Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
ELSE
IF( nn_cats_cpl > 1 ) THEN
CALL ctl_stop( 'sbc_cpl_init: use weighted ice option for sn_snd_ttilyr%cldes if not exchanging category fields' )
ENDIF
ENDIF
CASE ( 'weighted ice' )
ssnd(jps_ttilyr)%laction = .TRUE.
IF( TRIM( sn_snd_ttilyr%clcat ) == 'yes' ) ssnd(jps_ttilyr)%nct = nn_cats_cpl
CASE default ; CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_snd_ttilyr%cldes;'//sn_snd_ttilyr%cldes )
END SELECT
ssnd(jps_kice )%clname = 'OIceKn'
SELECT CASE ( TRIM( sn_snd_cond%cldes ) )
CASE ( 'none' )
ssnd(jps_kice)%laction = .FALSE.
CASE ( 'ice only' )
ssnd(jps_kice)%laction = .TRUE.
IF( TRIM( sn_snd_cond%clcat ) == 'yes' ) THEN
ssnd(jps_kice)%nct = nn_cats_cpl
ELSE
IF( nn_cats_cpl > 1 ) THEN
CALL ctl_stop( 'sbc_cpl_init: use weighted ice option for sn_snd_cond%cldes if not exchanging category fields' )
ENDIF
ENDIF
CASE ( 'weighted ice' )
ssnd(jps_kice)%laction = .TRUE.
IF( TRIM( sn_snd_cond%clcat ) == 'yes' ) ssnd(jps_kice)%nct = nn_cats_cpl
CASE default ; CALL ctl_stop( 'sbc_cpl_init: wrong definition of sn_snd_cond%cldes;'//sn_snd_cond%cldes )
END SELECT
!
! ! ------------------------- !
! ! Sea surface height !
! ! ------------------------- !
ssnd(jps_wlev)%clname = 'O_Wlevel' ; IF( TRIM(sn_snd_wlev%cldes) == 'coupled' ) ssnd(jps_wlev)%laction = .TRUE.
! ! ------------------------------- !
! ! OCE-SAS coupling - snd by opa !
! ! ------------------------------- !
ssnd(jps_ssh )%clname = 'O_SSHght'
ssnd(jps_soce )%clname = 'O_SSSal'
ssnd(jps_e3t1st)%clname = 'O_E3T1st'
ssnd(jps_fraqsr)%clname = 'O_FraQsr'
!
IF( nn_components == jp_iam_oce ) THEN
ssnd(:)%laction = .FALSE. ! force default definition in case of opa <-> sas coupling
ssnd( (/jps_toce, jps_soce, jps_ssh, jps_fraqsr, jps_ocx1, jps_ocy1/) )%laction = .TRUE.
ssnd( jps_e3t1st )%laction = .NOT.ln_linssh
! vector definition: not used but cleaner...
ssnd(jps_ocx1)%clgrid = 'U' ! oce components given at U-point
ssnd(jps_ocy1)%clgrid = 'V' ! and V-point
sn_snd_crt%clvgrd = 'U,V'
sn_snd_crt%clvor = 'local grid'
sn_snd_crt%clvref = 'spherical'
!
IF(lwp) THEN ! control print
WRITE(numout,*)
WRITE(numout,*)' sent fields to SAS component '
WRITE(numout,*)' sea surface temperature (T before, Celsius) '
WRITE(numout,*)' sea surface salinity '
WRITE(numout,*)' surface currents U,V on local grid and spherical coordinates'
WRITE(numout,*)' sea surface height '
WRITE(numout,*)' thickness of first ocean T level '
WRITE(numout,*)' fraction of solar net radiation absorbed in the first ocean level'
WRITE(numout,*)
ENDIF
ENDIF
! ! ------------------------------- !
! ! OCE-SAS coupling - snd by sas !
! ! ------------------------------- !
ssnd(jps_sflx )%clname = 'I_SFLX'
ssnd(jps_fice2 )%clname = 'IIceFrc'
ssnd(jps_qsroce)%clname = 'I_QsrOce'
ssnd(jps_qnsoce)%clname = 'I_QnsOce'
ssnd(jps_oemp )%clname = 'IOEvaMPr'
ssnd(jps_otx1 )%clname = 'I_OTaux1'
ssnd(jps_oty1 )%clname = 'I_OTauy1'
ssnd(jps_rnf )%clname = 'I_Runoff'
ssnd(jps_taum )%clname = 'I_TauMod'
!
IF( nn_components == jp_iam_sas ) THEN
IF( .NOT. ln_cpl ) ssnd(:)%laction = .FALSE. ! force default definition in case of opa <-> sas coupling
ssnd( (/jps_qsroce, jps_qnsoce, jps_oemp, jps_fice2, jps_sflx, jps_otx1, jps_oty1, jps_taum/) )%laction = .TRUE.
!
! Change first letter to couple with atmosphere if already coupled with sea_ice
! this is nedeed as each variable name used in the namcouple must be unique:
! for example O_SSTSST sent by OCE to SAS and therefore S_SSTSST sent by SAS to the Atmosphere
DO jn = 1, jpsnd
IF( ssnd(jn)%clname(1:1) == "O" ) ssnd(jn)%clname = "S"//ssnd(jn)%clname(2:LEN(ssnd(jn)%clname))
END DO
!
IF(lwp) THEN ! control print
WRITE(numout,*)
IF( .NOT. ln_cpl ) THEN
WRITE(numout,*)' sent fields to OCE component '
ELSE
WRITE(numout,*)' Additional sent fields to OCE component : '
ENDIF
WRITE(numout,*)' ice cover '
WRITE(numout,*)' oce only EMP '
WRITE(numout,*)' salt flux '
WRITE(numout,*)' mixed oce-ice solar flux '
WRITE(numout,*)' mixed oce-ice non solar flux '
WRITE(numout,*)' wind stress U,V components'
WRITE(numout,*)' wind stress module'
ENDIF
ENDIF
!
! ================================ !
! initialisation of the coupler !
! ================================ !
CALL cpl_define(jprcv, jpsnd, nn_cplmodel)
IF(ln_usecplmask) THEN
xcplmask(:,:,:) = 0.
CALL iom_open( 'cplmask', inum )
CALL iom_get( inum, jpdom_unknown, 'cplmask', xcplmask(1:jpi,1:jpj,1:nn_cplmodel), &
& kstart = (/ mig(1),mjg(1),1 /), kcount = (/ jpi,jpj,nn_cplmodel /) )
CALL iom_close( inum )
ELSE
xcplmask(:,:,:) = 1.
ENDIF
xcplmask(:,:,0) = 1. - SUM( xcplmask(:,:,1:nn_cplmodel), dim = 3 )
!
!
END SUBROUTINE sbc_cpl_init
SUBROUTINE sbc_cpl_rcv( kt, k_fsbc, k_ice, Kbb, Kmm )
!!----------------------------------------------------------------------
!! *** ROUTINE sbc_cpl_rcv ***
!!
!! ** Purpose : provide the stress over the ocean and, if no sea-ice,
!! provide the ocean heat and freshwater fluxes.
!!
!! ** Method : - Receive all the atmospheric fields (stored in frcv array). called at each time step.
!! OASIS controls if there is something do receive or not. nrcvinfo contains the info
!! to know if the field was really received or not
!!
!! --> If ocean stress was really received:
!!
!! - transform the received ocean stress vector from the received
!! referential and grid into an atmosphere-ocean stress in
!! the (i,j) ocean referencial and at the ocean velocity point.
!! The received stress are :
!! - defined by 3 components (if cartesian coordinate)
!! or by 2 components (if spherical)
!! - oriented along geographical coordinate (if eastward-northward)
!! or along the local grid coordinate (if local grid)
!! - given at U- and V-point, resp. if received on 2 grids
!! or at T-point if received on 1 grid
!! Therefore and if necessary, they are successively
!! processed in order to obtain them
!! first as 2 components on the sphere
!! second as 2 components oriented along the local grid
!! third as 2 components on the U,V grid
!!
!! -->
!!
!! - In 'ocean only' case, non solar and solar ocean heat fluxes
!! and total ocean freshwater fluxes
!!
!! ** Method : receive all fields from the atmosphere and transform
!! them into ocean surface boundary condition fields
!!
!! ** Action : update utau, vtau ocean stress at U,V grid
!! taum wind stress module at T-point
!! wndm wind speed module at T-point over free ocean or leads in presence of sea-ice
!! qns non solar heat fluxes including emp heat content (ocean only case)
!! and the latent heat flux of solid precip. melting
!! qsr solar ocean heat fluxes (ocean only case)
!! emp upward mass flux [evap. - precip. (- runoffs) (- calving)] (ocean only case)
!!----------------------------------------------------------------------
USE zdf_oce, ONLY : ln_zdfswm
!
INTEGER, INTENT(in) :: kt ! ocean model time step index
INTEGER, INTENT(in) :: k_fsbc ! frequency of sbc (-> ice model) computation
INTEGER, INTENT(in) :: k_ice ! ice management in the sbc (=0/1/2/3)
INTEGER, INTENT(in) :: Kbb, Kmm ! ocean model time level indices
!!
LOGICAL :: llnewtx, llnewtau ! update wind stress components and module??
INTEGER :: ji, jj, jn ! dummy loop indices
INTEGER :: isec ! number of seconds since nit000 (assuming rdt did not change since nit000)
REAL(wp) :: zcumulneg, zcumulpos ! temporary scalars
REAL(wp) :: zcoef ! temporary scalar
REAL(wp) :: zrhoa = 1.22 ! Air density kg/m3
REAL(wp) :: zcdrag = 1.5e-3 ! drag coefficient
REAL(wp) :: zzx, zzy ! temporary variables

Guillaume Samson
committed
REAL(wp) :: r1_grau ! = 1.e0 / (grav * rho0)
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
REAL(wp), DIMENSION(jpi,jpj) :: ztx, zty, zmsk, zemp, zqns, zqsr, zcloud_fra
!!----------------------------------------------------------------------
!
IF( kt == nit000 ) THEN
! cannot be done in the init phase when we use agrif as cpl_freq requires that oasis_enddef is done
ncpl_qsr_freq = cpl_freq( 'O_QsrOce' ) + cpl_freq( 'O_QsrMix' ) + cpl_freq( 'I_QsrOce' ) + cpl_freq( 'I_QsrMix' )
IF( ln_dm2dc .AND. ncpl_qsr_freq /= 86400 ) &
& CALL ctl_stop( 'sbc_cpl_rcv: diurnal cycle reconstruction (ln_dm2dc) needs daily couping for solar radiation' )
IF ( ln_wave .AND. nn_components == 0 ) THEN
ncpl_qsr_freq = 1;
WRITE(numout,*) 'ncpl_qsr_freq is set to 1 when coupling NEMO with wave (without SAS) '
ENDIF
ENDIF
!
IF( ln_mixcpl ) zmsk(:,:) = 1. - xcplmask(:,:,0)
!
! ! ======================================================= !
! ! Receive all the atmos. fields (including ice information)
! ! ======================================================= !
isec = ( kt - nit000 ) * NINT( rn_Dt ) ! date of exchanges
DO jn = 1, jprcv ! received fields sent by the atmosphere
IF( srcv(jn)%laction ) CALL cpl_rcv( jn, isec, frcv(jn)%z3, xcplmask(:,:,1:nn_cplmodel), nrcvinfo(jn) )
END DO
! ! ========================= !
IF( srcv(jpr_otx1)%laction ) THEN ! ocean stress components !
! ! ========================= !
! define frcv(jpr_otx1)%z3(:,:,1) and frcv(jpr_oty1)%z3(:,:,1): stress at U/V point along model grid
! => need to be done only when we receive the field
IF( nrcvinfo(jpr_otx1) == OASIS_Rcv ) THEN
!
IF( TRIM( sn_rcv_tau%clvref ) == 'cartesian' ) THEN ! 2 components on the sphere
! ! (cartesian to spherical -> 3 to 2 components)
!
CALL geo2oce( frcv(jpr_otx1)%z3(:,:,1), frcv(jpr_oty1)%z3(:,:,1), frcv(jpr_otz1)%z3(:,:,1), &
& srcv(jpr_otx1)%clgrid, ztx, zty )
frcv(jpr_otx1)%z3(:,:,1) = ztx(:,:) ! overwrite 1st comp. on the 1st grid
frcv(jpr_oty1)%z3(:,:,1) = zty(:,:) ! overwrite 2nd comp. on the 1st grid
!
IF( srcv(jpr_otx2)%laction ) THEN
CALL geo2oce( frcv(jpr_otx2)%z3(:,:,1), frcv(jpr_oty2)%z3(:,:,1), frcv(jpr_otz2)%z3(:,:,1), &
& srcv(jpr_otx2)%clgrid, ztx, zty )
frcv(jpr_otx2)%z3(:,:,1) = ztx(:,:) ! overwrite 1st comp. on the 2nd grid
frcv(jpr_oty2)%z3(:,:,1) = zty(:,:) ! overwrite 2nd comp. on the 2nd grid
ENDIF
!
ENDIF
!
IF( TRIM( sn_rcv_tau%clvor ) == 'eastward-northward' ) THEN ! 2 components oriented along the local grid
! ! (geographical to local grid -> rotate the components)
CALL rot_rep( frcv(jpr_otx1)%z3(:,:,1), frcv(jpr_oty1)%z3(:,:,1), srcv(jpr_otx1)%clgrid, 'en->i', ztx )
IF( srcv(jpr_otx2)%laction ) THEN
CALL rot_rep( frcv(jpr_otx2)%z3(:,:,1), frcv(jpr_oty2)%z3(:,:,1), srcv(jpr_otx2)%clgrid, 'en->j', zty )
ELSE
CALL rot_rep( frcv(jpr_otx1)%z3(:,:,1), frcv(jpr_oty1)%z3(:,:,1), srcv(jpr_otx1)%clgrid, 'en->j', zty )
ENDIF
frcv(jpr_otx1)%z3(:,:,1) = ztx(:,:) ! overwrite 1st component on the 1st grid
frcv(jpr_oty1)%z3(:,:,1) = zty(:,:) ! overwrite 2nd component on the 2nd grid
ENDIF
!
IF( srcv(jpr_otx1)%clgrid == 'T' ) THEN
DO_2D( 0, 0, 0, 0 ) ! T ==> (U,V)
frcv(jpr_otx1)%z3(ji,jj,1) = 0.5 * ( frcv(jpr_otx1)%z3(ji+1,jj ,1) + frcv(jpr_otx1)%z3(ji,jj,1) )
frcv(jpr_oty1)%z3(ji,jj,1) = 0.5 * ( frcv(jpr_oty1)%z3(ji ,jj+1,1) + frcv(jpr_oty1)%z3(ji,jj,1) )
END_2D
CALL lbc_lnk( 'sbccpl', frcv(jpr_otx1)%z3(:,:,1), 'U', -1.0_wp, frcv(jpr_oty1)%z3(:,:,1), 'V', -1.0_wp )
ENDIF
llnewtx = .TRUE.
ELSE
llnewtx = .FALSE.
ENDIF
! ! ========================= !
ELSE ! No dynamical coupling !
! ! ========================= !
frcv(jpr_otx1)%z3(:,:,1) = 0.e0 ! here simply set to zero
frcv(jpr_oty1)%z3(:,:,1) = 0.e0 ! an external read in a file can be added instead
llnewtx = .TRUE.
!
ENDIF
! ! ========================= !
! ! wind stress module ! (taum)
! ! ========================= !
IF( .NOT. srcv(jpr_taum)%laction ) THEN ! compute wind stress module from its components if not received
! => need to be done only when otx1 was changed
IF( llnewtx ) THEN
DO_2D( 0, 0, 0, 0 )
zzx = frcv(jpr_otx1)%z3(ji-1,jj ,1) + frcv(jpr_otx1)%z3(ji,jj,1)
zzy = frcv(jpr_oty1)%z3(ji ,jj-1,1) + frcv(jpr_oty1)%z3(ji,jj,1)
frcv(jpr_taum)%z3(ji,jj,1) = 0.5 * SQRT( zzx * zzx + zzy * zzy )
END_2D
CALL lbc_lnk( 'sbccpl', frcv(jpr_taum)%z3(:,:,1), 'T', 1.0_wp )
llnewtau = .TRUE.
ELSE
llnewtau = .FALSE.
ENDIF
ELSE
llnewtau = nrcvinfo(jpr_taum) == OASIS_Rcv
! Stress module can be negative when received (interpolation problem)
IF( llnewtau ) THEN
frcv(jpr_taum)%z3(:,:,1) = MAX( 0._wp, frcv(jpr_taum)%z3(:,:,1) )
ENDIF
ENDIF
!
! ! ========================= !
! ! 10 m wind speed ! (wndm)
! ! ========================= !
IF( .NOT. srcv(jpr_w10m)%laction ) THEN ! compute wind spreed from wind stress module if not received
! => need to be done only when taumod was changed
IF( llnewtau ) THEN
zcoef = 1. / ( zrhoa * zcdrag )
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
frcv(jpr_w10m)%z3(ji,jj,1) = SQRT( frcv(jpr_taum)%z3(ji,jj,1) * zcoef )
END_2D
ENDIF
ENDIF
!!$ ! ! ========================= !
!!$ SELECT CASE( TRIM( sn_rcv_clouds%cldes ) ) ! cloud fraction !
!!$ ! ! ========================= !
!!$ cloud_fra(:,:) = frcv(jpr_clfra)*z3(:,:,1)
!!$ END SELECT
!!$
zcloud_fra(:,:) = pp_cldf ! should be real cloud fraction instead (as in the bulk) but needs to be read from atm.
IF( ln_mixcpl ) THEN
cloud_fra(:,:) = cloud_fra(:,:) * xcplmask(:,:,0) + zcloud_fra(:,:)* zmsk(:,:)
ELSE
cloud_fra(:,:) = zcloud_fra(:,:)
ENDIF
! ! ========================= !
! u(v)tau and taum will be modified by ice model
! -> need to be reset before each call of the ice/fsbc
IF( MOD( kt-1, k_fsbc ) == 0 ) THEN
!
IF( ln_mixcpl ) THEN
utau(:,:) = utau(:,:) * xcplmask(:,:,0) + frcv(jpr_otx1)%z3(:,:,1) * zmsk(:,:)
vtau(:,:) = vtau(:,:) * xcplmask(:,:,0) + frcv(jpr_oty1)%z3(:,:,1) * zmsk(:,:)
taum(:,:) = taum(:,:) * xcplmask(:,:,0) + frcv(jpr_taum)%z3(:,:,1) * zmsk(:,:)
wndm(:,:) = wndm(:,:) * xcplmask(:,:,0) + frcv(jpr_w10m)%z3(:,:,1) * zmsk(:,:)
ELSE
utau(:,:) = frcv(jpr_otx1)%z3(:,:,1)
vtau(:,:) = frcv(jpr_oty1)%z3(:,:,1)
taum(:,:) = frcv(jpr_taum)%z3(:,:,1)
wndm(:,:) = frcv(jpr_w10m)%z3(:,:,1)
ENDIF
CALL iom_put( "taum_oce", taum ) ! output wind stress module
!
ENDIF
! ! ================== !
! ! atmosph. CO2 (ppm) !
! ! ================== !
IF( srcv(jpr_co2)%laction ) atm_co2(:,:) = frcv(jpr_co2)%z3(:,:,1)
!
! ! ========================= !
! ! Mean Sea Level Pressure ! (taum)
! ! ========================= !
IF( srcv(jpr_mslp)%laction ) THEN ! UKMO SHELF effect of atmospheric pressure on SSH
IF( kt /= nit000 ) ssh_ibb(:,:) = ssh_ib(:,:) !* Swap of ssh_ib fields
r1_grau = 1.e0 / (grav * rho0) !* constant for optimization
ssh_ib(:,:) = - ( frcv(jpr_mslp)%z3(:,:,1) - rpref ) * r1_grau ! equivalent ssh (inverse barometer)
apr (:,:) = frcv(jpr_mslp)%z3(:,:,1) !atmospheric pressure
IF( kt == nit000 ) ssh_ibb(:,:) = ssh_ib(:,:) ! correct this later (read from restart if possible)
ENDIF
!
IF( ln_sdw ) THEN ! Stokes Drift correction activated
! ! ========================= !
! ! Stokes drift u !
! ! ========================= !
IF( srcv(jpr_sdrftx)%laction ) ut0sd(:,:) = frcv(jpr_sdrftx)%z3(:,:,1)
!
! ! ========================= !
! ! Stokes drift v !
! ! ========================= !
IF( srcv(jpr_sdrfty)%laction ) vt0sd(:,:) = frcv(jpr_sdrfty)%z3(:,:,1)
!
! ! ========================= !
! ! Wave mean period !
! ! ========================= !
IF( srcv(jpr_wper)%laction ) wmp(:,:) = frcv(jpr_wper)%z3(:,:,1)
!
! ! ========================= !
! ! Significant wave height !
! ! ========================= !
IF( srcv(jpr_hsig)%laction ) hsw(:,:) = frcv(jpr_hsig)%z3(:,:,1)
!
! ! ========================= !
! ! Vertical mixing Qiao !
! ! ========================= !
IF( srcv(jpr_wnum)%laction .AND. ln_zdfswm ) wnum(:,:) = frcv(jpr_wnum)%z3(:,:,1)
! Calculate the 3D Stokes drift both in coupled and not fully uncoupled mode
IF( srcv(jpr_sdrftx)%laction .OR. srcv(jpr_sdrfty)%laction .OR. &
srcv(jpr_wper)%laction .OR. srcv(jpr_hsig)%laction ) THEN
CALL sbc_stokes( Kmm )
ENDIF
ENDIF
! ! ========================= !
! ! Stress adsorbed by waves !
! ! ========================= !
IF( srcv(jpr_wstrf)%laction .AND. ln_tauoc ) tauoc_wave(:,:) = frcv(jpr_wstrf)%z3(:,:,1)
!
! ! ========================= !
! ! Wave drag coefficient !
! ! ========================= !
IF( srcv(jpr_wdrag)%laction .AND. ln_cdgw ) cdn_wave(:,:) = frcv(jpr_wdrag)%z3(:,:,1)
!
! ! ========================= !
! ! Chranock coefficient !
! ! ========================= !
IF( srcv(jpr_charn)%laction .AND. ln_charn ) charn(:,:) = frcv(jpr_charn)%z3(:,:,1)
!
! ! ========================= !
! ! net wave-supported stress !
! ! ========================= !
IF( srcv(jpr_tawx)%laction .AND. ln_taw ) tawx(:,:) = frcv(jpr_tawx)%z3(:,:,1)
IF( srcv(jpr_tawy)%laction .AND. ln_taw ) tawy(:,:) = frcv(jpr_tawy)%z3(:,:,1)
!
! ! ========================= !
! !wave to ocean momentum flux!
! ! ========================= !
IF( srcv(jpr_twox)%laction .AND. ln_taw ) twox(:,:) = frcv(jpr_twox)%z3(:,:,1)
IF( srcv(jpr_twoy)%laction .AND. ln_taw ) twoy(:,:) = frcv(jpr_twoy)%z3(:,:,1)
!
! ! ========================= !
! ! wave TKE flux at sfc !
! ! ========================= !
IF( srcv(jpr_phioc)%laction .AND. ln_phioc ) phioc(:,:) = frcv(jpr_phioc)%z3(:,:,1)
!
! ! ========================= !
! ! Bernoulli head !
! ! ========================= !
IF( srcv(jpr_bhd)%laction .AND. ln_bern_srfc ) bhd_wave(:,:) = frcv(jpr_bhd)%z3(:,:,1)
!
! ! ========================= !
! ! Stokes transport u dir !
! ! ========================= !
IF( srcv(jpr_tusd)%laction .AND. ln_breivikFV_2016 ) tusd(:,:) = frcv(jpr_tusd)%z3(:,:,1)
!
! ! ========================= !
! ! Stokes transport v dir !
! ! ========================= !
IF( srcv(jpr_tvsd)%laction .AND. ln_breivikFV_2016 ) tvsd(:,:) = frcv(jpr_tvsd)%z3(:,:,1)
!
! Fields received by SAS when OASIS coupling
! (arrays no more filled at sbcssm stage)
! ! ================== !
! ! SSS !
! ! ================== !
IF( srcv(jpr_soce)%laction ) THEN ! received by sas in case of opa <-> sas coupling
sss_m(:,:) = frcv(jpr_soce)%z3(:,:,1)
CALL iom_put( 'sss_m', sss_m )
ENDIF
!
! ! ================== !
! ! SST !
! ! ================== !
IF( srcv(jpr_toce)%laction ) THEN ! received by sas in case of opa <-> sas coupling
sst_m(:,:) = frcv(jpr_toce)%z3(:,:,1)
IF( srcv(jpr_soce)%laction .AND. l_useCT ) THEN ! make sure that sst_m is the potential temperature
sst_m(:,:) = eos_pt_from_ct( sst_m(:,:), sss_m(:,:) )
ENDIF
ENDIF
! ! ================== !
! ! SSH !
! ! ================== !
IF( srcv(jpr_ssh )%laction ) THEN ! received by sas in case of opa <-> sas coupling
ssh_m(:,:) = frcv(jpr_ssh )%z3(:,:,1)
CALL iom_put( 'ssh_m', ssh_m )
ENDIF
! ! ================== !
! ! surface currents !
! ! ================== !
IF( srcv(jpr_ocx1)%laction ) THEN ! received by sas in case of opa <-> sas coupling
ssu_m(:,:) = frcv(jpr_ocx1)%z3(:,:,1)
uu(:,:,1,Kbb) = ssu_m(:,:) ! will be used in icestp in the call of ice_forcing_tau
uu(:,:,1,Kmm) = ssu_m(:,:) ! will be used in sbc_cpl_snd if atmosphere coupling
CALL iom_put( 'ssu_m', ssu_m )
ENDIF
IF( srcv(jpr_ocy1)%laction ) THEN
ssv_m(:,:) = frcv(jpr_ocy1)%z3(:,:,1)
vv(:,:,1,Kbb) = ssv_m(:,:) ! will be used in icestp in the call of ice_forcing_tau
vv(:,:,1,Kmm) = ssv_m(:,:) ! will be used in sbc_cpl_snd if atmosphere coupling
CALL iom_put( 'ssv_m', ssv_m )
ENDIF
! ! ======================== !
! ! first T level thickness !
! ! ======================== !
IF( srcv(jpr_e3t1st )%laction ) THEN ! received by sas in case of opa <-> sas coupling
e3t_m(:,:) = frcv(jpr_e3t1st )%z3(:,:,1)
CALL iom_put( 'e3t_m', e3t_m(:,:) )
ENDIF
! ! ================================ !
! ! fraction of solar net radiation !
! ! ================================ !
IF( srcv(jpr_fraqsr)%laction ) THEN ! received by sas in case of opa <-> sas coupling
frq_m(:,:) = frcv(jpr_fraqsr)%z3(:,:,1)
CALL iom_put( 'frq_m', frq_m )
ENDIF
! ! ========================= !
IF( k_ice <= 1 .AND. MOD( kt-1, k_fsbc ) == 0 ) THEN ! heat & freshwater fluxes ! (Ocean only case)
! ! ========================= !
!
! ! total freshwater fluxes over the ocean (emp)
IF( srcv(jpr_oemp)%laction .OR. srcv(jpr_rain)%laction ) THEN
SELECT CASE( TRIM( sn_rcv_emp%cldes ) ) ! evaporation - precipitation
CASE( 'conservative' )
zemp(:,:) = frcv(jpr_tevp)%z3(:,:,1) - ( frcv(jpr_rain)%z3(:,:,1) + frcv(jpr_snow)%z3(:,:,1) )
CASE( 'oce only', 'oce and ice' )
zemp(:,:) = frcv(jpr_oemp)%z3(:,:,1)
CASE default
CALL ctl_stop( 'sbc_cpl_rcv: wrong definition of sn_rcv_emp%cldes' )
END SELECT
ELSE
zemp(:,:) = 0._wp
ENDIF
!
! ! runoffs and calving (added in emp)
IF( srcv(jpr_rnf)%laction ) rnf(:,:) = frcv(jpr_rnf)%z3(:,:,1)
IF( srcv(jpr_cal)%laction ) zemp(:,:) = zemp(:,:) - frcv(jpr_cal)%z3(:,:,1)
IF( srcv(jpr_icb)%laction ) THEN
fwficb(:,:) = frcv(jpr_icb)%z3(:,:,1)
rnf(:,:) = rnf(:,:) + fwficb(:,:) ! iceberg added to runfofs
ENDIF
!
! ice shelf fwf
IF( srcv(jpr_isf)%laction ) THEN
fwfisf_oasis(:,:) = frcv(jpr_isf)%z3(:,:,1) ! fresh water flux from the isf to the ocean ( > 0 = melting )
END IF
IF( ln_mixcpl ) THEN ; emp(:,:) = emp(:,:) * xcplmask(:,:,0) + zemp(:,:) * zmsk(:,:)
ELSE ; emp(:,:) = zemp(:,:)
ENDIF
!
! ! non solar heat flux over the ocean (qns)
IF( srcv(jpr_qnsoce)%laction ) THEN ; zqns(:,:) = frcv(jpr_qnsoce)%z3(:,:,1)
ELSE IF( srcv(jpr_qnsmix)%laction ) THEN ; zqns(:,:) = frcv(jpr_qnsmix)%z3(:,:,1)
ELSE ; zqns(:,:) = 0._wp
ENDIF
! update qns over the free ocean with:
IF( nn_components /= jp_iam_oce ) THEN
zqns(:,:) = zqns(:,:) - zemp(:,:) * sst_m(:,:) * rcp ! remove heat content due to mass flux (assumed to be at SST)
IF( srcv(jpr_snow )%laction ) THEN
zqns(:,:) = zqns(:,:) - frcv(jpr_snow)%z3(:,:,1) * rLfus ! energy for melting solid precipitation over the free ocean
ENDIF
ENDIF
!
IF( srcv(jpr_icb)%laction ) zqns(:,:) = zqns(:,:) - frcv(jpr_icb)%z3(:,:,1) * rLfus ! remove heat content associated to iceberg melting
!
IF( ln_mixcpl ) THEN ; qns(:,:) = qns(:,:) * xcplmask(:,:,0) + zqns(:,:) * zmsk(:,:)
ELSE ; qns(:,:) = zqns(:,:)
ENDIF
! ! solar flux over the ocean (qsr)
IF ( srcv(jpr_qsroce)%laction ) THEN ; zqsr(:,:) = frcv(jpr_qsroce)%z3(:,:,1)
ELSE IF( srcv(jpr_qsrmix)%laction ) then ; zqsr(:,:) = frcv(jpr_qsrmix)%z3(:,:,1)
ELSE ; zqsr(:,:) = 0._wp
ENDIF
IF( ln_dm2dc .AND. ln_cpl ) zqsr(:,:) = sbc_dcy( zqsr ) ! modify qsr to include the diurnal cycle
IF( ln_mixcpl ) THEN ; qsr(:,:) = qsr(:,:) * xcplmask(:,:,0) + zqsr(:,:) * zmsk(:,:)
ELSE ; qsr(:,:) = zqsr(:,:)
ENDIF
!
! salt flux over the ocean (received by opa in case of opa <-> sas coupling)
IF( srcv(jpr_sflx )%laction ) sfx(:,:) = frcv(jpr_sflx )%z3(:,:,1)
! Ice cover (received by opa in case of opa <-> sas coupling)
IF( srcv(jpr_fice )%laction ) fr_i(:,:) = frcv(jpr_fice )%z3(:,:,1)
!
ENDIF
!
END SUBROUTINE sbc_cpl_rcv
SUBROUTINE sbc_cpl_ice_tau( p_taui, p_tauj )
!!----------------------------------------------------------------------
!! *** ROUTINE sbc_cpl_ice_tau ***
!!
!! ** Purpose : provide the stress over sea-ice in coupled mode
!!
!! ** Method : transform the received stress from the atmosphere into
!! an atmosphere-ice stress in the (i,j) ocean referencial
!! and at the velocity point of the sea-ice model:
!! 'C'-grid : i- (j-) components given at U- (V-) point
!!
!! The received stress are :
!! - defined by 3 components (if cartesian coordinate)
!! or by 2 components (if spherical)
!! - oriented along geographical coordinate (if eastward-northward)
!! or along the local grid coordinate (if local grid)
!! - given at U- and V-point, resp. if received on 2 grids
!! or at a same point (T or I) if received on 1 grid
!! Therefore and if necessary, they are successively
!! processed in order to obtain them
!! first as 2 components on the sphere
!! second as 2 components oriented along the local grid
!! third as 2 components on the ice grid point
!!
!! Except in 'oce and ice' case, only one vector stress field
!! is received. It has already been processed in sbc_cpl_rcv
!! so that it is now defined as (i,j) components given at U-
!! and V-points, respectively.
!!
!! ** Action : return ptau_i, ptau_j, the stress over the ice
!!----------------------------------------------------------------------
REAL(wp), INTENT(inout), DIMENSION(:,:) :: p_taui ! i- & j-components of atmos-ice stress [N/m2]
REAL(wp), INTENT(inout), DIMENSION(:,:) :: p_tauj ! at I-point (B-grid) or U & V-point (C-grid)
!!
INTEGER :: ji, jj ! dummy loop indices
INTEGER :: itx ! index of taux over ice
REAL(wp) :: zztmp1, zztmp2
REAL(wp), DIMENSION(jpi,jpj) :: ztx, zty
!!----------------------------------------------------------------------
!
#if defined key_si3 || defined key_cice
!
IF( srcv(jpr_itx1)%laction ) THEN ; itx = jpr_itx1
ELSE ; itx = jpr_otx1
ENDIF
! do something only if we just received the stress from atmosphere
IF( nrcvinfo(itx) == OASIS_Rcv ) THEN
! ! ======================= !
IF( srcv(jpr_itx1)%laction ) THEN ! ice stress received !
! ! ======================= !
!
IF( TRIM( sn_rcv_tau%clvref ) == 'cartesian' ) THEN ! 2 components on the sphere
! ! (cartesian to spherical -> 3 to 2 components)
CALL geo2oce( frcv(jpr_itx1)%z3(:,:,1), frcv(jpr_ity1)%z3(:,:,1), frcv(jpr_itz1)%z3(:,:,1), &
& srcv(jpr_itx1)%clgrid, ztx, zty )
frcv(jpr_itx1)%z3(:,:,1) = ztx(:,:) ! overwrite 1st comp. on the 1st grid
frcv(jpr_ity1)%z3(:,:,1) = zty(:,:) ! overwrite 2nd comp. on the 1st grid
!
IF( srcv(jpr_itx2)%laction ) THEN
CALL geo2oce( frcv(jpr_itx2)%z3(:,:,1), frcv(jpr_ity2)%z3(:,:,1), frcv(jpr_itz2)%z3(:,:,1), &
& srcv(jpr_itx2)%clgrid, ztx, zty )
frcv(jpr_itx2)%z3(:,:,1) = ztx(:,:) ! overwrite 1st comp. on the 2nd grid
frcv(jpr_ity2)%z3(:,:,1) = zty(:,:) ! overwrite 2nd comp. on the 2nd grid
ENDIF
!
ENDIF
!
IF( TRIM( sn_rcv_tau%clvor ) == 'eastward-northward' ) THEN ! 2 components oriented along the local grid
! ! (geographical to local grid -> rotate the components)
CALL rot_rep( frcv(jpr_itx1)%z3(:,:,1), frcv(jpr_ity1)%z3(:,:,1), srcv(jpr_itx1)%clgrid, 'en->i', ztx )
IF( srcv(jpr_itx2)%laction ) THEN
CALL rot_rep( frcv(jpr_itx2)%z3(:,:,1), frcv(jpr_ity2)%z3(:,:,1), srcv(jpr_itx2)%clgrid, 'en->j', zty )
ELSE
CALL rot_rep( frcv(jpr_itx1)%z3(:,:,1), frcv(jpr_ity1)%z3(:,:,1), srcv(jpr_itx1)%clgrid, 'en->j', zty )
ENDIF
frcv(jpr_itx1)%z3(:,:,1) = ztx(:,:) ! overwrite 1st component on the 1st grid
frcv(jpr_ity1)%z3(:,:,1) = zty(:,:) ! overwrite 2nd component on the 1st grid
ENDIF
! ! ======================= !
ELSE ! use ocean stress !
! ! ======================= !
frcv(jpr_itx1)%z3(:,:,1) = frcv(jpr_otx1)%z3(:,:,1)
frcv(jpr_ity1)%z3(:,:,1) = frcv(jpr_oty1)%z3(:,:,1)
!
ENDIF
! ! ======================= !
! ! put on ice grid !
! ! ======================= !
!
! j+1 j -----V---F
! ice stress on ice velocity point ! |
! (C-grid ==>(U,V)) j | T U
! | |
! j j-1 -I-------|
! (for I) | |
! i-1 i i
! i i+1 (for I)
SELECT CASE ( srcv(jpr_itx1)%clgrid )
CASE( 'U' )
p_taui(:,:) = frcv(jpr_itx1)%z3(:,:,1) ! (U,V) ==> (U,V)
p_tauj(:,:) = frcv(jpr_ity1)%z3(:,:,1)
CASE( 'T' )
DO_2D( 0, 0, 0, 0 ) ! T ==> (U,V)
! take care of the land-sea mask to avoid "pollution" of coastal stress. p[uv]taui used in frazil and rheology
zztmp1 = 0.5_wp * ( 2. - umask(ji,jj,1) ) * MAX( tmask(ji,jj,1),tmask(ji+1,jj ,1) )
zztmp2 = 0.5_wp * ( 2. - vmask(ji,jj,1) ) * MAX( tmask(ji,jj,1),tmask(ji ,jj+1,1) )
p_taui(ji,jj) = zztmp1 * ( frcv(jpr_itx1)%z3(ji+1,jj ,1) + frcv(jpr_itx1)%z3(ji,jj,1) )
p_tauj(ji,jj) = zztmp2 * ( frcv(jpr_ity1)%z3(ji ,jj+1,1) + frcv(jpr_ity1)%z3(ji,jj,1) )
END_2D
CALL lbc_lnk( 'sbccpl', p_taui, 'U', -1._wp, p_tauj, 'V', -1._wp )
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
END SELECT
ENDIF
!
#endif
!
END SUBROUTINE sbc_cpl_ice_tau
SUBROUTINE sbc_cpl_ice_flx( kt, picefr, palbi, psst, pist, phs, phi )
!!----------------------------------------------------------------------
!! *** ROUTINE sbc_cpl_ice_flx ***
!!
!! ** Purpose : provide the heat and freshwater fluxes of the ocean-ice system
!!
!! ** Method : transform the fields received from the atmosphere into
!! surface heat and fresh water boundary condition for the
!! ice-ocean system. The following fields are provided:
!! * total non solar, solar and freshwater fluxes (qns_tot,
!! qsr_tot and emp_tot) (total means weighted ice-ocean flux)
!! NB: emp_tot include runoffs and calving.
!! * fluxes over ice (qns_ice, qsr_ice, emp_ice) where
!! emp_ice = sublimation - solid precipitation as liquid
!! precipitation are re-routed directly to the ocean and
!! calving directly enter the ocean (runoffs are read but included in trasbc.F90)
!! * solid precipitation (sprecip), used to add to qns_tot
!! the heat lost associated to melting solid precipitation
!! over the ocean fraction.
!! * heat content of rain, snow and evap can also be provided,
!! otherwise heat flux associated with these mass flux are
!! guessed (qemp_oce, qemp_ice)
!!
!! - the fluxes have been separated from the stress as
!! (a) they are updated at each ice time step compare to
!! an update at each coupled time step for the stress, and
!! (b) the conservative computation of the fluxes over the
!! sea-ice area requires the knowledge of the ice fraction
!! after the ice advection and before the ice thermodynamics,
!! so that the stress is updated before the ice dynamics
!! while the fluxes are updated after it.
!!
!! ** Details
!! qns_tot = (1-a) * qns_oce + a * qns_ice => provided
!! + qemp_oce + qemp_ice => recalculated and added up to qns
!!
!! qsr_tot = (1-a) * qsr_oce + a * qsr_ice => provided
!!
!! emp_tot = emp_oce + emp_ice => calving is provided and added to emp_tot (and emp_oce).
!! runoff (which includes rivers+icebergs) and iceshelf
!! are provided but not included in emp here. Only runoff will
!! be included in emp in other parts of NEMO code
!!
!! ** Note : In case of the ice-atm coupling with conduction fluxes (such as Jules interface for the Met-Office),
!! qsr_ice and qns_ice are not provided and they are not supposed to be used in the ice code.
!! However, by precaution we also "fake" qns_ice and qsr_ice this way:
!! qns_ice = qml_ice + qcn_ice ??
!! qsr_ice = qtr_ice_top ??
!!
!! ** Action : update at each nf_ice time step:
!! qns_tot, qsr_tot non-solar and solar total heat fluxes
!! qns_ice, qsr_ice non-solar and solar heat fluxes over the ice
!! emp_tot total evaporation - precipitation(liquid and solid) (-calving)
!! emp_ice ice sublimation - solid precipitation over the ice
!! dqns_ice d(non-solar heat flux)/d(Temperature) over the ice
!! sprecip solid precipitation over the ocean
!!----------------------------------------------------------------------
INTEGER, INTENT(in) :: kt ! ocean model time step index (only for a_i_last_couple)
REAL(wp), INTENT(in) , DIMENSION(:,:) :: picefr ! ice fraction [0 to 1]
! !! ! optional arguments, used only in 'mixed oce-ice' case or for Met-Office coupling
REAL(wp), INTENT(in) , DIMENSION(:,:,:), OPTIONAL :: palbi ! all skies ice albedo
REAL(wp), INTENT(in) , DIMENSION(:,: ), OPTIONAL :: psst ! sea surface temperature [Celsius]
REAL(wp), INTENT(inout), DIMENSION(:,:,:), OPTIONAL :: pist ! ice surface temperature [Kelvin] => inout for Met-Office
REAL(wp), INTENT(in) , DIMENSION(:,:,:), OPTIONAL :: phs ! snow depth [m]
REAL(wp), INTENT(in) , DIMENSION(:,:,:), OPTIONAL :: phi ! ice thickness [m]
!
INTEGER :: ji, jj, jl ! dummy loop index
REAL(wp), DIMENSION(jpi,jpj) :: zcptn, zcptrain, zcptsnw, ziceld, zmsk, zsnw
REAL(wp), DIMENSION(jpi,jpj) :: zemp_tot, zemp_ice, zemp_oce, ztprecip, zsprecip , zevap_oce, zdevap_ice
REAL(wp), DIMENSION(jpi,jpj) :: zqns_tot, zqns_oce, zqsr_tot, zqsr_oce, zqprec_ice, zqemp_oce, zqemp_ice
REAL(wp), DIMENSION(jpi,jpj) :: zevap_ice_total
REAL(wp), DIMENSION(jpi,jpj,jpl) :: zqns_ice, zqsr_ice, zdqns_ice, zqevap_ice, zevap_ice, zqtr_ice_top, ztsu
REAL(wp), DIMENSION(jpi,jpj) :: ztri
!!----------------------------------------------------------------------
!
#if defined key_si3 || defined key_cice
!
IF( kt == nit000 ) THEN
! allocate ice fractions from last coupling time here and not in sbc_cpl_init because of jpl
IF( .NOT.ALLOCATED(a_i_last_couple) ) ALLOCATE( a_i_last_couple(jpi,jpj,jpl) )
! initialize to a_i for the 1st time step
a_i_last_couple(:,:,:) = a_i(:,:,:)
ENDIF
!
IF( ln_mixcpl ) zmsk(:,:) = 1. - xcplmask(:,:,0)
ziceld(:,:) = 1._wp - picefr(:,:)
zcptn (:,:) = rcp * sst_m(:,:)
!
! ! ========================= !
! ! freshwater budget ! (emp_tot)
! ! ========================= !
!
! ! solid Precipitation (sprecip)
! ! liquid + solid Precipitation (tprecip)
! ! total Evaporation - total Precipitation (emp_tot)
! ! sublimation - solid precipitation (cell average) (emp_ice)
SELECT CASE( TRIM( sn_rcv_emp%cldes ) )
CASE( 'conservative' ) ! received fields: jpr_rain, jpr_snow, jpr_ievp, jpr_tevp
zsprecip(:,:) = frcv(jpr_snow)%z3(:,:,1) ! May need to ensure positive here
ztprecip(:,:) = frcv(jpr_rain)%z3(:,:,1) + zsprecip(:,:) ! May need to ensure positive here
zemp_tot(:,:) = frcv(jpr_tevp)%z3(:,:,1) - ztprecip(:,:)
CASE( 'oce and ice' ) ! received fields: jpr_sbpr, jpr_semp, jpr_oemp, jpr_ievp
zemp_tot(:,:) = ziceld(:,:) * frcv(jpr_oemp)%z3(:,:,1) + picefr(:,:) * frcv(jpr_sbpr)%z3(:,:,1)
zemp_ice(:,:) = frcv(jpr_semp)%z3(:,:,1) * picefr(:,:)
zsprecip(:,:) = frcv(jpr_ievp)%z3(:,:,1) - frcv(jpr_semp)%z3(:,:,1)
ztprecip(:,:) = frcv(jpr_semp)%z3(:,:,1) - frcv(jpr_sbpr)%z3(:,:,1) + zsprecip(:,:)
CASE( 'none' ) ! Not available as for now: needs additional coding below when computing zevap_oce
! ! since fields received are not defined with none option
CALL ctl_stop('STOP', 'sbccpl/sbc_cpl_ice_flx: some fields are not defined. Change sn_rcv_emp value in namelist namsbc_cpl')
END SELECT
! --- evaporation over ice (kg/m2/s) --- !
IF (ln_scale_ice_flux) THEN ! typically met-office requirements
IF (sn_rcv_emp%clcat == 'yes') THEN
WHERE( a_i(:,:,:) > 1.e-10 ) ; zevap_ice(:,:,:) = frcv(jpr_ievp)%z3(:,:,:) * a_i_last_couple(:,:,:) / a_i(:,:,:)
ELSEWHERE ; zevap_ice(:,:,:) = 0._wp
END WHERE
WHERE( picefr(:,:) > 1.e-10 ) ; zevap_ice_total(:,:) = SUM( zevap_ice(:,:,:) * a_i(:,:,:), dim=3 ) / picefr(:,:)
ELSEWHERE ; zevap_ice_total(:,:) = 0._wp
END WHERE
ELSE
WHERE( picefr(:,:) > 1.e-10 ) ; zevap_ice(:,:,1) = frcv(jpr_ievp)%z3(:,:,1) * SUM( a_i_last_couple, dim=3 ) / picefr(:,:)
ELSEWHERE ; zevap_ice(:,:,1) = 0._wp
END WHERE
zevap_ice_total(:,:) = zevap_ice(:,:,1)
DO jl = 2, jpl
zevap_ice(:,:,jl) = zevap_ice(:,:,1)
ENDDO
ENDIF
ELSE
IF (sn_rcv_emp%clcat == 'yes') THEN
zevap_ice(:,:,1:jpl) = frcv(jpr_ievp)%z3(:,:,1:jpl)
WHERE( picefr(:,:) > 1.e-10 ) ; zevap_ice_total(:,:) = SUM( zevap_ice(:,:,:) * a_i(:,:,:), dim=3 ) / picefr(:,:)
ELSEWHERE ; zevap_ice_total(:,:) = 0._wp
END WHERE
ELSE
zevap_ice(:,:,1) = frcv(jpr_ievp)%z3(:,:,1)
zevap_ice_total(:,:) = zevap_ice(:,:,1)
DO jl = 2, jpl
zevap_ice(:,:,jl) = zevap_ice(:,:,1)
ENDDO
ENDIF
ENDIF
IF ( TRIM( sn_rcv_emp%cldes ) == 'conservative' ) THEN
! For conservative case zemp_ice has not been defined yet. Do it now.
zemp_ice(:,:) = zevap_ice_total(:,:) * picefr(:,:) - frcv(jpr_snow)%z3(:,:,1) * picefr(:,:)
ENDIF
! zsnw = snow fraction over ice after wind blowing (=picefr if no blowing)
zsnw(:,:) = 0._wp ; CALL ice_var_snwblow( ziceld, zsnw )
! --- evaporation minus precipitation corrected (because of wind blowing on snow) --- !
zemp_ice(:,:) = zemp_ice(:,:) + zsprecip(:,:) * ( picefr(:,:) - zsnw(:,:) ) ! emp_ice = A * sublimation - zsnw * sprecip
zemp_oce(:,:) = zemp_tot(:,:) - zemp_ice(:,:) ! emp_oce = emp_tot - emp_ice
! --- evaporation over ocean (used later for qemp) --- !
zevap_oce(:,:) = frcv(jpr_tevp)%z3(:,:,1) - zevap_ice_total(:,:) * picefr(:,:)
! since the sensitivity of evap to temperature (devap/dT) is not prescribed by the atmosphere, we set it to 0
! therefore, sublimation is not redistributed over the ice categories when no subgrid scale fluxes are provided by atm.
zdevap_ice(:,:) = 0._wp
! --- Continental fluxes --- !
IF( srcv(jpr_rnf)%laction ) THEN ! runoffs (included in emp later on)
rnf(:,:) = frcv(jpr_rnf)%z3(:,:,1)
ENDIF
IF( srcv(jpr_cal)%laction ) THEN ! calving (put in emp_tot and emp_oce)
zemp_tot(:,:) = zemp_tot(:,:) - frcv(jpr_cal)%z3(:,:,1)
zemp_oce(:,:) = zemp_oce(:,:) - frcv(jpr_cal)%z3(:,:,1)
ENDIF
IF( srcv(jpr_icb)%laction ) THEN ! iceberg added to runoffs
fwficb(:,:) = frcv(jpr_icb)%z3(:,:,1)
rnf(:,:) = rnf(:,:) + fwficb(:,:)
ENDIF
IF( srcv(jpr_isf)%laction ) THEN ! iceshelf (fwfisf > 0 mean melting)
fwfisf_oasis(:,:) = frcv(jpr_isf)%z3(:,:,1)
ENDIF
IF( ln_mixcpl ) THEN
emp_tot(:,:) = emp_tot(:,:) * xcplmask(:,:,0) + zemp_tot(:,:) * zmsk(:,:)
emp_ice(:,:) = emp_ice(:,:) * xcplmask(:,:,0) + zemp_ice(:,:) * zmsk(:,:)
emp_oce(:,:) = emp_oce(:,:) * xcplmask(:,:,0) + zemp_oce(:,:) * zmsk(:,:)
sprecip(:,:) = sprecip(:,:) * xcplmask(:,:,0) + zsprecip(:,:) * zmsk(:,:)
tprecip(:,:) = tprecip(:,:) * xcplmask(:,:,0) + ztprecip(:,:) * zmsk(:,:)
DO jl = 1, jpl
evap_ice (:,:,jl) = evap_ice (:,:,jl) * xcplmask(:,:,0) + zevap_ice (:,:,jl) * zmsk(:,:)
devap_ice(:,:,jl) = devap_ice(:,:,jl) * xcplmask(:,:,0) + zdevap_ice(:,:) * zmsk(:,:)
END DO
ELSE
emp_tot (:,:) = zemp_tot (:,:)
emp_ice (:,:) = zemp_ice (:,:)
emp_oce (:,:) = zemp_oce (:,:)
sprecip (:,:) = zsprecip (:,:)
tprecip (:,:) = ztprecip (:,:)
evap_ice(:,:,:) = zevap_ice(:,:,:)
DO jl = 1, jpl
devap_ice(:,:,jl) = zdevap_ice(:,:)
END DO
ENDIF
!! for CICE ??
!!$ zsnw(:,:) = picefr(:,:)
!!$ ! --- Continental fluxes --- !
!!$ IF( srcv(jpr_rnf)%laction ) THEN ! runoffs (included in emp later on)
!!$ rnf(:,:) = frcv(jpr_rnf)%z3(:,:,1)
!!$ ENDIF
!!$ IF( srcv(jpr_cal)%laction ) THEN ! calving (put in emp_tot)
!!$ zemp_tot(:,:) = zemp_tot(:,:) - frcv(jpr_cal)%z3(:,:,1)
!!$ ENDIF
!!$ IF( srcv(jpr_icb)%laction ) THEN ! iceberg added to runoffs
!!$ fwficb(:,:) = frcv(jpr_icb)%z3(:,:,1)
!!$ rnf(:,:) = rnf(:,:) + fwficb(:,:)
!!$ ENDIF
!!$ IF( srcv(jpr_isf)%laction ) THEN ! iceshelf (fwfisf >0 mean melting)
!!$ fwfisf_oasis(:,:) = frcv(jpr_isf)%z3(:,:,1)
!!$ ENDIF
!!$ !
!!$ IF( ln_mixcpl ) THEN
!!$ emp_tot(:,:) = emp_tot(:,:) * xcplmask(:,:,0) + zemp_tot(:,:) * zmsk(:,:)
!!$ emp_ice(:,:) = emp_ice(:,:) * xcplmask(:,:,0) + zemp_ice(:,:) * zmsk(:,:)
!!$ sprecip(:,:) = sprecip(:,:) * xcplmask(:,:,0) + zsprecip(:,:) * zmsk(:,:)
!!$ tprecip(:,:) = tprecip(:,:) * xcplmask(:,:,0) + ztprecip(:,:) * zmsk(:,:)
!!$ ELSE
!!$ emp_tot(:,:) = zemp_tot(:,:)
!!$ emp_ice(:,:) = zemp_ice(:,:)
!!$ sprecip(:,:) = zsprecip(:,:)
!!$ tprecip(:,:) = ztprecip(:,:)
!!$ ENDIF
!
! outputs
IF( srcv(jpr_cal)%laction ) CALL iom_put( 'calving_cea' , frcv(jpr_cal)%z3(:,:,1) * tmask(:,:,1) ) ! calving
IF( srcv(jpr_icb)%laction ) CALL iom_put( 'iceberg_cea' , frcv(jpr_icb)%z3(:,:,1) * tmask(:,:,1) ) ! icebergs
IF( iom_use('snowpre') ) CALL iom_put( 'snowpre' , sprecip(:,:) ) ! Snow
IF( iom_use('precip') ) CALL iom_put( 'precip' , tprecip(:,:) ) ! total precipitation
IF( iom_use('rain') ) CALL iom_put( 'rain' , tprecip(:,:) - sprecip(:,:) ) ! liquid precipitation
IF( iom_use('snow_ao_cea') ) CALL iom_put( 'snow_ao_cea' , sprecip(:,:) * ( 1._wp - zsnw(:,:) ) ) ! Snow over ice-free ocean (cell average)
IF( iom_use('snow_ai_cea') ) CALL iom_put( 'snow_ai_cea' , sprecip(:,:) * zsnw(:,:) ) ! Snow over sea-ice (cell average)
IF( iom_use('rain_ao_cea') ) CALL iom_put( 'rain_ao_cea' , ( tprecip(:,:) - sprecip(:,:) ) * ziceld(:,:) ) ! liquid precipitation over ocean (cell average)
IF( iom_use('subl_ai_cea') ) CALL iom_put( 'subl_ai_cea' , zevap_ice_total(:,:) * picefr(:,:) * tmask(:,:,1) ) ! Sublimation over sea-ice (cell average)
IF( iom_use('evap_ao_cea') ) CALL iom_put( 'evap_ao_cea' , ( frcv(jpr_tevp)%z3(:,:,1) &
& - zevap_ice_total(:,:) * picefr(:,:) ) * tmask(:,:,1) ) ! ice-free oce evap (cell average)
! note: runoff output is done in sbcrnf (which includes icebergs too) and iceshelf output is done in sbcisf
!! IF( srcv(jpr_rnf)%laction ) CALL iom_put( 'runoffs' , rnf(:,:) * tmask(:,:,1) ) ! runoff
!! IF( srcv(jpr_isf)%laction ) CALL iom_put( 'iceshelf_cea', fwfisf(:,:) * tmask(:,:,1) ) ! iceshelf
!
! ! ========================= !
SELECT CASE( TRIM( sn_rcv_iceflx%cldes ) ) ! ice topmelt and botmelt !
! ! ========================= !
CASE ('coupled')
IF (ln_scale_ice_flux) THEN
WHERE( a_i(:,:,:) > 1.e-10_wp )
qml_ice(:,:,:) = frcv(jpr_topm)%z3(:,:,:) * a_i_last_couple(:,:,:) / a_i(:,:,:)
qcn_ice(:,:,:) = frcv(jpr_botm)%z3(:,:,:) * a_i_last_couple(:,:,:) / a_i(:,:,:)
ELSEWHERE
qml_ice(:,:,:) = 0.0_wp
qcn_ice(:,:,:) = 0.0_wp
END WHERE
ELSE
qml_ice(:,:,:) = frcv(jpr_topm)%z3(:,:,:)
qcn_ice(:,:,:) = frcv(jpr_botm)%z3(:,:,:)
ENDIF
END SELECT
!
! ! ========================= !
SELECT CASE( TRIM( sn_rcv_qns%cldes ) ) ! non solar heat fluxes ! (qns)
! ! ========================= !
CASE( 'oce only' ) ! the required field is directly provided
! Get the sea ice non solar heat flux from conductive, melting and sublimation fluxes
IF( TRIM(sn_rcv_iceflx%cldes) == 'coupled' ) THEN
zqns_ice(:,:,:) = qml_ice(:,:,:) + qcn_ice(:,:,:)
ELSE
zqns_ice(:,:,:) = 0._wp
ENDIF
! Calculate the total non solar heat flux. The ocean only non solar heat flux (zqns_oce) will be recalculated after this CASE
! statement to be consistent with other coupling methods even though .zqns_oce = frcv(jpr_qnsoce)%z3(:,:,1)
zqns_tot(:,:) = frcv(jpr_qnsoce)%z3(:,:,1) + SUM( zqns_ice(:,:,:) * a_i(:,:,:), dim=3 )
CASE( 'conservative' ) ! the required fields are directly provided
zqns_tot(:,:) = frcv(jpr_qnsmix)%z3(:,:,1)
IF( TRIM(sn_rcv_qns%clcat) == 'yes' ) THEN
zqns_ice(:,:,1:jpl) = frcv(jpr_qnsice)%z3(:,:,1:jpl)
ELSE
DO jl = 1, jpl
zqns_ice(:,:,jl) = frcv(jpr_qnsice)%z3(:,:,1) ! Set all category values equal
END DO
ENDIF
CASE( 'oce and ice' ) ! the total flux is computed from ocean and ice fluxes
zqns_tot(:,:) = ziceld(:,:) * frcv(jpr_qnsoce)%z3(:,:,1)
IF( TRIM(sn_rcv_qns%clcat) == 'yes' ) THEN
DO jl=1,jpl
zqns_tot(:,: ) = zqns_tot(:,:) + a_i(:,:,jl) * frcv(jpr_qnsice)%z3(:,:,jl)
zqns_ice(:,:,jl) = frcv(jpr_qnsice)%z3(:,:,jl)
ENDDO
ELSE
zqns_tot(:,:) = zqns_tot(:,:) + picefr(:,:) * frcv(jpr_qnsice)%z3(:,:,1)
DO jl = 1, jpl
zqns_ice(:,:,jl) = frcv(jpr_qnsice)%z3(:,:,1)
END DO
ENDIF
CASE( 'mixed oce-ice' ) ! the ice flux is cumputed from the total flux, the SST and ice informations
! ** NEED TO SORT OUT HOW THIS SHOULD WORK IN THE MULTI-CATEGORY CASE - CURRENTLY NOT ALLOWED WHEN INTERFACE INITIALISED **
zqns_tot(:,: ) = frcv(jpr_qnsmix)%z3(:,:,1)
IF ( TRIM(sn_rcv_qsr%clcat) == 'yes' ) THEN
DO jl = 1, jpl
zqns_ice(:,:,jl) = frcv(jpr_qnsmix)%z3(:,:,jl) &
& + frcv(jpr_dqnsdt)%z3(:,:,jl) * ( pist(:,:,jl) - ( ( rt0 + psst(:,:) ) * ziceld(:,:) &
& + pist(:,:,jl) * picefr(:,:) ) )
END DO
ELSE
DO jl = 1, jpl
zqns_ice(:,:,jl) = frcv(jpr_qnsmix)%z3(:,:, 1) &
& + frcv(jpr_dqnsdt)%z3(:,:, 1) * ( pist(:,:,jl) - ( ( rt0 + psst(:,:) ) * ziceld(:,:) &
& + pist(:,:,jl) * picefr(:,:) ) )
END DO
ENDIF