Newer
Older
MODULE zdfosm
!!======================================================================
!! *** MODULE zdfosm ***
!! Ocean physics: vertical mixing coefficient compute from the OSMOSIS
!! turbulent closure parameterization
!!=====================================================================
!! History : NEMO 4.0 ! A. Grant, G. Nurser
!! 15/03/2017 Changed calculation of pycnocline thickness in unstable conditions and stable conditions AG
!! 15/03/2017 Calculation of pycnocline gradients for stable conditions changed. Pycnocline gradients now depend on stability of the OSBL. A.G
!! 06/06/2017 (1) Checks on sign of buoyancy jump in calculation of OSBL depth. A.G.
!! (2) Removed variable zbrad0, zbradh and zbradav since they are not used.
!! (3) Approximate treatment for shear turbulence.
!! Minimum values for zustar and zustke.
!! Add velocity scale, zvstr, that tends to zustar for large Langmuir numbers.
!! Limit maximum value for Langmuir number.
!! Use zvstr in definition of stability parameter zhol.
!! (4) Modified parametrization of entrainment flux, changing original coefficient 0.0485 for Langmuir contribution to 0.135 * zla
!! (5) For stable boundary layer add factor that depends on length of timestep to 'slow' collapse and growth. Make sure buoyancy jump not negative.
!! (6) For unstable conditions when growth is over multiple levels, limit change to maximum of one level per cycle through loop.
!! (7) Change lower limits for loops that calculate OSBL averages from 1 to 2. Large gradients between levels 1 and 2 can cause problems.
!! (8) Change upper limits from ibld-1 to ibld.
!! (9) Calculation of pycnocline thickness in unstable conditions. Check added to ensure that buoyancy jump is positive before calculating Ri.
!! (10) Thickness of interface layer at base of the stable OSBL set by Richardson number. Gives continuity in transition from unstable OSBL.
!! (11) Checks that buoyancy jump is poitive when calculating pycnocline profiles.
!! (12) Replace zwstrl with zvstr in calculation of eddy viscosity.
!! 27/09/2017 (13) Calculate Stokes drift and Stokes penetration depth from wave information
!! (14) Buoyancy flux due to entrainment changed to include contribution from shear turbulence.
!! 28/09/2017 (15) Calculation of Stokes drift moved into separate do-loops to allow for different options for the determining the Stokes drift to be added.
!! (16) Calculation of Stokes drift from windspeed for PM spectrum (for testing, commented out)
!! (17) Modification to Langmuir velocity scale to include effects due to the Stokes penetration depth (for testing, commented out)
!! ??/??/2018 (18) Revision to code structure, selected using fortran macro. Inline code moved into subroutines. Changes to physics made,
!! (a) Pycnocline temperature and salinity profies changed for unstable layers
!! (b) The stable OSBL depth parametrization changed.
!! 16/05/2019 (19) Fox-Kemper parametrization of restratification through mixed layer eddies added to revised code.
!! 23/05/19 (20) Remove old code excluded by fortran macro along with the fortran macro that is not needed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
!! 4.2 ! 2021-05 (S. Mueller) Efficiency improvements, source-code clarity enhancements, and adaptation to tiling
!!----------------------------------------------------------------------
!!----------------------------------------------------------------------
!! 'ln_zdfosm' OSMOSIS scheme
!!----------------------------------------------------------------------
!! zdf_osm : update momentum and tracer Kz from osm scheme
!! zdf_osm_vertical_average : compute vertical averages over boundary layers
!! zdf_osm_velocity_rotation : rotate velocity components
!! zdf_osm_velocity_rotation_2d : rotation of 2d fields
!! zdf_osm_velocity_rotation_3d : rotation of 3d fields
!! zdf_osm_osbl_state : determine the state of the OSBL
!! zdf_osm_external_gradients : calculate gradients below the OSBL
!! zdf_osm_calculate_dhdt : calculate rate of change of hbl
!! zdf_osm_timestep_hbl : hbl timestep
!! zdf_osm_pycnocline_thickness : calculate thickness of pycnocline
!! zdf_osm_diffusivity_viscosity : compute eddy diffusivity and viscosity profiles
!! zdf_osm_fgr_terms : compute flux-gradient relationship terms
!! zdf_osm_pycnocline_buoyancy_profiles : calculate pycnocline buoyancy profiles
!! zdf_osm_zmld_horizontal_gradients : calculate horizontal buoyancy gradients for use with Fox-Kemper parametrization
!! zdf_osm_osbl_state_fk : determine state of OSBL and MLE layers
!! zdf_osm_mle_parameters : timestep MLE depth and calculate MLE fluxes
!! zdf_osm_init : initialization, namelist read, and parameters control
!! zdf_osm_alloc : memory allocation
!! osm_rst : read (or initialize) and write osmosis restart fields
!! tra_osm : compute and add to the T & S trend the non-local flux
!! trc_osm : compute and add to the passive tracer trend the non-local flux (TBD)
!! dyn_osm : compute and add to u & v trensd the non-local flux
!! zdf_osm_iomput : iom_put wrapper that accepts arrays without halo
!! zdf_osm_iomput_2d : iom_put wrapper for 2D fields
!! zdf_osm_iomput_3d : iom_put wrapper for 3D fields
!!----------------------------------------------------------------------
USE oce ! Ocean dynamics and active tracers
! ! Uses ww from previous time step (which is now wb) to calculate hbl
USE dom_oce ! Ocean space and time domain
USE zdf_oce ! Ocean vertical physics
USE sbc_oce ! Surface boundary condition: ocean
USE sbcwave ! Surface wave parameters
USE phycst ! Physical constants
USE eosbn2 ! Equation of state
USE traqsr ! Details of solar radiation absorption
USE zdfdrg, ONLY : rCdU_bot ! Bottom friction velocity
USE zdfddm ! Double diffusion mixing (avs array)
USE iom ! I/O library
USE lib_mpp ! MPP library
USE trd_oce ! Ocean trends definition
USE trdtra ! Tracers trends
USE in_out_manager ! I/O manager
USE lbclnk ! Ocean lateral boundary conditions (or mpp link)
USE prtctl ! Print control
USE lib_fortran ! Fortran utilities (allows no signed zero when 'key_nosignedzero' defined)
IMPLICIT NONE
PRIVATE
! Public subroutines
PUBLIC zdf_osm ! Routine called by step.F90
PUBLIC zdf_osm_init ! Routine called by nemogcm.F90
PUBLIC osm_rst ! Routine called by step.F90
PUBLIC tra_osm ! Routine called by step.F90
PUBLIC trc_osm ! Routine called by trcstp.F90
PUBLIC dyn_osm ! Routine called by step.F90
! Public variables
LOGICAL, PUBLIC :: ln_osm_mle !: Flag to activate the Mixed Layer Eddy (MLE)
! ! parameterisation, needed by tra_mle_init in
! ! tramle.F90
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: ghamu !: Non-local u-momentum flux
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: ghamv !: Non-local v-momentum flux
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: ghamt !: Non-local temperature flux (gamma/<ws>o)
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: ghams !: Non-local salinity flux (gamma/<ws>o)
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: hbl !: Boundary layer depth
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: hml !: ML depth
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: hmle !: Depth of layer affexted by mixed layer eddies in Fox-Kemper parametrization
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: dbdx_mle !: Zonal buoyancy gradient in ML
REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: dbdy_mle !: Meridional buoyancy gradient in ML
INTEGER, PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: mld_prof !: Level of base of MLE layer
INTERFACE zdf_osm_velocity_rotation
!!---------------------------------------------------------------------
!! *** INTERFACE zdf_velocity_rotation ***
!!---------------------------------------------------------------------
MODULE PROCEDURE zdf_osm_velocity_rotation_2d
MODULE PROCEDURE zdf_osm_velocity_rotation_3d
END INTERFACE
!
INTERFACE zdf_osm_iomput
!!---------------------------------------------------------------------
!! *** INTERFACE zdf_osm_iomput ***
!!---------------------------------------------------------------------
MODULE PROCEDURE zdf_osm_iomput_2d
MODULE PROCEDURE zdf_osm_iomput_3d
END INTERFACE
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: etmean ! Averaging operator for avt
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: dh ! Depth of pycnocline
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: r1_ft ! Inverse of the modified Coriolis parameter at t-pts
! Layer indices
INTEGER, ALLOCATABLE, SAVE, DIMENSION(:,:) :: nbld ! Level of boundary layer base
INTEGER, ALLOCATABLE, SAVE, DIMENSION(:,:) :: nmld ! Level of mixed-layer depth (pycnocline top)
! Layer type
INTEGER, ALLOCATABLE, SAVE, DIMENSION(:,:) :: n_ddh ! Type of shear layer
! ! n_ddh=0: active shear layer
! ! n_ddh=1: shear layer not active
! ! n_ddh=2: shear production low
! Layer flags
LOGICAL, ALLOCATABLE, SAVE, DIMENSION(:,:) :: l_conv ! Unstable/stable bl
LOGICAL, ALLOCATABLE, SAVE, DIMENSION(:,:) :: l_shear ! Shear layers
LOGICAL, ALLOCATABLE, SAVE, DIMENSION(:,:) :: l_coup ! Coupling to bottom
LOGICAL, ALLOCATABLE, SAVE, DIMENSION(:,:) :: l_pyc ! OSBL pycnocline present
LOGICAL, ALLOCATABLE, SAVE, DIMENSION(:,:) :: l_flux ! Surface flux extends below OSBL into MLE layer
LOGICAL, ALLOCATABLE, SAVE, DIMENSION(:,:) :: l_mle ! MLE layer increases in hickness.
! Scales
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: swth0 ! Surface heat flux (Kinematic)
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: sws0 ! Surface freshwater flux
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: swb0 ! Surface buoyancy flux
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: suw0 ! Surface u-momentum flux
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: sustar ! Friction velocity
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: scos_wind ! Cos angle of surface stress
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: ssin_wind ! Sin angle of surface stress
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: swthav ! Heat flux - bl average
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: swsav ! Freshwater flux - bl average
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: swbav ! Buoyancy flux - bl average
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: sustke ! Surface Stokes drift
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: dstokes ! Penetration depth of the Stokes drift
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: swstrl ! Langmuir velocity scale
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: swstrc ! Convective velocity scale
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: sla ! Trubulent Langmuir number
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: svstr ! Velocity scale that tends to sustar for large Langmuir number
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: shol ! Stability parameter for boundary layer
! Layer averages: BL
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_t_bl ! Temperature average
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_s_bl ! Salinity average
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_u_bl ! Velocity average (u)
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_v_bl ! Velocity average (v)
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_b_bl ! Buoyancy average
! Difference between layer average and parameter at the base of the layer: BL
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_dt_bl ! Temperature difference
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_ds_bl ! Salinity difference
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_du_bl ! Velocity difference (u)
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_dv_bl ! Velocity difference (v)
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_db_bl ! Buoyancy difference
! Layer averages: ML
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_t_ml ! Temperature average
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_s_ml ! Salinity average
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_u_ml ! Velocity average (u)
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_v_ml ! Velocity average (v)
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_b_ml ! Buoyancy average
! Difference between layer average and parameter at the base of the layer: ML
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_dt_ml ! Temperature difference
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_ds_ml ! Salinity difference
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_du_ml ! Velocity difference (u)
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_dv_ml ! Velocity difference (v)
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_db_ml ! Buoyancy difference
! Layer averages: MLE
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_t_mle ! Temperature average
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_s_mle ! Salinity average
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_u_mle ! Velocity average (u)
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_v_mle ! Velocity average (v)
REAL(wp), ALLOCATABLE, SAVE, DIMENSION(:,:) :: av_b_mle ! Buoyancy average
! Diagnostic output
REAL(WP), ALLOCATABLE, SAVE, DIMENSION(:,:) :: osmdia2d ! Auxiliary array for diagnostic output
REAL(WP), ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: osmdia3d ! Auxiliary array for diagnostic output
LOGICAL :: ln_dia_pyc_scl = .FALSE. ! Output of pycnocline scalar-gradient profiles
LOGICAL :: ln_dia_pyc_shr = .FALSE. ! Output of pycnocline velocity-shear profiles
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
! !!* namelist namzdf_osm *
LOGICAL :: ln_use_osm_la ! Use namelist rn_osm_la
REAL(wp) :: rn_osm_la ! Turbulent Langmuir number
REAL(wp) :: rn_osm_dstokes ! Depth scale of Stokes drift
REAL(wp) :: rn_zdfosm_adjust_sd = 1.0_wp ! Factor to reduce Stokes drift by
REAL(wp) :: rn_osm_hblfrac = 0.1_wp ! For nn_osm_wave = 3/4 specify fraction in top of hbl
LOGICAL :: ln_zdfosm_ice_shelter ! Flag to activate ice sheltering
REAL(wp) :: rn_osm_hbl0 = 10.0_wp ! Initial value of hbl for 1D runs
INTEGER :: nn_ave ! = 0/1 flag for horizontal average on avt
INTEGER :: nn_osm_wave = 0 ! = 0/1/2 flag for getting stokes drift from La# / PM wind-waves/Inputs into
! ! sbcwave
INTEGER :: nn_osm_SD_reduce ! = 0/1/2 flag for getting effective stokes drift from surface value
LOGICAL :: ln_dia_osm ! Use namelist rn_osm_la
LOGICAL :: ln_kpprimix = .TRUE. ! Shear instability mixing
REAL(wp) :: rn_riinfty = 0.7_wp ! Local Richardson Number limit for shear instability
REAL(wp) :: rn_difri = 0.005_wp ! Maximum shear mixing at Rig = 0 (m2/s)
LOGICAL :: ln_convmix = .TRUE. ! Convective instability mixing
REAL(wp) :: rn_difconv = 1.0_wp ! Diffusivity when unstable below BL (m2/s)
! OSMOSIS mixed layer eddy parametrization constants
INTEGER :: nn_osm_mle ! = 0/1 flag for horizontal average on avt
REAL(wp) :: rn_osm_mle_ce ! MLE coefficient
! Parameters used in nn_osm_mle = 0 case
REAL(wp) :: rn_osm_mle_lf ! Typical scale of mixed layer front
REAL(wp) :: rn_osm_mle_time ! Time scale for mixing momentum across the mixed layer
! Parameters used in nn_osm_mle = 1 case
REAL(wp) :: rn_osm_mle_lat ! Reference latitude for a 5 km scale of ML front
LOGICAL :: ln_osm_hmle_limit ! If true arbitrarily restrict hmle to rn_osm_hmle_limit*zmld
REAL(wp) :: rn_osm_hmle_limit ! If ln_osm_hmle_limit true arbitrarily restrict hmle to rn_osm_hmle_limit*zmld
REAL(wp) :: rn_osm_mle_rho_c ! Density criterion for definition of MLD used by FK
REAL(wp) :: rb_c ! ML buoyancy criteria = g rho_c /rho0 where rho_c is defined in zdfmld
REAL(wp) :: rc_f ! MLE coefficient (= rn_ce / (5 km * fo) ) in nn_osm_mle=1 case
REAL(wp) :: rn_osm_mle_thresh ! Threshold buoyancy for deepening of MLE layer below OSBL base
REAL(wp) :: rn_osm_bl_thresh ! Threshold buoyancy for deepening of OSBL base
REAL(wp) :: rn_osm_mle_tau ! Adjustment timescale for MLE
! General constants
REAL(wp) :: epsln = 1.0e-20_wp ! A small positive number to ensure no div by zero
REAL(wp) :: depth_tol = 1.0e-6_wp ! A small-ish positive number to give a hbl slightly shallower than gdepw
REAL(wp) :: pthird = 1.0_wp/3.0_wp ! 1/3
REAL(wp) :: p2third = 2.0_wp/3.0_wp ! 2/3
!! * Substitutions
# include "do_loop_substitute.h90"
# include "domzgr_substitute.h90"
!!----------------------------------------------------------------------
!! NEMO/OCE 4.0 , NEMO Consortium (2018)
!! $Id: zdfosm.F90 14921 2021-05-28 12:19:26Z smueller $
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
INTEGER FUNCTION zdf_osm_alloc()
!!----------------------------------------------------------------------
!! *** FUNCTION zdf_osm_alloc ***
!!----------------------------------------------------------------------
INTEGER :: ierr
!!----------------------------------------------------------------------
!
zdf_osm_alloc = 0
!
ALLOCATE( ghamu(jpi,jpj,jpk), ghamv(jpi,jpj,jpk), ghamt(jpi,jpj,jpk), ghams(jpi,jpj,jpk), hbl(jpi,jpj), hml(jpi,jpj), &
& hmle(jpi,jpj), dbdx_mle(jpi,jpj), dbdy_mle(jpi,jpj), mld_prof(jpi,jpj), STAT=ierr )
zdf_osm_alloc = zdf_osm_alloc + ierr
!
ALLOCATE( etmean(A2D(nn_hls-1),jpk), dh(jpi,jpj), r1_ft(A2D(nn_hls-1)), STAT=ierr )
zdf_osm_alloc = zdf_osm_alloc + ierr
!
ALLOCATE( nbld(jpi,jpj), nmld(A2D(nn_hls-1)), STAT=ierr )
zdf_osm_alloc = zdf_osm_alloc + ierr
!
ALLOCATE( n_ddh(A2D(nn_hls-1)), STAT=ierr )
zdf_osm_alloc = zdf_osm_alloc + ierr
!
ALLOCATE( l_conv(A2D(nn_hls-1)), l_shear(A2D(nn_hls-1)), l_coup(A2D(nn_hls-1)), l_pyc(A2D(nn_hls-1)), &
& l_flux(A2D(nn_hls-1)), l_mle(A2D(nn_hls-1)), STAT=ierr )
zdf_osm_alloc = zdf_osm_alloc + ierr
!
ALLOCATE( swth0(A2D(nn_hls-1)), sws0(A2D(nn_hls-1)), swb0(A2D(nn_hls-1)), suw0(A2D(nn_hls-1)), &
& sustar(A2D(nn_hls-1)), scos_wind(A2D(nn_hls-1)), ssin_wind(A2D(nn_hls-1)), swthav(A2D(nn_hls-1)), &
& swsav(A2D(nn_hls-1)), swbav(A2D(nn_hls-1)), sustke(A2D(nn_hls-1)), dstokes(A2D(nn_hls-1)), &
& swstrl(A2D(nn_hls-1)), swstrc(A2D(nn_hls-1)), sla(A2D(nn_hls-1)), svstr(A2D(nn_hls-1)), &
& shol(A2D(nn_hls-1)), STAT=ierr )
zdf_osm_alloc = zdf_osm_alloc + ierr
!
ALLOCATE( av_t_bl(jpi,jpj), av_s_bl(jpi,jpj), av_u_bl(jpi,jpj), av_v_bl(jpi,jpj), &
& av_b_bl(jpi,jpj), STAT=ierr)
zdf_osm_alloc = zdf_osm_alloc + ierr
!
ALLOCATE( av_dt_bl(jpi,jpj), av_ds_bl(jpi,jpj), av_du_bl(jpi,jpj), av_dv_bl(jpi,jpj), &
& av_db_bl(jpi,jpj), STAT=ierr)
zdf_osm_alloc = zdf_osm_alloc + ierr
!
ALLOCATE( av_t_ml(jpi,jpj), av_s_ml(jpi,jpj), av_u_ml(jpi,jpj), av_v_ml(jpi,jpj), &
& av_b_ml(jpi,jpj), STAT=ierr)
zdf_osm_alloc = zdf_osm_alloc + ierr
!
ALLOCATE( av_dt_ml(jpi,jpj), av_ds_ml(jpi,jpj), av_du_ml(jpi,jpj), av_dv_ml(jpi,jpj), &
& av_db_ml(jpi,jpj), STAT=ierr)
zdf_osm_alloc = zdf_osm_alloc + ierr
!
ALLOCATE( av_t_mle(jpi,jpj), av_s_mle(jpi,jpj), av_u_mle(jpi,jpj), av_v_mle(jpi,jpj), &
& av_b_mle(jpi,jpj), STAT=ierr)
zdf_osm_alloc = zdf_osm_alloc + ierr
!
IF ( ln_dia_osm ) THEN
ALLOCATE( osmdia2d(jpi,jpj), osmdia3d(jpi,jpj,jpk), STAT=ierr )
zdf_osm_alloc = zdf_osm_alloc + ierr
END IF
!
CALL mpp_sum ( 'zdfosm', zdf_osm_alloc )
IF( zdf_osm_alloc /= 0 ) CALL ctl_warn( 'zdf_osm_alloc: failed to allocate zdf_osm arrays' )
!
END FUNCTION zdf_osm_alloc
SUBROUTINE zdf_osm( kt, Kbb, Kmm, Krhs, p_avm, &
& p_avt )
!!----------------------------------------------------------------------
!! *** ROUTINE zdf_osm ***
!!
!! ** Purpose : Compute the vertical eddy viscosity and diffusivity
!! coefficients and non local mixing using the OSMOSIS scheme
!!
!! ** Method : The boundary layer depth hosm is diagnosed at tracer points
!! from profiles of buoyancy, and shear, and the surface forcing.
!! Above hbl (sigma=-z/hbl <1) the mixing coefficients are computed from
!!
!! Kx = hosm Wx(sigma) G(sigma)
!!
!! and the non local term ghamt = Cs / Ws(sigma) / hosm
!! Below hosm the coefficients are the sum of mixing due to internal waves
!! shear instability and double diffusion.
!!
!! -1- Compute the now interior vertical mixing coefficients at all depths.
!! -2- Diagnose the boundary layer depth.
!! -3- Compute the now boundary layer vertical mixing coefficients.
!! -4- Compute the now vertical eddy vicosity and diffusivity.
!! -5- Smoothing
!!
!! N.B. The computation is done from jk=2 to jpkm1
!! Surface value of avt are set once a time to zero
!! in routine zdf_osm_init.
!!
!! ** Action : update the non-local terms ghamts
!! update avt (before vertical eddy coef.)
!!
!! References : Large W.G., Mc Williams J.C. and Doney S.C.
!! Reviews of Geophysics, 32, 4, November 1994
!! Comments in the code refer to this paper, particularly
!! the equation number. (LMD94, here after)
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: kt ! Ocean time step
INTEGER , INTENT(in ) :: Kbb, Kmm, Krhs ! Ocean time level indices
REAL(wp), DIMENSION(:,:,:), INTENT(inout) :: p_avm, p_avt ! Momentum and tracer Kz (w-points)
!!
INTEGER :: ji, jj, jk, jl, jm, jkflt ! Dummy loop indices
!!
REAL(wp) :: zthermal, zbeta
REAL(wp) :: zesh2, zri, zfri ! Interior Richardson mixing
!! Scales
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zrad0 ! Surface solar temperature flux (deg m/s)
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zradh ! Radiative flux at bl base (Buoyancy units)
REAL(wp) :: zradav ! Radiative flux, bl average (Buoyancy Units)
REAL(wp) :: zvw0 ! Surface v-momentum flux
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zwb0tot ! Total surface buoyancy flux including insolation
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zwb_ent ! Buoyancy entrainment flux
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zwb_min
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zwb_fk_b ! MLE buoyancy flux averaged over OSBL
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zwb_fk ! Max MLE buoyancy flux
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zdiff_mle ! Extra MLE vertical diff
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zvel_mle ! Velocity scale for dhdt with stable ML and FK
!! Mixed-layer variables
INTEGER, DIMENSION(A2D(nn_hls-1)) :: jk_nlev ! Number of levels
INTEGER, DIMENSION(A2D(nn_hls-1)) :: jk_ext ! Offset for external level
!!
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zhbl ! BL depth - grid
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zhml ! ML depth - grid
!!
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zhmle ! MLE depth - grid
REAL(wp), DIMENSION(A2D(nn_hls)) :: zmld ! ML depth on grid
!!
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zdh ! Pycnocline depth - grid
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zdhdt ! BL depth tendency
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zdtdz_bl_ext, zdsdz_bl_ext ! External temperature/salinity gradients
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zdbdz_bl_ext ! External buoyancy gradients
REAL(wp), DIMENSION(A2D(nn_hls)) :: zdtdx, zdtdy, zdsdx, zdsdy ! Horizontal gradients for Fox-Kemper parametrization
!!
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zdbds_mle ! Magnitude of horizontal buoyancy gradient
!! Flux-gradient relationship variables
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zshear ! Shear production
!!
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zhbl_t ! Holds boundary layer depth updated by full timestep
!! For calculating Ri#-dependent mixing
REAL(wp), DIMENSION(A2D(nn_hls)) :: z2du ! u-shear^2
REAL(wp), DIMENSION(A2D(nn_hls)) :: z2dv ! v-shear^2
REAL(wp) :: zrimix ! Spatial form of ri#-induced diffusion
!! Temporary variables
REAL(wp) :: znd ! Temporary non-dimensional depth
REAL(wp) :: zz0, zz1, zfac
REAL(wp) :: zus_x, zus_y ! Temporary Stokes drift
REAL(wp), DIMENSION(A2D(nn_hls-1),jpk) :: zviscos ! Viscosity
REAL(wp), DIMENSION(A2D(nn_hls-1),jpk) :: zdiffut ! t-diffusivity
REAL(wp) :: zabsstke
REAL(wp) :: zsqrtpi, z_two_thirds, zthickness
REAL(wp) :: z2k_times_thickness, zsqrt_depth, zexp_depth, zf, zexperfc
!! For debugging
REAL(wp), PARAMETER :: pp_large = -1e10_wp
!!----------------------------------------------------------------------
!
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
nmld(ji,jj) = 0
sustke(ji,jj) = pp_large
l_pyc(ji,jj) = .FALSE.
l_flux(ji,jj) = .FALSE.
l_mle(ji,jj) = .FALSE.
END_2D
! Mixed layer
! No initialization of zhbl or zhml (or zdh?)
zhbl(:,:) = pp_large
zhml(:,:) = pp_large
zdh(:,:) = pp_large
!
IF ( ln_osm_mle ) THEN ! Only initialise arrays if needed
zdtdx(:,:) = pp_large ; zdtdy(:,:) = pp_large ; zdsdx(:,:) = pp_large
zdsdy(:,:) = pp_large
zwb_fk(:,:) = pp_large ; zvel_mle(:,:) = pp_large
zhmle(:,:) = pp_large ; zmld(:,:) = pp_large
DO_2D_OVR( nn_hls, nn_hls, nn_hls, nn_hls )
dbdx_mle(ji,jj) = pp_large
dbdy_mle(ji,jj) = pp_large
END_2D
ENDIF
zhbl_t(:,:) = pp_large
!
zdiffut(:,:,:) = 0.0_wp
zviscos(:,:,:) = 0.0_wp
!
DO_3D_OVR( nn_hls, nn_hls, nn_hls, nn_hls, 1, jpk )
ghamt(ji,jj,jk) = pp_large
ghams(ji,jj,jk) = pp_large
ghamu(ji,jj,jk) = pp_large
ghamv(ji,jj,jk) = pp_large
END_3D
DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 1, jpk )
ghamt(ji,jj,jk) = 0.0_wp
ghams(ji,jj,jk) = 0.0_wp
ghamu(ji,jj,jk) = 0.0_wp
ghamv(ji,jj,jk) = 0.0_wp
END_3D
!
zdiff_mle(:,:) = 0.0_wp
!
! Ensure only positive hbl values are accessed when using extended halo
! (nn_hls==2)
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
hbl(ji,jj) = MAX( hbl(ji,jj), epsln )
END_2D
!
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
! Calculate boundary layer scales
!<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
!
! Turbulent surface fluxes and fluxes averaged over depth of the OSBL
zz0 = rn_abs ! Assume two-band radiation model for depth of OSBL - surface equi-partition in 2-bands
zz1 = 1.0_wp - rn_abs
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
zrad0(ji,jj) = qsr(ji,jj) * r1_rho0_rcp ! Surface downward irradiance (so always +ve)
zradh(ji,jj) = zrad0(ji,jj) * & ! Downwards irradiance at base of boundary layer
& ( zz0 * EXP( -1.0_wp * hbl(ji,jj) / rn_si0 ) + zz1 * EXP( -1.0_wp * hbl(ji,jj) / rn_si1 ) )
zradav = zrad0(ji,jj) * & ! Downwards irradiance averaged
& ( zz0 * ( 1.0_wp - EXP( -hbl(ji,jj)/rn_si0 ) ) * rn_si0 + & ! over depth of the OSBL
& zz1 * ( 1.0_wp - EXP( -hbl(ji,jj)/rn_si1 ) ) * rn_si1 ) / hbl(ji,jj)
swth0(ji,jj) = - qns(ji,jj) * r1_rho0_rcp * tmask(ji,jj,1) ! Upwards surface Temperature flux for non-local term
swthav(ji,jj) = 0.5_wp * swth0(ji,jj) - ( 0.5_wp * ( zrad0(ji,jj) + zradh(ji,jj) ) - & ! Turbulent heat flux averaged
& zradav ) ! over depth of OSBL
END_2D
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
sws0(ji,jj) = -1.0_wp * ( ( emp(ji,jj) - rnf(ji,jj) ) * ts(ji,jj,1,jp_sal,Kmm) + & ! Upwards surface salinity flux
& sfx(ji,jj) ) * r1_rho0 * tmask(ji,jj,1) ! for non-local term
zthermal = rab_n(ji,jj,1,jp_tem)
zbeta = rab_n(ji,jj,1,jp_sal)
swb0(ji,jj) = grav * zthermal * swth0(ji,jj) - grav * zbeta * sws0(ji,jj) ! Non radiative upwards surface buoyancy flux
zwb0tot(ji,jj) = swb0(ji,jj) - grav * zthermal * ( zrad0(ji,jj) - zradh(ji,jj) ) ! Total upwards surface buoyancy flux
swsav(ji,jj) = 0.5_wp * sws0(ji,jj) ! Turbulent salinity flux averaged over depth of the OBSL
swbav(ji,jj) = grav * zthermal * swthav(ji,jj) - & ! Turbulent buoyancy flux averaged over the depth of the
& grav * zbeta * swsav(ji,jj) ! OBSBL
END_2D
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
suw0(ji,jj) = -0.5_wp * (utau(ji-1,jj) + utau(ji,jj)) * r1_rho0 * tmask(ji,jj,1) ! Surface upward velocity fluxes
zvw0 = -0.5_wp * (vtau(ji,jj-1) + vtau(ji,jj)) * r1_rho0 * tmask(ji,jj,1)
sustar(ji,jj) = MAX( SQRT( SQRT( suw0(ji,jj) * suw0(ji,jj) + zvw0 * zvw0 ) ), & ! Friction velocity (sustar), at
& 1e-8_wp ) ! T-point : LMD94 eq. 2
scos_wind(ji,jj) = -1.0_wp * suw0(ji,jj) / ( sustar(ji,jj) * sustar(ji,jj) )
ssin_wind(ji,jj) = -1.0_wp * zvw0 / ( sustar(ji,jj) * sustar(ji,jj) )
END_2D
! Calculate Stokes drift in direction of wind (sustke) and Stokes penetration depth (dstokes)
SELECT CASE (nn_osm_wave)
! Assume constant La#=0.3
CASE(0)
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
zus_x = scos_wind(ji,jj) * sustar(ji,jj) / 0.3_wp**2
zus_y = ssin_wind(ji,jj) * sustar(ji,jj) / 0.3_wp**2
! Linearly
sustke(ji,jj) = MAX( SQRT( zus_x * zus_x + zus_y * zus_y ), 1e-8_wp )
dstokes(ji,jj) = rn_osm_dstokes
END_2D
! Assume Pierson-Moskovitz wind-wave spectrum
CASE(1)
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
! Use wind speed wndm included in sbc_oce module
sustke(ji,jj) = MAX ( 0.016_wp * wndm(ji,jj), 1e-8_wp )
dstokes(ji,jj) = MAX ( 0.12_wp * wndm(ji,jj)**2 / grav, 5e-1_wp )
END_2D
! Use ECMWF wave fields as output from SBCWAVE
CASE(2)
zfac = 2.0_wp * rpi / 16.0_wp
!
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
IF ( hsw(ji,jj) > 1e-4_wp ) THEN
! Use wave fields
zabsstke = SQRT( ut0sd(ji,jj)**2 + vt0sd(ji,jj)**2 )
sustke(ji,jj) = MAX( ( scos_wind(ji,jj) * ut0sd(ji,jj) + ssin_wind(ji,jj) * vt0sd(ji,jj) ), 1e-8_wp )
dstokes(ji,jj) = MAX( zfac * hsw(ji,jj) * hsw(ji,jj) / ( MAX( zabsstke * wmp(ji,jj), 1e-7 ) ), 5e-1_wp )
ELSE
! Assume masking issue (e.g. ice in ECMWF reanalysis but not in model run)
! .. so default to Pierson-Moskowitz
sustke(ji,jj) = MAX( 0.016_wp * wndm(ji,jj), 1e-8_wp )
dstokes(ji,jj) = MAX( 0.12_wp * wndm(ji,jj)**2 / grav, 5e-1_wp )
END IF
END_2D
END SELECT
!
IF (ln_zdfosm_ice_shelter) THEN
! Reduce both Stokes drift and its depth scale by ocean fraction to represent sheltering by ice
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
sustke(ji,jj) = sustke(ji,jj) * ( 1.0_wp - fr_i(ji,jj) )
dstokes(ji,jj) = dstokes(ji,jj) * ( 1.0_wp - fr_i(ji,jj) )
END_2D
END IF
!
SELECT CASE (nn_osm_SD_reduce)
! Reduce surface Stokes drift by a constant factor or following Breivik (2016) + van Roekel (2012) or Grant (2020).
CASE(0)
! The Langmur number from the ECMWF model (or from PM) appears to give La<0.3 for wind-driven seas.
! The coefficient rn_zdfosm_adjust_sd = 0.8 gives La=0.3 in this situation.
! It could represent the effects of the spread of wave directions around the mean wind. The effect of this adjustment needs to be tested.
IF(nn_osm_wave > 0) THEN
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
sustke(ji,jj) = rn_zdfosm_adjust_sd * sustke(ji,jj)
END_2D
END IF
CASE(1)
! Van Roekel (2012): consider average SD over top 10% of boundary layer
! Assumes approximate depth profile of SD from Breivik (2016)
zsqrtpi = SQRT(rpi)
z_two_thirds = 2.0_wp / 3.0_wp
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
zthickness = rn_osm_hblfrac*hbl(ji,jj)
z2k_times_thickness = zthickness * 2.0_wp / MAX( ABS( 5.97_wp * dstokes(ji,jj) ), 1e-7_wp )
zsqrt_depth = SQRT( z2k_times_thickness )
zexp_depth = EXP( -1.0_wp * z2k_times_thickness )
sustke(ji,jj) = sustke(ji,jj) * ( 1.0_wp - zexp_depth - &
& z_two_thirds * ( zsqrtpi * zsqrt_depth * z2k_times_thickness * ERFC(zsqrt_depth) + &
& 1.0_wp - ( 1.0_wp + z2k_times_thickness ) * zexp_depth ) ) / &
& z2k_times_thickness
END_2D
CASE(2)
! Grant (2020): Match to exponential with same SD and d/dz(Sd) at depth 10% of boundary layer
! Assumes approximate depth profile of SD from Breivik (2016)
zsqrtpi = SQRT(rpi)
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
zthickness = rn_osm_hblfrac*hbl(ji,jj)
z2k_times_thickness = zthickness * 2.0_wp / MAX( ABS( 5.97_wp * dstokes(ji,jj) ), 1e-7_wp )
IF( z2k_times_thickness < 50.0_wp ) THEN
zsqrt_depth = SQRT( z2k_times_thickness )
zexperfc = zsqrtpi * zsqrt_depth * ERFC(zsqrt_depth) * EXP( z2k_times_thickness )
ELSE
! Asymptotic expansion of sqrt(pi)*zsqrt_depth*EXP(z2k_times_thickness)*ERFC(zsqrt_depth) for large
! z2k_times_thickness
! See Abramowitz and Stegun, Eq. 7.1.23
! zexperfc = 1._wp - (1/2)/(z2k_times_thickness) + (3/4)/(z2k_times_thickness**2) - (15/8)/(z2k_times_thickness**3)
zexperfc = ( ( -1.875_wp / z2k_times_thickness + 0.75_wp ) / z2k_times_thickness - 0.5_wp ) / &
& z2k_times_thickness + 1.0_wp
END IF
zf = z2k_times_thickness * ( 1.0_wp / zexperfc - 1.0_wp )
dstokes(ji,jj) = 5.97_wp * zf * dstokes(ji,jj)
sustke(ji,jj) = sustke(ji,jj) * EXP( z2k_times_thickness * ( 1.0_wp / ( 2.0_wp * zf ) - 1.0_wp ) ) * &
& ( 1.0_wp - zexperfc )
END_2D
END SELECT
!
! Langmuir velocity scale (swstrl), La # (sla)
! Mixed scale (svstr), convective velocity scale (swstrc)
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
! Langmuir velocity scale (swstrl), at T-point
swstrl(ji,jj) = ( sustar(ji,jj) * sustar(ji,jj) * sustke(ji,jj) )**pthird
sla(ji,jj) = MAX( MIN( SQRT( sustar(ji,jj) / ( swstrl(ji,jj) + epsln ) )**3, 4.0_wp ), 0.2_wp )
IF ( sla(ji,jj) > 0.45_wp ) dstokes(ji,jj) = MIN( dstokes(ji,jj), 0.5_wp * hbl(ji,jj) )
! Velocity scale that tends to sustar for large Langmuir numbers
svstr(ji,jj) = ( swstrl(ji,jj)**3 + ( 1.0_wp - EXP( -0.5_wp * sla(ji,jj)**2 ) ) * sustar(ji,jj) * sustar(ji,jj) * &
& sustar(ji,jj) )**pthird
!
! Limit maximum value of Langmuir number as approximate treatment for shear turbulence
! Note sustke and swstrl are not amended
!
! Get convective velocity (swstrc), stabilty scale (shol) and logical conection flag l_conv
IF ( swbav(ji,jj) > 0.0_wp ) THEN
swstrc(ji,jj) = ( 2.0_wp * swbav(ji,jj) * 0.9_wp * hbl(ji,jj) )**pthird
shol(ji,jj) = -0.9_wp * hbl(ji,jj) * 2.0_wp * swbav(ji,jj) / ( svstr(ji,jj)**3 + epsln )
ELSE
swstrc(ji,jj) = 0.0_wp
shol(ji,jj) = -1.0_wp * hbl(ji,jj) * 2.0_wp * swbav(ji,jj) / ( svstr(ji,jj)**3 + epsln )
ENDIF
END_2D
!
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
! Mixed-layer model - calculate averages over the boundary layer, and the change in the boundary layer depth
!<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
! BL must be always 4 levels deep.
! For calculation of lateral buoyancy gradients for FK in
! zdf_osm_zmld_horizontal_gradients need halo values for nbld
!
! agn 23/6/20: not clear all this is needed, as hbl checked after it is re-calculated anyway
! ##########################################################################
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
hbl(ji,jj) = MAX(hbl(ji,jj), gdepw(ji,jj,4,Kmm) )
END_2D
DO_2D_OVR( nn_hls, nn_hls, nn_hls, nn_hls )
nbld(ji,jj) = 4
END_2D
DO_3D_OVR( nn_hls, nn_hls, nn_hls, nn_hls, 5, jpkm1 )
IF ( MAX( hbl(ji,jj), gdepw(ji,jj,4,Kmm) ) >= gdepw(ji,jj,jk,Kmm) ) THEN
nbld(ji,jj) = MIN(mbkt(ji,jj)-2, jk)
ENDIF
END_3D
! ##########################################################################
!
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
zhbl(ji,jj) = gdepw(ji,jj,nbld(ji,jj),Kmm)
nmld(ji,jj) = MAX( 3, nbld(ji,jj) - MAX( INT( dh(ji,jj) / e3t(ji,jj,nbld(ji,jj)-1,Kmm) ), 1 ) )
zhml(ji,jj) = gdepw(ji,jj,nmld(ji,jj),Kmm)
zdh(ji,jj) = zhbl(ji,jj) - zhml(ji,jj)
END_2D
!
! Averages over well-mixed and boundary layer, note BL averages use jk_ext=2 everywhere
jk_nlev(:,:) = nbld(A2D(nn_hls-1))
jk_ext(:,:) = 1 ! ag 19/03
CALL zdf_osm_vertical_average( Kbb, Kmm, jk_nlev, av_t_bl, av_s_bl, &
& av_b_bl, av_u_bl, av_v_bl, jk_ext, av_dt_bl, &
& av_ds_bl, av_db_bl, av_du_bl, av_dv_bl )
jk_nlev(:,:) = nmld(A2D(nn_hls-1)) - 1
jk_ext(:,:) = nbld(A2D(nn_hls-1)) - nmld(A2D(nn_hls-1)) + jk_ext(:,:) + 1 ! ag 19/03
CALL zdf_osm_vertical_average( Kbb, Kmm, jk_nlev, av_t_ml, av_s_ml, &
& av_b_ml, av_u_ml, av_v_ml, jk_ext, av_dt_ml, &
& av_ds_ml, av_db_ml, av_du_ml, av_dv_ml )
! Velocity components in frame aligned with surface stress
CALL zdf_osm_velocity_rotation( av_u_ml, av_v_ml )
CALL zdf_osm_velocity_rotation( av_du_ml, av_dv_ml )
CALL zdf_osm_velocity_rotation( av_u_bl, av_v_bl )
CALL zdf_osm_velocity_rotation( av_du_bl, av_dv_bl )
!
! Determine the state of the OSBL, stable/unstable, shear/no shear
CALL zdf_osm_osbl_state( Kmm, zwb_ent, zwb_min, zshear, zhbl, &
& zhml, zdh )
!
IF ( ln_osm_mle ) THEN
! Fox-Kemper Scheme
DO_2D_OVR( nn_hls, nn_hls, nn_hls, nn_hls )
mld_prof(ji,jj) = 4
END_2D
DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 5, jpkm1 )
IF ( hmle(ji,jj) >= gdepw(ji,jj,jk,Kmm) ) mld_prof(ji,jj) = MIN( mbkt(ji,jj), jk)
END_3D
jk_nlev(:,:) = mld_prof(A2D(nn_hls-1))
CALL zdf_osm_vertical_average( Kbb, Kmm, jk_nlev, av_t_mle, av_s_mle, &
& av_b_mle, av_u_mle, av_v_mle )
!
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
zhmle(ji,jj) = gdepw(ji,jj,mld_prof(ji,jj),Kmm)
END_2D
!
! Calculate fairly-well-mixed depth zmld & its index mld_prof + lateral zmld-averaged gradients
CALL zdf_osm_zmld_horizontal_gradients( Kmm, zmld, zdtdx, zdtdy, zdsdx, &
& zdsdy, zdbds_mle )
! Calculate max vertical FK flux zwb_fk & set logical descriptors
CALL zdf_osm_osbl_state_fk( Kmm, zwb_fk, zhbl, zhmle, zwb_ent, &
& zdbds_mle )
! Recalculate hmle, zmle, zvel_mle, zdiff_mle & redefine mld_proc to be index for new hmle
CALL zdf_osm_mle_parameters( Kmm, zmld, zhmle, zvel_mle, zdiff_mle, &
& zdbds_mle, zhbl, zwb0tot )
ELSE ! ln_osm_mle
! FK not selected, Boundary Layer only.
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
l_pyc(ji,jj) = .TRUE.
l_flux(ji,jj) = .FALSE.
l_mle(ji,jj) = .FALSE.
IF ( l_conv(ji,jj) .AND. av_db_bl(ji,jj) < rn_osm_bl_thresh ) l_pyc(ji,jj) = .FALSE.
END_2D
ENDIF ! ln_osm_mle
!
!! External gradient below BL needed both with and w/o FK
jk_ext(:,:) = nbld(A2D(nn_hls-1)) + 1
CALL zdf_osm_external_gradients( Kmm, jk_ext, zdtdz_bl_ext, zdsdz_bl_ext, zdbdz_bl_ext ) ! ag 19/03
!
! Test if pycnocline well resolved
! DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) Removed with ag 19/03 changes. A change in eddy diffusivity/viscosity
! IF (l_conv(ji,jj) ) THEN should account for this.
! ztmp = 0.2 * zhbl(ji,jj) / e3w(ji,jj,nbld(ji,jj),Kmm)
! IF ( ztmp > 6 ) THEN
! ! pycnocline well resolved
! jk_ext(ji,jj) = 1
! ELSE
! ! pycnocline poorly resolved
! jk_ext(ji,jj) = 0
! ENDIF
! ELSE
! ! Stable conditions
! jk_ext(ji,jj) = 0
! ENDIF
! END_2D
!
! Recalculate bl averages using jk_ext & ml averages .... note no rotation of u & v here..
jk_nlev(:,:) = nbld(A2D(nn_hls-1))
jk_ext(:,:) = 1 ! ag 19/03
CALL zdf_osm_vertical_average( Kbb, Kmm, jk_nlev, av_t_bl, av_s_bl, &
& av_b_bl, av_u_bl, av_v_bl, jk_ext, av_dt_bl, &
& av_ds_bl, av_db_bl, av_du_bl, av_dv_bl )
jk_nlev(:,:) = nmld(A2D(nn_hls-1)) - 1
jk_ext(:,:) = nbld(A2D(nn_hls-1)) - nmld(A2D(nn_hls-1)) + jk_ext(:,:) + 1 ! ag 19/03
CALL zdf_osm_vertical_average( Kbb, Kmm, jk_nlev, av_t_ml, av_s_ml, &
& av_b_ml, av_u_ml, av_v_ml, jk_ext, av_dt_ml, &
& av_ds_ml, av_db_ml, av_du_ml, av_dv_ml ) ! ag 19/03
!
! Rate of change of hbl
CALL zdf_osm_calculate_dhdt( zdhdt, zhbl, zdh, zwb_ent, zwb_min, &
& zdbdz_bl_ext, zwb_fk_b, zwb_fk, zvel_mle )
! Test if surface boundary layer coupled to bottom
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
l_coup(ji,jj) = .FALSE. ! ag 19/03
zhbl_t(ji,jj) = hbl(ji,jj) + ( zdhdt(ji,jj) - ww(ji,jj,nbld(ji,jj)) ) * rn_Dt ! Certainly need ww here, so subtract it
! Adjustment to represent limiting by ocean bottom
IF ( mbkt(ji,jj) > 2 ) THEN ! To ensure mbkt(ji,jj) - 2 > 0 so no incorrect array access
IF ( zhbl_t(ji,jj) > gdepw(ji, jj,mbkt(ji,jj)-2,Kmm) ) THEN
zhbl_t(ji,jj) = MIN( zhbl_t(ji,jj), gdepw(ji,jj,mbkt(ji,jj)-2,Kmm) ) ! ht(:,:))
l_pyc(ji,jj) = .FALSE.
l_coup(ji,jj) = .TRUE. ! ag 19/03
END IF
END IF
END_2D
!
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
nmld(ji,jj) = nbld(ji,jj) ! use nmld to hold previous blayer index
nbld(ji,jj) = 4
END_2D
!
DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 4, jpkm1 )
IF ( zhbl_t(ji,jj) >= gdepw(ji,jj,jk,Kmm) ) THEN
nbld(ji,jj) = jk
END IF
END_3D
!
!
! Step through model levels taking account of buoyancy change to determine the effect on dhdt
!
CALL zdf_osm_timestep_hbl( Kmm, zdhdt, zhbl, zhbl_t, zwb_ent, &
& zwb_fk_b )
! Is external level in bounds?
!
! Recalculate BL averages and differences using new BL depth
jk_nlev(:,:) = nbld(A2D(nn_hls-1))
jk_ext(:,:) = 1 ! ag 19/03
CALL zdf_osm_vertical_average( Kbb, Kmm, jk_nlev, av_t_bl, av_s_bl, &
& av_b_bl, av_u_bl, av_v_bl, jk_ext, av_dt_bl, &
& av_ds_bl, av_db_bl, av_du_bl, av_dv_bl )
!
CALL zdf_osm_pycnocline_thickness( Kmm, zdh, zhml, zdhdt, zhbl, &
& zwb_ent, zdbdz_bl_ext, zwb_fk_b )
!
! Reset l_pyc before calculating terms in the flux-gradient relationship
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
IF ( av_db_bl(ji,jj) < rn_osm_bl_thresh .OR. nbld(ji,jj) >= mbkt(ji,jj) - 2 .OR. &
& nbld(ji,jj) - nmld(ji,jj) == 1 .OR. zdhdt(ji,jj) < 0.0_wp ) THEN ! ag 19/03
l_pyc(ji,jj) = .FALSE. ! ag 19/03
IF ( nbld(ji,jj) >= mbkt(ji,jj) -2 ) THEN
nmld(ji,jj) = nbld(ji,jj) - 1 ! ag 19/03
zdh(ji,jj) = gdepw(ji,jj,nbld(ji,jj),Kmm) - gdepw(ji,jj,nmld(ji,jj),Kmm) ! ag 19/03
zhml(ji,jj) = gdepw(ji,jj,nmld(ji,jj),Kmm) ! ag 19/03
dh(ji,jj) = zdh(ji,jj) ! ag 19/03
hml(ji,jj) = hbl(ji,jj) - dh(ji,jj) ! ag 19/03
ENDIF
ENDIF ! ag 19/03
END_2D
!
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) ! Limit delta for shallow boundary layers for calculating
dstokes(ji,jj) = MIN ( dstokes(ji,jj), hbl(ji,jj) / 3.0_wp ) ! flux-gradient terms
END_2D
!
!
! Average over the depth of the mixed layer in the convective boundary layer
! jk_ext = nbld - nmld + 1
! Recalculate ML averages and differences using new ML depth
jk_nlev(:,:) = nmld(A2D(nn_hls-1)) - 1
jk_ext(:,:) = nbld(A2D(nn_hls-1)) - nmld(A2D(nn_hls-1)) + jk_ext(:,:) + 1 ! ag 19/03
CALL zdf_osm_vertical_average( Kbb, Kmm, jk_nlev, av_t_ml, av_s_ml, &
& av_b_ml, av_u_ml, av_v_ml, jk_ext, av_dt_ml, &
& av_ds_ml, av_db_ml, av_du_ml, av_dv_ml )
!
jk_ext(:,:) = nbld(A2D(nn_hls-1)) + 1
CALL zdf_osm_external_gradients( Kmm, jk_ext, zdtdz_bl_ext, zdsdz_bl_ext, zdbdz_bl_ext )
! Rotate mean currents and changes onto wind aligned co-ordinates
CALL zdf_osm_velocity_rotation( av_u_ml, av_v_ml )
CALL zdf_osm_velocity_rotation( av_du_ml, av_dv_ml )
CALL zdf_osm_velocity_rotation( av_u_bl, av_v_bl )
CALL zdf_osm_velocity_rotation( av_du_bl, av_dv_bl )
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
! Eddy viscosity/diffusivity and non-gradient terms in the flux-gradient relationship
!<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
CALL zdf_osm_diffusivity_viscosity( Kbb, Kmm, zdiffut, zviscos, zhbl, &
& zhml, zdh, zdhdt, zshear, zwb_ent, &
& zwb_min )
!
! Calculate non-gradient components of the flux-gradient relationships
! --------------------------------------------------------------------
jk_ext(:,:) = 1 ! ag 19/03
CALL zdf_osm_fgr_terms( Kmm, jk_ext, zhbl, zhml, zdh, &
& zdhdt, zshear, zdtdz_bl_ext, zdsdz_bl_ext, zdbdz_bl_ext, &
& zdiffut, zviscos )
!
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
! Need to put in code for contributions that are applied explicitly to
! the prognostic variables
! 1. Entrainment flux
!<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
!
! Rotate non-gradient velocity terms back to model reference frame
jk_nlev(:,:) = nbld(A2D(nn_hls-1))
CALL zdf_osm_velocity_rotation( ghamu, ghamv, .FALSE., 2, jk_nlev )
!
! KPP-style Ri# mixing
IF ( ln_kpprimix ) THEN
jkflt = jpk
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
IF ( nbld(ji,jj) < jkflt ) jkflt = nbld(ji,jj)
END_2D
DO jk = jkflt+1, jpkm1
! Shear production at uw- and vw-points (energy conserving form)
DO_2D( nn_hls, nn_hls-1, nn_hls, nn_hls-1 )
z2du(ji,jj) = 0.5_wp * ( uu(ji,jj,jk-1,Kmm) - uu(ji,jj,jk,Kmm) ) * ( uu(ji,jj,jk-1,Kbb) - uu(ji,jj,jk,Kbb) ) * &
& wumask(ji,jj,jk) / ( e3uw(ji,jj,jk,Kmm) * e3uw(ji,jj,jk,Kbb) )
z2dv(ji,jj) = 0.5_wp * ( vv(ji,jj,jk-1,Kmm) - vv(ji,jj,jk,Kmm) ) * ( vv(ji,jj,jk-1,Kbb) - vv(ji,jj,jk,Kbb) ) * &
& wvmask(ji,jj,jk) / ( e3vw(ji,jj,jk,Kmm) * e3vw(ji,jj,jk,Kbb) )
END_2D
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
IF ( jk > nbld(ji,jj) ) THEN
! Shear prod. at w-point weightened by mask
zesh2 = ( z2du(ji-1,jj) + z2du(ji,jj) ) / MAX( 1.0_wp , umask(ji-1,jj,jk) + umask(ji,jj,jk) ) + &
& ( z2dv(ji,jj-1) + z2dv(ji,jj) ) / MAX( 1.0_wp , vmask(ji,jj-1,jk) + vmask(ji,jj,jk) )
! Local Richardson number
zri = MAX( rn2b(ji,jj,jk), 0.0_wp ) / MAX( zesh2, epsln )
zfri = MIN( zri / rn_riinfty, 1.0_wp )
zfri = ( 1.0_wp - zfri * zfri )
zrimix = zfri * zfri * zfri * wmask(ji, jj, jk)
zdiffut(ji,jj,jk) = MAX( zdiffut(ji,jj,jk), zrimix*rn_difri )
zviscos(ji,jj,jk) = MAX( zviscos(ji,jj,jk), zrimix*rn_difri )
END IF
END_2D
END DO
END IF ! ln_kpprimix = .true.
!
! KPP-style set diffusivity large if unstable below BL
IF ( ln_convmix) THEN
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
DO jk = nbld(ji,jj) + 1, jpkm1
IF ( MIN( rn2(ji,jj,jk), rn2b(ji,jj,jk) ) <= -1e-12_wp ) zdiffut(ji,jj,jk) = MAX( rn_difconv, zdiffut(ji,jj,jk) )
END DO
END_2D
END IF ! ln_convmix = .true.
!
IF ( ln_osm_mle ) THEN ! Set up diffusivity and non-gradient mixing
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
IF ( l_flux(ji,jj) ) THEN ! MLE mixing extends below boundary layer
! Calculate MLE flux contribution from surface fluxes
DO jk = 1, nbld(ji,jj)
znd = gdepw(ji,jj,jk,Kmm) / MAX( zhbl(ji,jj), epsln )
ghamt(ji,jj,jk) = ghamt(ji,jj,jk) - ( swth0(ji,jj) - zrad0(ji,jj) + zradh(ji,jj) ) * ( 1.0_wp - znd )
ghams(ji,jj,jk) = ghams(ji,jj,jk) - sws0(ji,jj) * ( 1.0_wp - znd )
END DO
DO jk = 1, mld_prof(ji,jj)
znd = gdepw(ji,jj,jk,Kmm) / MAX( zhmle(ji,jj), epsln )
ghamt(ji,jj,jk) = ghamt(ji,jj,jk) + ( swth0(ji,jj) - zrad0(ji,jj) + zradh(ji,jj) ) * ( 1.0_wp - znd )
ghams(ji,jj,jk) = ghams(ji,jj,jk) + sws0(ji,jj) * ( 1.0_wp -znd )
END DO
! Viscosity for MLEs
DO jk = 1, mld_prof(ji,jj)
znd = -1.0_wp * gdepw(ji,jj,jk,Kmm) / MAX( zhmle(ji,jj), epsln )
zdiffut(ji,jj,jk) = zdiffut(ji,jj,jk) + zdiff_mle(ji,jj) * ( 1.0_wp - ( 2.0_wp * znd + 1.0_wp )**2 ) * &
& ( 1.0_wp + 5.0_wp / 21.0_wp * ( 2.0_wp * znd + 1.0_wp )**2 )
END DO
ELSE ! Surface transports limited to OSBL
! Viscosity for MLEs
DO jk = 1, mld_prof(ji,jj)
znd = -1.0_wp * gdepw(ji,jj,jk,Kmm) / MAX( zhmle(ji,jj), epsln )
zdiffut(ji,jj,jk) = zdiffut(ji,jj,jk) + zdiff_mle(ji,jj) * ( 1.0_wp - ( 2.0_wp * znd + 1.0_wp )**2 ) * &
& ( 1.0_wp + 5.0_wp / 21.0_wp * ( 2.0_wp * znd + 1.0_wp )**2 )
END DO
END IF
END_2D
ENDIF
!
! Lateral boundary conditions on zvicos (sign unchanged), needed to caclulate viscosities on u and v grids
! CALL lbc_lnk( 'zdfosm', zviscos(:,:,:), 'W', 1.0_wp )
! GN 25/8: need to change tmask --> wmask
DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, jpkm1 )
p_avt(ji,jj,jk) = MAX( zdiffut(ji,jj,jk), avtb(jk) ) * tmask(ji,jj,jk)
p_avm(ji,jj,jk) = MAX( zviscos(ji,jj,jk), avmb(jk) ) * tmask(ji,jj,jk)
END_3D
!
IF ( ln_dia_osm ) THEN
SELECT CASE (nn_osm_wave)
! Stokes drift set by assumimg onstant La#=0.3 (=0) or Pierson-Moskovitz spectrum (=1)
CASE(0:1)
CALL zdf_osm_iomput( "us_x", tmask(A2D(0),1) * sustke(A2D(0)) * scos_wind(A2D(0)) ) ! x surface Stokes drift
CALL zdf_osm_iomput( "us_y", tmask(A2D(0),1) * sustke(A2D(0)) * ssin_wind(A2D(0)) ) ! y surface Stokes drift
CALL zdf_osm_iomput( "wind_wave_abs_power", 1000.0_wp * rho0 * tmask(A2D(0),1) * sustar(A2D(0))**2 * sustke(A2D(0)) )
! Stokes drift read in from sbcwave (=2).
CASE(2:3)
CALL zdf_osm_iomput( "us_x", ut0sd(A2D(0)) * umask(A2D(0),1) ) ! x surface Stokes drift
CALL zdf_osm_iomput( "us_y", vt0sd(A2D(0)) * vmask(A2D(0),1) ) ! y surface Stokes drift
CALL zdf_osm_iomput( "wmp", wmp(A2D(0)) * tmask(A2D(0),1) ) ! Wave mean period
CALL zdf_osm_iomput( "hsw", hsw(A2D(0)) * tmask(A2D(0),1) ) ! Significant wave height
CALL zdf_osm_iomput( "wmp_NP", ( 2.0_wp * rpi * 1.026_wp / ( 0.877_wp * grav ) ) * & ! Wave mean period from NP
& wndm(A2D(0)) * tmask(A2D(0),1) ) ! spectrum
CALL zdf_osm_iomput( "hsw_NP", ( 0.22_wp / grav ) * wndm(A2D(0))**2 * tmask(A2D(0),1) ) ! Significant wave height from
! ! NP spectrum
CALL zdf_osm_iomput( "wndm", wndm(A2D(0)) * tmask(A2D(0),1) ) ! U_10
CALL zdf_osm_iomput( "wind_wave_abs_power", 1000.0_wp * rho0 * tmask(A2D(0),1) * sustar(A2D(0))**2 * &
& SQRT( ut0sd(A2D(0))**2 + vt0sd(A2D(0))**2 ) )
END SELECT
CALL zdf_osm_iomput( "zwth0", tmask(A2D(0),1) * swth0(A2D(0)) ) ! <Tw_0>
CALL zdf_osm_iomput( "zws0", tmask(A2D(0),1) * sws0(A2D(0)) ) ! <Sw_0>
CALL zdf_osm_iomput( "zwb0", tmask(A2D(0),1) * swb0(A2D(0)) ) ! <bw_0>
CALL zdf_osm_iomput( "zwbav", tmask(A2D(0),1) * swbav(A2D(0)) ) ! Upward BL-avged turb buoyancy flux
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
CALL zdf_osm_iomput( "ibld", tmask(A2D(0),1) * nbld(A2D(0)) ) ! Boundary-layer max k
CALL zdf_osm_iomput( "zdt_bl", tmask(A2D(0),1) * av_dt_bl(A2D(0)) ) ! dt at ml base
CALL zdf_osm_iomput( "zds_bl", tmask(A2D(0),1) * av_ds_bl(A2D(0)) ) ! ds at ml base
CALL zdf_osm_iomput( "zdb_bl", tmask(A2D(0),1) * av_db_bl(A2D(0)) ) ! db at ml base
CALL zdf_osm_iomput( "zdu_bl", tmask(A2D(0),1) * av_du_bl(A2D(0)) ) ! du at ml base
CALL zdf_osm_iomput( "zdv_bl", tmask(A2D(0),1) * av_dv_bl(A2D(0)) ) ! dv at ml base
CALL zdf_osm_iomput( "dh", tmask(A2D(0),1) * dh(A2D(0)) ) ! Initial boundary-layer depth
CALL zdf_osm_iomput( "hml", tmask(A2D(0),1) * hml(A2D(0)) ) ! Initial boundary-layer depth
CALL zdf_osm_iomput( "zdt_ml", tmask(A2D(0),1) * av_dt_ml(A2D(0)) ) ! dt at ml base
CALL zdf_osm_iomput( "zds_ml", tmask(A2D(0),1) * av_ds_ml(A2D(0)) ) ! ds at ml base
CALL zdf_osm_iomput( "zdb_ml", tmask(A2D(0),1) * av_db_ml(A2D(0)) ) ! db at ml base
CALL zdf_osm_iomput( "dstokes", tmask(A2D(0),1) * dstokes(A2D(0)) ) ! Stokes drift penetration depth
CALL zdf_osm_iomput( "zustke", tmask(A2D(0),1) * sustke(A2D(0)) ) ! Stokes drift magnitude at T-points
CALL zdf_osm_iomput( "zwstrc", tmask(A2D(0),1) * swstrc(A2D(0)) ) ! Convective velocity scale
CALL zdf_osm_iomput( "zwstrl", tmask(A2D(0),1) * swstrl(A2D(0)) ) ! Langmuir velocity scale
CALL zdf_osm_iomput( "zustar", tmask(A2D(0),1) * sustar(A2D(0)) ) ! Friction velocity scale
CALL zdf_osm_iomput( "zvstr", tmask(A2D(0),1) * svstr(A2D(0)) ) ! Mixed velocity scale
CALL zdf_osm_iomput( "zla", tmask(A2D(0),1) * sla(A2D(0)) ) ! Langmuir #
CALL zdf_osm_iomput( "wind_power", 1000.0_wp * rho0 * tmask(A2D(0),1) * & ! BL depth internal to zdf_osm routine
& sustar(A2D(0))**3 )
CALL zdf_osm_iomput( "wind_wave_power", 1000.0_wp * rho0 * tmask(A2D(0),1) * &
& sustar(A2D(0))**2 * sustke(A2D(0)) )
CALL zdf_osm_iomput( "zhbl", tmask(A2D(0),1) * zhbl(A2D(0)) ) ! BL depth internal to zdf_osm routine
CALL zdf_osm_iomput( "zhml", tmask(A2D(0),1) * zhml(A2D(0)) ) ! ML depth internal to zdf_osm routine
CALL zdf_osm_iomput( "imld", tmask(A2D(0),1) * nmld(A2D(0)) ) ! Index for ML depth internal to zdf_osm
! ! routine
CALL zdf_osm_iomput( "jp_ext", tmask(A2D(0),1) * jk_ext(A2D(0)) ) ! =1 if pycnocline resolved internal to
! ! zdf_osm routine
CALL zdf_osm_iomput( "j_ddh", tmask(A2D(0),1) * n_ddh(A2D(0)) ) ! Index forpyc thicknessh internal to
! ! zdf_osm routine
CALL zdf_osm_iomput( "zshear", tmask(A2D(0),1) * zshear(A2D(0)) ) ! Shear production of TKE internal to
! ! zdf_osm routine
CALL zdf_osm_iomput( "zdh", tmask(A2D(0),1) * zdh(A2D(0)) ) ! Pyc thicknessh internal to zdf_osm
! ! routine
CALL zdf_osm_iomput( "zhol", tmask(A2D(0),1) * shol(A2D(0)) ) ! ML depth internal to zdf_osm routine
CALL zdf_osm_iomput( "zwb_ent", tmask(A2D(0),1) * zwb_ent(A2D(0)) ) ! Upward turb buoyancy entrainment flux
CALL zdf_osm_iomput( "zt_ml", tmask(A2D(0),1) * av_t_ml(A2D(0)) ) ! Average T in ML
CALL zdf_osm_iomput( "zmld", tmask(A2D(0),1) * zmld(A2D(0)) ) ! FK target layer depth
CALL zdf_osm_iomput( "zwb_fk", tmask(A2D(0),1) * zwb_fk(A2D(0)) ) ! FK b flux
CALL zdf_osm_iomput( "zwb_fk_b", tmask(A2D(0),1) * zwb_fk_b(A2D(0)) ) ! FK b flux averaged over ML
CALL zdf_osm_iomput( "mld_prof", tmask(A2D(0),1) * mld_prof(A2D(0)) ) ! FK layer max k
CALL zdf_osm_iomput( "zdtdx", umask(A2D(0),1) * zdtdx(A2D(0)) ) ! FK dtdx at u-pt
CALL zdf_osm_iomput( "zdtdy", vmask(A2D(0),1) * zdtdy(A2D(0)) ) ! FK dtdy at v-pt
CALL zdf_osm_iomput( "zdsdx", umask(A2D(0),1) * zdsdx(A2D(0)) ) ! FK dtdx at u-pt
CALL zdf_osm_iomput( "zdsdy", vmask(A2D(0),1) * zdsdy(A2D(0)) ) ! FK dsdy at v-pt
CALL zdf_osm_iomput( "dbdx_mle", umask(A2D(0),1) * dbdx_mle(A2D(0)) ) ! FK dbdx at u-pt
CALL zdf_osm_iomput( "dbdy_mle", vmask(A2D(0),1) * dbdy_mle(A2D(0)) ) ! FK dbdy at v-pt
CALL zdf_osm_iomput( "zdiff_mle", tmask(A2D(0),1) * zdiff_mle(A2D(0)) ) ! FK diff in MLE at t-pt
CALL zdf_osm_iomput( "zvel_mle", tmask(A2D(0),1) * zvel_mle(A2D(0)) ) ! FK velocity in MLE at t-pt
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
END IF
!
! Lateral boundary conditions on ghamu and ghamv, currently on W-grid (sign unchanged), needed to caclulate gham[uv] on u and
! v grids
IF ( .NOT. l_istiled .OR. ntile == nijtile ) THEN ! Finalise ghamu, ghamv, hbl, and hmle only after full domain has been
! ! processed
IF ( nn_hls == 1 ) CALL lbc_lnk( 'zdfosm', ghamu, 'W', 1.0_wp, &
& ghamv, 'W', 1.0_wp )
DO jk = 2, jpkm1
DO jj = Njs0, Nje0
DO ji = Nis0, Nie0
ghamu(ji,jj,jk) = ( ghamu(ji,jj,jk) + ghamu(ji+1,jj,jk) ) / &
& MAX( 1.0_wp, tmask(ji,jj,jk) + tmask (ji+1,jj,jk) ) * umask(ji,jj,jk)
ghamv(ji,jj,jk) = ( ghamv(ji,jj,jk) + ghamv(ji,jj+1,jk) ) / &
& MAX( 1.0_wp, tmask(ji,jj,jk) + tmask (ji,jj+1,jk) ) * vmask(ji,jj,jk)
ghamt(ji,jj,jk) = ghamt(ji,jj,jk) * tmask(ji,jj,jk)
ghams(ji,jj,jk) = ghams(ji,jj,jk) * tmask(ji,jj,jk)
END DO
END DO
END DO
! Lateral boundary conditions on final outputs for hbl, on T-grid (sign unchanged)
CALL lbc_lnk( 'zdfosm', hbl, 'T', 1.0_wp, &
& hmle, 'T', 1.0_wp )
!
CALL zdf_osm_iomput( "ghamt", tmask * ghamt ) ! <Tw_NL>
CALL zdf_osm_iomput( "ghams", tmask * ghams ) ! <Sw_NL>
CALL zdf_osm_iomput( "ghamu", umask * ghamu ) ! <uw_NL>
CALL zdf_osm_iomput( "ghamv", vmask * ghamv ) ! <vw_NL>
CALL zdf_osm_iomput( "hbl", tmask(:,:,1) * hbl ) ! Boundary-layer depth
CALL zdf_osm_iomput( "hmle", tmask(:,:,1) * hmle ) ! FK layer depth
END IF
!
END SUBROUTINE zdf_osm
SUBROUTINE zdf_osm_vertical_average( Kbb, Kmm, knlev, pt, ps, &
& pb, pu, pv, kp_ext, pdt, &
& pds, pdb, pdu, pdv )
!!---------------------------------------------------------------------
!! *** ROUTINE zdf_vertical_average ***
!!
!! ** Purpose : Determines vertical averages from surface to knlev,
!! and optionally the differences between these vertical
!! averages and values at an external level
!!
!! ** Method : Averages are calculated from the surface to knlev.
!! The external level used to calculate differences is
!! knlev+kp_ext
!!----------------------------------------------------------------------
INTEGER, INTENT(in ) :: Kbb, Kmm ! Ocean time-level indices
INTEGER, DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: knlev ! Number of levels to average over.
REAL(wp), DIMENSION(jpi,jpj), INTENT( out) :: pt, ps ! Average temperature and salinity
REAL(wp), DIMENSION(jpi,jpj), INTENT( out) :: pb ! Average buoyancy
REAL(wp), DIMENSION(jpi,jpj), INTENT( out) :: pu, pv ! Average current components
INTEGER, DIMENSION(A2D(nn_hls-1)), INTENT(in ), OPTIONAL :: kp_ext ! External-level offsets
REAL(wp), DIMENSION(jpi,jpj), INTENT( out), OPTIONAL :: pdt ! Difference between average temperature,
REAL(wp), DIMENSION(jpi,jpj), INTENT( out), OPTIONAL :: pds ! salinity,
REAL(wp), DIMENSION(jpi,jpj), INTENT( out), OPTIONAL :: pdb ! buoyancy, and
REAL(wp), DIMENSION(jpi,jpj), INTENT( out), OPTIONAL :: pdu, pdv ! velocity components and the OSBL
!!
INTEGER :: jk, jkflt, jkmax, ji, jj ! Loop indices
INTEGER :: ibld_ext ! External-layer index
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zthick ! Layer thickness
REAL(wp) :: zthermal ! Thermal expansion coefficient
REAL(wp) :: zbeta ! Haline contraction coefficient
!!----------------------------------------------------------------------
!
! Averages over depth of boundary layer
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
pt(ji,jj) = 0.0_wp
ps(ji,jj) = 0.0_wp
pu(ji,jj) = 0.0_wp
pv(ji,jj) = 0.0_wp
END_2D
zthick(:,:) = epsln
jkflt = jpk
jkmax = 0
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
IF ( knlev(ji,jj) < jkflt ) jkflt = knlev(ji,jj)
IF ( knlev(ji,jj) > jkmax ) jkmax = knlev(ji,jj)
END_2D
DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, jkflt ) ! Upper, flat part of layer
zthick(ji,jj) = zthick(ji,jj) + e3t(ji,jj,jk,Kmm)
pt(ji,jj) = pt(ji,jj) + e3t(ji,jj,jk,Kmm) * ts(ji,jj,jk,jp_tem,Kmm)
ps(ji,jj) = ps(ji,jj) + e3t(ji,jj,jk,Kmm) * ts(ji,jj,jk,jp_sal,Kmm)
pu(ji,jj) = pu(ji,jj) + e3t(ji,jj,jk,Kmm) * &
& ( uu(ji,jj,jk,Kbb) + uu(ji - 1,jj,jk,Kbb) ) / &
& MAX( 1.0_wp , umask(ji,jj,jk) + umask(ji - 1,jj,jk) )
pv(ji,jj) = pv(ji,jj) + e3t(ji,jj,jk,Kmm) * &
& ( vv(ji,jj,jk,Kbb) + vv(ji,jj - 1,jk,Kbb) ) / &
& MAX( 1.0_wp , vmask(ji,jj,jk) + vmask(ji,jj - 1,jk) )
END_3D
DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, jkflt+1, jkmax ) ! Lower, non-flat part of layer
IF ( knlev(ji,jj) >= jk ) THEN
zthick(ji,jj) = zthick(ji,jj) + e3t(ji,jj,jk,Kmm)
pt(ji,jj) = pt(ji,jj) + e3t(ji,jj,jk,Kmm) * ts(ji,jj,jk,jp_tem,Kmm)
ps(ji,jj) = ps(ji,jj) + e3t(ji,jj,jk,Kmm) * ts(ji,jj,jk,jp_sal,Kmm)
pu(ji,jj) = pu(ji,jj) + e3t(ji,jj,jk,Kmm) * &
& ( uu(ji,jj,jk,Kbb) + uu(ji - 1,jj,jk,Kbb) ) / &
& MAX( 1.0_wp , umask(ji,jj,jk) + umask(ji - 1,jj,jk) )
pv(ji,jj) = pv(ji,jj) + e3t(ji,jj,jk,Kmm) * &
& ( vv(ji,jj,jk,Kbb) + vv(ji,jj - 1,jk,Kbb) ) / &
& MAX( 1.0_wp , vmask(ji,jj,jk) + vmask(ji,jj - 1,jk) )
END IF
END_3D
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
pt(ji,jj) = pt(ji,jj) / zthick(ji,jj)
ps(ji,jj) = ps(ji,jj) / zthick(ji,jj)
pu(ji,jj) = pu(ji,jj) / zthick(ji,jj)
pv(ji,jj) = pv(ji,jj) / zthick(ji,jj)
zthermal = rab_n(ji,jj,1,jp_tem) ! ideally use nbld not 1??
zbeta = rab_n(ji,jj,1,jp_sal)
pb(ji,jj) = grav * zthermal * pt(ji,jj) - grav * zbeta * ps(ji,jj)
END_2D
!
! Differences between vertical averages and values at an external layer
IF ( PRESENT( kp_ext ) ) THEN
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
ibld_ext = knlev(ji,jj) + kp_ext(ji,jj)
IF ( ibld_ext <= mbkt(ji,jj)-1 ) THEN ! ag 09/03
! Two external levels are available
pdt(ji,jj) = pt(ji,jj) - ts(ji,jj,ibld_ext,jp_tem,Kmm)
pds(ji,jj) = ps(ji,jj) - ts(ji,jj,ibld_ext,jp_sal,Kmm)
pdu(ji,jj) = pu(ji,jj) - ( uu(ji,jj,ibld_ext,Kbb) + uu(ji-1,jj,ibld_ext,Kbb ) ) / &
& MAX(1.0_wp , umask(ji,jj,ibld_ext ) + umask(ji-1,jj,ibld_ext ) )
pdv(ji,jj) = pv(ji,jj) - ( vv(ji,jj,ibld_ext,Kbb) + vv(ji,jj-1,ibld_ext,Kbb ) ) / &
& MAX(1.0_wp , vmask(ji,jj,ibld_ext ) + vmask(ji,jj-1,ibld_ext ) )
zthermal = rab_n(ji,jj,1,jp_tem) ! ideally use nbld not 1??
zbeta = rab_n(ji,jj,1,jp_sal)
pdb(ji,jj) = grav * zthermal * pdt(ji,jj) - grav * zbeta * pds(ji,jj)
ELSE
pdt(ji,jj) = 0.0_wp
pds(ji,jj) = 0.0_wp
pdu(ji,jj) = 0.0_wp
pdv(ji,jj) = 0.0_wp
pdb(ji,jj) = 0.0_wp
ENDIF
END_2D
END IF
!
END SUBROUTINE zdf_osm_vertical_average
SUBROUTINE zdf_osm_velocity_rotation_2d( pu, pv, fwd )
!!---------------------------------------------------------------------
!! *** ROUTINE zdf_velocity_rotation_2d ***
!!
!! ** Purpose : Rotates frame of reference of velocity components pu and
!! pv (2d)
!!
!! ** Method : The velocity components are rotated into (fwd=.TRUE.) or
!! from (fwd=.FALSE.) the frame specified by scos_wind and
!! ssin_wind
!!
!!----------------------------------------------------------------------
REAL(wp), INTENT(inout), DIMENSION(jpi,jpj) :: pu, pv ! Components of current
LOGICAL, OPTIONAL, INTENT(in ) :: fwd ! Forward (default) or reverse rotation
!!
INTEGER :: ji, jj ! Loop indices
REAL(wp) :: ztmp, zfwd ! Auxiliary variables
!!----------------------------------------------------------------------
!
zfwd = 1.0_wp
IF( PRESENT(fwd) .AND. ( .NOT. fwd ) ) zfwd = -1.0_wp
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
ztmp = pu(ji,jj)
pu(ji,jj) = pu(ji,jj) * scos_wind(ji,jj) + zfwd * pv(ji,jj) * ssin_wind(ji,jj)
pv(ji,jj) = pv(ji,jj) * scos_wind(ji,jj) - zfwd * ztmp * ssin_wind(ji,jj)
END_2D
!
END SUBROUTINE zdf_osm_velocity_rotation_2d
SUBROUTINE zdf_osm_velocity_rotation_3d( pu, pv, fwd, ktop, knlev )
!!---------------------------------------------------------------------
!! *** ROUTINE zdf_velocity_rotation_3d ***
!!
!! ** Purpose : Rotates frame of reference of velocity components pu and
!! pv (3d)
!!
!! ** Method : The velocity components are rotated into (fwd=.TRUE.) or
!! from (fwd=.FALSE.) the frame specified by scos_wind and
!! ssin_wind; optionally, the rotation can be restricted at
!! each water column to span from the a minimum index ktop to
!! the depth index specified in array knlev
!!
!!----------------------------------------------------------------------
REAL(wp), INTENT(inout), DIMENSION(jpi,jpj,jpk) :: pu, pv ! Components of current
LOGICAL, OPTIONAL, INTENT(in ) :: fwd ! Forward (default) or reverse rotation
INTEGER, OPTIONAL, INTENT(in ) :: ktop ! Minimum depth index
INTEGER, OPTIONAL, INTENT(in ), DIMENSION(A2D(nn_hls-1)) :: knlev ! Array of maximum depth indices
!!
INTEGER :: ji, jj, jk, jktop, jkmax ! Loop indices
REAL(wp) :: ztmp, zfwd ! Auxiliary variables
LOGICAL :: llkbot ! Auxiliary variable
!!----------------------------------------------------------------------
!
zfwd = 1.0_wp
IF( PRESENT(fwd) .AND. ( .NOT. fwd ) ) zfwd = -1.0_wp
jktop = 1
IF( PRESENT(ktop) ) jktop = ktop
IF( PRESENT(knlev) ) THEN
jkmax = 0
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
IF ( knlev(ji,jj) > jkmax ) jkmax = knlev(ji,jj)
END_2D
llkbot = .FALSE.
ELSE
jkmax = jpk
llkbot = .TRUE.
END IF
DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, jktop, jkmax )
IF ( llkbot .OR. knlev(ji,jj) >= jk ) THEN
ztmp = pu(ji,jj,jk)
pu(ji,jj,jk) = pu(ji,jj,jk) * scos_wind(ji,jj) + zfwd * pv(ji,jj,jk) * ssin_wind(ji,jj)
pv(ji,jj,jk) = pv(ji,jj,jk) * scos_wind(ji,jj) - zfwd * ztmp * ssin_wind(ji,jj)
END IF
END_3D
!
END SUBROUTINE zdf_osm_velocity_rotation_3d
SUBROUTINE zdf_osm_osbl_state( Kmm, pwb_ent, pwb_min, pshear, phbl, &
& phml, pdh )
!!---------------------------------------------------------------------
!! *** ROUTINE zdf_osm_osbl_state ***
!!
!! ** Purpose : Determines the state of the OSBL, stable/unstable,
!! shear/ noshear. Also determines shear production,
!! entrainment buoyancy flux and interfacial Richardson
!! number
!!
!! ** Method :
!!
!!----------------------------------------------------------------------
INTEGER, INTENT(in ) :: Kmm ! Ocean time-level index
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT( out) :: pwb_ent ! Buoyancy fluxes at base
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT( out) :: pwb_min ! of well-mixed layer
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT( out) :: pshear ! Production of TKE due to shear across the pycnocline
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: phbl ! BL depth
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: phml ! ML depth
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: pdh ! Pycnocline depth
!!
INTEGER :: jj, ji ! Loop indices
!!
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zekman
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zri_p, zri_b ! Richardson numbers
REAL(wp) :: zshear_u, zshear_v, zwb_shr
REAL(wp) :: zwcor, zrf_conv, zrf_shear, zrf_langmuir, zr_stokes
!!
REAL(wp), PARAMETER :: pp_a_shr = 0.4_wp, pp_b_shr = 6.5_wp, pp_a_wb_s = 0.8_wp
REAL(wp), PARAMETER :: pp_alpha_c = 0.2_wp, pp_alpha_lc = 0.03_wp
REAL(wp), PARAMETER :: pp_alpha_ls = 0.06_wp, pp_alpha_s = 0.15_wp
REAL(wp), PARAMETER :: pp_ri_p_thresh = 27.0_wp
REAL(wp), PARAMETER :: pp_ri_c = 0.25_wp
REAL(wp), PARAMETER :: pp_ek = 4.0_wp
REAL(wp), PARAMETER :: pp_large = -1e10_wp
!!----------------------------------------------------------------------
!
! Initialise arrays
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
l_conv(ji,jj) = .FALSE.
l_shear(ji,jj) = .FALSE.
n_ddh(ji,jj) = 1
END_2D
! Initialise INTENT( out) arrays
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
pwb_ent(ji,jj) = pp_large
pwb_min(ji,jj) = pp_large
END_2D
!
! Determins stability and set flag l_conv
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
IF ( shol(ji,jj) < 0.0_wp ) THEN
l_conv(ji,jj) = .TRUE.
ELSE
l_conv(ji,jj) = .FALSE.
ENDIF
END_2D
!
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
pshear(ji,jj) = 0.0_wp
END_2D
zekman(:,:) = EXP( -1.0_wp * pp_ek * ABS( ff_t(A2D(nn_hls-1)) ) * phbl(A2D(nn_hls-1)) / &
& MAX( sustar(A2D(nn_hls-1)), 1.e-8 ) )
!
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
IF ( l_conv(ji,jj) ) THEN
IF ( av_db_bl(ji,jj) > 0.0_wp ) THEN
zri_p(ji,jj) = MAX ( SQRT( av_db_bl(ji,jj) * pdh(ji,jj) / MAX( av_du_bl(ji,jj)**2 + av_dv_bl(ji,jj)**2, &
& 1e-8_wp ) ) * ( phbl(ji,jj) / pdh(ji,jj) ) * &
& ( svstr(ji,jj) / MAX( sustar(ji,jj), 1e-6_wp ) )**2 / &
& MAX( zekman(ji,jj), 1.0e-6_wp ), 5.0_wp )
IF ( ff_t(ji,jj) >= 0.0_wp ) THEN ! Northern hemisphere
zri_b(ji,jj) = av_db_ml(ji,jj) * pdh(ji,jj) / ( MAX( av_du_ml(ji,jj), 1e-5_wp )**2 + &
& MAX( -1.0_wp * av_dv_ml(ji,jj), 1e-5_wp)**2 )
ELSE ! Southern hemisphere
zri_b(ji,jj) = av_db_ml(ji,jj) * pdh(ji,jj) / ( MAX( av_du_ml(ji,jj), 1e-5_wp )**2 + &
& MAX( av_dv_ml(ji,jj), 1e-5_wp)**2 )
END IF
pshear(ji,jj) = pp_a_shr * zekman(ji,jj) * &
& ( MAX( sustar(ji,jj)**2 * av_du_ml(ji,jj) / phbl(ji,jj), 0.0_wp ) + &
& pp_b_shr * MAX( -1.0_wp * ff_t(ji,jj) * sustke(ji,jj) * dstokes(ji,jj) * &
& av_dv_ml(ji,jj) / phbl(ji,jj), 0.0_wp ) )
! Stability dependence
pshear(ji,jj) = pshear(ji,jj) * EXP( -0.75_wp * MAX( 0.0_wp, ( zri_b(ji,jj) - pp_ri_c ) / pp_ri_c ) )
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! Test ensures n_ddh=0 is not selected. Change to zri_p<27 when !
! full code available !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
IF ( pshear(ji,jj) > 1e-10 ) THEN
IF ( zri_p(ji,jj) < pp_ri_p_thresh .AND. &
& MIN( hu(ji,jj,Kmm), hu(ji-1,jj,Kmm), hv(ji,jj,Kmm), hv(ji,jj-1,Kmm) ) > 100.0_wp ) THEN
! Growing shear layer
n_ddh(ji,jj) = 0
l_shear(ji,jj) = .TRUE.
ELSE
n_ddh(ji,jj) = 1
! IF ( zri_b <= 1.5 .and. pshear(ji,jj) > 0._wp ) THEN
! Shear production large enough to determine layer charcteristics, but can't maintain a shear layer
l_shear(ji,jj) = .TRUE.
! ELSE
END IF
ELSE
n_ddh(ji,jj) = 2
l_shear(ji,jj) = .FALSE.
END IF
! Shear production may not be zero, but is small and doesn't determine characteristics of pycnocline
! pshear(ji,jj) = 0.5 * pshear(ji,jj)
! l_shear(ji,jj) = .FALSE.
! ENDIF
ELSE ! av_db_bl test, note pshear set to zero
n_ddh(ji,jj) = 2
l_shear(ji,jj) = .FALSE.
ENDIF
ENDIF
END_2D
!
! Calculate entrainment buoyancy flux due to surface fluxes.
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
IF ( l_conv(ji,jj) ) THEN
zwcor = ABS( ff_t(ji,jj) ) * phbl(ji,jj) + epsln
zrf_conv = TANH( ( swstrc(ji,jj) / zwcor )**0.69_wp )
zrf_shear = TANH( ( sustar(ji,jj) / zwcor )**0.69_wp )
zrf_langmuir = TANH( ( swstrl(ji,jj) / zwcor )**0.69_wp )
IF ( nn_osm_SD_reduce > 0 ) THEN
! Effective Stokes drift already reduced from surface value
zr_stokes = 1.0_wp
ELSE
! Effective Stokes drift only reduced by factor rn_zdfodm_adjust_sd,
! requires further reduction where BL is deep
zr_stokes = 1.0 - EXP( -25.0_wp * dstokes(ji,jj) / hbl(ji,jj) * ( 1.0_wp + 4.0_wp * dstokes(ji,jj) / hbl(ji,jj) ) )
END IF
pwb_ent(ji,jj) = -2.0_wp * pp_alpha_c * zrf_conv * swbav(ji,jj) - &
& pp_alpha_s * zrf_shear * sustar(ji,jj)**3 / phml(ji,jj) + &
& zr_stokes * ( pp_alpha_s * EXP( -1.5_wp * sla(ji,jj) ) * zrf_shear * sustar(ji,jj)**3 - &
& zrf_langmuir * pp_alpha_lc * swstrl(ji,jj)**3 ) / phml(ji,jj)
ENDIF
END_2D
!
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
IF ( l_shear(ji,jj) ) THEN
IF ( l_conv(ji,jj) ) THEN
! Unstable OSBL
zwb_shr = -1.0_wp * pp_a_wb_s * zri_b(ji,jj) * pshear(ji,jj)
IF ( n_ddh(ji,jj) == 0 ) THEN
! Developing shear layer, additional shear production possible.
! pshear_u = MAX( zustar(ji,jj)**2 * MAX( av_du_ml(ji,jj), 0._wp ) / phbl(ji,jj), 0._wp )
! pshear(ji,jj) = pshear(ji,jj) + pshear_u * ( 1.0 - MIN( zri_p(ji,jj) / pp_ri_p_thresh, 1.d0 )**2 )
! pshear(ji,jj) = MIN( pshear(ji,jj), pshear_u )
! zwb_shr = zwb_shr - 0.25 * MAX ( pshear_u, 0._wp) * ( 1.0 - MIN( zri_p(ji,jj) / pp_ri_p_thresh, 1._wp )**2 )
! zwb_shr = MAX( zwb_shr, -0.25 * pshear_u )
ENDIF
pwb_ent(ji,jj) = pwb_ent(ji,jj) + zwb_shr
! pwb_min(ji,jj) = pwb_ent(ji,jj) + pdh(ji,jj) / phbl(ji,jj) * zwb0(ji,jj)
ELSE ! IF ( l_conv ) THEN - ENDIF
! Stable OSBL - shear production not coded for first attempt.
ENDIF ! l_conv
END IF ! l_shear
IF ( l_conv(ji,jj) ) THEN
! Unstable OSBL
pwb_min(ji,jj) = pwb_ent(ji,jj) + pdh(ji,jj) / phbl(ji,jj) * 2.0_wp * swbav(ji,jj)
END IF ! l_conv
END_2D
!
END SUBROUTINE zdf_osm_osbl_state
SUBROUTINE zdf_osm_external_gradients( Kmm, kbase, pdtdz, pdsdz, pdbdz )
!!---------------------------------------------------------------------
!! *** ROUTINE zdf_osm_external_gradients ***
!!
!! ** Purpose : Calculates the gradients below the OSBL
!!
!! ** Method : Uses nbld and ibld_ext to determine levels to calculate the gradient.
!!
!!----------------------------------------------------------------------
INTEGER, INTENT(in ) :: Kmm ! Ocean time-level index
INTEGER, DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: kbase ! OSBL base layer index
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT( out) :: pdtdz, pdsdz ! External gradients of temperature, salinity
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT( out) :: pdbdz ! and buoyancy
!!
INTEGER :: ji, jj, jkb, jkb1
REAL(wp) :: zthermal, zbeta
!!
REAL(wp), PARAMETER :: pp_large = -1e10_wp
!!----------------------------------------------------------------------
!
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
pdtdz(ji,jj) = pp_large
pdsdz(ji,jj) = pp_large
pdbdz(ji,jj) = pp_large
END_2D
!
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
IF ( kbase(ji,jj)+1 < mbkt(ji,jj) ) THEN
zthermal = rab_n(ji,jj,1,jp_tem) ! Ideally use nbld not 1??
zbeta = rab_n(ji,jj,1,jp_sal)
jkb = kbase(ji,jj)
jkb1 = MIN( jkb + 1, mbkt(ji,jj) )
pdtdz(ji,jj) = -1.0_wp * ( ts(ji,jj,jkb1,jp_tem,Kmm) - ts(ji,jj,jkb,jp_tem,Kmm ) ) / e3w(ji,jj,jkb1,Kmm)
pdsdz(ji,jj) = -1.0_wp * ( ts(ji,jj,jkb1,jp_sal,Kmm) - ts(ji,jj,jkb,jp_sal,Kmm ) ) / e3w(ji,jj,jkb1,Kmm)
pdbdz(ji,jj) = grav * zthermal * pdtdz(ji,jj) - grav * zbeta * pdsdz(ji,jj)
ELSE
pdtdz(ji,jj) = 0.0_wp
pdsdz(ji,jj) = 0.0_wp
pdbdz(ji,jj) = 0.0_wp
END IF
END_2D
!
END SUBROUTINE zdf_osm_external_gradients
SUBROUTINE zdf_osm_calculate_dhdt( pdhdt, phbl, pdh, pwb_ent, pwb_min, &
& pdbdz_bl_ext, pwb_fk_b, pwb_fk, pvel_mle )
!!---------------------------------------------------------------------
!! *** ROUTINE zdf_osm_calculate_dhdt ***
!!
!! ** Purpose : Calculates the rate at which hbl changes.
!!
!! ** Method :
!!
!!----------------------------------------------------------------------
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT( out) :: pdhdt ! Rate of change of hbl
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: phbl ! BL depth
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: pdh ! Pycnocline depth
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: pwb_ent ! Buoyancy entrainment flux
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: pwb_min
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: pdbdz_bl_ext ! External buoyancy gradients
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT( out) :: pwb_fk_b ! MLE buoyancy flux averaged over OSBL
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: pwb_fk ! Max MLE buoyancy flux
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: pvel_mle ! Vvelocity scale for dhdt with stable ML and FK
!!
INTEGER :: jj, ji
REAL(wp) :: zgamma_b_nd, zgamma_dh_nd, zpert, zpsi, zari
REAL(wp) :: zvel_max, zddhdt
!!
REAL(wp), PARAMETER :: pp_alpha_b = 0.3_wp
REAL(wp), PARAMETER :: pp_ddh = 2.5_wp, pp_ddh_2 = 3.5_wp ! Also in pycnocline_depth
REAL(wp), PARAMETER :: pp_large = -1e10_wp
!!----------------------------------------------------------------------
!
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
pdhdt(ji,jj) = pp_large
pwb_fk_b(ji,jj) = pp_large
END_2D
!
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
!
IF ( l_shear(ji,jj) ) THEN
!
IF ( l_conv(ji,jj) ) THEN ! Convective
!
IF ( ln_osm_mle ) THEN
IF ( hmle(ji,jj) > hbl(ji,jj) ) THEN ! Fox-Kemper buoyancy flux average over OSBL
pwb_fk_b(ji,jj) = pwb_fk(ji,jj) * ( 1.0_wp + hmle(ji,jj) / ( 6.0_wp * hbl(ji,jj) ) * &
& ( -1.0_wp + ( 1.0_wp - 2.0_wp * hbl(ji,jj) / hmle(ji,jj) )**3 ) )
ELSE
pwb_fk_b(ji,jj) = 0.5_wp * pwb_fk(ji,jj) * hmle(ji,jj) / hbl(ji,jj)
ENDIF
zvel_max = ( svstr(ji,jj)**3 + 0.5_wp * swstrc(ji,jj)**3 )**p2third / hbl(ji,jj)
IF ( ( pwb_ent(ji,jj) + 2.0_wp * pwb_fk_b(ji,jj) ) < 0.0_wp ) THEN ! OSBL is deepening,
! ! entrainment > restratification
IF ( av_db_bl(ji,jj) > 1e-15_wp ) THEN
zgamma_b_nd = MAX( pdbdz_bl_ext(ji,jj), 0.0_wp ) * pdh(ji,jj) / &
& ( zvel_max + MAX( av_db_bl(ji,jj), 1e-15_wp ) )
zpsi = ( 1.0_wp - 0.5_wp * pdh(ji,jj) / phbl(ji,jj) ) * &
& ( swb0(ji,jj) - MIN( ( pwb_min(ji,jj) + 2.0_wp * pwb_fk_b(ji,jj) ), 0.0_wp ) ) * pdh(ji,jj) / &
& phbl(ji,jj)
zpsi = zpsi + 1.75_wp * ( 1.0_wp - 0.5_wp * pdh(ji,jj) / phbl(ji,jj) ) * &
& ( pdh(ji,jj) / phbl(ji,jj) + zgamma_b_nd ) * &
& MIN( ( pwb_min(ji,jj) + 2.0_wp * pwb_fk_b(ji,jj) ), 0.0_wp )
zpsi = pp_alpha_b * MAX( zpsi, 0.0_wp )
pdhdt(ji,jj) = -1.0_wp * ( pwb_ent(ji,jj) + 2.0_wp * pwb_fk_b(ji,jj) ) / &
& ( zvel_max + MAX( av_db_bl(ji,jj), 1e-15_wp ) ) + &
& zpsi / ( zvel_max + MAX( av_db_bl(ji,jj), 1e-15_wp ) )
IF ( n_ddh(ji,jj) == 1 ) THEN
IF ( ( swstrc(ji,jj) / svstr(ji,jj) )**3 <= 0.5_wp ) THEN
zari = MIN( 1.5_wp * av_db_bl(ji,jj) / &
& ( phbl(ji,jj) * ( MAX( pdbdz_bl_ext(ji,jj), 0.0_wp ) + &
& av_db_bl(ji,jj)**2 / MAX( 4.5_wp * svstr(ji,jj)**2, &
& 1e-12_wp ) ) ), 0.2_wp )
ELSE
zari = MIN( 1.5_wp * av_db_bl(ji,jj) / &
& ( phbl(ji,jj) * ( MAX( pdbdz_bl_ext(ji,jj), 0.0_wp ) + &
& av_db_bl(ji,jj)**2 / MAX( 4.5_wp * swstrc(ji,jj)**2, &
& 1e-12_wp ) ) ), 0.2_wp )
ENDIF
! Relaxation to dh_ref = zari * hbl
zddhdt = -1.0_wp * pp_ddh_2 * ( 1.0_wp - pdh(ji,jj) / ( zari * phbl(ji,jj) ) ) * pwb_ent(ji,jj) / &
& ( zvel_max + MAX( av_db_bl(ji,jj), 1e-15_wp ) )
ELSE IF ( n_ddh(ji,jj) == 0 ) THEN ! Growing shear layer
zddhdt = -1.0_wp * pp_ddh * ( 1.0_wp - 1.6_wp * pdh(ji,jj) / phbl(ji,jj) ) * pwb_ent(ji,jj) / &
& ( zvel_max + MAX( av_db_bl(ji,jj), 1e-15_wp ) )
zddhdt = EXP( -4.0_wp * ABS( ff_t(ji,jj) ) * phbl(ji,jj) / MAX( sustar(ji,jj), 1e-8_wp ) ) * zddhdt
ELSE
zddhdt = 0.0_wp
ENDIF ! n_ddh
pdhdt(ji,jj) = pdhdt(ji,jj) + pp_alpha_b * ( 1.0_wp - 0.5_wp * pdh(ji,jj) / phbl(ji,jj) ) * &
& av_db_ml(ji,jj) * MAX( zddhdt, 0.0_wp ) / &
& ( zvel_max + MAX( av_db_bl(ji,jj), 1e-15_wp ) )
ELSE ! av_db_bl >0
pdhdt(ji,jj) = -1.0_wp * ( pwb_ent(ji,jj) + 2.0_wp * pwb_fk_b(ji,jj) ) / MAX( zvel_max, 1e-15_wp )
ENDIF
ELSE ! pwb_min + 2*pwb_fk_b < 0
! OSBL shoaling due to restratification flux. This is the velocity defined in Fox-Kemper et al (2008)
pdhdt(ji,jj) = -1.0_wp * MIN( pvel_mle(ji,jj), hbl(ji,jj) / 10800.0_wp )
ENDIF
ELSE ! Fox-Kemper not used.
zvel_max = -1.0_wp * ( 1.0_wp + 1.0_wp * ( svstr(ji,jj)**3 + 0.5_wp * swstrc(ji,jj)**3 )**pthird * &
& rn_Dt / hbl(ji,jj) ) * pwb_ent(ji,jj) / &
& MAX( ( svstr(ji,jj)**3 + 0.5_wp * swstrc(ji,jj)**3 )**pthird, epsln )
pdhdt(ji,jj) = -1.0_wp * pwb_ent(ji,jj) / ( zvel_max + MAX( av_db_bl(ji,jj), 1e-15_wp ) )
! added ajgn 23 July as temporay fix
ENDIF ! ln_osm_mle
!
ELSE ! l_conv - Stable
!
pdhdt(ji,jj) = ( 0.06_wp + 0.52_wp * shol(ji,jj) / 2.0_wp ) * svstr(ji,jj)**3 / hbl(ji,jj) + swbav(ji,jj)
IF ( pdhdt(ji,jj) < 0.0_wp ) THEN ! For long timsteps factor in brackets slows the rapid collapse of the OSBL
zpert = 2.0_wp * ( 1.0_wp + 0.0_wp * 2.0_wp * svstr(ji,jj) * rn_Dt / hbl(ji,jj) ) * svstr(ji,jj)**2 / hbl(ji,jj)
ELSE
zpert = MAX( svstr(ji,jj)**2 / hbl(ji,jj), av_db_bl(ji,jj) )
ENDIF
pdhdt(ji,jj) = 2.0_wp * pdhdt(ji,jj) / MAX( zpert, epsln )
pdhdt(ji,jj) = MAX( pdhdt(ji,jj), -1.0_wp * hbl(ji,jj) / 5400.0_wp )
!
ENDIF ! l_conv
!
ELSE ! l_shear
!
IF ( l_conv(ji,jj) ) THEN ! Convective
!
IF ( ln_osm_mle ) THEN
IF ( hmle(ji,jj) > hbl(ji,jj) ) THEN ! Fox-Kemper buoyancy flux average over OSBL
pwb_fk_b(ji,jj) = pwb_fk(ji,jj) * &
( 1.0_wp + hmle(ji,jj) / ( 6.0_wp * hbl(ji,jj) ) * &
& ( -1.0_wp + ( 1.0_wp - 2.0_wp * hbl(ji,jj) / hmle(ji,jj))**3) )
ELSE
pwb_fk_b(ji,jj) = 0.5_wp * pwb_fk(ji,jj) * hmle(ji,jj) / hbl(ji,jj)
ENDIF
zvel_max = ( swstrl(ji,jj)**3 + 0.5_wp * swstrc(ji,jj)**3 )**p2third / hbl(ji,jj)
IF ( ( pwb_ent(ji,jj) + 2.0_wp * pwb_fk_b(ji,jj) ) < 0.0_wp ) THEN ! OSBL is deepening,
! ! entrainment > restratification
IF ( av_db_bl(ji,jj) > 0.0_wp .AND. pdbdz_bl_ext(ji,jj) > 0.0_wp ) THEN
pdhdt(ji,jj) = -1.0_wp * ( pwb_ent(ji,jj) + 2.0_wp * pwb_fk_b(ji,jj) ) / &
& ( zvel_max + MAX( av_db_bl(ji,jj), 1e-15_wp ) )
ELSE
pdhdt(ji,jj) = -1.0_wp * ( pwb_ent(ji,jj) + 2.0_wp * pwb_fk_b(ji,jj) ) / MAX( zvel_max, 1e-15_wp )
ENDIF
ELSE ! OSBL shoaling due to restratification flux. This is the velocity defined in Fox-Kemper et al (2008)
pdhdt(ji,jj) = -1.0_wp * MIN( pvel_mle(ji,jj), hbl(ji,jj) / 10800.0_wp )
ENDIF
ELSE ! Fox-Kemper not used
zvel_max = -1.0_wp * pwb_ent(ji,jj) / MAX( ( svstr(ji,jj)**3 + 0.5_wp * swstrc(ji,jj)**3 )**pthird, epsln )
pdhdt(ji,jj) = -1.0_wp * pwb_ent(ji,jj) / ( zvel_max + MAX( av_db_bl(ji,jj), 1e-15_wp ) )
! added ajgn 23 July as temporay fix
ENDIF ! ln_osm_mle
!
ELSE ! Stable
!
pdhdt(ji,jj) = ( 0.06_wp + 0.52_wp * shol(ji,jj) / 2.0_wp ) * svstr(ji,jj)**3 / hbl(ji,jj) + swbav(ji,jj)
IF ( pdhdt(ji,jj) < 0.0_wp ) THEN
! For long timsteps factor in brackets slows the rapid collapse of the OSBL
zpert = 2.0_wp * svstr(ji,jj)**2 / hbl(ji,jj)
ELSE
zpert = MAX( svstr(ji,jj)**2 / hbl(ji,jj), av_db_bl(ji,jj) )
ENDIF
pdhdt(ji,jj) = 2.0_wp * pdhdt(ji,jj) / MAX(zpert, epsln)
pdhdt(ji,jj) = MAX( pdhdt(ji,jj), -1.0_wp * hbl(ji,jj) / 5400.0_wp )
!
ENDIF ! l_conv
!
ENDIF ! l_shear
!
END_2D
!
END SUBROUTINE zdf_osm_calculate_dhdt
SUBROUTINE zdf_osm_timestep_hbl( Kmm, pdhdt, phbl, phbl_t, pwb_ent, &
& pwb_fk_b )
!!---------------------------------------------------------------------
!! *** ROUTINE zdf_osm_timestep_hbl ***
!!
!! ** Purpose : Increments hbl.
!!
!! ** Method : If the change in hbl exceeds one model level the change is
!! is calculated by moving down the grid, changing the
!! buoyancy jump. This is to ensure that the change in hbl
!! does not overshoot a stable layer.
!!
!!----------------------------------------------------------------------
INTEGER, INTENT(in ) :: Kmm ! Ocean time-level index
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(inout) :: pdhdt ! Rates of change of hbl
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(inout) :: phbl ! BL depth
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: phbl_t ! BL depth
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: pwb_ent ! Buoyancy entrainment flux
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: pwb_fk_b ! MLE buoyancy flux averaged over OSBL
!!
INTEGER :: jk, jj, ji, jm
REAL(wp) :: zhbl_s, zvel_max, zdb
REAL(wp) :: zthermal, zbeta
!!----------------------------------------------------------------------
!
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
IF ( nbld(ji,jj) - nmld(ji,jj) > 1 ) THEN
!
! If boundary layer changes by more than one level, need to check for stable layers between initial and final depths.
!
zhbl_s = hbl(ji,jj)
jm = nmld(ji,jj)
zthermal = rab_n(ji,jj,1,jp_tem)
zbeta = rab_n(ji,jj,1,jp_sal)
!
IF ( l_conv(ji,jj) ) THEN ! Unstable
!
IF( ln_osm_mle ) THEN
zvel_max = ( swstrl(ji,jj)**3 + swstrc(ji,jj)**3 )**p2third / hbl(ji,jj)
ELSE
zvel_max = -1.0_wp * ( 1.0_wp + 1.0_wp * ( svstr(ji,jj)**3 + 0.5_wp * swstrc(ji,jj)**3 )**pthird * rn_Dt / &
& hbl(ji,jj) ) * pwb_ent(ji,jj) / &
& ( svstr(ji,jj)**3 + 0.5_wp * swstrc(ji,jj)**3 )**pthird
ENDIF
DO jk = nmld(ji,jj), nbld(ji,jj)
zdb = MAX( grav * ( zthermal * ( av_t_bl(ji,jj) - ts(ji,jj,jm,jp_tem,Kmm) ) - &
& zbeta * ( av_s_bl(ji,jj) - ts(ji,jj,jm,jp_sal,Kmm) ) ), 0.0_wp ) + zvel_max
!
IF ( ln_osm_mle ) THEN
zhbl_s = zhbl_s + MIN( rn_Dt * ( ( -1.0_wp * pwb_ent(ji,jj) - 2.0_wp * pwb_fk_b(ji,jj) ) / zdb ) / &
& REAL( nbld(ji,jj) - nmld(ji,jj), KIND=wp ), e3w(ji,jj,jm,Kmm) )
ELSE
zhbl_s = zhbl_s + MIN( rn_Dt * ( -1.0_wp * pwb_ent(ji,jj) / zdb ) / &
& REAL( nbld(ji,jj) - nmld(ji,jj), KIND=wp ), e3w(ji,jj,jm,Kmm) )
ENDIF
! zhbl_s = MIN(zhbl_s, gdepw(ji,jj, mbkt(ji,jj) + 1,Kmm) - depth_tol)
IF ( zhbl_s >= gdepw(ji,jj,mbkt(ji,jj) + 1,Kmm) ) THEN
zhbl_s = MIN( zhbl_s, gdepw(ji,jj, mbkt(ji,jj) + 1, Kmm ) - depth_tol )
l_pyc(ji,jj) = .FALSE.
ENDIF
IF ( zhbl_s >= gdepw(ji,jj,jm+1,Kmm) ) jm = jm + 1
END DO
hbl(ji,jj) = zhbl_s
nbld(ji,jj) = jm
ELSE ! Stable
DO jk = nmld(ji,jj), nbld(ji,jj)
zdb = MAX( grav * ( zthermal * ( av_t_bl(ji,jj) - ts(ji,jj,jm,jp_tem,Kmm) ) - &
& zbeta * ( av_s_bl(ji,jj) - ts(ji,jj,jm,jp_sal,Kmm) ) ), 0.0_wp ) + &
& 2.0_wp * svstr(ji,jj)**2 / zhbl_s
!
! Alan is thuis right? I have simply changed hbli to hbl
shol(ji,jj) = -1.0_wp * zhbl_s / ( ( svstr(ji,jj)**3 + epsln ) / swbav(ji,jj) )
pdhdt(ji,jj) = -1.0_wp * ( swbav(ji,jj) - 0.04_wp / 2.0_wp * swstrl(ji,jj)**3 / zhbl_s - &
& 0.15_wp / 2.0_wp * ( 1.0_wp - EXP( -1.5_wp * sla(ji,jj) ) ) * &
& sustar(ji,jj)**3 / zhbl_s ) * &
& ( 0.725_wp + 0.225_wp * EXP( -7.5_wp * shol(ji,jj) ) )
pdhdt(ji,jj) = pdhdt(ji,jj) + swbav(ji,jj)
zhbl_s = zhbl_s + MIN( pdhdt(ji,jj) / zdb * rn_Dt / REAL( nbld(ji,jj) - nmld(ji,jj), KIND=wp ), &
& e3w(ji,jj,jm,Kmm) )
! zhbl_s = MIN(zhbl_s, gdepw(ji,jj, mbkt(ji,jj) + 1,Kmm) - depth_tol)
IF ( zhbl_s >= gdepw(ji,jj,mbkt(ji,jj) + 1,Kmm) ) THEN
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
zhbl_s = MIN( zhbl_s, gdepw(ji,jj,mbkt(ji,jj)+1,Kmm) - depth_tol )
l_pyc(ji,jj) = .FALSE.
ENDIF
IF ( zhbl_s >= gdepw(ji,jj,jm,Kmm) ) jm = jm + 1
END DO
ENDIF ! IF ( l_conv )
hbl(ji,jj) = MAX( zhbl_s, gdepw(ji,jj,4,Kmm) )
nbld(ji,jj) = MAX( jm, 4 )
ELSE
! change zero or one model level.
hbl(ji,jj) = MAX( phbl_t(ji,jj), gdepw(ji,jj,4,Kmm) )
ENDIF
phbl(ji,jj) = gdepw(ji,jj,nbld(ji,jj),Kmm)
END_2D
!
END SUBROUTINE zdf_osm_timestep_hbl
SUBROUTINE zdf_osm_pycnocline_thickness( Kmm, pdh, phml, pdhdt, phbl, &
& pwb_ent, pdbdz_bl_ext, pwb_fk_b )
!!---------------------------------------------------------------------
!! *** ROUTINE zdf_osm_pycnocline_thickness ***
!!
!! ** Purpose : Calculates thickness of the pycnocline
!!
!! ** Method : The thickness is calculated from a prognostic equation
!! that relaxes the pycnocine thickness to a diagnostic
!! value. The time change is calculated assuming the
!! thickness relaxes exponentially. This is done to deal
!! with large timesteps.
!!
!!----------------------------------------------------------------------
INTEGER, INTENT(in ) :: Kmm ! Ocean time-level index
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(inout) :: pdh ! Pycnocline thickness
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(inout) :: phml ! ML depth
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: pdhdt ! BL depth tendency
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: phbl ! BL depth
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: pwb_ent ! Buoyancy entrainment flux
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: pdbdz_bl_ext ! External buoyancy gradients
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: pwb_fk_b ! MLE buoyancy flux averaged over OSBL
!!
INTEGER :: jj, ji
INTEGER :: inhml
REAL(wp) :: zari, ztau, zdh_ref, zddhdt, zvel_max
REAL(wp) :: ztmp ! Auxiliary variable
!!

sparonuz
committed
REAL(wp), PARAMETER :: pp_ddh = 2.5_wp, pp_ddh_2 = 3.5_wp ! Also in pycnocline_depth
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
!!----------------------------------------------------------------------
!
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
!
IF ( l_shear(ji,jj) ) THEN
!
IF ( l_conv(ji,jj) ) THEN
!
IF ( av_db_bl(ji,jj) > 1e-15_wp ) THEN
IF ( n_ddh(ji,jj) == 0 ) THEN
zvel_max = ( svstr(ji,jj)**3 + 0.5_wp * swstrc(ji,jj)**3 )**p2third / hbl(ji,jj)
! ddhdt for pycnocline determined in osm_calculate_dhdt
zddhdt = -1.0_wp * pp_ddh * ( 1.0_wp - 1.6_wp * pdh(ji,jj) / phbl(ji,jj) ) * pwb_ent(ji,jj) / &
& ( zvel_max + MAX( av_db_bl(ji,jj), 1e-15 ) )
zddhdt = EXP( -4.0_wp * ABS( ff_t(ji,jj) ) * phbl(ji,jj) / MAX( sustar(ji,jj), 1e-8 ) ) * zddhdt
! Maximum limit for how thick the shear layer can grow relative to the thickness of the boundary layer
dh(ji,jj) = MIN( dh(ji,jj) + zddhdt * rn_Dt, 0.625_wp * hbl(ji,jj) )
ELSE ! Need to recalculate because hbl has been updated
IF ( ( swstrc(ji,jj) / svstr(ji,jj) )**3 <= 0.5_wp ) THEN
ztmp = svstr(ji,jj)
ELSE
ztmp = swstrc(ji,jj)
END IF
zari = MIN( 1.5_wp * av_db_bl(ji,jj) / ( phbl(ji,jj) * ( MAX( pdbdz_bl_ext(ji,jj), 0.0_wp ) + &
& av_db_bl(ji,jj)**2 / MAX( 4.5_wp * ztmp**2, &
& 1e-12_wp ) ) ), 0.2_wp )
ztau = MAX( av_db_bl(ji,jj) * ( zari * hbl(ji,jj) ) / &
& ( pp_ddh_2 * MAX( -1.0_wp * pwb_ent(ji,jj), 1e-12_wp ) ), 2.0_wp * rn_Dt )
dh(ji,jj) = dh(ji,jj) * EXP( -1.0_wp * rn_Dt / ztau ) + &
& zari * phbl(ji,jj) * ( 1.0_wp - EXP( -1.0_wp * rn_Dt / ztau ) )
IF ( dh(ji,jj) >= hbl(ji,jj) ) dh(ji,jj) = zari * phbl(ji,jj)
END IF
ELSE
ztau = MAX( MAX( hbl(ji,jj) / ( svstr(ji,jj)**3 + 0.5_wp * swstrc(ji,jj)**3 )**pthird, epsln), 2.0_wp * rn_Dt )
dh(ji,jj) = dh(ji,jj) * EXP( -1.0_wp * rn_Dt / ztau ) + &
& 0.2_wp * phbl(ji,jj) * ( 1.0_wp - EXP( -1.0_wp * rn_Dt / ztau ) )
IF ( dh(ji,jj) > hbl(ji,jj) ) dh(ji,jj) = 0.2_wp * hbl(ji,jj)
END IF
!
ELSE ! l_conv
! Initially shear only for entraining OSBL. Stable code will be needed if extended to stable OSBL
ztau = hbl(ji,jj) / MAX(svstr(ji,jj), epsln)
IF ( pdhdt(ji,jj) >= 0.0_wp ) THEN ! Probably shouldn't include wm here
! Boundary layer deepening
IF ( av_db_bl(ji,jj) > 0.0_wp ) THEN
! Pycnocline thickness set by stratification - use same relationship as for neutral conditions
zari = MIN( 4.5_wp * ( svstr(ji,jj)**2 ) / MAX( av_db_bl(ji,jj) * phbl(ji,jj), epsln ) + 0.01_wp, 0.2_wp )
zdh_ref = MIN( zari, 0.2_wp ) * hbl(ji,jj)
ELSE
zdh_ref = 0.2_wp * hbl(ji,jj)
ENDIF
ELSE ! IF(dhdt < 0)
zdh_ref = 0.2_wp * hbl(ji,jj)
ENDIF ! IF (dhdt >= 0)
dh(ji,jj) = dh(ji,jj) * EXP( -1.0_wp * rn_Dt / ztau ) + zdh_ref * ( 1.0_wp - EXP( -1.0_wp * rn_Dt / ztau ) )
IF ( pdhdt(ji,jj) < 0.0_wp .AND. dh(ji,jj) >= hbl(ji,jj) ) dh(ji,jj) = zdh_ref ! Can be a problem with dh>hbl for
! ! rapid collapse
ENDIF
!
ELSE ! l_shear = .FALSE., calculate ddhdt here
!
IF ( l_conv(ji,jj) ) THEN
!
IF( ln_osm_mle ) THEN
IF ( ( pwb_ent(ji,jj) + 2.0_wp * pwb_fk_b(ji,jj) ) < 0.0_wp ) THEN ! OSBL is deepening. Note wb_fk_b is zero if
! ! ln_osm_mle=F
IF ( av_db_bl(ji,jj) > 0.0_wp .AND. pdbdz_bl_ext(ji,jj) > 0.0_wp ) THEN
IF ( ( swstrc(ji,jj) / MAX( svstr(ji,jj), epsln) )**3 <= 0.5_wp ) THEN ! Near neutral stability
ztmp = svstr(ji,jj)
ELSE ! Unstable
ztmp = swstrc(ji,jj)
END IF
zari = MIN( 1.5_wp * av_db_bl(ji,jj) / &
& ( phbl(ji,jj) * ( MAX( pdbdz_bl_ext(ji,jj), 0.0_wp ) + &
& av_db_bl(ji,jj)**2 / MAX( 4.5_wp * ztmp**2 , 1e-12_wp ) ) ), 0.2_wp )
ELSE
zari = 0.2_wp
END IF
ELSE
zari = 0.2_wp
END IF
ztau = 0.2_wp * hbl(ji,jj) / MAX( epsln, ( svstr(ji,jj)**3 + 0.5_wp * swstrc(ji,jj)**3 )**pthird )
zdh_ref = zari * hbl(ji,jj)
ELSE ! ln_osm_mle
IF ( av_db_bl(ji,jj) > 0.0_wp .AND. pdbdz_bl_ext(ji,jj) > 0.0_wp ) THEN
IF ( ( swstrc(ji,jj) / MAX( svstr(ji,jj), epsln ) )**3 <= 0.5_wp ) THEN ! Near neutral stability
ztmp = svstr(ji,jj)
ELSE ! Unstable
ztmp = swstrc(ji,jj)
END IF
zari = MIN( 1.5_wp * av_db_bl(ji,jj) / &
& ( phbl(ji,jj) * ( MAX( pdbdz_bl_ext(ji,jj), 0.0_wp ) + &
& av_db_bl(ji,jj)**2 / MAX( 4.5_wp * ztmp**2 , 1e-12_wp ) ) ), 0.2_wp )
ELSE
zari = 0.2_wp
END IF
ztau = hbl(ji,jj) / MAX( epsln, ( svstr(ji,jj)**3 + 0.5_wp * swstrc(ji,jj)**3 )**pthird )
zdh_ref = zari * hbl(ji,jj)
END IF ! ln_osm_mle
dh(ji,jj) = dh(ji,jj) * EXP( -1.0_wp * rn_Dt / ztau ) + zdh_ref * ( 1.0_wp - EXP( -1.0_wp * rn_Dt / ztau ) )
! IF ( pdhdt(ji,jj) < 0._wp .and. dh(ji,jj) >= hbl(ji,jj) ) dh(ji,jj) = zdh_ref
IF ( dh(ji,jj) >= hbl(ji,jj) ) dh(ji,jj) = zdh_ref
! Alan: this hml is never defined or used
ELSE ! IF (l_conv)
!
ztau = hbl(ji,jj) / MAX( svstr(ji,jj), epsln )
IF ( pdhdt(ji,jj) >= 0.0_wp ) THEN ! Probably shouldn't include wm here
! Boundary layer deepening
IF ( av_db_bl(ji,jj) > 0.0_wp ) THEN
! Pycnocline thickness set by stratification - use same relationship as for neutral conditions.
zari = MIN( 4.5_wp * ( svstr(ji,jj)**2 ) / MAX( av_db_bl(ji,jj) * phbl(ji,jj), epsln ) + 0.01_wp , 0.2_wp )
zdh_ref = MIN( zari, 0.2_wp ) * hbl(ji,jj)
ELSE
zdh_ref = 0.2_wp * hbl(ji,jj)
END IF
ELSE ! IF(dhdt < 0)
zdh_ref = 0.2_wp * hbl(ji,jj)
END IF ! IF (dhdt >= 0)
dh(ji,jj) = dh(ji,jj) * EXP( -1.0_wp * rn_Dt / ztau ) + zdh_ref * ( 1.0_wp - EXP( -1.0_wp * rn_Dt / ztau ) )
IF ( pdhdt(ji,jj) < 0.0_wp .AND. dh(ji,jj) >= hbl(ji,jj) ) dh(ji,jj) = zdh_ref ! Can be a problem with dh>hbl for
! ! rapid collapse
END IF ! IF (l_conv)
!
END IF ! l_shear
!
hml(ji,jj) = hbl(ji,jj) - dh(ji,jj)
inhml = MAX( INT( dh(ji,jj) / MAX( e3t(ji,jj,nbld(ji,jj)-1,Kmm), 1e-3_wp ) ), 1 )
nmld(ji,jj) = MAX( nbld(ji,jj) - inhml, 3 )
phml(ji,jj) = gdepw(ji,jj,nmld(ji,jj),Kmm)
pdh(ji,jj) = phbl(ji,jj) - phml(ji,jj)
!
END_2D
!
END SUBROUTINE zdf_osm_pycnocline_thickness
SUBROUTINE zdf_osm_pycnocline_buoyancy_profiles( Kmm, kp_ext, pdbdz, palpha, pdh, &
& phbl, pdbdz_bl_ext, phml, pdhdt )
!!---------------------------------------------------------------------
!! *** ROUTINE zdf_osm_pycnocline_buoyancy_profiles ***
!!
!! ** Purpose : calculate pycnocline buoyancy profiles
!!
!! ** Method :
!!
!!----------------------------------------------------------------------
INTEGER, INTENT(in ) :: Kmm ! Ocean time-level index
INTEGER, DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: kp_ext ! External-level offsets
REAL(wp), DIMENSION(A2D(nn_hls-1),jpk), INTENT( out) :: pdbdz ! Gradients in the pycnocline
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT( out) :: palpha
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: pdh ! Pycnocline thickness
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: phbl ! BL depth
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: pdbdz_bl_ext ! External buoyancy gradients
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: phml ! ML depth
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: pdhdt ! Rates of change of hbl
!!
INTEGER :: jk, jj, ji
REAL(wp) :: zbgrad
REAL(wp) :: zgamma_b_nd, znd
REAL(wp) :: zzeta_m
REAL(wp) :: ztmp ! Auxiliary variable
!!
REAL(wp), PARAMETER :: pp_gamma_b = 2.25_wp
REAL(wp), PARAMETER :: pp_large = -1e10_wp
!!----------------------------------------------------------------------
!
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
pdbdz(ji,jj,:) = pp_large
palpha(ji,jj) = pp_large
END_2D
!
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
!
IF ( nbld(ji,jj) + kp_ext(ji,jj) < mbkt(ji,jj) ) THEN
!
IF ( l_conv(ji,jj) ) THEN ! Convective conditions
!
IF ( l_pyc(ji,jj) ) THEN
!
zzeta_m = 0.1_wp + 0.3_wp / ( 1.0_wp + EXP( -3.5_wp * LOG10( -1.0_wp * shol(ji,jj) ) ) )
palpha(ji,jj) = 2.0_wp * ( 1.0_wp - ( 0.80_wp * zzeta_m + 0.5_wp * SQRT( 3.14159_wp / pp_gamma_b ) ) * &
& pdbdz_bl_ext(ji,jj) * pdh(ji,jj) / av_db_ml(ji,jj) ) / &
& ( 0.723_wp + SQRT( 3.14159_wp / pp_gamma_b ) )
palpha(ji,jj) = MAX( palpha(ji,jj), 0.0_wp )
ztmp = 1.0_wp / MAX( pdh(ji,jj), epsln )
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! Commented lines in this section are not needed in new code, once tested !
! can be removed !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! ztgrad = zalpha * av_dt_ml(ji,jj) * ztmp + zdtdz_bl_ext(ji,jj)
! zsgrad = zalpha * av_ds_ml(ji,jj) * ztmp + zdsdz_bl_ext(ji,jj)
zbgrad = palpha(ji,jj) * av_db_ml(ji,jj) * ztmp + pdbdz_bl_ext(ji,jj)
zgamma_b_nd = pdbdz_bl_ext(ji,jj) * pdh(ji,jj) / MAX( av_db_ml(ji,jj), epsln )
DO jk = 2, nbld(ji,jj)
znd = -1.0_wp * ( gdepw(ji,jj,jk,Kmm) - phbl(ji,jj) ) * ztmp
IF ( znd <= zzeta_m ) THEN
! zdtdz(ji,jj,jk) = zdtdz_bl_ext(ji,jj) + zalpha * av_dt_ml(ji,jj) * ztmp * &
! & EXP( -6.0 * ( znd -zzeta_m )**2 )
! zdsdz(ji,jj,jk) = zdsdz_bl_ext(ji,jj) + zalpha * av_ds_ml(ji,jj) * ztmp * &
! & EXP( -6.0 * ( znd -zzeta_m )**2 )
pdbdz(ji,jj,jk) = pdbdz_bl_ext(ji,jj) + palpha(ji,jj) * av_db_ml(ji,jj) * ztmp * &
& EXP( -6.0_wp * ( znd -zzeta_m )**2 )
ELSE
! zdtdz(ji,jj,jk) = ztgrad * EXP( -pp_gamma_b * ( znd - zzeta_m )**2 )
! zdsdz(ji,jj,jk) = zsgrad * EXP( -pp_gamma_b * ( znd - zzeta_m )**2 )
pdbdz(ji,jj,jk) = zbgrad * EXP( -1.0_wp * pp_gamma_b * ( znd - zzeta_m )**2 )
END IF
END DO
END IF ! If no pycnocline pycnocline gradients set to zero
!
ELSE ! Stable conditions
! If pycnocline profile only defined when depth steady of increasing.
IF ( pdhdt(ji,jj) > 0.0_wp ) THEN ! Depth increasing, or steady.
IF ( av_db_bl(ji,jj) > 0.0_wp ) THEN
IF ( shol(ji,jj) >= 0.5_wp ) THEN ! Very stable - 'thick' pycnocline
ztmp = 1.0_wp / MAX( phbl(ji,jj), epsln )
zbgrad = av_db_bl(ji,jj) * ztmp
DO jk = 2, nbld(ji,jj)
znd = gdepw(ji,jj,jk,Kmm) * ztmp
pdbdz(ji,jj,jk) = zbgrad * EXP( -15.0_wp * ( znd - 0.9_wp )**2 )
END DO
ELSE ! Slightly stable - 'thin' pycnoline - needed when stable layer begins to form.
ztmp = 1.0_wp / MAX( pdh(ji,jj), epsln )
zbgrad = av_db_bl(ji,jj) * ztmp
DO jk = 2, nbld(ji,jj)
znd = -1.0_wp * ( gdepw(ji,jj,jk,Kmm) - phml(ji,jj) ) * ztmp
pdbdz(ji,jj,jk) = zbgrad * EXP( -1.75_wp * ( znd + 0.75_wp )**2 )
END DO
END IF ! IF (shol >=0.5)
END IF ! IF (av_db_bl> 0.)
END IF ! IF (pdhdt >= 0) pdhdt < 0 not considered since pycnocline profile is zero and profile arrays are
! ! intialized to zero
!
END IF ! IF (l_conv)
!
END IF ! IF ( nbld(ji,jj) < mbkt(ji,jj) )
!
END_2D
!
IF ( ln_dia_pyc_scl ) THEN ! Output of pycnocline gradient profiles
CALL zdf_osm_iomput( "zdbdz_pyc", wmask(A2D(0),:) * pdbdz(A2D(0),:) )
END IF
!
END SUBROUTINE zdf_osm_pycnocline_buoyancy_profiles
SUBROUTINE zdf_osm_diffusivity_viscosity( Kbb, Kmm, pdiffut, pviscos, phbl, &
& phml, pdh, pdhdt, pshear, &
& pwb_ent, pwb_min )
!!---------------------------------------------------------------------
!! *** ROUTINE zdf_osm_diffusivity_viscosity ***
!!
!! ** Purpose : Determines the eddy diffusivity and eddy viscosity
!! profiles in the mixed layer and the pycnocline.
!!
!! ** Method :
!!
!!----------------------------------------------------------------------
INTEGER, INTENT(in ) :: Kbb, Kmm ! Ocean time-level indices
REAL(wp), DIMENSION(A2D(nn_hls-1),jpk), INTENT(inout) :: pdiffut ! t-diffusivity
REAL(wp), DIMENSION(A2D(nn_hls-1),jpk), INTENT(inout) :: pviscos ! Viscosity
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: phbl ! BL depth
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: phml ! ML depth
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: pdh ! Pycnocline depth
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: pdhdt ! BL depth tendency
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: pshear ! Shear production
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: pwb_ent ! Buoyancy entrainment flux
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: pwb_min
!!
INTEGER :: ji, jj, jk ! Loop indices
!! Scales used to calculate eddy diffusivity and viscosity profiles
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zdifml_sc, zvisml_sc
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zdifpyc_n_sc, zdifpyc_s_sc
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zvispyc_n_sc, zvispyc_s_sc
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zbeta_d_sc, zbeta_v_sc
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zb_coup, zc_coup_vis, zc_coup_dif
!!
REAL(wp) :: zvel_sc_pyc, zvel_sc_ml, zstab_fac, zz_b
REAL(wp) :: za_cubic, zb_d_cubic, zc_d_cubic, zd_d_cubic, & ! Coefficients in cubic polynomial specifying diffusivity
& zb_v_cubic, zc_v_cubic, zd_v_cubic ! and viscosity in pycnocline
REAL(wp) :: zznd_ml, zznd_pyc, ztmp
REAL(wp) :: zmsku, zmskv
!!
REAL(wp), PARAMETER :: pp_dif_ml = 0.8_wp, pp_vis_ml = 0.375_wp
REAL(wp), PARAMETER :: pp_dif_pyc = 0.15_wp, pp_vis_pyc = 0.142_wp
REAL(wp), PARAMETER :: pp_vispyc_shr = 0.15_wp
!!----------------------------------------------------------------------
!
zb_coup(:,:) = 0.0_wp
!
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
IF ( l_conv(ji,jj) ) THEN
!
zvel_sc_pyc = ( 0.15_wp * svstr(ji,jj)**3 + swstrc(ji,jj)**3 + 4.25_wp * pshear(ji,jj) * phbl(ji,jj) )**pthird
zvel_sc_ml = ( svstr(ji,jj)**3 + 0.5_wp * swstrc(ji,jj)**3 )**pthird
zstab_fac = ( phml(ji,jj) / zvel_sc_ml * &
& ( 1.4_wp - 0.4_wp / ( 1.0_wp + EXP(-3.5_wp * LOG10( -1.0_wp * shol(ji,jj) ) ) )**1.25_wp ) )**2
!
zdifml_sc(ji,jj) = pp_dif_ml * phml(ji,jj) * zvel_sc_ml
zvisml_sc(ji,jj) = pp_vis_ml * zdifml_sc(ji,jj)
!
IF ( l_pyc(ji,jj) ) THEN
zdifpyc_n_sc(ji,jj) = pp_dif_pyc * zvel_sc_ml * pdh(ji,jj)
zvispyc_n_sc(ji,jj) = 0.09_wp * zvel_sc_pyc * ( 1.0_wp - phbl(ji,jj) / pdh(ji,jj) )**2 * &
& ( 0.005_wp * ( av_u_ml(ji,jj) - av_u_bl(ji,jj) )**2 + &
& 0.0075_wp * ( av_v_ml(ji,jj) - av_v_bl(ji,jj) )**2 ) / &
& pdh(ji,jj)
zvispyc_n_sc(ji,jj) = pp_vis_pyc * zvel_sc_ml * pdh(ji,jj) + zvispyc_n_sc(ji,jj) * zstab_fac
!
IF ( l_shear(ji,jj) .AND. n_ddh(ji,jj) /= 2 ) THEN
ztmp = pp_vispyc_shr * ( pshear(ji,jj) * phbl(ji,jj) )**pthird * phbl(ji,jj)
zdifpyc_n_sc(ji,jj) = zdifpyc_n_sc(ji,jj) + ztmp
zvispyc_n_sc(ji,jj) = zvispyc_n_sc(ji,jj) + ztmp
ENDIF
!
zdifpyc_s_sc(ji,jj) = pwb_ent(ji,jj) + 0.0025_wp * zvel_sc_pyc * ( phbl(ji,jj) / pdh(ji,jj) - 1.0_wp ) * &
& ( av_b_ml(ji,jj) - av_b_bl(ji,jj) )
zvispyc_s_sc(ji,jj) = 0.09_wp * ( pwb_min(ji,jj) + 0.0025_wp * zvel_sc_pyc * &
& ( phbl(ji,jj) / pdh(ji,jj) - 1.0_wp ) * &
& ( av_b_ml(ji,jj) - av_b_bl(ji,jj) ) )
zdifpyc_s_sc(ji,jj) = 0.09_wp * zdifpyc_s_sc(ji,jj) * zstab_fac
zvispyc_s_sc(ji,jj) = zvispyc_s_sc(ji,jj) * zstab_fac
!
zdifpyc_s_sc(ji,jj) = MAX( zdifpyc_s_sc(ji,jj), -0.5_wp * zdifpyc_n_sc(ji,jj) )
zvispyc_s_sc(ji,jj) = MAX( zvispyc_s_sc(ji,jj), -0.5_wp * zvispyc_n_sc(ji,jj) )
zbeta_d_sc(ji,jj) = 1.0_wp - ( ( zdifpyc_n_sc(ji,jj) + 1.4_wp * zdifpyc_s_sc(ji,jj) ) / &
& ( zdifml_sc(ji,jj) + epsln ) )**p2third
zbeta_v_sc(ji,jj) = 1.0_wp - 2.0_wp * ( zvispyc_n_sc(ji,jj) + zvispyc_s_sc(ji,jj) ) / ( zvisml_sc(ji,jj) + epsln )
ELSE
zdifpyc_n_sc(ji,jj) = pp_dif_pyc * zvel_sc_ml * pdh(ji,jj) ! ag 19/03
zdifpyc_s_sc(ji,jj) = 0.0_wp ! ag 19/03
zvispyc_n_sc(ji,jj) = pp_vis_pyc * zvel_sc_ml * pdh(ji,jj) ! ag 19/03
zvispyc_s_sc(ji,jj) = 0.0_wp ! ag 19/03
IF(l_coup(ji,jj) ) THEN ! ag 19/03
! code from SUBROUTINE tke_tke zdftke.F90; uses bottom drag velocity rCdU_bot(ji,jj) = -Cd|ub|
! already calculated at T-points in SUBROUTINE zdf_drg from zdfdrg.F90
! Gives friction velocity sqrt bottom drag/rho_0 i.e. u* = SQRT(rCdU_bot*ub)
! wet-cell averaging ..
zmsku = 0.5_wp * ( 2.0_wp - umask(ji-1,jj,mbkt(ji,jj)) * umask(ji,jj,mbkt(ji,jj)) )
zmskv = 0.5_wp * ( 2.0_wp - vmask(ji,jj-1,mbkt(ji,jj)) * vmask(ji,jj,mbkt(ji,jj)) )
zb_coup(ji,jj) = 0.4_wp * SQRT(-1.0_wp * rCdU_bot(ji,jj) * &
& SQRT( ( zmsku*( uu(ji,jj,mbkt(ji,jj),Kbb)+uu(ji-1,jj,mbkt(ji,jj),Kbb) ) )**2 &
& + ( zmskv*( vv(ji,jj,mbkt(ji,jj),Kbb)+vv(ji,jj-1,mbkt(ji,jj),Kbb) ) )**2 ) )
zz_b = -1.0_wp * gdepw(ji,jj,mbkt(ji,jj)+1,Kmm) ! ag 19/03
zc_coup_vis(ji,jj) = -0.5_wp * ( 0.5_wp * zvisml_sc(ji,jj) / phml(ji,jj) - zb_coup(ji,jj) ) / &
& ( phml(ji,jj) + zz_b ) ! ag 19/03
zz_b = -1.0_wp * phml(ji,jj) + gdepw(ji,jj,mbkt(ji,jj)+1,Kmm) ! ag 19/03
zbeta_v_sc(ji,jj) = 1.0_wp - 2.0_wp * ( zb_coup(ji,jj) * zz_b + zc_coup_vis(ji,jj) * zz_b**2 ) / &
& zvisml_sc(ji,jj) ! ag 19/03
zbeta_d_sc(ji,jj) = 1.0_wp - ( ( zb_coup(ji,jj) * zz_b + zc_coup_vis(ji,jj) * zz_b**2 ) / &
& zdifml_sc(ji,jj) )**p2third
zc_coup_dif(ji,jj) = 0.5_wp * ( -zdifml_sc(ji,jj) / phml(ji,jj) * ( 1.0_wp - zbeta_d_sc(ji,jj) )**1.5_wp + &
& 1.5_wp * ( zdifml_sc(ji,jj) / phml(ji,jj) ) * zbeta_d_sc(ji,jj) * &
& SQRT( 1.0_wp - zbeta_d_sc(ji,jj) ) - zb_coup(ji,jj) ) / zz_b ! ag 19/03
ELSE ! ag 19/03
zbeta_d_sc(ji,jj) = 1.0_wp - ( ( zdifpyc_n_sc(ji,jj) + 1.4_wp * zdifpyc_s_sc(ji,jj) ) / &
& ( zdifml_sc(ji,jj) + epsln ) )**p2third ! ag 19/03
zbeta_v_sc(ji,jj) = 1.0_wp - 2.0_wp * ( zvispyc_n_sc(ji,jj) + zvispyc_s_sc(ji,jj) ) / &
& ( zvisml_sc(ji,jj) + epsln ) ! ag 19/03
ENDIF ! ag 19/03
ENDIF ! ag 19/03
ELSE
zdifml_sc(ji,jj) = svstr(ji,jj) * phbl(ji,jj) * MAX( EXP ( -1.0_wp * ( shol(ji,jj) / 0.6_wp )**2 ), 0.2_wp)
zvisml_sc(ji,jj) = zdifml_sc(ji,jj)
END IF
END_2D
!
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
IF ( l_conv(ji,jj) ) THEN
DO jk = 2, nmld(ji,jj) ! Mixed layer diffusivity
zznd_ml = gdepw(ji,jj,jk,Kmm) / phml(ji,jj)
pdiffut(ji,jj,jk) = zdifml_sc(ji,jj) * zznd_ml * ( 1.0_wp - zbeta_d_sc(ji,jj) * zznd_ml )**1.5
pviscos(ji,jj,jk) = zvisml_sc(ji,jj) * zznd_ml * ( 1.0_wp - zbeta_v_sc(ji,jj) * zznd_ml ) * &
& ( 1.0_wp - 0.5_wp * zznd_ml**2 )
END DO
!
! Coupling to bottom
!
IF ( l_coup(ji,jj) ) THEN ! ag 19/03
DO jk = mbkt(ji,jj), nmld(ji,jj), -1 ! ag 19/03
zz_b = -1.0_wp * ( gdepw(ji,jj,jk,Kmm) - gdepw(ji,jj,mbkt(ji,jj)+1,Kmm) ) ! ag 19/03
pviscos(ji,jj,jk) = zb_coup(ji,jj) * zz_b + zc_coup_vis(ji,jj) * zz_b**2 ! ag 19/03
pdiffut(ji,jj,jk) = zb_coup(ji,jj) * zz_b + zc_coup_dif(ji,jj) * zz_b**2 ! ag 19/03
END DO ! ag 19/03
ENDIF ! ag 19/03
! Pycnocline
IF ( l_pyc(ji,jj) ) THEN
! Diffusivity and viscosity profiles in the pycnocline given by
! cubic polynomial. Note, if l_pyc TRUE can't be coupled to seabed.
za_cubic = 0.5_wp
zb_d_cubic = -1.75_wp * zdifpyc_s_sc(ji,jj) / zdifpyc_n_sc(ji,jj)
zd_d_cubic = ( pdh(ji,jj) * zdifml_sc(ji,jj) / phml(ji,jj) * SQRT( 1.0_wp - zbeta_d_sc(ji,jj) ) * &
& ( 2.5_wp * zbeta_d_sc(ji,jj) - 1.0_wp ) - 0.85_wp * zdifpyc_s_sc(ji,jj) ) / &
& MAX( zdifpyc_n_sc(ji,jj), 1.0e-8_wp )
zd_d_cubic = zd_d_cubic - zb_d_cubic - 2.0_wp * ( 1.0_wp - za_cubic - zb_d_cubic )
zc_d_cubic = 1.0_wp - za_cubic - zb_d_cubic - zd_d_cubic
zb_v_cubic = -1.75_wp * zvispyc_s_sc(ji,jj) / zvispyc_n_sc(ji,jj)
zd_v_cubic = ( 0.5_wp * zvisml_sc(ji,jj) * pdh(ji,jj) / phml(ji,jj) - 0.85_wp * zvispyc_s_sc(ji,jj) ) / &
& MAX( zvispyc_n_sc(ji,jj), 1.0e-8_wp )
zd_v_cubic = zd_v_cubic - zb_v_cubic - 2.0_wp * ( 1.0_wp - za_cubic - zb_v_cubic )
zc_v_cubic = 1.0_wp - za_cubic - zb_v_cubic - zd_v_cubic
DO jk = nmld(ji,jj) , nbld(ji,jj)
zznd_pyc = -1.0_wp * ( gdepw(ji,jj,jk,Kmm) - phbl(ji,jj) ) / MAX(pdh(ji,jj), 1.0e-6_wp )
ztmp = ( 1.75_wp * zznd_pyc - 0.15_wp * zznd_pyc**2 - 0.2_wp * zznd_pyc**3 )
!
pdiffut(ji,jj,jk) = zdifpyc_n_sc(ji,jj) * &
& ( za_cubic + zb_d_cubic * zznd_pyc + zc_d_cubic * zznd_pyc**2 + zd_d_cubic * zznd_pyc**3 )
!
pdiffut(ji,jj,jk) = pdiffut(ji,jj,jk) + zdifpyc_s_sc(ji,jj) * ztmp
pviscos(ji,jj,jk) = zvispyc_n_sc(ji,jj) * &
& ( za_cubic + zb_v_cubic * zznd_pyc + zc_v_cubic * zznd_pyc**2 + zd_v_cubic * zznd_pyc**3 )
pviscos(ji,jj,jk) = pviscos(ji,jj,jk) + zvispyc_s_sc(ji,jj) * ztmp
END DO
! IF ( pdhdt(ji,jj) > 0._wp ) THEN
! zdiffut(ji,jj,nbld(ji,jj)+1) = MAX( 0.5 * pdhdt(ji,jj) * e3w(ji,jj,nbld(ji,jj)+1,Kmm), 1.0e-6 )
! zviscos(ji,jj,nbld(ji,jj)+1) = MAX( 0.5 * pdhdt(ji,jj) * e3w(ji,jj,nbld(ji,jj)+1,Kmm), 1.0e-6 )
! ELSE
! zdiffut(ji,jj,nbld(ji,jj)) = 0._wp
! zviscos(ji,jj,nbld(ji,jj)) = 0._wp
! ENDIF
ENDIF
ELSE
! Stable conditions
DO jk = 2, nbld(ji,jj)
zznd_ml = gdepw(ji,jj,jk,Kmm) / phbl(ji,jj)
pdiffut(ji,jj,jk) = 0.75_wp * zdifml_sc(ji,jj) * zznd_ml * ( 1.0_wp - zznd_ml )**1.5_wp
pviscos(ji,jj,jk) = 0.375_wp * zvisml_sc(ji,jj) * zznd_ml * ( 1.0_wp - zznd_ml ) * ( 1.0_wp - zznd_ml**2 )
END DO
!
IF ( pdhdt(ji,jj) > 0.0_wp ) THEN
pdiffut(ji,jj,nbld(ji,jj)) = MAX( pdhdt(ji,jj), 1.0e-6_wp) * e3w(ji, jj, nbld(ji,jj), Kmm)
pviscos(ji,jj,nbld(ji,jj)) = pdiffut(ji,jj,nbld(ji,jj))
ENDIF
ENDIF ! End if ( l_conv )
!
END_2D
CALL zdf_osm_iomput( "pb_coup", tmask(A2D(0),1) * zb_coup(A2D(0)) ) ! BBL-coupling velocity scale
!
END SUBROUTINE zdf_osm_diffusivity_viscosity
SUBROUTINE zdf_osm_fgr_terms( Kmm, kp_ext, phbl, phml, pdh, &
& pdhdt, pshear, pdtdz_bl_ext, pdsdz_bl_ext, pdbdz_bl_ext, &
& pdiffut, pviscos )
!!---------------------------------------------------------------------
!! *** ROUTINE zdf_osm_fgr_terms ***
!!
!! ** Purpose : Compute non-gradient terms in flux-gradient relationship
!!
!! ** Method :
!!
!!----------------------------------------------------------------------
INTEGER, INTENT(in ) :: Kmm ! Time-level index
INTEGER, DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: kp_ext ! Offset for external level
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: phbl ! BL depth
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: phml ! ML depth
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: pdh ! Pycnocline depth
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: pdhdt ! BL depth tendency
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: pshear ! Shear production
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: pdtdz_bl_ext ! External temperature gradients
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: pdsdz_bl_ext ! External salinity gradients
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: pdbdz_bl_ext ! External buoyancy gradients
REAL(wp), DIMENSION(A2D(nn_hls-1),jpk), INTENT(in ) :: pdiffut ! t-diffusivity
REAL(wp), DIMENSION(A2D(nn_hls-1),jpk), INTENT(in ) :: pviscos ! Viscosity
!!
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zalpha_pyc !
REAL(wp), DIMENSION(A2D(nn_hls-1),jpk) :: zdbdz_pyc ! Parametrised gradient of buoyancy in the pycnocline
REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: z3ddz_pyc_1, z3ddz_pyc_2 ! Pycnocline gradient/shear profiles
!!
INTEGER :: ji, jj, jk, jkm_bld, jkf_mld, jkm_mld ! Loop indices
INTEGER :: istat ! Memory allocation status
REAL(wp) :: zznd_d, zznd_ml, zznd_pyc, znd ! Temporary non-dimensional depths
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zsc_wth_1,zsc_ws_1 ! Temporary scales
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zsc_uw_1, zsc_uw_2 ! Temporary scales
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zsc_vw_1, zsc_vw_2 ! Temporary scales
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: ztau_sc_u ! Dissipation timescale at base of WML
REAL(wp) :: zbuoy_pyc_sc, zdelta_pyc !
REAL(wp) :: zl_c,zl_l,zl_eps ! Used to calculate turbulence length scale
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: za_cubic, zb_cubic ! Coefficients in cubic polynomial specifying
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zc_cubic, zd_cubic ! diffusivity in pycnocline
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zwt_pyc_sc_1, zws_pyc_sc_1 !
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zzeta_pyc !
REAL(wp) :: zomega, zvw_max !
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zuw_bse,zvw_bse ! Momentum, heat, and salinity fluxes
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zwth_ent,zws_ent ! at the top of the pycnocline
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: zsc_wth_pyc, zsc_ws_pyc ! Scales for pycnocline transport term
REAL(wp) :: ztmp !
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
REAL(wp) :: ztgrad, zsgrad, zbgrad ! Variables used to calculate pycnocline
!! ! gradients
REAL(wp) :: zugrad, zvgrad ! Variables for calculating pycnocline shear
REAL(wp) :: zdtdz_pyc ! Parametrized gradient of temperature in
!! ! pycnocline
REAL(wp) :: zdsdz_pyc ! Parametrised gradient of salinity in
!! ! pycnocline
REAL(wp) :: zdudz_pyc ! u-shear across the pycnocline
REAL(wp) :: zdvdz_pyc ! v-shear across the pycnocline
!!----------------------------------------------------------------------
!
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
! Pycnocline gradients for scalars and velocity
!<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
CALL zdf_osm_pycnocline_buoyancy_profiles( Kmm, kp_ext, zdbdz_pyc, zalpha_pyc, pdh, &
& phbl, pdbdz_bl_ext, phml, pdhdt )
!
! Auxiliary indices
! -----------------
jkm_bld = 0
jkf_mld = jpk
jkm_mld = 0
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
IF ( nbld(ji,jj) > jkm_bld ) jkm_bld = nbld(ji,jj)
IF ( nmld(ji,jj) < jkf_mld ) jkf_mld = nmld(ji,jj)
IF ( nmld(ji,jj) > jkm_mld ) jkm_mld = nmld(ji,jj)
END_2D
!
! Stokes term in scalar flux, flux-gradient relationship
! ------------------------------------------------------
WHERE ( l_conv(A2D(nn_hls-1)) )
zsc_wth_1(:,:) = swstrl(A2D(nn_hls-1))**3 * swth0(A2D(nn_hls-1)) / &
& ( svstr(A2D(nn_hls-1))**3 + 0.5_wp * swstrc(A2D(nn_hls-1))**3 + epsln )
zsc_ws_1(:,:) = swstrl(A2D(nn_hls-1))**3 * sws0(A2D(nn_hls-1)) / &
& ( svstr(A2D(nn_hls-1))**3 + 0.5_wp * swstrc(A2D(nn_hls-1))**3 + epsln )
ELSEWHERE
zsc_wth_1(:,:) = 2.0_wp * swthav(A2D(nn_hls-1))
zsc_ws_1(:,:) = 2.0_wp * swsav(A2D(nn_hls-1))
ENDWHERE
DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, MAX( jkm_mld, jkm_bld ) )
IF ( l_conv(ji,jj) ) THEN
IF ( jk <= nmld(ji,jj) ) THEN
zznd_d = gdepw(ji,jj,jk,Kmm) / dstokes(ji,jj)
ghamt(ji,jj,jk) = ghamt(ji,jj,jk) + 1.35_wp * EXP( -1.0_wp * zznd_d ) * &
& ( 1.0_wp - EXP( -2.0_wp * zznd_d ) ) * zsc_wth_1(ji,jj)
ghams(ji,jj,jk) = ghams(ji,jj,jk) + 1.35_wp * EXP( -1.0_wp * zznd_d ) * &
& ( 1.0_wp - EXP( -2.0_wp * zznd_d ) ) * zsc_ws_1(ji,jj)
END IF
ELSE ! Stable conditions
IF ( jk <= nbld(ji,jj) ) THEN
zznd_d = gdepw(ji,jj,jk,Kmm) / dstokes(ji,jj)
ghamt(ji,jj,jk) = ghamt(ji,jj,jk) + 2.15_wp * EXP( -0.85_wp * zznd_d ) * &
& ( 1.0_wp - EXP( -4.0_wp * zznd_d ) ) * zsc_wth_1(ji,jj)
ghams(ji,jj,jk) = ghams(ji,jj,jk) + 2.15_wp * EXP( -0.85_wp * zznd_d ) * &
& ( 1.0_wp - EXP( -4.0_wp * zznd_d ) ) * zsc_ws_1(ji,jj)
END IF
END IF ! Check on l_conv
END_3D
!
IF ( ln_dia_osm ) THEN
CALL zdf_osm_iomput( "ghamu_00", wmask(A2D(0),:) * ghamu(A2D(0),:) )
CALL zdf_osm_iomput( "ghamv_00", wmask(A2D(0),:) * ghamv(A2D(0),:) )
END IF
!
! Stokes term in flux-gradient relationship (note in zsc_uw_n don't use
! svstr since term needs to go to zero as swstrl goes to zero)
! ---------------------------------------------------------------------
WHERE ( l_conv(A2D(nn_hls-1)) )
zsc_uw_1(:,:) = ( swstrl(A2D(nn_hls-1))**3 + &
& 0.5_wp * swstrc(A2D(nn_hls-1))**3 )**pthird * sustke(A2D(nn_hls-1)) / &
& MAX( ( 1.0_wp - 1.0_wp * 6.5_wp * sla(A2D(nn_hls-1))**( 8.0_wp / 3.0_wp ) ), 0.2_wp )
zsc_uw_2(:,:) = ( swstrl(A2D(nn_hls-1))**3 + &
& 0.5_wp * swstrc(A2D(nn_hls-1))**3 )**pthird * sustke(A2D(nn_hls-1)) / &
& MIN( sla(A2D(nn_hls-1))**( 8.0_wp / 3.0_wp ) + epsln, 0.12_wp )
zsc_vw_1(:,:) = ff_t(A2D(nn_hls-1)) * phml(A2D(nn_hls-1)) * sustke(A2D(nn_hls-1))**3 * &
& MIN( sla(A2D(nn_hls-1))**( 8.0_wp / 3.0_wp ), 0.12_wp ) / &
& ( ( svstr(A2D(nn_hls-1))**3 + 0.5_wp * swstrc(A2D(nn_hls-1))**3 )**( 2.0_wp / 3.0_wp ) + epsln )
ELSEWHERE
zsc_uw_1(:,:) = sustar(A2D(nn_hls-1))**2
zsc_vw_1(:,:) = ff_t(A2D(nn_hls-1)) * phbl(A2D(nn_hls-1)) * sustke(A2D(nn_hls-1))**3 * &
& MIN( sla(A2D(nn_hls-1))**( 8.0_wp / 3.0_wp ), 0.12_wp ) / ( svstr(A2D(nn_hls-1))**2 + epsln )
ENDWHERE
DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, MAX( jkm_mld, jkm_bld ) )
IF ( l_conv(ji,jj) ) THEN
IF ( jk <= nmld(ji,jj) ) THEN
zznd_d = gdepw(ji,jj,jk,Kmm) / dstokes(ji,jj)
ghamu(ji,jj,jk) = ghamu(ji,jj,jk) + ( -0.05_wp * EXP( -0.4_wp * zznd_d ) * zsc_uw_1(ji,jj) + &
& 0.00125_wp * EXP( -1.0_wp * zznd_d ) * zsc_uw_2(ji,jj) ) * &
& ( 1.0_wp - EXP( -2.0_wp * zznd_d ) )
ghamv(ji,jj,jk) = ghamv(ji,jj,jk) - 0.65_wp * 0.15_wp * EXP( -1.0_wp * zznd_d ) * &
& ( 1.0_wp - EXP( -2.0_wp * zznd_d ) ) * zsc_vw_1(ji,jj)
END IF
ELSE ! Stable conditions
IF ( jk <= nbld(ji,jj) ) THEN ! Corrected to nbld
zznd_d = gdepw(ji,jj,jk,Kmm) / dstokes(ji,jj)
ghamu(ji,jj,jk) = ghamu(ji,jj,jk) - 0.75_wp * 1.3_wp * EXP( -0.5_wp * zznd_d ) * &
& ( 1.0_wp - EXP( -4.0_wp * zznd_d ) ) * zsc_uw_1(ji,jj)
END IF
END IF
END_3D
!
! Buoyancy term in flux-gradient relationship [note : includes ROI ratio
! (X0.3) and pressure (X0.5)]
! ----------------------------------------------------------------------
WHERE ( l_conv(A2D(nn_hls-1)) )
zsc_wth_1(:,:) = swbav(A2D(nn_hls-1)) * swth0(A2D(nn_hls-1)) * ( 1.0_wp + EXP( 0.2_wp * shol(A2D(nn_hls-1)) ) ) * &
& phml(A2D(nn_hls-1)) / ( svstr(A2D(nn_hls-1))**3 + 0.5_wp * swstrc(A2D(nn_hls-1))**3 + epsln )
zsc_ws_1(:,:) = swbav(A2D(nn_hls-1)) * sws0(A2D(nn_hls-1)) * ( 1.0_wp + EXP( 0.2_wp * shol(A2D(nn_hls-1)) ) ) * &
& phml(A2D(nn_hls-1)) / ( svstr(A2D(nn_hls-1))**3 + 0.5_wp * swstrc(A2D(nn_hls-1))**3 + epsln )
ELSEWHERE
zsc_wth_1(:,:) = 0.0_wp
zsc_ws_1(:,:) = 0.0_wp
ENDWHERE
DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, MAX( jkm_mld, jkm_bld ) )
IF ( l_conv(ji,jj) ) THEN
IF ( jk <= nmld(ji,jj) ) THEN
zznd_ml = gdepw(ji,jj,jk,Kmm) / phml(ji,jj)
! Calculate turbulent time scale
zl_c = 0.9_wp * ( 1.0_wp - EXP( -5.0_wp * ( zznd_ml + zznd_ml**3 / 3.0_wp ) ) ) * &
& ( 1.0_wp - EXP( -15.0_wp * ( 1.2_wp - zznd_ml ) ) )
zl_l = 2.0_wp * ( 1.0_wp - EXP( -2.0_wp * ( zznd_ml + zznd_ml**3 / 3.0_wp ) ) ) * &
& ( 1.0_wp - EXP( -8.0_wp * ( 1.15_wp - zznd_ml ) ) ) * ( 1.0_wp + dstokes(ji,jj) / phml (ji,jj) )
zl_eps = zl_l + ( zl_c - zl_l ) / ( 1.0_wp + EXP( -3.0_wp * LOG10( -1.0_wp * shol(ji,jj) ) ) )**( 3.0_wp / 2.0_wp )
! Non-gradient buoyancy terms
ghamt(ji,jj,jk) = ghamt(ji,jj,jk) + 0.3_wp * 0.4_wp * zsc_wth_1(ji,jj) * zl_eps / ( 0.15_wp + zznd_ml )
ghams(ji,jj,jk) = ghams(ji,jj,jk) + 0.3_wp * 0.4_wp * zsc_ws_1(ji,jj) * zl_eps / ( 0.15_wp + zznd_ml )
END IF
ELSE ! Stable conditions
IF ( jk <= nbld(ji,jj) ) THEN
ghamt(ji,jj,jk) = ghamt(ji,jj,jk) + zsc_wth_1(ji,jj)
ghams(ji,jj,jk) = ghams(ji,jj,jk) + zsc_ws_1(ji,jj)
END IF
END IF
END_3D
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
IF ( l_conv(ji,jj) .AND. l_pyc(ji,jj) ) THEN
ztau_sc_u(ji,jj) = phml(ji,jj) / ( svstr(ji,jj)**3 + swstrc(ji,jj)**3 )**pthird * &
& ( 1.4_wp - 0.4_wp / ( 1.0_wp + EXP( -3.5_wp * LOG10( -1.0_wp * shol(ji,jj) ) ) )**1.5_wp )
zwth_ent(ji,jj) = -0.003_wp * ( 0.15_wp * svstr(ji,jj)**3 + swstrc(ji,jj)**3 )**pthird * &
& ( 1.0_wp - pdh(ji,jj) / phbl(ji,jj) ) * av_dt_ml(ji,jj)
zws_ent(ji,jj) = -0.003_wp * ( 0.15_wp * svstr(ji,jj)**3 + swstrc(ji,jj)**3 )**pthird * &
& ( 1.0_wp - pdh(ji,jj) / phbl(ji,jj) ) * av_ds_ml(ji,jj)
IF ( dh(ji,jj) < 0.2_wp * hbl(ji,jj) ) THEN
zbuoy_pyc_sc = 2.0_wp * MAX( av_db_ml(ji,jj), 0.0_wp ) / pdh(ji,jj)
zdelta_pyc = ( svstr(ji,jj)**3 + swstrc(ji,jj)**3 )**pthird / &
& SQRT( MAX( zbuoy_pyc_sc, ( svstr(ji,jj)**3 + swstrc(ji,jj)**3 )**p2third / pdh(ji,jj)**2 ) )
zwt_pyc_sc_1(ji,jj) = 0.325_wp * ( zalpha_pyc(ji,jj) * av_dt_ml(ji,jj) / pdh(ji,jj) + pdtdz_bl_ext(ji,jj) ) * &
& zdelta_pyc**2 / pdh(ji,jj)
zws_pyc_sc_1(ji,jj) = 0.325_wp * ( zalpha_pyc(ji,jj) * av_ds_ml(ji,jj) / pdh(ji,jj) + pdsdz_bl_ext(ji,jj) ) * &
& zdelta_pyc**2 / pdh(ji,jj)
zzeta_pyc(ji,jj) = 0.15_wp - 0.175_wp / ( 1.0_wp + EXP( -3.5_wp * LOG10( -1.0_wp * shol(ji,jj) ) ) )
END IF
END IF
END_2D
DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, jkm_bld )
IF ( l_conv(ji,jj) .AND. l_pyc(ji,jj) .AND. ( jk <= nbld(ji,jj) ) ) THEN
zznd_pyc = -1.0_wp * ( gdepw(ji,jj,jk,Kmm) - phbl(ji,jj) ) / pdh(ji,jj)
ghamt(ji,jj,jk) = ghamt(ji,jj,jk) - &
& 0.045_wp * ( ( zwth_ent(ji,jj) * zdbdz_pyc(ji,jj,jk) ) * ztau_sc_u(ji,jj)**2 ) * &
& MAX( ( 1.75_wp * zznd_pyc -0.15_wp * zznd_pyc**2 - 0.2_wp * zznd_pyc**3 ), 0.0_wp )
ghams(ji,jj,jk) = ghams(ji,jj,jk) - &
& 0.045_wp * ( ( zws_ent(ji,jj) * zdbdz_pyc(ji,jj,jk) ) * ztau_sc_u(ji,jj)**2 ) * &
& MAX( ( 1.75_wp * zznd_pyc -0.15_wp * zznd_pyc**2 - 0.2_wp * zznd_pyc**3 ), 0.0_wp )
IF ( dh(ji,jj) < 0.2_wp * hbl(ji,jj) .AND. nbld(ji,jj) - nmld(ji,jj) > 3 ) THEN
ghamt(ji,jj,jk) = ghamt(ji,jj,jk) + 0.05_wp * zwt_pyc_sc_1(ji,jj) * &
& EXP( -0.25_wp * ( zznd_pyc / zzeta_pyc(ji,jj) )**2 ) * &
& pdh(ji,jj) / ( svstr(ji,jj)**3 + swstrc(ji,jj)**3 )**pthird
ghams(ji,jj,jk) = ghams(ji,jj,jk) + 0.05_wp * zws_pyc_sc_1(ji,jj) * &
& EXP( -0.25_wp * ( zznd_pyc / zzeta_pyc(ji,jj) )**2 ) * &
& pdh(ji,jj) / ( svstr(ji,jj)**3 + swstrc(ji,jj)**3 )**pthird
END IF
END IF ! End of pycnocline
END_3D
!
IF ( ln_dia_osm ) THEN
CALL zdf_osm_iomput( "zwth_ent", tmask(A2D(0),1) * zwth_ent(A2D(0)) ) ! Upward turb. temperature entrainment flux
CALL zdf_osm_iomput( "zws_ent", tmask(A2D(0),1) * zws_ent(A2D(0)) ) ! Upward turb. salinity entrainment flux
END IF
!
zsc_vw_1(:,:) = 0.0_wp
WHERE ( l_conv(A2D(nn_hls-1)) )
zsc_uw_1(:,:) = -1.0_wp * swb0(A2D(nn_hls-1)) * sustar(A2D(nn_hls-1))**2 * phml(A2D(nn_hls-1)) / &
& ( svstr(A2D(nn_hls-1))**3 + 0.5_wp * swstrc(A2D(nn_hls-1))**3 + epsln )
zsc_uw_2(:,:) = swb0(A2D(nn_hls-1)) * sustke(A2D(nn_hls-1)) * phml(A2D(nn_hls-1)) / &
& ( svstr(A2D(nn_hls-1))**3 + 0.5_wp * swstrc(A2D(nn_hls-1))**3 + epsln )**( 2.0_wp / 3.0_wp )
ELSEWHERE
zsc_uw_1(:,:) = 0.0_wp
ENDWHERE
DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, MAX( jkm_mld, jkm_bld ) )
IF ( l_conv(ji,jj) ) THEN
IF ( jk <= nmld(ji,jj) ) THEN
zznd_d = gdepw(ji,jj,jk,Kmm) / dstokes(ji,jj)
ghamu(ji,jj,jk) = ghamu(ji,jj,jk) + 0.3_wp * 0.5_wp * &
& ( zsc_uw_1(ji,jj) + 0.125_wp * EXP( -0.5_wp * zznd_d ) * &
& ( 1.0_wp - EXP( -0.5_wp * zznd_d ) ) * zsc_uw_2(ji,jj) )
ghamv(ji,jj,jk) = ghamv(ji,jj,jk) + zsc_vw_1(ji,jj)
END IF
ELSE ! Stable conditions
IF ( jk <= nbld(ji,jj) ) THEN
ghamu(ji,jj,jk) = ghamu(ji,jj,jk) + zsc_uw_1(ji,jj)
ghamv(ji,jj,jk) = ghamv(ji,jj,jk) + zsc_vw_1(ji,jj)
END IF
ENDIF
END_3D
!
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
IF ( l_conv(ji,jj) .AND. l_pyc(ji,jj) ) THEN
IF ( n_ddh(ji,jj) == 0 ) THEN
! Place holding code. Parametrization needs checking for these conditions.
zomega = ( 0.15_wp * swstrl(ji,jj)**3 + swstrc(ji,jj)**3 + 4.75_wp * ( pshear(ji,jj) * phbl(ji,jj) ) )**pthird
zuw_bse(ji,jj) = -0.0035_wp * zomega * ( 1.0_wp - pdh(ji,jj) / phbl(ji,jj) ) * av_du_ml(ji,jj)
zvw_bse(ji,jj) = -0.0075_wp * zomega * ( 1.0_wp - pdh(ji,jj) / phbl(ji,jj) ) * av_dv_ml(ji,jj)
ELSE
zomega = ( 0.15_wp * swstrl(ji,jj)**3 + swstrc(ji,jj)**3 + 4.75_wp * ( pshear(ji,jj) * phbl(ji,jj) ) )**pthird
zuw_bse(ji,jj) = -0.0035_wp * zomega * ( 1.0_wp - pdh(ji,jj) / phbl(ji,jj) ) * av_du_ml(ji,jj)
zvw_bse(ji,jj) = -0.0075_wp * zomega * ( 1.0_wp - pdh(ji,jj) / phbl(ji,jj) ) * av_dv_ml(ji,jj)
ENDIF
zb_cubic(ji,jj) = pdh(ji,jj) / phbl(ji,jj) * suw0(ji,jj) - ( 2.0_wp + pdh(ji,jj) / phml(ji,jj) ) * zuw_bse(ji,jj)
za_cubic(ji,jj) = zuw_bse(ji,jj) - zb_cubic(ji,jj)
zvw_max = 0.7_wp * ff_t(ji,jj) * ( sustke(ji,jj) * dstokes(ji,jj) + 0.7_wp * sustar(ji,jj) * phml(ji,jj) )
zd_cubic(ji,jj) = zvw_max * pdh(ji,jj) / phml(ji,jj) - ( 2.0_wp + pdh(ji,jj) / phml(ji,jj) ) * zvw_bse(ji,jj)
zc_cubic(ji,jj) = zvw_bse(ji,jj) - zd_cubic(ji,jj)
END IF
END_2D
DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, jkf_mld, jkm_bld ) ! Need ztau_sc_u to be available. Change to array.
IF ( l_conv(ji,jj) .AND. l_pyc(ji,jj) .AND. ( jk >= nmld(ji,jj) ) .AND. ( jk <= nbld(ji,jj) ) ) THEN
zznd_pyc = -1.0_wp * ( gdepw(ji,jj,jk,Kmm) - phbl(ji,jj) ) / pdh(ji,jj)
ghamu(ji,jj,jk) = ghamu(ji,jj,jk) - 0.045_wp * ( ztau_sc_u(ji,jj)**2 ) * zuw_bse(ji,jj) * &
& ( za_cubic(ji,jj) * zznd_pyc**2 + zb_cubic(ji,jj) * zznd_pyc**3 ) * &
& ( 0.75_wp + 0.25_wp * zznd_pyc )**2 * zdbdz_pyc(ji,jj,jk)
ghamv(ji,jj,jk) = ghamv(ji,jj,jk) - 0.045_wp * ( ztau_sc_u(ji,jj)**2 ) * zvw_bse(ji,jj) * &
& ( zc_cubic(ji,jj) * zznd_pyc**2 + zd_cubic(ji,jj) * zznd_pyc**3 ) * &
& ( 0.75_wp + 0.25_wp * zznd_pyc )**2 * zdbdz_pyc(ji,jj,jk)
END IF ! l_conv .AND. l_pyc
END_3D
!
IF ( ln_dia_osm ) THEN
CALL zdf_osm_iomput( "ghamu_0", wmask(A2D(0),:) * ghamu(A2D(0),:) )
CALL zdf_osm_iomput( "zsc_uw_1_0", tmask(A2D(0),1) * zsc_uw_1(A2D(0)) )
END IF
!
! Transport term in flux-gradient relationship [note : includes ROI ratio
! (X0.3) ]
! -----------------------------------------------------------------------
WHERE ( l_conv(A2D(nn_hls-1)) )
zsc_wth_1(:,:) = swth0(A2D(nn_hls-1)) / ( 1.0_wp - 0.56_wp * EXP( shol(A2D(nn_hls-1)) ) )
zsc_ws_1(:,:) = sws0(A2D(nn_hls-1)) / ( 1.0_wp - 0.56_wp * EXP( shol(A2D(nn_hls-1)) ) )
WHERE ( l_pyc(A2D(nn_hls-1)) ) ! Pycnocline scales
zsc_wth_pyc(:,:) = -0.003_wp * swstrc(A2D(nn_hls-1)) * ( 1.0_wp - pdh(A2D(nn_hls-1)) / phbl(A2D(nn_hls-1)) ) * &
& av_dt_ml(A2D(nn_hls-1))
zsc_ws_pyc(:,:) = -0.003_wp * swstrc(A2D(nn_hls-1)) * ( 1.0_wp - pdh(A2D(nn_hls-1)) / phbl(A2D(nn_hls-1)) ) * &
& av_ds_ml(A2D(nn_hls-1))
END WHERE
ELSEWHERE
zsc_wth_1(:,:) = 2.0_wp * swthav(A2D(nn_hls-1))
zsc_ws_1(:,:) = sws0(A2D(nn_hls-1))
END WHERE
DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 1, MAX( jkm_mld, jkm_bld ) )
IF ( l_conv(ji,jj) ) THEN
IF ( ( jk > 1 ) .AND. ( jk <= nmld(ji,jj) ) ) THEN
zznd_ml = gdepw(ji,jj,jk,Kmm) / phml(ji,jj)
ghamt(ji,jj,jk) = ghamt(ji,jj,jk) + 0.3_wp * zsc_wth_1(ji,jj) * &
& ( -2.0_wp + 2.75_wp * ( ( 1.0_wp + 0.6_wp * zznd_ml**4 ) - &
& EXP( -6.0_wp * zznd_ml ) ) ) * &
& ( 1.0_wp - EXP( -15.0_wp * ( 1.0_wp - zznd_ml ) ) )
ghams(ji,jj,jk) = ghams(ji,jj,jk) + 0.3_wp * zsc_ws_1(ji,jj) * &
& ( -2.0_wp + 2.75_wp * ( ( 1.0_wp + 0.6_wp * zznd_ml**4 ) - &
& EXP( -6.0_wp * zznd_ml ) ) ) * ( 1.0_wp - EXP( -15.0_wp * ( 1.0_wp - zznd_ml ) ) )
END IF
!
! may need to comment out lpyc block
IF ( l_pyc(ji,jj) .AND. ( jk >= nmld(ji,jj) ) .AND. ( jk <= nbld(ji,jj) ) ) THEN ! Pycnocline
zznd_pyc = -1.0_wp * ( gdepw(ji,jj,jk,Kmm) - phbl(ji,jj) ) / pdh(ji,jj)
ghamt(ji,jj,jk) = ghamt(ji,jj,jk) + 4.0_wp * zsc_wth_pyc(ji,jj) * &
& ( 0.48_wp - EXP( -1.5_wp * ( zznd_pyc - 0.3_wp )**2 ) )
ghams(ji,jj,jk) = ghams(ji,jj,jk) + 4.0_wp * zsc_ws_pyc(ji,jj) * &
& ( 0.48_wp - EXP( -1.5_wp * ( zznd_pyc - 0.3_wp )**2 ) )
END IF
ELSE
IF( pdhdt(ji,jj) > 0. ) THEN
IF ( ( jk > 1 ) .AND. ( jk <= nbld(ji,jj) ) ) THEN
zznd_d = gdepw(ji,jj,jk,Kmm) / dstokes(ji,jj)
znd = gdepw(ji,jj,jk,Kmm) / phbl(ji,jj)
ghamt(ji,jj,jk) = ghamt(ji,jj,jk) + 0.3_wp * ( -4.06_wp * EXP( -2.0_wp * zznd_d ) * ( 1.0_wp - EXP( -4.0_wp * zznd_d ) ) + &
7.5_wp * EXP ( -10.0_wp * ( 0.95_wp - znd )**2 ) * ( 1.0_wp - znd ) ) * zsc_wth_1(ji,jj)
ghams(ji,jj,jk) = ghams(ji,jj,jk) + 0.3_wp * ( -4.06_wp * EXP( -2.0_wp * zznd_d ) * ( 1.0_wp - EXP( -4.0_wp * zznd_d ) ) + &
7.5_wp * EXP ( -10.0_wp * ( 0.95_wp - znd )**2 ) * ( 1.0_wp - znd ) ) * zsc_ws_1(ji,jj)
END IF
ENDIF
ENDIF
END_3D
!
WHERE ( l_conv(A2D(nn_hls-1)) )
zsc_uw_1(:,:) = sustar(A2D(nn_hls-1))**2
zsc_vw_1(:,:) = ff_t(A2D(nn_hls-1)) * sustke(A2D(nn_hls-1)) * phml(A2D(nn_hls-1))
ELSEWHERE
zsc_uw_1(:,:) = sustar(A2D(nn_hls-1))**2
zsc_uw_2(:,:) = ( 2.25_wp - 3.0_wp * ( 1.0_wp - EXP( -1.25_wp * 2.0_wp ) ) ) * ( 1.0_wp - EXP( -4.0_wp * 2.0_wp ) ) * &
& zsc_uw_1(:,:)
zsc_vw_1(:,:) = ff_t(A2D(nn_hls-1)) * sustke(A2D(nn_hls-1)) * phbl(A2D(nn_hls-1))
zsc_vw_2(:,:) = -0.11_wp * SIN( 3.14159_wp * ( 2.0_wp + 0.4_wp ) ) * EXP( -1.0_wp * ( 1.5_wp + 2.0_wp )**2 ) * &
& zsc_vw_1(:,:)
ENDWHERE
DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, MAX( jkm_mld, jkm_bld ) )
IF ( l_conv(ji,jj) ) THEN
IF ( jk <= nmld(ji,jj) ) THEN
zznd_ml = gdepw(ji,jj,jk,Kmm) / phml(ji,jj)
zznd_d = gdepw(ji,jj,jk,Kmm) / dstokes(ji,jj)
ghamu(ji,jj,jk) = ghamu(ji,jj,jk) + &
& 0.3_wp * ( -2.0_wp + 2.5_wp * ( 1.0_wp + 0.1_wp * zznd_ml**4 ) - EXP( -8.0_wp * zznd_ml ) ) * &
& zsc_uw_1(ji,jj)
ghamv(ji,jj,jk) = ghamv(ji,jj,jk) + &
& 0.3_wp * 0.1_wp * ( EXP( -1.0_wp * zznd_d ) + EXP( -5.0_wp * ( 1.0_wp - zznd_ml ) ) ) * &
& zsc_vw_1(ji,jj)
END IF
ELSE
IF ( jk <= nbld(ji,jj) ) THEN
znd = gdepw(ji,jj,jk,Kmm) / phbl(ji,jj)
zznd_d = gdepw(ji,jj,jk,Kmm) / dstokes(ji,jj)
IF ( zznd_d <= 2.0_wp ) THEN
ghamu(ji,jj,jk) = ghamu(ji,jj,jk) + 0.5_wp * 0.3_wp * &
& ( 2.25_wp - 3.0_wp * ( 1.0_wp - EXP( -1.25_wp * zznd_d ) ) * &
& ( 1.0_wp - EXP( -2.0_wp * zznd_d ) ) ) * zsc_uw_1(ji,jj)
ELSE
ghamu(ji,jj,jk) = ghamu(ji,jj,jk) + 0.5_wp * 0.3_wp * &
& ( 1.0_wp - EXP( -5.0_wp * ( 1.0_wp - znd ) ) ) * zsc_uw_2(ji,jj)
ENDIF
ghamv(ji,jj,jk) = ghamv(ji,jj,jk) + 0.3_wp * 0.15_wp * SIN( 3.14159_wp * ( 0.65_wp * zznd_d ) ) * &
& EXP( -0.25_wp * zznd_d**2 ) * zsc_vw_1(ji,jj)
ghamv(ji,jj,jk) = ghamv(ji,jj,jk) + 0.3_wp * 0.15_wp * EXP( -5.0 * ( 1.0 - znd ) ) * &
& ( 1.0 - EXP( -20.0 * ( 1.0 - znd ) ) ) * zsc_vw_2(ji,jj)
END IF
END IF
END_3D
!
IF ( ln_dia_osm ) THEN
CALL zdf_osm_iomput( "ghamu_f", wmask(A2D(0),:) * ghamu(A2D(0),:) )
CALL zdf_osm_iomput( "ghamv_f", wmask(A2D(0),:) * ghamv(A2D(0),:) )
CALL zdf_osm_iomput( "zsc_uw_1_f", tmask(A2D(0),1) * zsc_uw_1(A2D(0)) )
CALL zdf_osm_iomput( "zsc_vw_1_f", tmask(A2D(0),1) * zsc_vw_1(A2D(0)) )
CALL zdf_osm_iomput( "zsc_uw_2_f", tmask(A2D(0),1) * zsc_uw_2(A2D(0)) )
CALL zdf_osm_iomput( "zsc_vw_2_f", tmask(A2D(0),1) * zsc_vw_2(A2D(0)) )
END IF
!
! Make surface forced velocity non-gradient terms go to zero at the base
! of the mixed layer.
!
! Make surface forced velocity non-gradient terms go to zero at the base
! of the boundary layer.
DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, jkm_bld )
IF ( ( .NOT. l_conv(ji,jj) ) .AND. ( jk <= nbld(ji,jj) ) ) THEN
znd = -1.0_wp * ( gdepw(ji,jj,jk,Kmm) - phbl(ji,jj) ) / phbl(ji,jj) ! ALMG to think about
IF ( znd >= 0.0_wp ) THEN
ghamu(ji,jj,jk) = ghamu(ji,jj,jk) * ( 1.0_wp - EXP( -10.0_wp * znd**2 ) )
ghamv(ji,jj,jk) = ghamv(ji,jj,jk) * ( 1.0_wp - EXP( -10.0_wp * znd**2 ) )
ELSE
ghamu(ji,jj,jk) = 0.0_wp
ghamv(ji,jj,jk) = 0.0_wp
ENDIF
END IF
END_3D
!
! Pynocline contributions
!
IF ( ln_dia_pyc_scl .OR. ln_dia_pyc_shr ) THEN ! Allocate arrays for output of pycnocline gradient/shear profiles
ALLOCATE( z3ddz_pyc_1(A2D(nn_hls),jpk), z3ddz_pyc_2(A2D(nn_hls),jpk), STAT=istat )
IF ( istat /= 0 ) CALL ctl_stop( 'zdf_osm: failed to allocate temporary arrays' )
z3ddz_pyc_1(:,:,:) = 0.0_wp
z3ddz_pyc_2(:,:,:) = 0.0_wp
END IF
DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, jkm_bld )
IF ( l_conv (ji,jj) ) THEN
! Unstable conditions. Shouldn;t be needed with no pycnocline code.
! zugrad = 0.7 * av_du_ml(ji,jj) / zdh(ji,jj) + 0.3 * zustar(ji,jj)*zustar(ji,jj) / &
! & ( ( ( zvstr(ji,jj)**3 + 0.5 * zwstrc(ji,jj)**3 )**pthird * zhml(ji,jj) ) * &
! & MIN(zla(ji,jj)**(8.0/3.0) + epsln, 0.12 ))
!Alan is this right?
! zvgrad = ( 0.7 * av_dv_ml(ji,jj) + &
! & 2.0 * ff_t(ji,jj) * zustke(ji,jj) * dstokes(ji,jj) / &
! & ( ( zvstr(ji,jj)**3 + 0.5 * zwstrc(ji,jj)**3 )**pthird + epsln ) &
! & )/ (zdh(ji,jj) + epsln )
! DO jk = 2, nbld(ji,jj) - 1 + ibld_ext
! znd = -( gdepw(ji,jj,jk,Kmm) - zhbl(ji,jj) ) / (zdh(ji,jj) + epsln ) - zzeta_v
! IF ( znd <= 0.0 ) THEN
! zdudz(ji,jj,jk) = 1.25 * zugrad * EXP( 3.0 * znd )
! zdvdz(ji,jj,jk) = 1.25 * zvgrad * EXP( 3.0 * znd )
! ELSE
! zdudz(ji,jj,jk) = 1.25 * zugrad * EXP( -2.0 * znd )
! zdvdz(ji,jj,jk) = 1.25 * zvgrad * EXP( -2.0 * znd )
! ENDIF
! END DO
ELSE ! Stable conditions
IF ( nbld(ji,jj) + kp_ext(ji,jj) < mbkt(ji,jj) ) THEN
! Pycnocline profile only defined when depth steady of increasing.
IF ( pdhdt(ji,jj) > 0.0_wp ) THEN ! Depth increasing, or steady.
IF ( av_db_bl(ji,jj) > 0.0_wp ) THEN
IF ( shol(ji,jj) >= 0.5_wp ) THEN ! Very stable - 'thick' pycnocline
ztmp = 1.0_wp / MAX( phbl(ji,jj), epsln )
ztgrad = av_dt_bl(ji,jj) * ztmp
zsgrad = av_ds_bl(ji,jj) * ztmp
zbgrad = av_db_bl(ji,jj) * ztmp
IF ( jk <= nbld(ji,jj) ) THEN
znd = gdepw(ji,jj,jk,Kmm) * ztmp
zdtdz_pyc = ztgrad * EXP( -15.0_wp * ( znd - 0.9_wp )**2 )
zdsdz_pyc = zsgrad * EXP( -15.0_wp * ( znd - 0.9_wp )**2 )
ghamt(ji,jj,jk) = ghamt(ji,jj,jk) + pdiffut(ji,jj,jk) * zdtdz_pyc
ghams(ji,jj,jk) = ghams(ji,jj,jk) + pdiffut(ji,jj,jk) * zdsdz_pyc
IF ( ln_dia_pyc_scl ) THEN
z3ddz_pyc_1(ji,jj,jk) = zdtdz_pyc
z3ddz_pyc_2(ji,jj,jk) = zdsdz_pyc
END IF
END IF
ELSE ! Slightly stable - 'thin' pycnoline - needed when stable layer begins to form.
ztmp = 1.0_wp / MAX( pdh(ji,jj), epsln )
ztgrad = av_dt_bl(ji,jj) * ztmp
zsgrad = av_ds_bl(ji,jj) * ztmp
zbgrad = av_db_bl(ji,jj) * ztmp
IF ( jk <= nbld(ji,jj) ) THEN
znd = -1.0_wp * ( gdepw(ji,jj,jk,Kmm) - phml(ji,jj) ) * ztmp
zdtdz_pyc = ztgrad * EXP( -1.75_wp * ( znd + 0.75_wp )**2 )
zdsdz_pyc = zsgrad * EXP( -1.75_wp * ( znd + 0.75_wp )**2 )
ghamt(ji,jj,jk) = ghamt(ji,jj,jk) + pdiffut(ji,jj,jk) * zdtdz_pyc
ghams(ji,jj,jk) = ghams(ji,jj,jk) + pdiffut(ji,jj,jk) * zdsdz_pyc
IF ( ln_dia_pyc_scl ) THEN
z3ddz_pyc_1(ji,jj,jk) = zdtdz_pyc
z3ddz_pyc_2(ji,jj,jk) = zdsdz_pyc
END IF
END IF
ENDIF ! IF (shol >=0.5)
ENDIF ! IF (av_db_bl> 0.)
ENDIF ! IF (zdhdt >= 0) zdhdt < 0 not considered since pycnocline profile is zero and profile arrays are
! ! intialized to zero
END IF
END IF
END_3D
IF ( ln_dia_pyc_scl ) THEN ! Output of pycnocline gradient profiles
CALL zdf_osm_iomput( "zdtdz_pyc", wmask(A2D(0),:) * z3ddz_pyc_1(A2D(0),:) )
CALL zdf_osm_iomput( "zdsdz_pyc", wmask(A2D(0),:) * z3ddz_pyc_2(A2D(0),:) )
END IF
DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, jkm_bld )
IF ( .NOT. l_conv (ji,jj) ) THEN
IF ( nbld(ji,jj) + kp_ext(ji,jj) < mbkt(ji,jj) ) THEN
zugrad = 3.25_wp * av_du_bl(ji,jj) / phbl(ji,jj)
zvgrad = 2.75_wp * av_dv_bl(ji,jj) / phbl(ji,jj)
IF ( jk <= nbld(ji,jj) ) THEN
znd = gdepw(ji,jj,jk,Kmm) / phbl(ji,jj)
IF ( znd < 1.0 ) THEN
zdudz_pyc = zugrad * EXP( -40.0_wp * ( znd - 1.0_wp )**2 )
ELSE
zdudz_pyc = zugrad * EXP( -20.0_wp * ( znd - 1.0_wp )**2 )
ENDIF
zdvdz_pyc = zvgrad * EXP( -20.0_wp * ( znd - 0.85_wp )**2 )
ghamu(ji,jj,jk) = ghamu(ji,jj,jk) + pviscos(ji,jj,jk) * zdudz_pyc
ghamv(ji,jj,jk) = ghamv(ji,jj,jk) + pviscos(ji,jj,jk) * zdvdz_pyc
IF ( ln_dia_pyc_shr ) THEN
z3ddz_pyc_1(ji,jj,jk) = zdudz_pyc
z3ddz_pyc_2(ji,jj,jk) = zdvdz_pyc
END IF
END IF
END IF
END IF
END_3D
IF ( ln_dia_pyc_shr ) THEN ! Output of pycnocline shear profiles
CALL zdf_osm_iomput( "zdudz_pyc", wmask(A2D(0),:) * z3ddz_pyc_1(A2D(0),:) )
CALL zdf_osm_iomput( "zdvdz_pyc", wmask(A2D(0),:) * z3ddz_pyc_2(A2D(0),:) )
END IF
IF ( ln_dia_osm ) THEN
CALL zdf_osm_iomput( "ghamu_b", wmask(A2D(0),:) * ghamu(A2D(0),:) )
CALL zdf_osm_iomput( "ghamv_b", wmask(A2D(0),:) * ghamv(A2D(0),:) )
END IF
IF ( ln_dia_pyc_scl .OR. ln_dia_pyc_shr ) THEN ! Deallocate arrays used for output of pycnocline gradient/shear profiles
DEALLOCATE( z3ddz_pyc_1, z3ddz_pyc_2 )
END IF
!
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
ghamt(ji,jj,nbld(ji,jj)) = 0.0_wp
ghams(ji,jj,nbld(ji,jj)) = 0.0_wp
ghamu(ji,jj,nbld(ji,jj)) = 0.0_wp
ghamv(ji,jj,nbld(ji,jj)) = 0.0_wp
END_2D
!
IF ( ln_dia_osm ) THEN
CALL zdf_osm_iomput( "ghamu_1", wmask(A2D(0),:) * ghamu(A2D(0),:) )
CALL zdf_osm_iomput( "ghamv_1", wmask(A2D(0),:) * ghamv(A2D(0),:) )
CALL zdf_osm_iomput( "zviscos", wmask(A2D(0),:) * pviscos(A2D(0),:) )
END IF
!
END SUBROUTINE zdf_osm_fgr_terms
SUBROUTINE zdf_osm_zmld_horizontal_gradients( Kmm, pmld, pdtdx, pdtdy, pdsdx, &
& pdsdy, pdbds_mle )
!!----------------------------------------------------------------------
!! *** ROUTINE zdf_osm_zmld_horizontal_gradients ***
!!
!! ** Purpose : Calculates horizontal gradients of buoyancy for use with
!! Fox-Kemper parametrization
!!
!! ** Method :
!!
!! References: Fox-Kemper et al., JPO, 38, 1145-1165, 2008
!! Fox-Kemper and Ferrari, JPO, 38, 1166-1179, 2008
!!
!!----------------------------------------------------------------------
INTEGER, INTENT(in ) :: Kmm ! Time-level index
REAL(wp), DIMENSION(A2D(nn_hls)), INTENT( out) :: pmld ! == Estimated FK BLD used for MLE horizontal gradients == !
REAL(wp), DIMENSION(A2D(nn_hls)), INTENT(inout) :: pdtdx ! Horizontal gradient for Fox-Kemper parametrization
REAL(wp), DIMENSION(A2D(nn_hls)), INTENT(inout) :: pdtdy ! Horizontal gradient for Fox-Kemper parametrization
REAL(wp), DIMENSION(A2D(nn_hls)), INTENT(inout) :: pdsdx ! Horizontal gradient for Fox-Kemper parametrization
REAL(wp), DIMENSION(A2D(nn_hls)), INTENT(inout) :: pdsdy ! Horizontal gradient for Fox-Kemper parametrization
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(inout) :: pdbds_mle ! Magnitude of horizontal buoyancy gradient
!!
INTEGER :: ji, jj, jk ! Dummy loop indices
INTEGER, DIMENSION(A2D(nn_hls)) :: jk_mld_prof ! Base level of MLE layer
INTEGER :: ikt, ikmax ! Local integers
REAL(wp) :: zc
REAL(wp) :: zN2_c ! Local buoyancy difference from 10m value
REAL(wp), DIMENSION(A2D(nn_hls)) :: ztm
REAL(wp), DIMENSION(A2D(nn_hls)) :: zsm
REAL(wp), DIMENSION(A2D(nn_hls),jpts) :: ztsm_midu
REAL(wp), DIMENSION(A2D(nn_hls),jpts) :: ztsm_midv
REAL(wp), DIMENSION(A2D(nn_hls),jpts) :: zabu
REAL(wp), DIMENSION(A2D(nn_hls),jpts) :: zabv
REAL(wp), DIMENSION(A2D(nn_hls)) :: zmld_midu
REAL(wp), DIMENSION(A2D(nn_hls)) :: zmld_midv
!!----------------------------------------------------------------------
!
! == MLD used for MLE ==!
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
jk_mld_prof(ji,jj) = nlb10 ! Initialization to the number of w ocean point
pmld(ji,jj) = 0.0_wp ! Here hmlp used as a dummy variable, integrating vertically N^2
END_2D
zN2_c = grav * rn_osm_mle_rho_c * r1_rho0 ! Convert density criteria into N^2 criteria
DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, nlb10, jpkm1 )
ikt = mbkt(ji,jj)
pmld(ji,jj) = pmld(ji,jj) + MAX( rn2b(ji,jj,jk), 0.0_wp ) * e3w(ji,jj,jk,Kmm)
IF( pmld(ji,jj) < zN2_c ) jk_mld_prof(ji,jj) = MIN( jk , ikt ) + 1 ! Mixed layer level
END_3D
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
jk_mld_prof(ji,jj) = MAX( jk_mld_prof(ji,jj), nbld(ji,jj) ) ! Ensure jk_mld_prof .ge. nbld
pmld(ji,jj) = gdepw(ji,jj,jk_mld_prof(ji,jj),Kmm)
END_2D
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
mld_prof(ji,jj) = jk_mld_prof(ji,jj)
END_2D
!
ikmax = MIN( MAXVAL( jk_mld_prof(A2D(nn_hls)) ), jpkm1 ) ! Max level of the computation
ztm(:,:) = 0.0_wp
zsm(:,:) = 0.0_wp
DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, ikmax )
zc = e3t(ji,jj,jk,Kmm) * REAL( MIN( MAX( 0, jk_mld_prof(ji,jj) - jk ), 1 ), KIND=wp ) ! zc being 0 outside the ML
! ! t-points
ztm(ji,jj) = ztm(ji,jj) + zc * ts(ji,jj,jk,jp_tem,Kmm)
zsm(ji,jj) = zsm(ji,jj) + zc * ts(ji,jj,jk,jp_sal,Kmm)
END_3D
! Average temperature and salinity
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
ztm(ji,jj) = ztm(ji,jj) / MAX( e3t(ji,jj,1,Kmm), pmld(ji,jj) )
zsm(ji,jj) = zsm(ji,jj) / MAX( e3t(ji,jj,1,Kmm), pmld(ji,jj) )
END_2D
! Calculate horizontal gradients at u & v points
zmld_midu(:,:) = 0.0_wp
ztsm_midu(:,:,:) = 10.0_wp
DO_2D( nn_hls, nn_hls-1, nn_hls-1, nn_hls-1 )
pdtdx(ji,jj) = ( ztm(ji+1,jj) - ztm(ji,jj) ) * umask(ji,jj,1) / e1u(ji,jj)
pdsdx(ji,jj) = ( zsm(ji+1,jj) - zsm(ji,jj) ) * umask(ji,jj,1) / e1u(ji,jj)
zmld_midu(ji,jj) = 0.25_wp * ( pmld(ji+1,jj) + pmld(ji,jj))
ztsm_midu(ji,jj,jp_tem) = 0.5_wp * ( ztm( ji+1,jj) + ztm( ji,jj) )
ztsm_midu(ji,jj,jp_sal) = 0.5_wp * ( zsm( ji+1,jj) + zsm( ji,jj) )
END_2D
zmld_midv(:,:) = 0.0_wp
ztsm_midv(:,:,:) = 10.0_wp
DO_2D( nn_hls-1, nn_hls-1, nn_hls, nn_hls-1 )
pdtdy(ji,jj) = ( ztm(ji,jj+1) - ztm(ji,jj) ) * vmask(ji,jj,1) / e1v(ji,jj)
pdsdy(ji,jj) = ( zsm(ji,jj+1) - zsm(ji,jj) ) * vmask(ji,jj,1) / e1v(ji,jj)
zmld_midv(ji,jj) = 0.25_wp * ( pmld(ji,jj+1) + pmld( ji,jj) )
ztsm_midv(ji,jj,jp_tem) = 0.5_wp * ( ztm( ji,jj+1) + ztm( ji,jj) )
ztsm_midv(ji,jj,jp_sal) = 0.5_wp * ( zsm( ji,jj+1) + zsm( ji,jj) )
END_2D
CALL eos_rab( ztsm_midu, zmld_midu, zabu, Kmm )
CALL eos_rab( ztsm_midv, zmld_midv, zabv, Kmm )
DO_2D_OVR( nn_hls, nn_hls-1, nn_hls-1, nn_hls-1 )
dbdx_mle(ji,jj) = grav * ( pdtdx(ji,jj) * zabu(ji,jj,jp_tem) - pdsdx(ji,jj) * zabu(ji,jj,jp_sal) )
END_2D
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls, nn_hls-1 )
dbdy_mle(ji,jj) = grav * ( pdtdy(ji,jj) * zabv(ji,jj,jp_tem) - pdsdy(ji,jj) * zabv(ji,jj,jp_sal) )
END_2D
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
pdbds_mle(ji,jj) = SQRT( 0.5_wp * ( dbdx_mle(ji, jj) * dbdx_mle(ji, jj) + dbdy_mle(ji,jj ) * dbdy_mle(ji,jj ) + &
& dbdx_mle(ji-1,jj) * dbdx_mle(ji-1,jj) + dbdy_mle(ji,jj-1) * dbdy_mle(ji,jj-1) ) )
END_2D
!
END SUBROUTINE zdf_osm_zmld_horizontal_gradients
SUBROUTINE zdf_osm_osbl_state_fk( Kmm, pwb_fk, phbl, phmle, pwb_ent, &
& pdbds_mle )
!!---------------------------------------------------------------------
!! *** ROUTINE zdf_osm_osbl_state_fk ***
!!
!! ** Purpose : Determines the state of the OSBL and MLE layer. Info is
!! returned in the logicals l_pyc, l_flux and ldmle. Used
!! with Fox-Kemper scheme.
!! l_pyc :: determines whether pycnocline flux-grad
!! relationship needs to be determined
!! l_flux :: determines whether effects of surface flux
!! extend below the base of the OSBL
!! ldmle :: determines whether the layer with MLE is
!! increasing with time or if base is relaxing
!! towards hbl
!!
!! ** Method :
!!
!!----------------------------------------------------------------------
INTEGER, INTENT(in ) :: Kmm ! Time-level index
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(inout) :: pwb_fk
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: phbl ! BL depth
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: phmle ! MLE depth
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: pwb_ent ! Buoyancy entrainment flux
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: pdbds_mle ! Magnitude of horizontal buoyancy gradient
!!
INTEGER :: ji, jj, jk ! Dummy loop indices
REAL(wp), DIMENSION(A2D(nn_hls-1)) :: znd_param
REAL(wp) :: zthermal, zbeta
REAL(wp) :: zbuoy
REAL(wp) :: ztmp
REAL(wp) :: zpe_mle_layer
REAL(wp) :: zpe_mle_ref
REAL(wp) :: zdbdz_mle_int
!!----------------------------------------------------------------------
!
znd_param(:,:) = 0.0_wp
!
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
ztmp = r1_ft(ji,jj) * MIN( 111.e3_wp , e1u(ji,jj) ) / rn_osm_mle_lf
pwb_fk(ji,jj) = rn_osm_mle_ce * hmle(ji,jj) * hmle(ji,jj) * ztmp * pdbds_mle(ji,jj) * pdbds_mle(ji,jj)
END_2D
!
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
!
IF ( l_conv(ji,jj) ) THEN
IF ( phmle(ji,jj) > 1.2_wp * phbl(ji,jj) ) THEN
av_t_mle(ji,jj) = ( av_t_mle(ji,jj) * phmle(ji,jj) - av_t_bl(ji,jj) * phbl(ji,jj) ) / ( phmle(ji,jj) - phbl(ji,jj) )
av_s_mle(ji,jj) = ( av_s_mle(ji,jj) * phmle(ji,jj) - av_s_bl(ji,jj) * phbl(ji,jj) ) / ( phmle(ji,jj) - phbl(ji,jj) )
av_b_mle(ji,jj) = ( av_b_mle(ji,jj) * phmle(ji,jj) - av_b_bl(ji,jj) * phbl(ji,jj) ) / ( phmle(ji,jj) - phbl(ji,jj) )
zdbdz_mle_int = ( av_b_bl(ji,jj) - ( 2.0_wp * av_b_mle(ji,jj) - av_b_bl(ji,jj) ) ) / ( phmle(ji,jj) - phbl(ji,jj) )
! Calculate potential energies of actual profile and reference profile
zpe_mle_layer = 0.0_wp
zpe_mle_ref = 0.0_wp
zthermal = rab_n(ji,jj,1,jp_tem)
zbeta = rab_n(ji,jj,1,jp_sal)
DO jk = nbld(ji,jj), mld_prof(ji,jj)
zbuoy = grav * ( zthermal * ts(ji,jj,jk,jp_tem,Kmm) - zbeta * ts(ji,jj,jk,jp_sal,Kmm) )
zpe_mle_layer = zpe_mle_layer + zbuoy * gdepw(ji,jj,jk,Kmm) * e3w(ji,jj,jk,Kmm)
zpe_mle_ref = zpe_mle_ref + ( av_b_bl(ji,jj) - zdbdz_mle_int * ( gdepw(ji,jj,jk,Kmm) - phbl(ji,jj) ) ) * &
& gdepw(ji,jj,jk,Kmm) * e3w(ji,jj,jk,Kmm)
END DO
! Non-dimensional parameter to diagnose the presence of thermocline
znd_param(ji,jj) = ( zpe_mle_layer - zpe_mle_ref ) * ABS( ff_t(ji,jj) ) / &
& ( MAX( pwb_fk(ji,jj), 1e-10 ) * phmle(ji,jj) )
END IF
END IF
!
END_2D
!
! Diagnosis
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
!
IF ( l_conv(ji,jj) ) THEN
IF ( -2.0_wp * pwb_fk(ji,jj) / pwb_ent(ji,jj) > 0.5_wp ) THEN
IF ( phmle(ji,jj) > 1.2_wp * phbl(ji,jj) ) THEN ! MLE layer growing
IF ( znd_param (ji,jj) > 100.0_wp ) THEN ! Thermocline present
l_flux(ji,jj) = .FALSE.
l_mle(ji,jj) = .FALSE.
ELSE ! Thermocline not present
l_flux(ji,jj) = .TRUE.
l_mle(ji,jj) = .TRUE.
ENDIF ! znd_param > 100
!
IF ( av_db_bl(ji,jj) < rn_osm_bl_thresh ) THEN
l_pyc(ji,jj) = .FALSE.
ELSE
l_pyc(ji,jj) = .TRUE.
ENDIF
ELSE ! MLE layer restricted to OSBL or just below
IF ( av_db_bl(ji,jj) < rn_osm_bl_thresh ) THEN ! Weak stratification MLE layer can grow
l_pyc(ji,jj) = .FALSE.
l_flux(ji,jj) = .TRUE.
l_mle(ji,jj) = .TRUE.
ELSE ! Strong stratification
l_pyc(ji,jj) = .TRUE.
l_flux(ji,jj) = .FALSE.
l_mle(ji,jj) = .FALSE.
END IF ! av_db_bl < rn_mle_thresh_bl and
END IF ! phmle > 1.2 phbl
ELSE
l_pyc(ji,jj) = .TRUE.
l_flux(ji,jj) = .FALSE.
l_mle(ji,jj) = .FALSE.
IF ( av_db_bl(ji,jj) < rn_osm_bl_thresh ) l_pyc(ji,jj) = .FALSE.
END IF ! -2.0 * pwb_fk(ji,jj) / pwb_ent > 0.5
ELSE ! Stable Boundary Layer
l_pyc(ji,jj) = .FALSE.
l_flux(ji,jj) = .FALSE.
l_mle(ji,jj) = .FALSE.
END IF ! l_conv
!
END_2D
!
END SUBROUTINE zdf_osm_osbl_state_fk
SUBROUTINE zdf_osm_mle_parameters( Kmm, pmld, phmle, pvel_mle, pdiff_mle, &
& pdbds_mle, phbl, pwb0tot )
!!----------------------------------------------------------------------
!! *** ROUTINE zdf_osm_mle_parameters ***
!!
!! ** Purpose : Timesteps the mixed layer eddy depth, hmle and calculates
!! the mixed layer eddy fluxes for buoyancy, heat and
!! salinity.
!!
!! ** Method :
!!
!! References: Fox-Kemper et al., JPO, 38, 1145-1165, 2008
!! Fox-Kemper and Ferrari, JPO, 38, 1166-1179, 2008
!!
!!----------------------------------------------------------------------
INTEGER, INTENT(in ) :: Kmm ! Time-level index
REAL(wp), DIMENSION(A2D(nn_hls)), INTENT(in ) :: pmld ! == Estimated FK BLD used for MLE horiz gradients == !
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(inout) :: phmle ! MLE depth
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(inout) :: pvel_mle ! Velocity scale for dhdt with stable ML and FK
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(inout) :: pdiff_mle ! Extra MLE vertical diff
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: pdbds_mle ! Magnitude of horizontal buoyancy gradient
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: phbl ! BL depth
REAL(wp), DIMENSION(A2D(nn_hls-1)), INTENT(in ) :: pwb0tot ! Total surface buoyancy flux including insolation
!!
INTEGER :: ji, jj, jk ! Dummy loop indices
REAL(wp) :: ztmp
REAL(wp) :: zdbdz
REAL(wp) :: zdtdz
REAL(wp) :: zdsdz
REAL(wp) :: zthermal
REAL(wp) :: zbeta
REAL(wp) :: zbuoy
REAL(wp) :: zdb_mle
!!----------------------------------------------------------------------
!
! Calculate vertical buoyancy, heat and salinity fluxes due to MLE
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
IF ( l_conv(ji,jj) ) THEN
ztmp = r1_ft(ji,jj) * MIN( 111e3_wp, e1u(ji,jj) ) / rn_osm_mle_lf
! This velocity scale, defined in Fox-Kemper et al (2008), is needed for calculating dhdt
pvel_mle(ji,jj) = pdbds_mle(ji,jj) * ztmp * hmle(ji,jj) * tmask(ji,jj,1)
pdiff_mle(ji,jj) = 5e-4_wp * rn_osm_mle_ce * ztmp * pdbds_mle(ji,jj) * phmle(ji,jj)**2
END IF
END_2D
! Timestep mixed layer eddy depth
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
IF ( l_mle(ji,jj) ) THEN ! MLE layer growing
! Buoyancy gradient at base of MLE layer
zthermal = rab_n(ji,jj,1,jp_tem)
zbeta = rab_n(ji,jj,1,jp_sal)
zbuoy = grav * ( zthermal * ts(ji,jj,mld_prof(ji,jj)+2,jp_tem,Kmm) - &
& zbeta * ts(ji,jj,mld_prof(ji,jj)+2,jp_sal,Kmm) )
zdb_mle = av_b_bl(ji,jj) - zbuoy
! Timestep hmle
hmle(ji,jj) = hmle(ji,jj) + pwb0tot(ji,jj) * rn_Dt / zdb_mle
ELSE
IF ( phmle(ji,jj) > phbl(ji,jj) ) THEN
hmle(ji,jj) = hmle(ji,jj) - ( hmle(ji,jj) - hbl(ji,jj) ) * rn_Dt / rn_osm_mle_tau
ELSE
hmle(ji,jj) = hmle(ji,jj) - 10.0_wp * ( hmle(ji,jj) - hbl(ji,jj) ) * rn_Dt / rn_osm_mle_tau
END IF
END IF
hmle(ji,jj) = MAX( MIN( hmle(ji,jj), ht(ji,jj) ), gdepw(ji,jj,4,Kmm) )
IF ( ln_osm_hmle_limit ) hmle(ji,jj) = MIN( hmle(ji,jj), rn_osm_hmle_limit*hbl(ji,jj) )
hmle(ji,jj) = pmld(ji,jj) ! For now try just set hmle to pmld
END_2D
!
DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 5, jpkm1 )
IF ( hmle(ji,jj) >= gdepw(ji,jj,jk,Kmm) ) mld_prof(ji,jj) = MIN( mbkt(ji,jj), jk )
END_3D
DO_2D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
phmle(ji,jj) = gdepw(ji,jj,mld_prof(ji,jj),Kmm)
END_2D
!
END SUBROUTINE zdf_osm_mle_parameters
SUBROUTINE zdf_osm_init( Kmm )
!!----------------------------------------------------------------------
!! *** ROUTINE zdf_osm_init ***
!!
!! ** Purpose : Initialization of the vertical eddy diffivity and
!! viscosity when using a osm turbulent closure scheme
!!
!! ** Method : Read the namosm namelist and check the parameters
!! called at the first timestep (nit000)
!!
!! ** input : Namlists namzdf_osm and namosm_mle
!!
!!----------------------------------------------------------------------
INTEGER, INTENT(in ) :: Kmm ! Time level
!!
INTEGER :: ios ! Local integer
INTEGER :: ji, jj, jk ! Dummy loop indices
REAL(wp) :: z1_t2
!!
REAL(wp), PARAMETER :: pp_large = -1e10_wp
!!
NAMELIST/namzdf_osm/ ln_use_osm_la, rn_osm_la, rn_osm_dstokes, nn_ave, nn_osm_wave, &
& ln_dia_osm, rn_osm_hbl0, rn_zdfosm_adjust_sd, ln_kpprimix, rn_riinfty, &
& rn_difri, ln_convmix, rn_difconv, nn_osm_wave, nn_osm_SD_reduce, &
& ln_osm_mle, rn_osm_hblfrac, rn_osm_bl_thresh, ln_zdfosm_ice_shelter
!! Namelist for Fox-Kemper parametrization
NAMELIST/namosm_mle/ nn_osm_mle, rn_osm_mle_ce, rn_osm_mle_lf, rn_osm_mle_time, rn_osm_mle_lat, &
& rn_osm_mle_rho_c, rn_osm_mle_thresh, rn_osm_mle_tau, ln_osm_hmle_limit, rn_osm_hmle_limit
!!----------------------------------------------------------------------
!
READ ( numnam_ref, namzdf_osm, IOSTAT = ios, ERR = 901)
901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namzdf_osm in reference namelist' )
READ ( numnam_cfg, namzdf_osm, IOSTAT = ios, ERR = 902 )
902 IF( ios > 0 ) CALL ctl_nam ( ios , 'namzdf_osm in configuration namelist' )
IF(lwm) WRITE ( numond, namzdf_osm )
IF(lwp) THEN ! Control print
WRITE(numout,*)
WRITE(numout,*) 'zdf_osm_init : OSMOSIS Parameterisation'
WRITE(numout,*) '~~~~~~~~~~~~'
WRITE(numout,*) ' Namelist namzdf_osm : set osm mixing parameters'
WRITE(numout,*) ' Use rn_osm_la ln_use_osm_la = ', ln_use_osm_la
WRITE(numout,*) ' Use MLE in OBL, i.e. Fox-Kemper param ln_osm_mle = ', ln_osm_mle
WRITE(numout,*) ' Turbulent Langmuir number rn_osm_la = ', rn_osm_la
WRITE(numout,*) ' Stokes drift reduction factor rn_zdfosm_adjust_sd = ', rn_zdfosm_adjust_sd
WRITE(numout,*) ' Initial hbl for 1D runs rn_osm_hbl0 = ', rn_osm_hbl0
WRITE(numout,*) ' Depth scale of Stokes drift rn_osm_dstokes = ', rn_osm_dstokes
WRITE(numout,*) ' Horizontal average flag nn_ave = ', nn_ave
WRITE(numout,*) ' Stokes drift nn_osm_wave = ', nn_osm_wave
SELECT CASE (nn_osm_wave)
CASE(0)
WRITE(numout,*) ' Calculated assuming constant La#=0.3'
CASE(1)
WRITE(numout,*) ' Calculated from Pierson Moskowitz wind-waves'
CASE(2)
WRITE(numout,*) ' Calculated from ECMWF wave fields'
END SELECT
WRITE(numout,*) ' Stokes drift reduction nn_osm_SD_reduce = ', nn_osm_SD_reduce
WRITE(numout,*) ' Fraction of hbl to average SD over/fit'
WRITE(numout,*) ' Exponential with nn_osm_SD_reduce = 1 or 2 rn_osm_hblfrac = ', rn_osm_hblfrac
SELECT CASE (nn_osm_SD_reduce)
CASE(0)
WRITE(numout,*) ' No reduction'
CASE(1)
WRITE(numout,*) ' Average SD over upper rn_osm_hblfrac of BL'
CASE(2)
WRITE(numout,*) ' Fit exponential to slope rn_osm_hblfrac of BL'
END SELECT
WRITE(numout,*) ' Reduce surface SD and depth scale under ice ln_zdfosm_ice_shelter = ', ln_zdfosm_ice_shelter
WRITE(numout,*) ' Output osm diagnostics ln_dia_osm = ', ln_dia_osm
WRITE(numout,*) ' Threshold used to define BL rn_osm_bl_thresh = ', rn_osm_bl_thresh, &
& 'm^2/s'
WRITE(numout,*) ' Use KPP-style shear instability mixing ln_kpprimix = ', ln_kpprimix
WRITE(numout,*) ' Local Richardson Number limit for shear instability rn_riinfty = ', rn_riinfty
WRITE(numout,*) ' Maximum shear diffusivity at Rig = 0 (m2/s) rn_difri = ', rn_difri
WRITE(numout,*) ' Use large mixing below BL when unstable ln_convmix = ', ln_convmix
WRITE(numout,*) ' Diffusivity when unstable below BL (m2/s) rn_difconv = ', rn_difconv
ENDIF
!
! ! Check wave coupling settings !
! ! Further work needed - see ticket #2447 !
IF ( nn_osm_wave == 2 ) THEN
IF (.NOT. ( ln_wave .AND. ln_sdw )) &
& CALL ctl_stop( 'zdf_osm_init : ln_zdfosm and nn_osm_wave=2, ln_wave and ln_sdw must be true' )
END IF
!
! Flags associated with diagnostic output
IF ( ln_dia_osm .AND. ( iom_use("zdudz_pyc") .OR. iom_use("zdvdz_pyc") ) ) ln_dia_pyc_shr = .TRUE.
IF ( ln_dia_osm .AND. ( iom_use("zdtdz_pyc") .OR. iom_use("zdsdz_pyc") .OR. iom_use("zdbdz_pyc" ) ) ) ln_dia_pyc_scl = .TRUE.
!
! Allocate zdfosm arrays
IF( zdf_osm_alloc() /= 0 ) CALL ctl_stop( 'STOP', 'zdf_osm_init : unable to allocate arrays' )
!
IF( ln_osm_mle ) THEN ! Initialise Fox-Kemper parametrization
READ ( numnam_ref, namosm_mle, IOSTAT = ios, ERR = 903)
903 IF( ios /= 0 ) CALL ctl_nam( ios, 'namosm_mle in reference namelist' )
READ ( numnam_cfg, namosm_mle, IOSTAT = ios, ERR = 904 )
904 IF( ios > 0 ) CALL ctl_nam( ios, 'namosm_mle in configuration namelist' )
IF(lwm) WRITE ( numond, namosm_mle )
!
IF(lwp) THEN ! Namelist print
WRITE(numout,*)
WRITE(numout,*) 'zdf_osm_init : initialise mixed layer eddy (MLE)'
WRITE(numout,*) '~~~~~~~~~~~~~'
WRITE(numout,*) ' Namelist namosm_mle : '
WRITE(numout,*) ' MLE type: =0 standard Fox-Kemper ; =1 new formulation nn_osm_mle = ', nn_osm_mle
WRITE(numout,*) ' Magnitude of the MLE (typical value: 0.06 to 0.08) rn_osm_mle_ce = ', rn_osm_mle_ce
WRITE(numout,*) ' Scale of ML front (ML radius of deform.) (nn_osm_mle=0) rn_osm_mle_lf = ', rn_osm_mle_lf, &
& 'm'
WRITE(numout,*) ' Maximum time scale of MLE (nn_osm_mle=0) rn_osm_mle_time = ', &
& rn_osm_mle_time, 's'
WRITE(numout,*) ' Reference latitude (deg) of MLE coef. (nn_osm_mle=1) rn_osm_mle_lat = ', rn_osm_mle_lat, &
& 'deg'
WRITE(numout,*) ' Density difference used to define ML for FK rn_osm_mle_rho_c = ', rn_osm_mle_rho_c
WRITE(numout,*) ' Threshold used to define MLE for FK rn_osm_mle_thresh = ', &
& rn_osm_mle_thresh, 'm^2/s'
WRITE(numout,*) ' Timescale for OSM-FK rn_osm_mle_tau = ', rn_osm_mle_tau, 's'
WRITE(numout,*) ' Switch to limit hmle ln_osm_hmle_limit = ', ln_osm_hmle_limit
WRITE(numout,*) ' hmle limit (fraction of zmld) (ln_osm_hmle_limit = .T.) rn_osm_hmle_limit = ', rn_osm_hmle_limit
END IF
END IF
!
IF(lwp) THEN
WRITE(numout,*)
IF ( ln_osm_mle ) THEN
WRITE(numout,*) ' ==>>> Mixed Layer Eddy induced transport added to OSMOSIS BL calculation'
IF( nn_osm_mle == 0 ) WRITE(numout,*) ' Fox-Kemper et al 2010 formulation'
IF( nn_osm_mle == 1 ) WRITE(numout,*) ' New formulation'
ELSE
WRITE(numout,*) ' ==>>> Mixed Layer induced transport NOT added to OSMOSIS BL calculation'
END IF
END IF
!
IF( ln_osm_mle ) THEN ! MLE initialisation
!
rb_c = grav * rn_osm_mle_rho_c / rho0 ! Mixed Layer buoyancy criteria
IF(lwp) WRITE(numout,*)
IF(lwp) WRITE(numout,*) ' ML buoyancy criteria = ', rb_c, ' m/s2 '
IF(lwp) WRITE(numout,*) ' associated ML density criteria defined in zdfmxl = ', rn_osm_mle_rho_c, 'kg/m3'
!
IF( nn_osm_mle == 1 ) THEN
rc_f = rn_osm_mle_ce / ( 5e3_wp * 2.0_wp * omega * SIN( rad * rn_osm_mle_lat ) )
END IF
! 1/(f^2+tau^2)^1/2 at t-point (needed in both nn_osm_mle case)
z1_t2 = 2e-5_wp
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
r1_ft(ji,jj) = MIN( 1.0_wp / ( ABS( ff_t(ji,jj)) + epsln ), ABS( ff_t(ji,jj) ) / z1_t2**2 )
END_2D
! z1_t2 = 1._wp / ( rn_osm_mle_time * rn_osm_mle_timeji,jj )
! r1_ft(:,:) = 1._wp / SQRT( ff_t(:,:) * ff_t(:,:) + z1_t2 )
!
END IF
!
CALL osm_rst( nit000, Kmm, 'READ' ) ! Read or initialize hbl, dh, hmle
!
IF ( ln_zdfddm ) THEN
IF(lwp) THEN
WRITE(numout,*)
WRITE(numout,*) ' Double diffusion mixing on temperature and salinity '
WRITE(numout,*) ' CAUTION : done in routine zdfosm, not in routine zdfddm '
END IF
END IF
!
! Set constants not in namelist
! -----------------------------
IF(lwp) THEN
WRITE(numout,*)
END IF
!
dstokes(:,:) = pp_large
IF (nn_osm_wave == 0) THEN
dstokes(:,:) = rn_osm_dstokes
END IF
!
! Horizontal average : initialization of weighting arrays
! -------------------
SELECT CASE ( nn_ave )
CASE ( 0 ) ! no horizontal average
IF(lwp) WRITE(numout,*) ' no horizontal average on avt'
IF(lwp) WRITE(numout,*) ' only in very high horizontal resolution !'
! Weighting mean arrays etmean
! ( 1 1 )
! avt = 1/4 ( 1 1 )
!
etmean(:,:,:) = 0.0_wp
!
DO_3D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 1, jpkm1 )
etmean(ji,jj,jk) = tmask(ji,jj,jk) / MAX( 1.0_wp, umask(ji-1,jj, jk) + umask(ji,jj,jk) + &
& vmask(ji, jj-1,jk) + vmask(ji,jj,jk) )
END_3D
CASE ( 1 ) ! horizontal average
IF(lwp) WRITE(numout,*) ' horizontal average on avt'
! Weighting mean arrays etmean
! ( 1/2 1 1/2 )
! avt = 1/8 ( 1 2 1 )
! ( 1/2 1 1/2 )
etmean(:,:,:) = 0.0_wp
!
DO_3D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 1, jpkm1 )
etmean(ji,jj,jk) = tmask(ji, jj,jk) / MAX( 1.0_wp, 2.0_wp * tmask(ji,jj,jk) + &
& 0.5_wp * ( tmask(ji-1,jj+1,jk) + tmask(ji-1,jj-1,jk) + &
& tmask(ji+1,jj+1,jk) + tmask(ji+1,jj-1,jk) ) + &
& 1.0_wp * ( tmask(ji-1,jj, jk) + tmask(ji, jj+1,jk) + &
& tmask(ji, jj-1,jk) + tmask(ji+1,jj, jk) ) )
END_3D
CASE DEFAULT
WRITE(ctmp1,*) ' bad flag value for nn_ave = ', nn_ave
CALL ctl_stop( ctmp1 )
END SELECT
!
! Initialization of vertical eddy coef. to the background value
! -------------------------------------------------------------
DO jk = 1, jpk
avt(:,:,jk) = avtb(jk) * tmask(:,:,jk)
END DO
!
! Zero the surface flux for non local term and osm mixed layer depth
! ------------------------------------------------------------------
ghamt(:,:,:) = 0.0_wp
ghams(:,:,:) = 0.0_wp
ghamu(:,:,:) = 0.0_wp
ghamv(:,:,:) = 0.0_wp
!
IF ( ln_dia_osm ) THEN ! Initialise auxiliary arrays for diagnostic output
osmdia2d(:,:) = 0.0_wp
osmdia3d(:,:,:) = 0.0_wp
END IF
!
END SUBROUTINE zdf_osm_init
SUBROUTINE osm_rst( kt, Kmm, cdrw )
!!---------------------------------------------------------------------
!! *** ROUTINE osm_rst ***
!!
!! ** Purpose : Read or write BL fields in restart file
!!
!! ** Method : use of IOM library. If the restart does not contain
!! required fields, they are recomputed from stratification
!!
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: kt ! Ocean time step index
INTEGER , INTENT(in ) :: Kmm ! Ocean time level index (middle)
CHARACTER(len=*), INTENT(in ) :: cdrw ! "READ"/"WRITE" flag
!!
INTEGER :: id1, id2, id3 ! iom enquiry index
INTEGER :: ji, jj, jk ! Dummy loop indices
INTEGER :: iiki, ikt ! Local integer
REAL(wp) :: zhbf ! Tempory scalars
REAL(wp) :: zN2_c ! Local scalar
REAL(wp) :: rho_c = 0.01_wp ! Density criterion for mixed layer depth
INTEGER, DIMENSION(jpi,jpj) :: imld_rst ! Level of mixed-layer depth (pycnocline top)
!!----------------------------------------------------------------------
!
!!-----------------------------------------------------------------------------
! If READ/WRITE Flag is 'READ', try to get hbl from restart file. If successful then return
!!-----------------------------------------------------------------------------
IF( TRIM(cdrw) == 'READ' .AND. ln_rstart) THEN
id1 = iom_varid( numror, 'wn', ldstop = .FALSE. )
IF( id1 > 0 ) THEN ! 'wn' exists; read
CALL iom_get( numror, jpdom_auto, 'wn', ww )
WRITE(numout,*) ' ===>>>> : wn read from restart file'
ELSE
ww(:,:,:) = 0.0_wp
WRITE(numout,*) ' ===>>>> : wn not in restart file, set to zero initially'
END IF
!
id1 = iom_varid( numror, 'hbl', ldstop = .FALSE. )
id2 = iom_varid( numror, 'dh', ldstop = .FALSE. )
IF( id1 > 0 .AND. id2 > 0 ) THEN ! 'hbl' exists; read and return
CALL iom_get( numror, jpdom_auto, 'hbl', hbl )
CALL iom_get( numror, jpdom_auto, 'dh', dh )
hml(:,:) = hbl(:,:) - dh(:,:) ! Initialise ML depth
WRITE(numout,*) ' ===>>>> : hbl & dh read from restart file'
IF( ln_osm_mle ) THEN
id3 = iom_varid( numror, 'hmle', ldstop = .FALSE. )
IF( id3 > 0 ) THEN
CALL iom_get( numror, jpdom_auto, 'hmle', hmle )
WRITE(numout,*) ' ===>>>> : hmle read from restart file'
ELSE
WRITE(numout,*) ' ===>>>> : hmle not found, set to hbl'
hmle(:,:) = hbl(:,:) ! Initialise MLE depth
END IF
END IF
RETURN
ELSE ! 'hbl' & 'dh' not in restart file, recalculate
WRITE(numout,*) ' ===>>>> : previous run without osmosis scheme, hbl computed from stratification'
END IF
END IF
!
!!-----------------------------------------------------------------------------
! If READ/WRITE Flag is 'WRITE', write hbl into the restart file, then return
!!-----------------------------------------------------------------------------
IF ( TRIM(cdrw) == 'WRITE' ) THEN
IF(lwp) WRITE(numout,*) '---- osm-rst ----'
CALL iom_rstput( kt, nitrst, numrow, 'wn', ww )
CALL iom_rstput( kt, nitrst, numrow, 'hbl', hbl )
CALL iom_rstput( kt, nitrst, numrow, 'dh', dh )
IF ( ln_osm_mle ) THEN
CALL iom_rstput( kt, nitrst, numrow, 'hmle', hmle )
END IF
RETURN
END IF
!
!!-----------------------------------------------------------------------------
! Getting hbl, no restart file with hbl, so calculate from surface stratification
!!-----------------------------------------------------------------------------
IF( lwp ) WRITE(numout,*) ' ===>>>> : calculating hbl computed from stratification'
! w-level of the mixing and mixed layers
CALL eos_rab( ts(:,:,:,:,Kmm), rab_n, Kmm )
CALL bn2( ts(:,:,:,:,Kmm), rab_n, rn2, Kmm )
imld_rst(:,:) = nlb10 ! Initialization to the number of w ocean point
hbl(:,:) = 0.0_wp ! Here hbl used as a dummy variable, integrating vertically N^2
zN2_c = grav * rho_c * r1_rho0 ! Convert density criteria into N^2 criteria
!
hbl(:,:) = 0.0_wp ! Here hbl used as a dummy variable, integrating vertically N^2
DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, jpkm1 )
ikt = mbkt(ji,jj)
hbl(ji,jj) = hbl(ji,jj) + MAX( rn2(ji,jj,jk) , 0.0_wp ) * e3w(ji,jj,jk,Kmm)
IF ( hbl(ji,jj) < zN2_c ) imld_rst(ji,jj) = MIN( jk , ikt ) + 1 ! Mixed layer level
END_3D
!
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
iiki = MAX( 4, imld_rst(ji,jj) )
hbl(ji,jj) = gdepw(ji,jj,iiki,Kmm ) ! Turbocline depth
dh(ji,jj) = e3t(ji,jj,iiki-1,Kmm ) ! Turbocline depth
hml(ji,jj) = hbl(ji,jj) - dh(ji,jj)
END_2D
!
WRITE(numout,*) ' ===>>>> : hbl computed from stratification'
!
IF( ln_osm_mle ) THEN
hmle(:,:) = hbl(:,:) ! Initialise MLE depth.
WRITE(numout,*) ' ===>>>> : hmle set = to hbl'
END IF
!
ww(:,:,:) = 0.0_wp
WRITE(numout,*) ' ===>>>> : wn not in restart file, set to zero initially'
!
END SUBROUTINE osm_rst
SUBROUTINE tra_osm( kt, Kmm, pts, Krhs )
!!----------------------------------------------------------------------
!! *** ROUTINE tra_osm ***
!!
!! ** Purpose : compute and add to the tracer trend the non-local tracer flux
!!
!! ** Method : ???
!!
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: kt ! Time step index
INTEGER , INTENT(in ) :: Kmm, Krhs ! Time level indices

sparonuz
committed
REAL(dp), DIMENSION(jpi,jpj,jpk,jpts,jpt), INTENT(inout) :: pts ! Active tracers and RHS of tracer equation
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
!!
INTEGER :: ji, jj, jk
REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ztrdt, ztrds ! 3D workspace
!!----------------------------------------------------------------------
!
IF ( kt == nit000 ) THEN
IF ( ntile == 0 .OR. ntile == 1 ) THEN ! Do only on the first tile
IF(lwp) WRITE(numout,*)
IF(lwp) WRITE(numout,*) 'tra_osm : OSM non-local tracer fluxes'
IF(lwp) WRITE(numout,*) '~~~~~~~ '
END IF
END IF
!
IF ( l_trdtra ) THEN ! Save ta and sa trends
ALLOCATE( ztrdt(jpi,jpj,jpk), ztrds(jpi,jpj,jpk) )
ztrdt(:,:,:) = pts(:,:,:,jp_tem,Krhs)
ztrds(:,:,:) = pts(:,:,:,jp_sal,Krhs)
END IF
!
DO_3D( 0, 0, 0, 0, 1, jpkm1 )
pts(ji,jj,jk,jp_tem,Krhs) = pts(ji,jj,jk,jp_tem,Krhs) &
& - ( ghamt(ji,jj,jk ) &
& - ghamt(ji,jj,jk+1) ) /e3t(ji,jj,jk,Kmm)
pts(ji,jj,jk,jp_sal,Krhs) = pts(ji,jj,jk,jp_sal,Krhs) &
& - ( ghams(ji,jj,jk ) &
& - ghams(ji,jj,jk+1) ) / e3t(ji,jj,jk,Kmm)
END_3D
!
IF ( l_trdtra ) THEN ! Save the non-local tracer flux trends for diagnostics
ztrdt(:,:,:) = pts(:,:,:,jp_tem,Krhs) - ztrdt(:,:,:)
ztrds(:,:,:) = pts(:,:,:,jp_sal,Krhs) - ztrds(:,:,:)
CALL trd_tra( kt, Kmm, Krhs, 'TRA', jp_tem, jptra_osm, ztrdt )
CALL trd_tra( kt, Kmm, Krhs, 'TRA', jp_sal, jptra_osm, ztrds )
DEALLOCATE( ztrdt, ztrds )
END IF
!
IF ( sn_cfctl%l_prtctl ) THEN
CALL prt_ctl( tab3d_1=pts(:,:,:,jp_tem,Krhs), clinfo1=' osm - Ta: ', mask1=tmask, &
& tab3d_2=pts(:,:,:,jp_sal,Krhs), clinfo2= ' Sa: ', mask2=tmask, clinfo3='tra' )
END IF
!
END SUBROUTINE tra_osm
SUBROUTINE trc_osm( kt ) ! Dummy routine
!!----------------------------------------------------------------------
!! *** ROUTINE trc_osm ***
!!
!! ** Purpose : compute and add to the passive tracer trend the non-local
!! passive tracer flux
!!
!!
!! ** Method : ???
!!
!!----------------------------------------------------------------------
INTEGER, INTENT(in) :: kt
!!----------------------------------------------------------------------
!
WRITE(*,*) 'trc_osm: Not written yet', kt
!
END SUBROUTINE trc_osm
SUBROUTINE dyn_osm( kt, Kmm, puu, pvv, Krhs )
!!----------------------------------------------------------------------
!! *** ROUTINE dyn_osm ***
!!
!! ** Purpose : compute and add to the velocity trend the non-local flux
!! copied/modified from tra_osm
!!
!! ** Method : ???
!!
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: kt ! Ocean time step index
INTEGER , INTENT(in ) :: Kmm, Krhs ! Ocean time level indices

sparonuz
committed
REAL(dp), DIMENSION(jpi,jpj,jpk,jpt), INTENT(inout) :: puu, pvv ! Ocean velocities and RHS of momentum equation
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
!!
INTEGER :: ji, jj, jk ! dummy loop indices
!!----------------------------------------------------------------------
!
IF ( kt == nit000 ) THEN
IF(lwp) WRITE(numout,*)
IF(lwp) WRITE(numout,*) 'dyn_osm : OSM non-local velocity'
IF(lwp) WRITE(numout,*) '~~~~~~~ '
END IF
!
! Code saving tracer trends removed, replace with trdmxl_oce
!
DO_3D( 0, 0, 0, 0, 1, jpkm1 ) ! Add non-local u and v fluxes
puu(ji,jj,jk,Krhs) = puu(ji,jj,jk,Krhs) - ( ghamu(ji,jj,jk ) - &
& ghamu(ji,jj,jk+1) ) / e3u(ji,jj,jk,Kmm)
pvv(ji,jj,jk,Krhs) = pvv(ji,jj,jk,Krhs) - ( ghamv(ji,jj,jk ) - &
& ghamv(ji,jj,jk+1) ) / e3v(ji,jj,jk,Kmm)
END_3D
!
! Code for saving tracer trends removed
!
END SUBROUTINE dyn_osm
SUBROUTINE zdf_osm_iomput_2d( cdname, posmdia2d )
!!----------------------------------------------------------------------
!! *** ROUTINE zdf_osm_iomput_2d ***
!!
!! ** Purpose : Wrapper for subroutine iom_put that accepts 2D arrays
!! with and without halo
!!
!!----------------------------------------------------------------------
CHARACTER(LEN=*), INTENT(in ) :: cdname
REAL(wp), DIMENSION(:,:), INTENT(in ) :: posmdia2d
!!----------------------------------------------------------------------
!
IF ( ln_dia_osm .AND. iom_use( cdname ) ) THEN
IF ( SIZE( posmdia2d, 1 ) == ntei-ntsi+1 .AND. SIZE( posmdia2d, 2 ) == ntej-ntsj+1 ) THEN ! Halo absent
osmdia2d(A2D(0)) = posmdia2d(:,:)
CALL iom_put( cdname, osmdia2d(A2D(nn_hls)) )
ELSE ! Halo present
CALL iom_put( cdname, posmdia2d )
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
END IF
END IF
!
END SUBROUTINE zdf_osm_iomput_2d
SUBROUTINE zdf_osm_iomput_3d( cdname, posmdia3d )
!!----------------------------------------------------------------------
!! *** ROUTINE zdf_osm_iomput_3d ***
!!
!! ** Purpose : Wrapper for subroutine iom_put that accepts 3D arrays
!! with and without halo
!!
!!----------------------------------------------------------------------
CHARACTER(LEN=*), INTENT(in ) :: cdname
REAL(wp), DIMENSION(:,:,:), INTENT(in ) :: posmdia3d
!!----------------------------------------------------------------------
!
IF ( ln_dia_osm .AND. iom_use( cdname ) ) THEN
IF ( SIZE( posmdia3d, 1 ) == ntei-ntsi+1 .AND. SIZE( posmdia3d, 2 ) == ntej-ntsj+1 ) THEN ! Halo absent
osmdia3d(A2D(0),:) = posmdia3d(:,:,:)
CALL iom_put( cdname, osmdia3d(A2D(nn_hls),:) )
ELSE ! Halo present
CALL iom_put( cdname, posmdia3d )
END IF
END IF
!
END SUBROUTINE zdf_osm_iomput_3d
!!======================================================================
END MODULE zdfosm