbdy_mle",        vmask(A2D(0),1) * dbdy_mle(A2D(0))  )      ! FK dbdy at v-pt
         CALL zdf_osm_iomput( "zdiff_mle",       tmask(A2D(0),1) * zdiff_mle(A2D(0)) )      ! FK diff in MLE at t-pt
         CALL zdf_osm_iomput( "zvel_mle",        tmask(A2D(0),1) * zvel_mle(A2D(0)) )       ! FK velocity in MLE at t-pt
Guillaume Samson's avatar
Guillaume Samson committed
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
      END IF
      !
      ! Lateral boundary conditions on ghamu and ghamv, currently on W-grid (sign unchanged), needed to caclulate gham[uv] on u and
      !    v grids
      IF ( .NOT. l_istiled .OR. ntile == nijtile ) THEN   ! Finalise ghamu, ghamv, hbl, and hmle only after full domain has been
         !                                                !    processed
         IF ( nn_hls == 1 ) CALL lbc_lnk( 'zdfosm', ghamu, 'W', 1.0_wp,   &
            &                                       ghamv, 'W', 1.0_wp )
         DO jk = 2, jpkm1
            DO jj = Njs0, Nje0
               DO ji = Nis0, Nie0
                  ghamu(ji,jj,jk) = ( ghamu(ji,jj,jk) + ghamu(ji+1,jj,jk) ) /   &
                     &              MAX( 1.0_wp, tmask(ji,jj,jk) + tmask (ji+1,jj,jk) ) * umask(ji,jj,jk)
                  ghamv(ji,jj,jk) = ( ghamv(ji,jj,jk) + ghamv(ji,jj+1,jk) ) /   &
                     &              MAX( 1.0_wp, tmask(ji,jj,jk) + tmask (ji,jj+1,jk) ) * vmask(ji,jj,jk)
                  ghamt(ji,jj,jk) = ghamt(ji,jj,jk) * tmask(ji,jj,jk)
                  ghams(ji,jj,jk) = ghams(ji,jj,jk) * tmask(ji,jj,jk)
               END DO
            END DO
         END DO
         ! Lateral boundary conditions on final outputs for hbl, on T-grid (sign unchanged)
         CALL lbc_lnk( 'zdfosm', hbl,  'T', 1.0_wp,   &
            &                    hmle, 'T', 1.0_wp )
         !
         CALL zdf_osm_iomput( "ghamt", tmask * ghamt       )   ! <Tw_NL>
         CALL zdf_osm_iomput( "ghams", tmask * ghams       )   ! <Sw_NL>
         CALL zdf_osm_iomput( "ghamu", umask * ghamu       )   ! <uw_NL>
         CALL zdf_osm_iomput( "ghamv", vmask * ghamv       )   ! <vw_NL>
         CALL zdf_osm_iomput( "hbl",   tmask(:,:,1) * hbl  )   ! Boundary-layer depth
         CALL zdf_osm_iomput( "hmle",  tmask(:,:,1) * hmle )   ! FK layer depth
      END IF
      !
   END SUBROUTINE zdf_osm

   SUBROUTINE zdf_osm_vertical_average( Kbb, Kmm, knlev, pt, ps,   &
      &                                 pb, pu, pv, kp_ext, pdt,   &
      &                                 pds, pdb, pdu, pdv )
      !!---------------------------------------------------------------------
      !!                ***  ROUTINE zdf_vertical_average  ***
      !!
      !! ** Purpose : Determines vertical averages from surface to knlev,
      !!              and optionally the differences between these vertical
      !!              averages and values at an external level
      !!
      !! ** Method  : Averages are calculated from the surface to knlev.
      !!              The external level used to calculate differences is
      !!              knlev+kp_ext
      !!----------------------------------------------------------------------
      INTEGER,                            INTENT(in   )           ::   Kbb, Kmm   ! Ocean time-level indices
      INTEGER,  DIMENSION(A2D(nn_hls-1)), INTENT(in   )           ::   knlev      ! Number of levels to average over.
      REAL(wp), DIMENSION(jpi,jpj),       INTENT(  out)           ::   pt, ps     ! Average temperature and salinity
      REAL(wp), DIMENSION(jpi,jpj),       INTENT(  out)           ::   pb         ! Average buoyancy
      REAL(wp), DIMENSION(jpi,jpj),       INTENT(  out)           ::   pu, pv     ! Average current components
      INTEGER,  DIMENSION(A2D(nn_hls-1)), INTENT(in   ), OPTIONAL ::   kp_ext     ! External-level offsets
      REAL(wp), DIMENSION(jpi,jpj),       INTENT(  out), OPTIONAL ::   pdt        ! Difference between average temperature,
      REAL(wp), DIMENSION(jpi,jpj),       INTENT(  out), OPTIONAL ::   pds        !    salinity,
      REAL(wp), DIMENSION(jpi,jpj),       INTENT(  out), OPTIONAL ::   pdb        !    buoyancy, and
      REAL(wp), DIMENSION(jpi,jpj),       INTENT(  out), OPTIONAL ::   pdu, pdv   !    velocity components and the OSBL
      !!
      INTEGER                              ::   jk, jkflt, jkmax, ji, jj   ! Loop indices
      INTEGER                              ::   ibld_ext                   ! External-layer index
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   zthick                     ! Layer thickness
      REAL(wp)                             ::   zthermal                   ! Thermal expansion coefficient
      REAL(wp)                             ::   zbeta                      ! Haline contraction coefficient
      !!----------------------------------------------------------------------
      !
      ! Averages over depth of boundary layer
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         pt(ji,jj) = 0.0_wp
         ps(ji,jj) = 0.0_wp
         pu(ji,jj) = 0.0_wp
         pv(ji,jj) = 0.0_wp
      END_2D
      zthick(:,:) = epsln
      jkflt = jpk
      jkmax = 0
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         IF ( knlev(ji,jj) < jkflt ) jkflt = knlev(ji,jj)
         IF ( knlev(ji,jj) > jkmax ) jkmax = knlev(ji,jj)
      END_2D
      DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, jkflt )   ! Upper, flat part of layer
         zthick(ji,jj) = zthick(ji,jj) + e3t(ji,jj,jk,Kmm)
         pt(ji,jj)     = pt(ji,jj)     + e3t(ji,jj,jk,Kmm) * ts(ji,jj,jk,jp_tem,Kmm)
         ps(ji,jj)     = ps(ji,jj)     + e3t(ji,jj,jk,Kmm) * ts(ji,jj,jk,jp_sal,Kmm)
         pu(ji,jj)     = pu(ji,jj)     + e3t(ji,jj,jk,Kmm) *                                        &
            &                               ( uu(ji,jj,jk,Kbb) + uu(ji - 1,jj,jk,Kbb) ) /           &
            &                               MAX( 1.0_wp , umask(ji,jj,jk) + umask(ji - 1,jj,jk) )
         pv(ji,jj)     = pv(ji,jj)     + e3t(ji,jj,jk,Kmm) *                                        &
            &                               ( vv(ji,jj,jk,Kbb) + vv(ji,jj - 1,jk,Kbb) ) /           &
            &                               MAX( 1.0_wp , vmask(ji,jj,jk) + vmask(ji,jj - 1,jk) )         
      END_3D
      DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, jkflt+1, jkmax )   ! Lower, non-flat part of layer
         IF ( knlev(ji,jj) >= jk ) THEN
            zthick(ji,jj) = zthick(ji,jj) + e3t(ji,jj,jk,Kmm)
            pt(ji,jj)     = pt(ji,jj)     + e3t(ji,jj,jk,Kmm) * ts(ji,jj,jk,jp_tem,Kmm)
            ps(ji,jj)     = ps(ji,jj)     + e3t(ji,jj,jk,Kmm) * ts(ji,jj,jk,jp_sal,Kmm)
            pu(ji,jj)     = pu(ji,jj)     + e3t(ji,jj,jk,Kmm) *                                        &
               &                               ( uu(ji,jj,jk,Kbb) + uu(ji - 1,jj,jk,Kbb) ) /           &
               &                               MAX( 1.0_wp , umask(ji,jj,jk) + umask(ji - 1,jj,jk) )
            pv(ji,jj)     = pv(ji,jj)     + e3t(ji,jj,jk,Kmm) *                                        &
               &                               ( vv(ji,jj,jk,Kbb) + vv(ji,jj - 1,jk,Kbb) ) /           &
               &                               MAX( 1.0_wp , vmask(ji,jj,jk) + vmask(ji,jj - 1,jk) )
         END IF
      END_3D
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         pt(ji,jj) = pt(ji,jj) / zthick(ji,jj)
         ps(ji,jj) = ps(ji,jj) / zthick(ji,jj)
         pu(ji,jj) = pu(ji,jj) / zthick(ji,jj)
         pv(ji,jj) = pv(ji,jj) / zthick(ji,jj)
         zthermal  = rab_n(ji,jj,1,jp_tem)   ! ideally use nbld not 1??
         zbeta     = rab_n(ji,jj,1,jp_sal)
         pb(ji,jj) = grav * zthermal * pt(ji,jj) - grav * zbeta * ps(ji,jj)
      END_2D
      !
      ! Differences between vertical averages and values at an external layer
      IF ( PRESENT( kp_ext ) ) THEN
         DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
            ibld_ext = knlev(ji,jj) + kp_ext(ji,jj)
            IF ( ibld_ext <= mbkt(ji,jj)-1 ) THEN   ! ag 09/03
               ! Two external levels are available
               pdt(ji,jj) = pt(ji,jj) - ts(ji,jj,ibld_ext,jp_tem,Kmm)
               pds(ji,jj) = ps(ji,jj) - ts(ji,jj,ibld_ext,jp_sal,Kmm)
               pdu(ji,jj) = pu(ji,jj) - ( uu(ji,jj,ibld_ext,Kbb) + uu(ji-1,jj,ibld_ext,Kbb ) ) /              &
                  &                        MAX(1.0_wp , umask(ji,jj,ibld_ext ) + umask(ji-1,jj,ibld_ext ) )
               pdv(ji,jj) = pv(ji,jj) - ( vv(ji,jj,ibld_ext,Kbb) + vv(ji,jj-1,ibld_ext,Kbb ) ) /              &
                  &                        MAX(1.0_wp , vmask(ji,jj,ibld_ext ) + vmask(ji,jj-1,ibld_ext ) )
               zthermal   = rab_n(ji,jj,1,jp_tem)   ! ideally use nbld not 1??
               zbeta      = rab_n(ji,jj,1,jp_sal)
               pdb(ji,jj) = grav * zthermal * pdt(ji,jj) - grav * zbeta * pds(ji,jj)
            ELSE
               pdt(ji,jj) = 0.0_wp
               pds(ji,jj) = 0.0_wp
               pdu(ji,jj) = 0.0_wp
               pdv(ji,jj) = 0.0_wp
               pdb(ji,jj) = 0.0_wp
            ENDIF
         END_2D
      END IF
      !
   END SUBROUTINE zdf_osm_vertical_average

   SUBROUTINE zdf_osm_velocity_rotation_2d( pu, pv, fwd )
      !!---------------------------------------------------------------------
      !!            ***  ROUTINE zdf_velocity_rotation_2d  ***
      !!
      !! ** Purpose : Rotates frame of reference of velocity components pu and
      !!              pv (2d)
      !!
      !! ** Method : The velocity components are rotated into (fwd=.TRUE.) or
      !!             from (fwd=.FALSE.) the frame specified by scos_wind and
      !!             ssin_wind
      !!
      !!----------------------------------------------------------------------      
      REAL(wp),           INTENT(inout), DIMENSION(jpi,jpj) ::   pu, pv   ! Components of current
      LOGICAL,  OPTIONAL, INTENT(in   )                     ::   fwd      ! Forward (default) or reverse rotation
      !!
      INTEGER  ::   ji, jj       ! Loop indices
      REAL(wp) ::   ztmp, zfwd   ! Auxiliary variables
      !!----------------------------------------------------------------------      
      !
      zfwd = 1.0_wp
      IF( PRESENT(fwd) .AND. ( .NOT. fwd ) ) zfwd = -1.0_wp
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         ztmp      = pu(ji,jj)
         pu(ji,jj) = pu(ji,jj) * scos_wind(ji,jj) + zfwd * pv(ji,jj) * ssin_wind(ji,jj)
         pv(ji,jj) = pv(ji,jj) * scos_wind(ji,jj) - zfwd * ztmp      * ssin_wind(ji,jj)
      END_2D
      !
   END SUBROUTINE zdf_osm_velocity_rotation_2d

   SUBROUTINE zdf_osm_velocity_rotation_3d( pu, pv, fwd, ktop, knlev )
      !!---------------------------------------------------------------------
      !!            ***  ROUTINE zdf_velocity_rotation_3d  ***
      !!
      !! ** Purpose : Rotates frame of reference of velocity components pu and
      !!              pv (3d)
      !!
      !! ** Method : The velocity components are rotated into (fwd=.TRUE.) or
      !!             from (fwd=.FALSE.) the frame specified by scos_wind and
      !!             ssin_wind; optionally, the rotation can be restricted at
      !!             each water column to span from the a minimum index ktop to
      !!             the depth index specified in array knlev
      !!
      !!----------------------------------------------------------------------      
      REAL(wp),           INTENT(inout), DIMENSION(jpi,jpj,jpk)   ::   pu, pv   ! Components of current
      LOGICAL,  OPTIONAL, INTENT(in   )                           ::   fwd      ! Forward (default) or reverse rotation
      INTEGER,  OPTIONAL, INTENT(in   )                           ::   ktop     ! Minimum depth index
      INTEGER,  OPTIONAL, INTENT(in   ), DIMENSION(A2D(nn_hls-1)) ::   knlev    ! Array of maximum depth indices
      !!
      INTEGER  ::   ji, jj, jk, jktop, jkmax   ! Loop indices
      REAL(wp) ::   ztmp, zfwd                 ! Auxiliary variables
      LOGICAL  ::   llkbot                     ! Auxiliary variable
      !!----------------------------------------------------------------------      
      !
      zfwd = 1.0_wp
      IF( PRESENT(fwd) .AND. ( .NOT. fwd ) ) zfwd = -1.0_wp
      jktop = 1
      IF( PRESENT(ktop) ) jktop = ktop
      IF( PRESENT(knlev) ) THEN
         jkmax = 0
         DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
            IF ( knlev(ji,jj) > jkmax ) jkmax = knlev(ji,jj)
         END_2D
         llkbot = .FALSE.
      ELSE
         jkmax = jpk
         llkbot = .TRUE.
      END IF
      DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, jktop, jkmax )
         IF ( llkbot .OR. knlev(ji,jj) >= jk ) THEN
            ztmp         = pu(ji,jj,jk)
            pu(ji,jj,jk) = pu(ji,jj,jk) * scos_wind(ji,jj) + zfwd * pv(ji,jj,jk) * ssin_wind(ji,jj)
            pv(ji,jj,jk) = pv(ji,jj,jk) * scos_wind(ji,jj) - zfwd * ztmp         * ssin_wind(ji,jj)
         END IF
      END_3D
      !
   END SUBROUTINE zdf_osm_velocity_rotation_3d

   SUBROUTINE zdf_osm_osbl_state( Kmm, pwb_ent, pwb_min, pshear, phbl,   &
      &                           phml, pdh )
      !!---------------------------------------------------------------------
      !!                 ***  ROUTINE zdf_osm_osbl_state  ***
      !!
      !! ** Purpose : Determines the state of the OSBL, stable/unstable,
      !!              shear/ noshear. Also determines shear production,
      !!              entrainment buoyancy flux and interfacial Richardson
      !!              number
      !!
      !! ** Method  :
      !!
      !!----------------------------------------------------------------------
      INTEGER,                            INTENT(in   ) ::   Kmm       ! Ocean time-level index
      REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(  out) ::   pwb_ent   ! Buoyancy fluxes at base
      REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(  out) ::   pwb_min   !    of well-mixed layer
      REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(  out) ::   pshear    ! Production of TKE due to shear across the pycnocline
      REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in   ) ::   phbl      ! BL depth
      REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in   ) ::   phml      ! ML depth
      REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in   ) ::   pdh       ! Pycnocline depth
      !!
      INTEGER :: jj, ji   ! Loop indices
      !!
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   zekman
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   zri_p, zri_b   ! Richardson numbers
      REAL(wp)                           ::   zshear_u, zshear_v, zwb_shr
      REAL(wp)                           ::   zwcor, zrf_conv, zrf_shear, zrf_langmuir, zr_stokes
      !!
      REAL(wp), PARAMETER ::   pp_a_shr         = 0.4_wp,  pp_b_shr    = 6.5_wp,  pp_a_wb_s = 0.8_wp
      REAL(wp), PARAMETER ::   pp_alpha_c       = 0.2_wp,  pp_alpha_lc = 0.03_wp
      REAL(wp), PARAMETER ::   pp_alpha_ls      = 0.06_wp, pp_alpha_s  = 0.15_wp
      REAL(wp), PARAMETER ::   pp_ri_p_thresh   = 27.0_wp
      REAL(wp), PARAMETER ::   pp_ri_c          = 0.25_wp
      REAL(wp), PARAMETER ::   pp_ek            = 4.0_wp
      REAL(wp), PARAMETER ::   pp_large         = -1e10_wp
      !!----------------------------------------------------------------------
      !
      ! Initialise arrays
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         l_conv(ji,jj)  = .FALSE.
         l_shear(ji,jj) = .FALSE.
         n_ddh(ji,jj)   = 1
      END_2D
      ! Initialise INTENT(  out) arrays
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         pwb_ent(ji,jj) = pp_large
         pwb_min(ji,jj) = pp_large
      END_2D
      !
      ! Determins stability and set flag l_conv
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         IF ( shol(ji,jj) < 0.0_wp ) THEN
            l_conv(ji,jj) = .TRUE.
         ELSE
            l_conv(ji,jj) = .FALSE.
         ENDIF
      END_2D
      !
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         pshear(ji,jj) = 0.0_wp
      END_2D
      zekman(:,:) = EXP( -1.0_wp * pp_ek * ABS( ff_t(A2D(nn_hls-1)) ) * phbl(A2D(nn_hls-1)) /   &
         &               MAX( sustar(A2D(nn_hls-1)), 1.e-8 ) )
      !
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         IF ( l_conv(ji,jj) ) THEN
            IF ( av_db_bl(ji,jj) > 0.0_wp ) THEN
               zri_p(ji,jj) = MAX (  SQRT( av_db_bl(ji,jj) * pdh(ji,jj) / MAX( av_du_bl(ji,jj)**2 + av_dv_bl(ji,jj)**2,     &
                  &                                                          1e-8_wp ) ) * ( phbl(ji,jj) / pdh(ji,jj) ) *   &
                  &                  ( svstr(ji,jj) / MAX( sustar(ji,jj), 1e-6_wp ) )**2 /                                  &
                  &                  MAX( zekman(ji,jj), 1.0e-6_wp ), 5.0_wp )
               IF ( ff_t(ji,jj) >= 0.0_wp ) THEN   ! Northern hemisphere
                  zri_b(ji,jj) = av_db_ml(ji,jj) * pdh(ji,jj) / ( MAX( av_du_ml(ji,jj), 1e-5_wp )**2 +   &
                     &                                          MAX( -1.0_wp * av_dv_ml(ji,jj), 1e-5_wp)**2 )
               ELSE                                ! Southern hemisphere
                  zri_b(ji,jj) = av_db_ml(ji,jj) * pdh(ji,jj) / ( MAX( av_du_ml(ji,jj), 1e-5_wp )**2 +   &
                     &                                          MAX(           av_dv_ml(ji,jj), 1e-5_wp)**2 )
               END IF
               pshear(ji,jj) = pp_a_shr * zekman(ji,jj) *                                                   &
                  &            ( MAX( sustar(ji,jj)**2 * av_du_ml(ji,jj) / phbl(ji,jj), 0.0_wp ) +          &
                  &              pp_b_shr * MAX( -1.0_wp * ff_t(ji,jj) * sustke(ji,jj) * dstokes(ji,jj) *   &
                  &                            av_dv_ml(ji,jj) / phbl(ji,jj), 0.0_wp ) )
               ! Stability dependence
               pshear(ji,jj) = pshear(ji,jj) * EXP( -0.75_wp * MAX( 0.0_wp, ( zri_b(ji,jj) - pp_ri_c ) / pp_ri_c ) )
               !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
               ! Test ensures n_ddh=0 is not selected. Change to zri_p<27 when  !
               ! full code available                                          !
               !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
               IF ( pshear(ji,jj) > 1e-10 ) THEN
                  IF ( zri_p(ji,jj) < pp_ri_p_thresh .AND.   &
                     & MIN( hu(ji,jj,Kmm), hu(ji-1,jj,Kmm), hv(ji,jj,Kmm), hv(ji,jj-1,Kmm) ) > 100.0_wp ) THEN
                     ! Growing shear layer
                     n_ddh(ji,jj) = 0
                     l_shear(ji,jj) = .TRUE.
                  ELSE
                     n_ddh(ji,jj) = 1
                     !             IF ( zri_b <= 1.5 .and. pshear(ji,jj) > 0._wp ) THEN
                     ! Shear production large enough to determine layer charcteristics, but can't maintain a shear layer
                     l_shear(ji,jj) = .TRUE.
                     !             ELSE
                  END IF
               ELSE
                  n_ddh(ji,jj) = 2
                  l_shear(ji,jj) = .FALSE.
               END IF
               ! Shear production may not be zero, but is small and doesn't determine characteristics of pycnocline
               !               pshear(ji,jj) = 0.5 * pshear(ji,jj)
               !               l_shear(ji,jj) = .FALSE.
               !            ENDIF
            ELSE   ! av_db_bl test, note pshear set to zero
               n_ddh(ji,jj) = 2
               l_shear(ji,jj) = .FALSE.
            ENDIF
         ENDIF
      END_2D
      !
      ! Calculate entrainment buoyancy flux due to surface fluxes.
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         IF ( l_conv(ji,jj) ) THEN
            zwcor        = ABS( ff_t(ji,jj) ) * phbl(ji,jj) + epsln
            zrf_conv     = TANH( ( swstrc(ji,jj) / zwcor )**0.69_wp )
            zrf_shear    = TANH( ( sustar(ji,jj) / zwcor )**0.69_wp )
            zrf_langmuir = TANH( ( swstrl(ji,jj) / zwcor )**0.69_wp )
            IF ( nn_osm_SD_reduce > 0 ) THEN
               ! Effective Stokes drift already reduced from surface value
               zr_stokes = 1.0_wp
            ELSE
               ! Effective Stokes drift only reduced by factor rn_zdfodm_adjust_sd,
               ! requires further reduction where BL is deep
               zr_stokes = 1.0 - EXP( -25.0_wp * dstokes(ji,jj) / hbl(ji,jj) * ( 1.0_wp + 4.0_wp * dstokes(ji,jj) / hbl(ji,jj) ) )
            END IF
            pwb_ent(ji,jj) = -2.0_wp * pp_alpha_c * zrf_conv * swbav(ji,jj) -                                          &
               &             pp_alpha_s * zrf_shear * sustar(ji,jj)**3 / phml(ji,jj) +                                 &
               &             zr_stokes * ( pp_alpha_s * EXP( -1.5_wp * sla(ji,jj) ) * zrf_shear * sustar(ji,jj)**3 -   &
               &                           zrf_langmuir * pp_alpha_lc * swstrl(ji,jj)**3 ) / phml(ji,jj)
         ENDIF
      END_2D
      !
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         IF ( l_shear(ji,jj) ) THEN
            IF ( l_conv(ji,jj) ) THEN
               ! Unstable OSBL
               zwb_shr = -1.0_wp * pp_a_wb_s * zri_b(ji,jj) * pshear(ji,jj)
               IF ( n_ddh(ji,jj) == 0 ) THEN
                  ! Developing shear layer, additional shear production possible.

                  !    pshear_u = MAX( zustar(ji,jj)**2 * MAX( av_du_ml(ji,jj), 0._wp ) /  phbl(ji,jj), 0._wp )
                  !    pshear(ji,jj) = pshear(ji,jj) + pshear_u * ( 1.0 - MIN( zri_p(ji,jj) / pp_ri_p_thresh, 1.d0 )**2 )
                  !    pshear(ji,jj) = MIN( pshear(ji,jj), pshear_u )

                  !    zwb_shr = zwb_shr - 0.25 * MAX ( pshear_u, 0._wp) * ( 1.0 - MIN( zri_p(ji,jj) / pp_ri_p_thresh, 1._wp )**2 )
                  !    zwb_shr = MAX( zwb_shr, -0.25 * pshear_u )
               ENDIF
               pwb_ent(ji,jj) = pwb_ent(ji,jj) + zwb_shr
               !           pwb_min(ji,jj) = pwb_ent(ji,jj) + pdh(ji,jj) / phbl(ji,jj) * zwb0(ji,jj)
            ELSE   ! IF ( l_conv ) THEN - ENDIF
               ! Stable OSBL  - shear production not coded for first attempt.
            ENDIF   ! l_conv
         END IF   ! l_shear
         IF ( l_conv(ji,jj) ) THEN
            ! Unstable OSBL
            pwb_min(ji,jj) = pwb_ent(ji,jj) + pdh(ji,jj) / phbl(ji,jj) * 2.0_wp * swbav(ji,jj)
         END IF  ! l_conv
      END_2D
      !
   END SUBROUTINE zdf_osm_osbl_state

   SUBROUTINE zdf_osm_external_gradients( Kmm, kbase, pdtdz, pdsdz, pdbdz )
      !!---------------------------------------------------------------------
      !!                   ***  ROUTINE zdf_osm_external_gradients  ***
      !!
      !! ** Purpose : Calculates the gradients below the OSBL
      !!
      !! ** Method  : Uses nbld and ibld_ext to determine levels to calculate the gradient.
      !!
      !!----------------------------------------------------------------------   
      INTEGER,                            INTENT(in   ) ::   Kmm            ! Ocean time-level index
      INTEGER,  DIMENSION(A2D(nn_hls-1)), INTENT(in   ) ::   kbase          ! OSBL base layer index
      REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(  out) ::   pdtdz, pdsdz   ! External gradients of temperature, salinity
      REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(  out) ::   pdbdz          !    and buoyancy
      !!
      INTEGER  ::   ji, jj, jkb, jkb1
      REAL(wp) ::   zthermal, zbeta
      !!
      REAL(wp), PARAMETER ::   pp_large = -1e10_wp
      !!----------------------------------------------------------------------   
      !
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         pdtdz(ji,jj) = pp_large
         pdsdz(ji,jj) = pp_large
         pdbdz(ji,jj) = pp_large
      END_2D
      !
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         IF ( kbase(ji,jj)+1 < mbkt(ji,jj) ) THEN
            zthermal = rab_n(ji,jj,1,jp_tem)   ! Ideally use nbld not 1??
            zbeta    = rab_n(ji,jj,1,jp_sal)
            jkb = kbase(ji,jj)
            jkb1 = MIN( jkb + 1, mbkt(ji,jj) )
            pdtdz(ji,jj) = -1.0_wp * ( ts(ji,jj,jkb1,jp_tem,Kmm) - ts(ji,jj,jkb,jp_tem,Kmm ) ) / e3w(ji,jj,jkb1,Kmm)
            pdsdz(ji,jj) = -1.0_wp * ( ts(ji,jj,jkb1,jp_sal,Kmm) - ts(ji,jj,jkb,jp_sal,Kmm ) ) / e3w(ji,jj,jkb1,Kmm)
            pdbdz(ji,jj) = grav * zthermal * pdtdz(ji,jj) - grav * zbeta * pdsdz(ji,jj)
         ELSE
            pdtdz(ji,jj) = 0.0_wp
            pdsdz(ji,jj) = 0.0_wp
            pdbdz(ji,jj) = 0.0_wp
         END IF
      END_2D
      !
   END SUBROUTINE zdf_osm_external_gradients

   SUBROUTINE zdf_osm_calculate_dhdt( pdhdt, phbl, pdh, pwb_ent, pwb_min,   &
      &                               pdbdz_bl_ext, pwb_fk_b, pwb_fk, pvel_mle )
      !!---------------------------------------------------------------------
      !!                   ***  ROUTINE zdf_osm_calculate_dhdt  ***
      !!
      !! ** Purpose : Calculates the rate at which hbl changes.
      !!
      !! ** Method  :
      !!
      !!----------------------------------------------------------------------
      REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(  out) ::   pdhdt          ! Rate of change of hbl
      REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in   ) ::   phbl           ! BL depth
      REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in   ) ::   pdh            ! Pycnocline depth
      REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in   ) ::   pwb_ent        ! Buoyancy entrainment flux
      REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in   ) ::   pwb_min
      REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in   ) ::   pdbdz_bl_ext   ! External buoyancy gradients
      REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(  out) ::   pwb_fk_b       ! MLE buoyancy flux averaged over OSBL
      REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in   ) ::   pwb_fk         ! Max MLE buoyancy flux
      REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in   ) ::   pvel_mle       ! Vvelocity scale for dhdt with stable ML and FK
      !!
      INTEGER  ::   jj, ji
      REAL(wp) ::   zgamma_b_nd, zgamma_dh_nd, zpert, zpsi, zari
      REAL(wp) ::   zvel_max, zddhdt
      !!
      REAL(wp), PARAMETER ::   pp_alpha_b = 0.3_wp
      REAL(wp), PARAMETER ::   pp_ddh     = 2.5_wp, pp_ddh_2 = 3.5_wp   ! Also in pycnocline_depth
      REAL(wp), PARAMETER ::   pp_large   = -1e10_wp
      !!----------------------------------------------------------------------
      !
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         pdhdt(ji,jj)    = pp_large
         pwb_fk_b(ji,jj) = pp_large
      END_2D
      !
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         !
         IF ( l_shear(ji,jj) ) THEN
            !
            IF ( l_conv(ji,jj) ) THEN   ! Convective
               !
               IF ( ln_osm_mle ) THEN
                  IF ( hmle(ji,jj) > hbl(ji,jj) ) THEN   ! Fox-Kemper buoyancy flux average over OSBL
                     pwb_fk_b(ji,jj) = pwb_fk(ji,jj) * ( 1.0_wp + hmle(ji,jj) / ( 6.0_wp * hbl(ji,jj) ) *   &
                        &                                         ( -1.0_wp + ( 1.0_wp - 2.0_wp * hbl(ji,jj) / hmle(ji,jj) )**3 ) )
                  ELSE
                     pwb_fk_b(ji,jj) = 0.5_wp * pwb_fk(ji,jj) * hmle(ji,jj) / hbl(ji,jj)
                  ENDIF
                  zvel_max = ( svstr(ji,jj)**3 + 0.5_wp * swstrc(ji,jj)**3 )**p2third / hbl(ji,jj)
                  IF ( ( pwb_ent(ji,jj) + 2.0_wp * pwb_fk_b(ji,jj) ) < 0.0_wp ) THEN   ! OSBL is deepening,
                     !                                                                 !    entrainment > restratification
                     IF ( av_db_bl(ji,jj) > 1e-15_wp ) THEN
                        zgamma_b_nd = MAX( pdbdz_bl_ext(ji,jj), 0.0_wp ) * pdh(ji,jj) /   &
                           &          ( zvel_max + MAX( av_db_bl(ji,jj), 1e-15_wp ) )
                        zpsi = ( 1.0_wp - 0.5_wp * pdh(ji,jj) / phbl(ji,jj) ) *                                                &
                           &   ( swb0(ji,jj) - MIN( ( pwb_min(ji,jj) + 2.0_wp * pwb_fk_b(ji,jj) ), 0.0_wp ) ) * pdh(ji,jj) /   &
                           &   phbl(ji,jj)
                        zpsi = zpsi + 1.75_wp * ( 1.0_wp - 0.5_wp * pdh(ji,jj) / phbl(ji,jj) ) *   &
                           &          ( pdh(ji,jj) / phbl(ji,jj) + zgamma_b_nd ) *   &
                           &          MIN( ( pwb_min(ji,jj) + 2.0_wp * pwb_fk_b(ji,jj) ), 0.0_wp )
                        zpsi = pp_alpha_b * MAX( zpsi, 0.0_wp )
                        pdhdt(ji,jj) = -1.0_wp * ( pwb_ent(ji,jj) + 2.0_wp * pwb_fk_b(ji,jj) ) /      &
                           &                      ( zvel_max + MAX( av_db_bl(ji,jj), 1e-15_wp ) ) +   &
                           &            zpsi / ( zvel_max + MAX( av_db_bl(ji,jj), 1e-15_wp ) )
                        IF ( n_ddh(ji,jj) == 1 ) THEN
                           IF ( ( swstrc(ji,jj) / svstr(ji,jj) )**3 <= 0.5_wp ) THEN
                              zari = MIN( 1.5_wp * av_db_bl(ji,jj) /                                                   &
                                 &        ( phbl(ji,jj) * ( MAX( pdbdz_bl_ext(ji,jj), 0.0_wp ) +                       &
                                 &                               av_db_bl(ji,jj)**2 / MAX( 4.5_wp * svstr(ji,jj)**2,   &
                                 &                                                       1e-12_wp ) ) ), 0.2_wp )
                           ELSE
                              zari = MIN( 1.5_wp * av_db_bl(ji,jj) /                                                    &
                                 &        ( phbl(ji,jj) * ( MAX( pdbdz_bl_ext(ji,jj), 0.0_wp ) +                        &
                                 &                               av_db_bl(ji,jj)**2 / MAX( 4.5_wp * swstrc(ji,jj)**2,   &
                                 &                                                       1e-12_wp ) ) ), 0.2_wp )
                           ENDIF
                           ! Relaxation to dh_ref = zari * hbl
                           zddhdt = -1.0_wp * pp_ddh_2 * ( 1.0_wp - pdh(ji,jj) / ( zari * phbl(ji,jj) ) ) * pwb_ent(ji,jj) /   &
                              &     ( zvel_max + MAX( av_db_bl(ji,jj), 1e-15_wp ) )
                        ELSE IF ( n_ddh(ji,jj) == 0 ) THEN   ! Growing shear layer
                           zddhdt = -1.0_wp * pp_ddh * ( 1.0_wp - 1.6_wp * pdh(ji,jj) / phbl(ji,jj) ) * pwb_ent(ji,jj) /   &
                              &     ( zvel_max + MAX( av_db_bl(ji,jj), 1e-15_wp ) )
                           zddhdt = EXP( -4.0_wp * ABS( ff_t(ji,jj) ) * phbl(ji,jj) / MAX( sustar(ji,jj), 1e-8_wp ) ) * zddhdt
                        ELSE
                           zddhdt = 0.0_wp
                        ENDIF   ! n_ddh
                        pdhdt(ji,jj) = pdhdt(ji,jj) + pp_alpha_b * ( 1.0_wp - 0.5_wp * pdh(ji,jj) / phbl(ji,jj) ) *   &
                           &                            av_db_ml(ji,jj) * MAX( zddhdt, 0.0_wp ) /   &
                           &                            ( zvel_max + MAX( av_db_bl(ji,jj), 1e-15_wp ) )
                     ELSE   ! av_db_bl >0
                        pdhdt(ji,jj) = -1.0_wp * ( pwb_ent(ji,jj) + 2.0_wp * pwb_fk_b(ji,jj) ) /  MAX( zvel_max, 1e-15_wp )
                     ENDIF
                  ELSE   ! pwb_min + 2*pwb_fk_b < 0
                     ! OSBL shoaling due to restratification flux. This is the velocity defined in Fox-Kemper et al (2008)
                     pdhdt(ji,jj) = -1.0_wp * MIN( pvel_mle(ji,jj), hbl(ji,jj) / 10800.0_wp )
                  ENDIF
               ELSE   ! Fox-Kemper not used.
                  zvel_max = -1.0_wp * ( 1.0_wp + 1.0_wp * ( svstr(ji,jj)**3 + 0.5_wp * swstrc(ji,jj)**3 )**pthird *     &
                     &                                                         rn_Dt / hbl(ji,jj) ) * pwb_ent(ji,jj) /   &
                     &       MAX( ( svstr(ji,jj)**3 + 0.5_wp * swstrc(ji,jj)**3 )**pthird, epsln )
                  pdhdt(ji,jj) = -1.0_wp * pwb_ent(ji,jj) / ( zvel_max + MAX( av_db_bl(ji,jj), 1e-15_wp ) )
                  ! added ajgn 23 July as temporay fix
               ENDIF   ! ln_osm_mle
               !
            ELSE   ! l_conv - Stable
               !
               pdhdt(ji,jj) = ( 0.06_wp + 0.52_wp * shol(ji,jj) / 2.0_wp ) * svstr(ji,jj)**3 / hbl(ji,jj) + swbav(ji,jj)
               IF ( pdhdt(ji,jj) < 0.0_wp ) THEN   ! For long timsteps factor in brackets slows the rapid collapse of the OSBL
                  zpert = 2.0_wp * ( 1.0_wp + 0.0_wp * 2.0_wp * svstr(ji,jj) * rn_Dt / hbl(ji,jj) ) * svstr(ji,jj)**2 / hbl(ji,jj)
               ELSE
                  zpert = MAX( svstr(ji,jj)**2 / hbl(ji,jj), av_db_bl(ji,jj) )
               ENDIF
               pdhdt(ji,jj) = 2.0_wp * pdhdt(ji,jj) / MAX( zpert, epsln )
               pdhdt(ji,jj) = MAX( pdhdt(ji,jj), -1.0_wp * hbl(ji,jj) / 5400.0_wp )
               !
            ENDIF   ! l_conv
            !
         ELSE   ! l_shear
            !
            IF ( l_conv(ji,jj) ) THEN   ! Convective
               !
               IF ( ln_osm_mle ) THEN
                  IF ( hmle(ji,jj) > hbl(ji,jj) ) THEN   ! Fox-Kemper buoyancy flux average over OSBL
                     pwb_fk_b(ji,jj) = pwb_fk(ji,jj) *                       &
                        ( 1.0_wp + hmle(ji,jj) / ( 6.0_wp * hbl(ji,jj) ) *   &
                        &          ( -1.0_wp + ( 1.0_wp - 2.0_wp * hbl(ji,jj) / hmle(ji,jj))**3) )
                  ELSE
                     pwb_fk_b(ji,jj) = 0.5_wp * pwb_fk(ji,jj) * hmle(ji,jj) / hbl(ji,jj)
                  ENDIF
                  zvel_max = ( swstrl(ji,jj)**3 + 0.5_wp * swstrc(ji,jj)**3 )**p2third / hbl(ji,jj)
                  IF ( ( pwb_ent(ji,jj) + 2.0_wp * pwb_fk_b(ji,jj) ) < 0.0_wp ) THEN   ! OSBL is deepening,
                     !                                                                 !    entrainment > restratification
                     IF ( av_db_bl(ji,jj) > 0.0_wp .AND. pdbdz_bl_ext(ji,jj) > 0.0_wp ) THEN
                        pdhdt(ji,jj) = -1.0_wp * ( pwb_ent(ji,jj) + 2.0_wp * pwb_fk_b(ji,jj) ) /   &
                           &            ( zvel_max + MAX( av_db_bl(ji,jj), 1e-15_wp ) )
                     ELSE
                        pdhdt(ji,jj) = -1.0_wp * ( pwb_ent(ji,jj) + 2.0_wp * pwb_fk_b(ji,jj) ) / MAX( zvel_max, 1e-15_wp )
                     ENDIF
                  ELSE   ! OSBL shoaling due to restratification flux. This is the velocity defined in Fox-Kemper et al (2008)
                     pdhdt(ji,jj) = -1.0_wp * MIN( pvel_mle(ji,jj), hbl(ji,jj) / 10800.0_wp )
                  ENDIF
               ELSE   ! Fox-Kemper not used
                  zvel_max = -1.0_wp * pwb_ent(ji,jj) / MAX( ( svstr(ji,jj)**3 + 0.5_wp * swstrc(ji,jj)**3 )**pthird, epsln )
                  pdhdt(ji,jj) = -1.0_wp * pwb_ent(ji,jj) / ( zvel_max + MAX( av_db_bl(ji,jj), 1e-15_wp ) )
                  ! added ajgn 23 July as temporay fix
               ENDIF  ! ln_osm_mle
               !
            ELSE                        ! Stable
               !
               pdhdt(ji,jj) = ( 0.06_wp + 0.52_wp * shol(ji,jj) / 2.0_wp ) * svstr(ji,jj)**3 / hbl(ji,jj) + swbav(ji,jj)
               IF ( pdhdt(ji,jj) < 0.0_wp ) THEN
                  ! For long timsteps factor in brackets slows the rapid collapse of the OSBL
                  zpert = 2.0_wp * svstr(ji,jj)**2 / hbl(ji,jj)
               ELSE
                  zpert = MAX( svstr(ji,jj)**2 / hbl(ji,jj), av_db_bl(ji,jj) )
               ENDIF
               pdhdt(ji,jj) = 2.0_wp * pdhdt(ji,jj) / MAX(zpert, epsln)
               pdhdt(ji,jj) = MAX( pdhdt(ji,jj), -1.0_wp * hbl(ji,jj) / 5400.0_wp )
               !
            ENDIF  ! l_conv
            !
         ENDIF ! l_shear
         !
      END_2D
      !
   END SUBROUTINE zdf_osm_calculate_dhdt

   SUBROUTINE zdf_osm_timestep_hbl( Kmm, pdhdt, phbl, phbl_t, pwb_ent,   &
      &                             pwb_fk_b )
      !!---------------------------------------------------------------------
      !!                ***  ROUTINE zdf_osm_timestep_hbl  ***
      !!
      !! ** Purpose : Increments hbl.
      !!
      !! ** Method  : If the change in hbl exceeds one model level the change is
      !!              is calculated by moving down the grid, changing the
      !!              buoyancy jump. This is to ensure that the change in hbl
      !!              does not overshoot a stable layer.
      !!
      !!----------------------------------------------------------------------
      INTEGER,                            INTENT(in   ) ::   Kmm        ! Ocean time-level index
      REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(inout) ::   pdhdt      ! Rates of change of hbl
      REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(inout) ::   phbl       ! BL depth
      REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in   ) ::   phbl_t     ! BL depth
      REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in   ) ::   pwb_ent    ! Buoyancy entrainment flux
      REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in   ) ::   pwb_fk_b   ! MLE buoyancy flux averaged over OSBL
      !!
      INTEGER  ::   jk, jj, ji, jm
      REAL(wp) ::   zhbl_s, zvel_max, zdb
      REAL(wp) ::   zthermal, zbeta
      !!----------------------------------------------------------------------
      !
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         IF ( nbld(ji,jj) - nmld(ji,jj) > 1 ) THEN
            !
            ! If boundary layer changes by more than one level, need to check for stable layers between initial and final depths.
            !
            zhbl_s   = hbl(ji,jj)
            jm       = nmld(ji,jj)
            zthermal = rab_n(ji,jj,1,jp_tem)
            zbeta    = rab_n(ji,jj,1,jp_sal)
            !
            IF ( l_conv(ji,jj) ) THEN   ! Unstable
               !
               IF( ln_osm_mle ) THEN
                  zvel_max = ( swstrl(ji,jj)**3 + swstrc(ji,jj)**3 )**p2third / hbl(ji,jj)
               ELSE
                  zvel_max = -1.0_wp * ( 1.0_wp + 1.0_wp * ( svstr(ji,jj)**3 + 0.5_wp * swstrc(ji,jj)**3 )**pthird * rn_Dt /   &
                     &                                     hbl(ji,jj) ) * pwb_ent(ji,jj) /                                     &
                     &       ( svstr(ji,jj)**3 + 0.5_wp * swstrc(ji,jj)**3 )**pthird
               ENDIF
               DO jk = nmld(ji,jj), nbld(ji,jj)
                  zdb = MAX( grav * ( zthermal * ( av_t_bl(ji,jj) - ts(ji,jj,jm,jp_tem,Kmm) ) -   &
                     &                zbeta    * ( av_s_bl(ji,jj) - ts(ji,jj,jm,jp_sal,Kmm) ) ), 0.0_wp ) + zvel_max
                  !
                  IF ( ln_osm_mle ) THEN
                     zhbl_s = zhbl_s + MIN( rn_Dt * ( ( -1.0_wp * pwb_ent(ji,jj) - 2.0_wp * pwb_fk_b(ji,jj) ) / zdb ) /   &
                        &                   REAL( nbld(ji,jj) - nmld(ji,jj), KIND=wp ), e3w(ji,jj,jm,Kmm) )
                  ELSE
                     zhbl_s = zhbl_s + MIN( rn_Dt * ( -1.0_wp * pwb_ent(ji,jj) / zdb ) /   &
                        &                   REAL( nbld(ji,jj) - nmld(ji,jj), KIND=wp ), e3w(ji,jj,jm,Kmm) )
                  ENDIF
                  !                    zhbl_s = MIN(zhbl_s,  gdepw(ji,jj, mbkt(ji,jj) + 1,Kmm) - depth_tol)
                  IF ( zhbl_s >= gdepw(ji,jj,mbkt(ji,jj) + 1,Kmm) ) THEN
                     zhbl_s = MIN( zhbl_s, gdepw(ji,jj, mbkt(ji,jj) + 1, Kmm ) - depth_tol )
                     l_pyc(ji,jj) = .FALSE.
                  ENDIF
                  IF ( zhbl_s >= gdepw(ji,jj,jm+1,Kmm) ) jm = jm + 1
               END DO
               hbl(ji,jj)  = zhbl_s
               nbld(ji,jj) = jm
            ELSE   ! Stable
               DO jk = nmld(ji,jj), nbld(ji,jj)
                  zdb = MAX(  grav * ( zthermal * ( av_t_bl(ji,jj) - ts(ji,jj,jm,jp_tem,Kmm) ) -               &
                     &                 zbeta    * ( av_s_bl(ji,jj) - ts(ji,jj,jm,jp_sal,Kmm) ) ), 0.0_wp ) +   &
                     &  2.0_wp * svstr(ji,jj)**2 / zhbl_s
                  !
                  ! Alan is thuis right? I have simply changed hbli to hbl
                  shol(ji,jj)  = -1.0_wp * zhbl_s / ( ( svstr(ji,jj)**3 + epsln ) / swbav(ji,jj) )
                  pdhdt(ji,jj) = -1.0_wp * ( swbav(ji,jj) - 0.04_wp / 2.0_wp * swstrl(ji,jj)**3 / zhbl_s -   &
                     &                       0.15_wp / 2.0_wp * ( 1.0_wp - EXP( -1.5_wp * sla(ji,jj) ) ) *   &
                     &                                 sustar(ji,jj)**3 / zhbl_s ) *                         &
                     &           ( 0.725_wp + 0.225_wp * EXP( -7.5_wp * shol(ji,jj) ) )
                  pdhdt(ji,jj) = pdhdt(ji,jj) + swbav(ji,jj)
                  zhbl_s = zhbl_s + MIN( pdhdt(ji,jj) / zdb * rn_Dt / REAL( nbld(ji,jj) - nmld(ji,jj), KIND=wp ),   &
                     &                   e3w(ji,jj,jm,Kmm) )
                  
                  !                    zhbl_s = MIN(zhbl_s, gdepw(ji,jj, mbkt(ji,jj) + 1,Kmm) - depth_tol)
                  IF ( zhbl_s >= gdepw(ji,jj,mbkt(ji,jj) + 1,Kmm) ) THEN
Guillaume Samson's avatar
Guillaume Samson committed
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
                     zhbl_s      = MIN( zhbl_s,  gdepw(ji,jj,mbkt(ji,jj)+1,Kmm) - depth_tol )
                     l_pyc(ji,jj) = .FALSE.
                  ENDIF
                  IF ( zhbl_s >= gdepw(ji,jj,jm,Kmm) ) jm = jm + 1
               END DO
            ENDIF   ! IF ( l_conv )
            hbl(ji,jj)  = MAX( zhbl_s, gdepw(ji,jj,4,Kmm) )
            nbld(ji,jj) = MAX( jm, 4 )
         ELSE
            ! change zero or one model level.
            hbl(ji,jj) = MAX( phbl_t(ji,jj), gdepw(ji,jj,4,Kmm) )
         ENDIF
         phbl(ji,jj) = gdepw(ji,jj,nbld(ji,jj),Kmm)
      END_2D
      !
   END SUBROUTINE zdf_osm_timestep_hbl

   SUBROUTINE zdf_osm_pycnocline_thickness( Kmm, pdh, phml, pdhdt, phbl,   &
      &                                     pwb_ent, pdbdz_bl_ext, pwb_fk_b )
      !!---------------------------------------------------------------------
      !!            ***  ROUTINE zdf_osm_pycnocline_thickness  ***
      !!
      !! ** Purpose : Calculates thickness of the pycnocline
      !!
      !! ** Method  : The thickness is calculated from a prognostic equation
      !!              that relaxes the pycnocine thickness to a diagnostic
      !!              value. The time change is calculated assuming the
      !!              thickness relaxes exponentially. This is done to deal
      !!              with large timesteps.
      !!
      !!----------------------------------------------------------------------
      INTEGER,                            INTENT(in   ) ::   Kmm            ! Ocean time-level index
      REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(inout) ::   pdh            ! Pycnocline thickness
      REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(inout) ::   phml           ! ML depth
      REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in   ) ::   pdhdt          ! BL depth tendency
      REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in   ) ::   phbl           ! BL depth
      REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in   ) ::   pwb_ent        ! Buoyancy entrainment flux
      REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in   ) ::   pdbdz_bl_ext   ! External buoyancy gradients
      REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in   ) ::   pwb_fk_b       ! MLE buoyancy flux averaged over OSBL
      !!
      INTEGER  ::   jj, ji
      INTEGER  ::   inhml
      REAL(wp) ::   zari, ztau, zdh_ref, zddhdt, zvel_max
      REAL(wp) ::   ztmp   ! Auxiliary variable
      !!
      REAL, PARAMETER ::   pp_ddh = 2.5_wp, pp_ddh_2 = 3.5_wp   ! Also in pycnocline_depth
      !!----------------------------------------------------------------------
      !
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         !
         IF ( l_shear(ji,jj) ) THEN
            !
            IF ( l_conv(ji,jj) ) THEN
               !
               IF ( av_db_bl(ji,jj) > 1e-15_wp ) THEN
                  IF ( n_ddh(ji,jj) == 0 ) THEN
                     zvel_max = ( svstr(ji,jj)**3 + 0.5_wp * swstrc(ji,jj)**3 )**p2third / hbl(ji,jj)
                     ! ddhdt for pycnocline determined in osm_calculate_dhdt
                     zddhdt = -1.0_wp * pp_ddh * ( 1.0_wp - 1.6_wp * pdh(ji,jj) / phbl(ji,jj) ) * pwb_ent(ji,jj) /   &
                        &     ( zvel_max + MAX( av_db_bl(ji,jj), 1e-15 ) )
                     zddhdt = EXP( -4.0_wp * ABS( ff_t(ji,jj) ) * phbl(ji,jj) / MAX( sustar(ji,jj), 1e-8 ) ) * zddhdt
                     ! Maximum limit for how thick the shear layer can grow relative to the thickness of the boundary layer
                     dh(ji,jj) = MIN( dh(ji,jj) + zddhdt * rn_Dt, 0.625_wp * hbl(ji,jj) )
                  ELSE   ! Need to recalculate because hbl has been updated
                     IF ( ( swstrc(ji,jj) / svstr(ji,jj) )**3 <= 0.5_wp ) THEN
                        ztmp = svstr(ji,jj)
                     ELSE
                        ztmp = swstrc(ji,jj)
                     END IF
                     zari = MIN( 1.5_wp * av_db_bl(ji,jj) / ( phbl(ji,jj) * ( MAX( pdbdz_bl_ext(ji,jj), 0.0_wp ) +        &
                        &                                                   av_db_bl(ji,jj)**2 / MAX( 4.5_wp * ztmp**2,   &
                        &                                                                           1e-12_wp ) ) ), 0.2_wp )
                     ztau = MAX( av_db_bl(ji,jj) * ( zari * hbl(ji,jj) ) /   &
                        &        ( pp_ddh_2 * MAX( -1.0_wp * pwb_ent(ji,jj), 1e-12_wp ) ), 2.0_wp * rn_Dt )
                     dh(ji,jj) = dh(ji,jj) * EXP( -1.0_wp * rn_Dt / ztau ) +   &
                        &        zari * phbl(ji,jj) * ( 1.0_wp - EXP( -1.0_wp * rn_Dt / ztau ) )
                     IF ( dh(ji,jj) >= hbl(ji,jj) ) dh(ji,jj) = zari * phbl(ji,jj)
                  END IF
               ELSE
                  ztau = MAX( MAX( hbl(ji,jj) / ( svstr(ji,jj)**3 + 0.5_wp * swstrc(ji,jj)**3 )**pthird, epsln), 2.0_wp * rn_Dt )
                  dh(ji,jj) = dh(ji,jj) * EXP( -1.0_wp * rn_Dt / ztau ) +   &
                     &        0.2_wp * phbl(ji,jj) * ( 1.0_wp - EXP( -1.0_wp * rn_Dt / ztau ) )
                  IF ( dh(ji,jj) > hbl(ji,jj) ) dh(ji,jj) = 0.2_wp * hbl(ji,jj)
               END IF
               !
            ELSE   ! l_conv
               ! Initially shear only for entraining OSBL. Stable code will be needed if extended to stable OSBL
               ztau = hbl(ji,jj) / MAX(svstr(ji,jj), epsln)
               IF ( pdhdt(ji,jj) >= 0.0_wp ) THEN   ! Probably shouldn't include wm here
                  ! Boundary layer deepening
                  IF ( av_db_bl(ji,jj) > 0.0_wp ) THEN
                     ! Pycnocline thickness set by stratification - use same relationship as for neutral conditions
                     zari    = MIN( 4.5_wp * ( svstr(ji,jj)**2 ) / MAX( av_db_bl(ji,jj) * phbl(ji,jj), epsln ) + 0.01_wp, 0.2_wp )
                     zdh_ref = MIN( zari, 0.2_wp ) * hbl(ji,jj)
                  ELSE
                     zdh_ref = 0.2_wp * hbl(ji,jj)
                  ENDIF
               ELSE   ! IF(dhdt < 0)
                  zdh_ref = 0.2_wp * hbl(ji,jj)
               ENDIF   ! IF (dhdt >= 0)
               dh(ji,jj) = dh(ji,jj) * EXP( -1.0_wp * rn_Dt / ztau ) + zdh_ref * ( 1.0_wp - EXP( -1.0_wp * rn_Dt / ztau ) )
               IF ( pdhdt(ji,jj) < 0.0_wp .AND. dh(ji,jj) >= hbl(ji,jj) ) dh(ji,jj) = zdh_ref   ! Can be a problem with dh>hbl for
               !                                                                                !    rapid collapse
            ENDIF
            !
         ELSE   ! l_shear = .FALSE., calculate ddhdt here
            !
            IF ( l_conv(ji,jj) ) THEN
               !
               IF( ln_osm_mle ) THEN
                  IF ( ( pwb_ent(ji,jj) + 2.0_wp * pwb_fk_b(ji,jj) ) < 0.0_wp ) THEN   ! OSBL is deepening. Note wb_fk_b is zero if
                     !                                                                 !    ln_osm_mle=F
                     IF ( av_db_bl(ji,jj) > 0.0_wp .AND. pdbdz_bl_ext(ji,jj) > 0.0_wp ) THEN
                        IF ( ( swstrc(ji,jj) / MAX( svstr(ji,jj), epsln) )**3 <= 0.5_wp ) THEN   ! Near neutral stability
                           ztmp = svstr(ji,jj)
                        ELSE   ! Unstable
                           ztmp = swstrc(ji,jj)
                        END IF
                        zari = MIN( 1.5_wp * av_db_bl(ji,jj) /                               &
                           &        ( phbl(ji,jj) * ( MAX( pdbdz_bl_ext(ji,jj), 0.0_wp ) +   &
                           &                          av_db_bl(ji,jj)**2 / MAX( 4.5_wp * ztmp**2 , 1e-12_wp ) ) ), 0.2_wp )
                     ELSE
                        zari = 0.2_wp
                     END IF
                  ELSE
                     zari = 0.2_wp
                  END IF
                  ztau    = 0.2_wp * hbl(ji,jj) / MAX( epsln, ( svstr(ji,jj)**3 + 0.5_wp * swstrc(ji,jj)**3 )**pthird )
                  zdh_ref = zari * hbl(ji,jj)
               ELSE   ! ln_osm_mle
                  IF ( av_db_bl(ji,jj) > 0.0_wp .AND. pdbdz_bl_ext(ji,jj) > 0.0_wp ) THEN
                     IF ( ( swstrc(ji,jj) / MAX( svstr(ji,jj), epsln ) )**3 <= 0.5_wp ) THEN   ! Near neutral stability
                        ztmp = svstr(ji,jj)
                     ELSE   ! Unstable
                        ztmp = swstrc(ji,jj)
                     END IF
                     zari    = MIN( 1.5_wp * av_db_bl(ji,jj) /                               &
                        &           ( phbl(ji,jj) * ( MAX( pdbdz_bl_ext(ji,jj), 0.0_wp ) +   &
                        &                             av_db_bl(ji,jj)**2 / MAX( 4.5_wp * ztmp**2 , 1e-12_wp ) ) ), 0.2_wp )
                  ELSE
                     zari    = 0.2_wp
                  END IF
                  ztau    = hbl(ji,jj) / MAX( epsln, ( svstr(ji,jj)**3 + 0.5_wp * swstrc(ji,jj)**3 )**pthird )
                  zdh_ref = zari * hbl(ji,jj)
               END IF   ! ln_osm_mle
               dh(ji,jj) = dh(ji,jj) * EXP( -1.0_wp * rn_Dt / ztau ) + zdh_ref * ( 1.0_wp - EXP( -1.0_wp * rn_Dt / ztau ) )
               !               IF ( pdhdt(ji,jj) < 0._wp .and. dh(ji,jj) >= hbl(ji,jj) ) dh(ji,jj) = zdh_ref
               IF ( dh(ji,jj) >= hbl(ji,jj) ) dh(ji,jj) = zdh_ref
               ! Alan: this hml is never defined or used
            ELSE   ! IF (l_conv)
               !
               ztau = hbl(ji,jj) / MAX( svstr(ji,jj), epsln )
               IF ( pdhdt(ji,jj) >= 0.0_wp ) THEN   ! Probably shouldn't include wm here
                  ! Boundary layer deepening
                  IF ( av_db_bl(ji,jj) > 0.0_wp ) THEN
                     ! Pycnocline thickness set by stratification - use same relationship as for neutral conditions.
                     zari    = MIN( 4.5_wp * ( svstr(ji,jj)**2 ) / MAX( av_db_bl(ji,jj) * phbl(ji,jj), epsln ) + 0.01_wp , 0.2_wp )
                     zdh_ref = MIN( zari, 0.2_wp ) * hbl(ji,jj)
                  ELSE
                     zdh_ref = 0.2_wp * hbl(ji,jj)
                  END IF
               ELSE   ! IF(dhdt < 0)
                  zdh_ref = 0.2_wp * hbl(ji,jj)
               END IF   ! IF (dhdt >= 0)
               dh(ji,jj) = dh(ji,jj) * EXP( -1.0_wp * rn_Dt / ztau ) + zdh_ref * ( 1.0_wp - EXP( -1.0_wp * rn_Dt / ztau ) )
               IF ( pdhdt(ji,jj) < 0.0_wp .AND. dh(ji,jj) >= hbl(ji,jj) ) dh(ji,jj) = zdh_ref   ! Can be a problem with dh>hbl for
               !                                                                                !    rapid collapse
            END IF   ! IF (l_conv)
            !
         END IF   ! l_shear
         !
         hml(ji,jj)  = hbl(ji,jj) - dh(ji,jj)
         inhml       = MAX( INT( dh(ji,jj) / MAX( e3t(ji,jj,nbld(ji,jj)-1,Kmm), 1e-3_wp ) ), 1 )
         nmld(ji,jj) = MAX( nbld(ji,jj) - inhml, 3 )
         phml(ji,jj) = gdepw(ji,jj,nmld(ji,jj),Kmm)
         pdh(ji,jj)  = phbl(ji,jj) - phml(ji,jj)
         !
      END_2D
      !
   END SUBROUTINE zdf_osm_pycnocline_thickness

   SUBROUTINE zdf_osm_pycnocline_buoyancy_profiles( Kmm, kp_ext, pdbdz, palpha, pdh,   &
      &                                             phbl, pdbdz_bl_ext, phml, pdhdt )
      !!---------------------------------------------------------------------
      !!       ***  ROUTINE zdf_osm_pycnocline_buoyancy_profiles  ***
      !!
      !! ** Purpose : calculate pycnocline buoyancy profiles
      !!
      !! ** Method  : 
      !!
      !!----------------------------------------------------------------------
      INTEGER,                                 INTENT(in   ) ::   Kmm            ! Ocean time-level index
      INTEGER,  DIMENSION(A2D(nn_hls-1)),      INTENT(in   ) ::   kp_ext         ! External-level offsets
      REAL(wp), DIMENSION(A2D(nn_hls-1),jpk),  INTENT(  out) ::   pdbdz          ! Gradients in the pycnocline
      REAL(wp), DIMENSION(A2D(nn_hls-1)),      INTENT(  out) ::   palpha
      REAL(wp), DIMENSION(A2D(nn_hls-1)),      INTENT(in   ) ::   pdh            ! Pycnocline thickness
      REAL(wp), DIMENSION(A2D(nn_hls-1)),      INTENT(in   ) ::   phbl           ! BL depth
      REAL(wp), DIMENSION(A2D(nn_hls-1)),      INTENT(in   ) ::   pdbdz_bl_ext   ! External buoyancy gradients
      REAL(wp), DIMENSION(A2D(nn_hls-1)),      INTENT(in   ) ::   phml           ! ML depth
      REAL(wp), DIMENSION(A2D(nn_hls-1)),      INTENT(in   ) ::   pdhdt          ! Rates of change of hbl
      !!
      INTEGER  ::   jk, jj, ji
      REAL(wp) ::   zbgrad
      REAL(wp) ::   zgamma_b_nd, znd
      REAL(wp) ::   zzeta_m
      REAL(wp) ::   ztmp   ! Auxiliary variable
      !!
      REAL(wp), PARAMETER ::   pp_gamma_b = 2.25_wp
      REAL(wp), PARAMETER ::   pp_large   = -1e10_wp
      !!----------------------------------------------------------------------
      !
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )      
         pdbdz(ji,jj,:) = pp_large
         palpha(ji,jj)  = pp_large
      END_2D
      !
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         !
         IF ( nbld(ji,jj) + kp_ext(ji,jj) < mbkt(ji,jj) ) THEN
            !
            IF ( l_conv(ji,jj) ) THEN   ! Convective conditions
               !
               IF ( l_pyc(ji,jj) ) THEN
                  !
                  zzeta_m = 0.1_wp + 0.3_wp / ( 1.0_wp + EXP( -3.5_wp * LOG10( -1.0_wp * shol(ji,jj) ) ) )
                  palpha(ji,jj) = 2.0_wp * ( 1.0_wp - ( 0.80_wp * zzeta_m + 0.5_wp * SQRT( 3.14159_wp / pp_gamma_b ) ) *   &
                     &                                pdbdz_bl_ext(ji,jj) * pdh(ji,jj) / av_db_ml(ji,jj) ) /                &
                     &            ( 0.723_wp + SQRT( 3.14159_wp / pp_gamma_b ) )
                  palpha(ji,jj) = MAX( palpha(ji,jj), 0.0_wp )
                  ztmp = 1.0_wp / MAX( pdh(ji,jj), epsln )
                  !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
                  ! Commented lines in this section are not needed in new code, once tested !
                  ! can be removed                                                          !
                  !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
                  ! ztgrad = zalpha * av_dt_ml(ji,jj) * ztmp + zdtdz_bl_ext(ji,jj)
                  ! zsgrad = zalpha * av_ds_ml(ji,jj) * ztmp + zdsdz_bl_ext(ji,jj)
                  zbgrad = palpha(ji,jj) * av_db_ml(ji,jj) * ztmp + pdbdz_bl_ext(ji,jj)
                  zgamma_b_nd = pdbdz_bl_ext(ji,jj) * pdh(ji,jj) / MAX( av_db_ml(ji,jj), epsln )
                  DO jk = 2, nbld(ji,jj)
                     znd = -1.0_wp * ( gdepw(ji,jj,jk,Kmm) - phbl(ji,jj) ) * ztmp
                     IF ( znd <= zzeta_m ) THEN
                        ! zdtdz(ji,jj,jk) = zdtdz_bl_ext(ji,jj) + zalpha * av_dt_ml(ji,jj) * ztmp * &
                        ! &        EXP( -6.0 * ( znd -zzeta_m )**2 )
                        ! zdsdz(ji,jj,jk) = zdsdz_bl_ext(ji,jj) + zalpha * av_ds_ml(ji,jj) * ztmp * &
                        ! & EXP( -6.0 * ( znd -zzeta_m )**2 )
                        pdbdz(ji,jj,jk) = pdbdz_bl_ext(ji,jj) + palpha(ji,jj) * av_db_ml(ji,jj) * ztmp * &
                           & EXP( -6.0_wp * ( znd -zzeta_m )**2 )
                     ELSE
                        ! zdtdz(ji,jj,jk) =  ztgrad * EXP( -pp_gamma_b * ( znd - zzeta_m )**2 )
                        ! zdsdz(ji,jj,jk) =  zsgrad * EXP( -pp_gamma_b * ( znd - zzeta_m )**2 )
                        pdbdz(ji,jj,jk) =  zbgrad * EXP( -1.0_wp * pp_gamma_b * ( znd - zzeta_m )**2 )
                     END IF
                  END DO
               END IF   ! If no pycnocline pycnocline gradients set to zero
               !
            ELSE   ! Stable conditions
               ! If pycnocline profile only defined when depth steady of increasing.
               IF ( pdhdt(ji,jj) > 0.0_wp ) THEN   ! Depth increasing, or steady.
                  IF ( av_db_bl(ji,jj) > 0.0_wp ) THEN
                     IF ( shol(ji,jj) >= 0.5_wp ) THEN   ! Very stable - 'thick' pycnocline
                        ztmp = 1.0_wp / MAX( phbl(ji,jj), epsln )
                        zbgrad = av_db_bl(ji,jj) * ztmp
                        DO jk = 2, nbld(ji,jj)
                           znd = gdepw(ji,jj,jk,Kmm) * ztmp
                           pdbdz(ji,jj,jk) = zbgrad * EXP( -15.0_wp * ( znd - 0.9_wp )**2 )
                        END DO
                     ELSE   ! Slightly stable - 'thin' pycnoline - needed when stable layer begins to form.
                        ztmp = 1.0_wp / MAX( pdh(ji,jj), epsln )
                        zbgrad = av_db_bl(ji,jj) * ztmp
                        DO jk = 2, nbld(ji,jj)
                           znd = -1.0_wp * ( gdepw(ji,jj,jk,Kmm) - phml(ji,jj) ) * ztmp
                           pdbdz(ji,jj,jk) = zbgrad * EXP( -1.75_wp * ( znd + 0.75_wp )**2 )
                        END DO
                     END IF   ! IF (shol >=0.5)
                  END IF      ! IF (av_db_bl> 0.)
               END IF         ! IF (pdhdt >= 0) pdhdt < 0 not considered since pycnocline profile is zero and profile arrays are
               !              !    intialized to zero
               !
            END IF            ! IF (l_conv)
            !
         END IF   ! IF ( nbld(ji,jj) < mbkt(ji,jj) )
         !
      END_2D
      !
      IF ( ln_dia_pyc_scl ) THEN   ! Output of pycnocline gradient profiles
         CALL zdf_osm_iomput( "zdbdz_pyc", wmask(A2D(0),:) * pdbdz(A2D(0),:) )
      END IF
      !
   END SUBROUTINE zdf_osm_pycnocline_buoyancy_profiles

   SUBROUTINE zdf_osm_diffusivity_viscosity( Kbb, Kmm, pdiffut, pviscos, phbl,   &
      &                                      phml, pdh, pdhdt, pshear,           &
      &                                      pwb_ent, pwb_min )
      !!---------------------------------------------------------------------
      !!           ***  ROUTINE zdf_osm_diffusivity_viscosity  ***
      !!
      !! ** Purpose : Determines the eddy diffusivity and eddy viscosity
      !!              profiles in the mixed layer and the pycnocline.
      !!
      !! ** Method  :
      !!
      !!----------------------------------------------------------------------
      INTEGER,                                 INTENT(in   ) ::   Kbb, Kmm       ! Ocean time-level indices
      REAL(wp), DIMENSION(A2D(nn_hls-1),jpk),  INTENT(inout) ::   pdiffut        ! t-diffusivity
      REAL(wp), DIMENSION(A2D(nn_hls-1),jpk),  INTENT(inout) ::   pviscos        ! Viscosity
      REAL(wp), DIMENSION(A2D(nn_hls-1)),      INTENT(in   ) ::   phbl           ! BL depth
      REAL(wp), DIMENSION(A2D(nn_hls-1)),      INTENT(in   ) ::   phml           ! ML depth
      REAL(wp), DIMENSION(A2D(nn_hls-1)),      INTENT(in   ) ::   pdh            ! Pycnocline depth
      REAL(wp), DIMENSION(A2D(nn_hls-1)),      INTENT(in   ) ::   pdhdt          ! BL depth tendency
      REAL(wp), DIMENSION(A2D(nn_hls-1)),      INTENT(in   ) ::   pshear         ! Shear production
      REAL(wp), DIMENSION(A2D(nn_hls-1)),      INTENT(in   ) ::   pwb_ent        ! Buoyancy entrainment flux
      REAL(wp), DIMENSION(A2D(nn_hls-1)),      INTENT(in   ) ::   pwb_min
      !!
      INTEGER ::   ji, jj, jk   ! Loop indices
      !! Scales used to calculate eddy diffusivity and viscosity profiles
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   zdifml_sc,    zvisml_sc
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   zdifpyc_n_sc, zdifpyc_s_sc
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   zvispyc_n_sc, zvispyc_s_sc
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   zbeta_d_sc,   zbeta_v_sc
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   zb_coup,      zc_coup_vis,  zc_coup_dif
      !!
      REAL(wp) ::   zvel_sc_pyc, zvel_sc_ml, zstab_fac, zz_b
      REAL(wp) ::   za_cubic, zb_d_cubic, zc_d_cubic, zd_d_cubic,   &   ! Coefficients in cubic polynomial specifying diffusivity
         &                    zb_v_cubic, zc_v_cubic, zd_v_cubic        ! and viscosity in pycnocline
      REAL(wp) ::   zznd_ml, zznd_pyc, ztmp
      REAL(wp) ::   zmsku, zmskv
      !!
      REAL(wp), PARAMETER ::   pp_dif_ml     = 0.8_wp,  pp_vis_ml  = 0.375_wp
      REAL(wp), PARAMETER ::   pp_dif_pyc    = 0.15_wp, pp_vis_pyc = 0.142_wp
      REAL(wp), PARAMETER ::   pp_vispyc_shr = 0.15_wp
      !!----------------------------------------------------------------------
      !
      zb_coup(:,:) = 0.0_wp
      !
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         IF ( l_conv(ji,jj) ) THEN
            !
            zvel_sc_pyc = ( 0.15_wp * svstr(ji,jj)**3 + swstrc(ji,jj)**3 + 4.25_wp * pshear(ji,jj) * phbl(ji,jj) )**pthird
            zvel_sc_ml  = ( svstr(ji,jj)**3 + 0.5_wp * swstrc(ji,jj)**3 )**pthird
            zstab_fac   = ( phml(ji,jj) / zvel_sc_ml *   &
               &            ( 1.4_wp - 0.4_wp / ( 1.0_wp + EXP(-3.5_wp * LOG10( -1.0_wp * shol(ji,jj) ) ) )**1.25_wp ) )**2
            !
            zdifml_sc(ji,jj) = pp_dif_ml * phml(ji,jj) * zvel_sc_ml
            zvisml_sc(ji,jj) = pp_vis_ml * zdifml_sc(ji,jj)
            !
            IF ( l_pyc(ji,jj) ) THEN
               zdifpyc_n_sc(ji,jj) = pp_dif_pyc * zvel_sc_ml * pdh(ji,jj)
               zvispyc_n_sc(ji,jj) = 0.09_wp * zvel_sc_pyc * ( 1.0_wp - phbl(ji,jj) / pdh(ji,jj) )**2 *   &
                  &                  ( 0.005_wp  * ( av_u_ml(ji,jj) - av_u_bl(ji,jj) )**2 +     &
                  &                    0.0075_wp * ( av_v_ml(ji,jj) - av_v_bl(ji,jj) )**2 ) /   &
                  &                  pdh(ji,jj)
               zvispyc_n_sc(ji,jj) = pp_vis_pyc * zvel_sc_ml * pdh(ji,jj) + zvispyc_n_sc(ji,jj) * zstab_fac
               !
               IF ( l_shear(ji,jj) .AND. n_ddh(ji,jj) /= 2 ) THEN
                  ztmp = pp_vispyc_shr * ( pshear(ji,jj) * phbl(ji,jj) )**pthird * phbl(ji,jj)
                  zdifpyc_n_sc(ji,jj) = zdifpyc_n_sc(ji,jj) + ztmp
                  zvispyc_n_sc(ji,jj) = zvispyc_n_sc(ji,jj) + ztmp
               ENDIF
               !
               zdifpyc_s_sc(ji,jj) = pwb_ent(ji,jj) + 0.0025_wp * zvel_sc_pyc * ( phbl(ji,jj) / pdh(ji,jj) - 1.0_wp ) *   &
                  &                                   ( av_b_ml(ji,jj) - av_b_bl(ji,jj) )
               zvispyc_s_sc(ji,jj) = 0.09_wp * ( pwb_min(ji,jj) + 0.0025_wp * zvel_sc_pyc *                 &
                  &                                               ( phbl(ji,jj) / pdh(ji,jj) - 1.0_wp ) *   &
                  &                                               ( av_b_ml(ji,jj) - av_b_bl(ji,jj) ) )
               zdifpyc_s_sc(ji,jj) = 0.09_wp * zdifpyc_s_sc(ji,jj) * zstab_fac
               zvispyc_s_sc(ji,jj) = zvispyc_s_sc(ji,jj) * zstab_fac
               !
               zdifpyc_s_sc(ji,jj) = MAX( zdifpyc_s_sc(ji,jj), -0.5_wp * zdifpyc_n_sc(ji,jj) )
               zvispyc_s_sc(ji,jj) = MAX( zvispyc_s_sc(ji,jj), -0.5_wp * zvispyc_n_sc(ji,jj) )
               
               zbeta_d_sc(ji,jj) = 1.0_wp - ( ( zdifpyc_n_sc(ji,jj) + 1.4_wp * zdifpyc_s_sc(ji,jj) ) /   &
                  &                           ( zdifml_sc(ji,jj) + epsln ) )**p2third
               zbeta_v_sc(ji,jj) = 1.0_wp - 2.0_wp * ( zvispyc_n_sc(ji,jj) + zvispyc_s_sc(ji,jj) ) / ( zvisml_sc(ji,jj) + epsln )
            ELSE
               zdifpyc_n_sc(ji,jj) = pp_dif_pyc * zvel_sc_ml * pdh(ji,jj)   ! ag 19/03
               zdifpyc_s_sc(ji,jj) = 0.0_wp   ! ag 19/03
               zvispyc_n_sc(ji,jj) = pp_vis_pyc * zvel_sc_ml * pdh(ji,jj)   ! ag 19/03
               zvispyc_s_sc(ji,jj) = 0.0_wp   ! ag 19/03
               IF(l_coup(ji,jj) ) THEN   ! ag 19/03
                  ! code from SUBROUTINE tke_tke zdftke.F90; uses bottom drag velocity rCdU_bot(ji,jj) = -Cd|ub|
                  !     already calculated at T-points in SUBROUTINE zdf_drg from zdfdrg.F90
                  !  Gives friction velocity sqrt bottom drag/rho_0 i.e. u* = SQRT(rCdU_bot*ub)
                  ! wet-cell averaging ..
                  zmsku = 0.5_wp * ( 2.0_wp - umask(ji-1,jj,mbkt(ji,jj)) * umask(ji,jj,mbkt(ji,jj)) )
                  zmskv = 0.5_wp * ( 2.0_wp - vmask(ji,jj-1,mbkt(ji,jj)) * vmask(ji,jj,mbkt(ji,jj)) )
                  zb_coup(ji,jj) = 0.4_wp * SQRT(-1.0_wp * rCdU_bot(ji,jj) *   &
                     &             SQRT(  ( zmsku*( uu(ji,jj,mbkt(ji,jj),Kbb)+uu(ji-1,jj,mbkt(ji,jj),Kbb) ) )**2   &
                     &                  + ( zmskv*( vv(ji,jj,mbkt(ji,jj),Kbb)+vv(ji,jj-1,mbkt(ji,jj),Kbb) ) )**2  ) )
                  
                  zz_b = -1.0_wp * gdepw(ji,jj,mbkt(ji,jj)+1,Kmm)   ! ag 19/03
                  zc_coup_vis(ji,jj) = -0.5_wp * ( 0.5_wp * zvisml_sc(ji,jj) / phml(ji,jj) - zb_coup(ji,jj) ) /   &
                     &                 ( phml(ji,jj) + zz_b )   ! ag 19/03
                  zz_b = -1.0_wp * phml(ji,jj) + gdepw(ji,jj,mbkt(ji,jj)+1,Kmm)   ! ag 19/03
                  zbeta_v_sc(ji,jj) = 1.0_wp - 2.0_wp * ( zb_coup(ji,jj) * zz_b + zc_coup_vis(ji,jj) * zz_b**2 ) /   &
                     &                                  zvisml_sc(ji,jj)   ! ag 19/03
                  zbeta_d_sc(ji,jj) = 1.0_wp - ( ( zb_coup(ji,jj) * zz_b + zc_coup_vis(ji,jj) * zz_b**2 ) /   &
                     &                           zdifml_sc(ji,jj) )**p2third
                  zc_coup_dif(ji,jj) = 0.5_wp * ( -zdifml_sc(ji,jj) / phml(ji,jj) * ( 1.0_wp - zbeta_d_sc(ji,jj) )**1.5_wp +   &
                     &                 1.5_wp * ( zdifml_sc(ji,jj) / phml(ji,jj) ) * zbeta_d_sc(ji,jj) *   &
                     &                          SQRT( 1.0_wp - zbeta_d_sc(ji,jj) ) - zb_coup(ji,jj) ) / zz_b   ! ag 19/03
               ELSE   ! ag 19/03
                  zbeta_d_sc(ji,jj) = 1.0_wp - ( ( zdifpyc_n_sc(ji,jj) + 1.4_wp * zdifpyc_s_sc(ji,jj) ) /   &
                     &                           ( zdifml_sc(ji,jj) + epsln ) )**p2third   ! ag 19/03
                  zbeta_v_sc(ji,jj) = 1.0_wp - 2.0_wp * ( zvispyc_n_sc(ji,jj) + zvispyc_s_sc(ji,jj) ) /   &
                     &                         ( zvisml_sc(ji,jj) + epsln )   ! ag 19/03
               ENDIF   ! ag 19/03
            ENDIF      ! ag 19/03
         ELSE
            zdifml_sc(ji,jj) = svstr(ji,jj) * phbl(ji,jj) * MAX( EXP ( -1.0_wp * ( shol(ji,jj) / 0.6_wp )**2 ), 0.2_wp)
            zvisml_sc(ji,jj) = zdifml_sc(ji,jj)
         END IF
      END_2D
      !
      DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
         IF ( l_conv(ji,jj) ) THEN
            DO jk = 2, nmld(ji,jj)   ! Mixed layer diffusivity
               zznd_ml = gdepw(ji,jj,jk,Kmm) / phml(ji,jj)
               pdiffut(ji,jj,jk) = zdifml_sc(ji,jj) * zznd_ml * ( 1.0_wp - zbeta_d_sc(ji,jj) * zznd_ml )**1.5
               pviscos(ji,jj,jk) = zvisml_sc(ji,jj) * zznd_ml * ( 1.0_wp - zbeta_v_sc(ji,jj) * zznd_ml ) *   &
                  &                ( 1.0_wp - 0.5_wp * zznd_ml**2 )
            END DO
            !
            ! Coupling to bottom
            !
            IF ( l_coup(ji,jj) ) THEN                                                         ! ag 19/03
               DO jk = mbkt(ji,jj), nmld(ji,jj), -1                                           ! ag 19/03
                  zz_b = -1.0_wp * ( gdepw(ji,jj,jk,Kmm) - gdepw(ji,jj,mbkt(ji,jj)+1,Kmm) )   ! ag 19/03
                  pviscos(ji,jj,jk) = zb_coup(ji,jj) * zz_b + zc_coup_vis(ji,jj) * zz_b**2    ! ag 19/03
                  pdiffut(ji,jj,jk) = zb_coup(ji,jj) * zz_b + zc_coup_dif(ji,jj) * zz_b**2    ! ag 19/03
               END DO                                                                         ! ag 19/03
            ENDIF                                                                             ! ag 19/03
            ! Pycnocline
            IF ( l_pyc(ji,jj) ) THEN 
               ! Diffusivity and viscosity profiles in the pycnocline given by
               ! cubic polynomial. Note, if l_pyc TRUE can't be coupled to seabed.
               za_cubic = 0.5_wp
               zb_d_cubic = -1.75_wp * zdifpyc_s_sc(ji,jj) / zdifpyc_n_sc(ji,jj)
               zd_d_cubic = ( pdh(ji,jj) * zdifml_sc(ji,jj) / phml(ji,jj) * SQRT( 1.0_wp - zbeta_d_sc(ji,jj) ) *   &
                  &           ( 2.5_wp * zbeta_d_sc(ji,jj) - 1.0_wp ) - 0.85_wp * zdifpyc_s_sc(ji,jj) ) /            &
                  &           MAX( zdifpyc_n_sc(ji,jj), 1.0e-8_wp )
               zd_d_cubic = zd_d_cubic - zb_d_cubic - 2.0_wp * ( 1.0_wp - za_cubic  - zb_d_cubic )
               zc_d_cubic = 1.0_wp - za_cubic - zb_d_cubic - zd_d_cubic
               zb_v_cubic = -1.75_wp * zvispyc_s_sc(ji,jj) / zvispyc_n_sc(ji,jj)
               zd_v_cubic = ( 0.5_wp * zvisml_sc(ji,jj) * pdh(ji,jj) / phml(ji,jj) - 0.85_wp * zvispyc_s_sc(ji,jj) ) /   &
                  &           MAX( zvispyc_n_sc(ji,jj), 1.0e-8_wp )
               zd_v_cubic = zd_v_cubic - zb_v_cubic - 2.0_wp * ( 1.0_wp - za_cubic - zb_v_cubic )
               zc_v_cubic = 1.0_wp - za_cubic - zb_v_cubic - zd_v_cubic
               DO jk = nmld(ji,jj) , nbld(ji,jj)
                  zznd_pyc = -1.0_wp * ( gdepw(ji,jj,jk,Kmm) - phbl(ji,jj) ) / MAX(pdh(ji,jj), 1.0e-6_wp )
                  ztmp = ( 1.75_wp * zznd_pyc - 0.15_wp * zznd_pyc**2 - 0.2_wp * zznd_pyc**3 )
                  !
                  pdiffut(ji,jj,jk) = zdifpyc_n_sc(ji,jj) *   &
                     &                ( za_cubic + zb_d_cubic * zznd_pyc + zc_d_cubic * zznd_pyc**2 + zd_d_cubic * zznd_pyc**3 )
                  !
                  pdiffut(ji,jj,jk) = pdiffut(ji,jj,jk) + zdifpyc_s_sc(ji,jj) * ztmp
                  pviscos(ji,jj,jk) = zvispyc_n_sc(ji,jj) *   &
                     &                ( za_cubic + zb_v_cubic * zznd_pyc + zc_v_cubic * zznd_pyc**2 + zd_v_cubic * zznd_pyc**3 )
                  pviscos(ji,jj,jk) = pviscos(ji,jj,jk) + zvispyc_s_sc(ji,jj) * ztmp
               END DO
   !                  IF ( pdhdt(ji,jj) > 0._wp ) THEN
   !                     zdiffut(ji,jj,nbld(ji,jj)+1) = MAX( 0.5 * pdhdt(ji,jj) * e3w(ji,jj,nbld(ji,jj)+1,Kmm), 1.0e-6 )
   !                     zviscos(ji,jj,nbld(ji,jj)+1) = MAX( 0.5 * pdhdt(ji,jj) * e3w(ji,jj,nbld(ji,jj)+1,Kmm), 1.0e-6 )
   !                  ELSE
   !                     zdiffut(ji,jj,nbld(ji,jj)) = 0._wp
   !                     zviscos(ji,jj,nbld(ji,jj)) = 0._wp
   !                  ENDIF
            ENDIF
         ELSE
            ! Stable conditions
            DO jk = 2, nbld(ji,jj)
               zznd_ml = gdepw(ji,jj,jk,Kmm) / phbl(ji,jj)
               pdiffut(ji,jj,jk) = 0.75_wp * zdifml_sc(ji,jj) * zznd_ml * ( 1.0_wp - zznd_ml )**1.5_wp
               pviscos(ji,jj,jk) = 0.375_wp * zvisml_sc(ji,jj) * zznd_ml * ( 1.0_wp - zznd_ml ) * ( 1.0_wp - zznd_ml**2 )
            END DO
            !
            IF ( pdhdt(ji,jj) > 0.0_wp ) THEN
               pdiffut(ji,jj,nbld(ji,jj)) = MAX( pdhdt(ji,jj), 1.0e-6_wp) * e3w(ji, jj, nbld(ji,jj), Kmm)
               pviscos(ji,jj,nbld(ji,jj)) = pdiffut(ji,jj,nbld(ji,jj))
            ENDIF
         ENDIF   ! End if ( l_conv )
         !
      END_2D
      CALL zdf_osm_iomput( "pb_coup", tmask(A2D(0),1) * zb_coup(A2D(0)) )   ! BBL-coupling velocity scale
      !
   END SUBROUTINE zdf_osm_diffusivity_viscosity

   SUBROUTINE zdf_osm_fgr_terms( Kmm, kp_ext, phbl, phml, pdh,                              &
      &                          pdhdt, pshear, pdtdz_bl_ext, pdsdz_bl_ext, pdbdz_bl_ext,   &
      &                          pdiffut, pviscos )
      !!---------------------------------------------------------------------
      !!                 ***  ROUTINE zdf_osm_fgr_terms ***
      !!
      !! ** Purpose : Compute non-gradient terms in flux-gradient relationship
      !!
      !! ** Method  :
      !!
      !!----------------------------------------------------------------------
      INTEGER,                                 INTENT(in   ) ::   Kmm            ! Time-level index
      INTEGER,  DIMENSION(A2D(nn_hls-1)),      INTENT(in   ) ::   kp_ext         ! Offset for external level
      REAL(wp), DIMENSION(A2D(nn_hls-1)),      INTENT(in   ) ::   phbl           ! BL depth
      REAL(wp), DIMENSION(A2D(nn_hls-1)),      INTENT(in   ) ::   phml           ! ML depth
      REAL(wp), DIMENSION(A2D(nn_hls-1)),      INTENT(in   ) ::   pdh            ! Pycnocline depth
      REAL(wp), DIMENSION(A2D(nn_hls-1)),      INTENT(in   ) ::   pdhdt          ! BL depth tendency
      REAL(wp), DIMENSION(A2D(nn_hls-1)),      INTENT(in   ) ::   pshear         ! Shear production
      REAL(wp), DIMENSION(A2D(nn_hls-1)),      INTENT(in   ) ::   pdtdz_bl_ext   ! External temperature gradients
      REAL(wp), DIMENSION(A2D(nn_hls-1)),      INTENT(in   ) ::   pdsdz_bl_ext   ! External salinity gradients
      REAL(wp), DIMENSION(A2D(nn_hls-1)),      INTENT(in   ) ::   pdbdz_bl_ext   ! External buoyancy gradients
      REAL(wp), DIMENSION(A2D(nn_hls-1),jpk),  INTENT(in   ) ::   pdiffut        ! t-diffusivity
      REAL(wp), DIMENSION(A2D(nn_hls-1),jpk),  INTENT(in   ) ::   pviscos        ! Viscosity
      !!
      REAL(wp), DIMENSION(A2D(nn_hls-1))     ::   zalpha_pyc   !
      REAL(wp), DIMENSION(A2D(nn_hls-1),jpk) ::   zdbdz_pyc    ! Parametrised gradient of buoyancy in the pycnocline
      REAL(wp), DIMENSION(:,:,:), ALLOCATABLE ::   z3ddz_pyc_1, z3ddz_pyc_2   ! Pycnocline gradient/shear profiles
      !!
      INTEGER                            ::   ji, jj, jk, jkm_bld, jkf_mld, jkm_mld   ! Loop indices
      INTEGER                            ::   istat                                   ! Memory allocation status
      REAL(wp)                           ::   zznd_d, zznd_ml, zznd_pyc, znd          ! Temporary non-dimensional depths
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   zsc_wth_1,zsc_ws_1                      ! Temporary scales
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   zsc_uw_1, zsc_uw_2                      ! Temporary scales
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   zsc_vw_1, zsc_vw_2                      ! Temporary scales
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   ztau_sc_u                               ! Dissipation timescale at base of WML
      REAL(wp)                           ::   zbuoy_pyc_sc, zdelta_pyc                !
      REAL(wp)                           ::   zl_c,zl_l,zl_eps                        ! Used to calculate turbulence length scale
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   za_cubic, zb_cubic                      ! Coefficients in cubic polynomial specifying
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   zc_cubic, zd_cubic                      !    diffusivity in pycnocline
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   zwt_pyc_sc_1, zws_pyc_sc_1              !
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   zzeta_pyc                               !
      REAL(wp)                           ::   zomega, zvw_max                         !
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   zuw_bse,zvw_bse                         ! Momentum, heat, and salinity fluxes
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   zwth_ent,zws_ent                        !    at the top of the pycnocline
      REAL(wp), DIMENSION(A2D(nn_hls-1)) ::   zsc_wth_pyc, zsc_ws_pyc                 ! Scales for pycnocline transport term
      REAL(wp)                           ::   ztmp                                    !
Loading
Loading full blame...