Newer
Older
MODULE lib_fortran
!!======================================================================
!! *** MODULE lib_fortran ***
!! Fortran utilities: includes some low levels fortran functionality
!!======================================================================
!! History : 3.2 ! 2010-05 (M. Dunphy, R. Benshila) Original code
!! 3.4 ! 2013-06 (C. Rousset) add glob_min, glob_max
!! + 3d dim. of input is fexible (jpk, jpl...)
!! 4.0 ! 2016-06 (T. Lovato) double precision global sum by default
!!----------------------------------------------------------------------
!!----------------------------------------------------------------------
!! glob_sum : generic interface for global masked summation over
!! the interior domain for 1 or 2 2D or 3D arrays
!! it works only for T points
!! SIGN : generic interface for SIGN to overwrite f95 behaviour
!! of intrinsinc sign function
!!----------------------------------------------------------------------
USE par_oce ! Ocean parameter
USE dom_oce ! ocean domain
USE in_out_manager ! I/O manager
USE lib_mpp ! distributed memory computing
USE lbclnk ! ocean lateral boundary conditions
IMPLICIT NONE
PRIVATE
PUBLIC glob_sum ! used in many places (masked with tmask_i = ssmask * (excludes halo+duplicated points (NP folding)) )
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
PUBLIC local_sum ! used in trcrad, local operation before glob_sum_delay
PUBLIC sum3x3 ! used in trcrad, do a sum over 3x3 boxes
PUBLIC DDPDD ! also used in closea module
PUBLIC glob_min, glob_max
PUBLIC glob_sum_vec
PUBLIC glob_min_vec, glob_max_vec
#if defined key_nosignedzero
PUBLIC SIGN
#endif
INTERFACE glob_sum
MODULE PROCEDURE glob_sum_1d, glob_sum_2d, glob_sum_3d
END INTERFACE
INTERFACE local_sum
MODULE PROCEDURE local_sum_2d, local_sum_3d
END INTERFACE
INTERFACE sum3x3
MODULE PROCEDURE sum3x3_2d, sum3x3_3d
END INTERFACE
INTERFACE glob_min
MODULE PROCEDURE glob_min_2d, glob_min_3d
END INTERFACE
INTERFACE glob_max
MODULE PROCEDURE glob_max_2d, glob_max_3d
END INTERFACE
INTERFACE glob_sum_vec
MODULE PROCEDURE glob_sum_vec_3d, glob_sum_vec_4d
END INTERFACE
INTERFACE glob_min_vec
MODULE PROCEDURE glob_min_vec_3d, glob_min_vec_4d
END INTERFACE
INTERFACE glob_max_vec
MODULE PROCEDURE glob_max_vec_3d, glob_max_vec_4d
END INTERFACE
#if defined key_nosignedzero
INTERFACE SIGN
MODULE PROCEDURE SIGN_SCALAR, SIGN_ARRAY_1D, SIGN_ARRAY_2D, SIGN_ARRAY_3D, &
& SIGN_ARRAY_1D_A, SIGN_ARRAY_2D_A, SIGN_ARRAY_3D_A, &
& SIGN_ARRAY_1D_B, SIGN_ARRAY_2D_B, SIGN_ARRAY_3D_B
END INTERFACE
#endif
!! * Substitutions
# include "do_loop_substitute.h90"
!!----------------------------------------------------------------------
!! NEMO/OCE 4.0 , NEMO Consortium (2018)
!! $Id: lib_fortran.F90 15376 2021-10-14 20:41:23Z clem $
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
# define GLOBSUM_CODE
# define DIM_1d
# undef DIM_3d
# undef GLOBSUM_CODE
# define GLOBMINMAX_CODE
# define DIM_2d
# define OPERATION_GLOBMIN
# include "lib_fortran_generic.h90"
# undef OPERATION_GLOBMIN
# define OPERATION_GLOBMAX
# include "lib_fortran_generic.h90"
# undef OPERATION_GLOBMAX
# define OPERATION_GLOBMIN
# include "lib_fortran_generic.h90"
# undef OPERATION_GLOBMIN
# define OPERATION_GLOBMAX
# include "lib_fortran_generic.h90"
# undef OPERATION_GLOBMAX
# undef DIM_3
# undef GLOBMINMAX_CODE
! ! FUNCTION local_sum !
FUNCTION local_sum_2d( ptab )
!!----------------------------------------------------------------------

sparonuz
committed
REAL(dp), DIMENSION(:,:), INTENT(in ) :: ptab ! array on which operation is applied
COMPLEX(dp) :: local_sum_2d
!
!!-----------------------------------------------------------------------
!
COMPLEX(dp):: ctmp

sparonuz
committed
REAL(dp) :: ztmp
INTEGER :: ji, jj ! dummy loop indices
INTEGER :: ipi, ipj ! dimensions
!!-----------------------------------------------------------------------
!
ipi = SIZE(ptab,1) ! 1st dimension
ipj = SIZE(ptab,2) ! 2nd dimension
!

sparonuz
committed
ctmp = CMPLX( 0.e0, 0.e0, dp ) ! warning ctmp is cumulated
DO jj = 1, ipj
DO ji = 1, ipi
ztmp = ptab(ji,jj) * tmask_i(ji,jj)

sparonuz
committed
CALL DDPDD( CMPLX( ztmp, 0.e0, dp ), ctmp )
END DO
END DO
!
local_sum_2d = ctmp
END FUNCTION local_sum_2d
FUNCTION local_sum_3d( ptab )
!!----------------------------------------------------------------------

sparonuz
committed
REAL(wp), DIMENSION(:,:,:), INTENT(in ) :: ptab ! array on which operation is applied
COMPLEX(dp) :: local_sum_3d
!
!!-----------------------------------------------------------------------
!
COMPLEX(dp):: ctmp

sparonuz
committed
REAL(dp) :: ztmp
INTEGER :: ji, jj, jk ! dummy loop indices
INTEGER :: ipi, ipj, ipk ! dimensions
!!-----------------------------------------------------------------------
!
ipi = SIZE(ptab,1) ! 1st dimension
ipj = SIZE(ptab,2) ! 2nd dimension
ipk = SIZE(ptab,3) ! 3rd dimension
!

sparonuz
committed
ctmp = CMPLX( 0.e0, 0.e0, dp ) ! warning ctmp is cumulated
DO jk = 1, ipk
DO jj = 1, ipj
DO ji = 1, ipi
ztmp = ptab(ji,jj,jk) * tmask_i(ji,jj)

sparonuz
committed
CALL DDPDD( CMPLX( ztmp, 0.e0, dp ), ctmp )
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
END DO
END DO
END DO
!
local_sum_3d = ctmp
END FUNCTION local_sum_3d
! ! FUNCTION sum3x3 !
SUBROUTINE sum3x3_2d( p2d )
!!-----------------------------------------------------------------------
!! *** routine sum3x3_2d ***
!!
!! ** Purpose : sum over 3x3 boxes
!!----------------------------------------------------------------------
REAL(wp), DIMENSION (:,:), INTENT(inout) :: p2d
!
INTEGER :: ji, ji2, jj, jj2 ! dummy loop indices
!!----------------------------------------------------------------------
!
IF( SIZE(p2d,1) /= jpi ) CALL ctl_stop( 'STOP', 'wrong call of sum3x3_2d, the first dimension is not equal to jpi' )
IF( SIZE(p2d,2) /= jpj ) CALL ctl_stop( 'STOP', 'wrong call of sum3x3_2d, the second dimension is not equal to jpj' )
!
! work over the whole domain (guarantees all internal cells are set when nn_hls=2)
!
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
IF( MOD(mig(ji), 3) == MOD(nn_hls, 3) .AND. & ! 1st bottom left corner always at (Nis0-1, Njs0-1)
& MOD(mjg(jj), 3) == MOD(nn_hls, 3) ) THEN ! bottom left corner of a 3x3 box
ji2 = MIN(mig(ji)+2, jpiglo) - nimpp + 1 ! right position of the box
jj2 = MIN(mjg(jj)+2, jpjglo) - njmpp + 1 ! upper position of the box
IF( ji2 <= jpi .AND. jj2 <= jpj ) THEN ! the box is fully included in the local mpi domain
p2d(ji:ji2,jj:jj2) = SUM(p2d(ji:ji2,jj:jj2))
ENDIF
ENDIF
END_2D
CALL lbc_lnk( 'lib_fortran', p2d, 'T', 1.0_wp )
! no need for 2nd exchange when nn_hls > 1
IF( nn_hls == 1 ) THEN
IF( mpiRnei(nn_hls,jpwe) > -1 ) THEN ! 1st column was changed during the previous call to lbc_lnk
IF( MOD(mig( 1), 3) == 1 ) & ! 1st box start at i=1 -> column 1 to 3 correctly computed locally
p2d( 1,:) = p2d( 2,:) ! previous lbc_lnk corrupted column 1 -> put it back using column 2
IF( MOD(mig( 1), 3) == 2 ) & ! 1st box start at i=3 -> column 1 and 2 correctly computed on west neighbourh
p2d( 2,:) = p2d( 1,:) ! previous lbc_lnk fix column 1 -> copy it to column 2
ENDIF
IF( mpiRnei(nn_hls,jpea) > -1 ) THEN
IF( MOD(mig(jpi-2), 3) == 1 ) p2d( jpi,:) = p2d(jpi-1,:)
IF( MOD(mig(jpi-2), 3) == 0 ) p2d(jpi-1,:) = p2d( jpi,:)
ENDIF
IF( mpiRnei(nn_hls,jpso) > -1 ) THEN
IF( MOD(mjg( 1), 3) == 1 ) p2d(:, 1) = p2d(:, 2)
IF( MOD(mjg( 1), 3) == 2 ) p2d(:, 2) = p2d(:, 1)
ENDIF
IF( mpiRnei(nn_hls,jpno) > -1 ) THEN
IF( MOD(mjg(jpj-2), 3) == 1 ) p2d(:, jpj) = p2d(:,jpj-1)
IF( MOD(mjg(jpj-2), 3) == 0 ) p2d(:,jpj-1) = p2d(:, jpj)
ENDIF
CALL lbc_lnk( 'lib_fortran', p2d, 'T', 1.0_wp )
ENDIF
END SUBROUTINE sum3x3_2d
SUBROUTINE sum3x3_3d( p3d )
!!-----------------------------------------------------------------------
!! *** routine sum3x3_3d ***
!!
!! ** Purpose : sum over 3x3 boxes
!!----------------------------------------------------------------------
REAL(wp), DIMENSION (:,:,:), INTENT(inout) :: p3d
!
INTEGER :: ji, ji2, jj, jj2, jn ! dummy loop indices
INTEGER :: ipn ! Third dimension size
!!----------------------------------------------------------------------
!
IF( SIZE(p3d,1) /= jpi ) CALL ctl_stop( 'STOP', 'wrong call of sum3x3_3d, the first dimension is not equal to jpi' )
IF( SIZE(p3d,2) /= jpj ) CALL ctl_stop( 'STOP', 'wrong call of sum3x3_3d, the second dimension is not equal to jpj' )
ipn = SIZE(p3d,3)
!
DO jn = 1, ipn
!
! work over the whole domain (guarantees all internal cells are set when nn_hls=2)
!
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
IF( MOD(mig(ji), 3) == MOD(nn_hls, 3) .AND. & ! 1st bottom left corner always at (Nis0-1, Njs0-1)
& MOD(mjg(jj), 3) == MOD(nn_hls, 3) ) THEN ! bottom left corner of a 3x3 box
ji2 = MIN(mig(ji)+2, jpiglo) - nimpp + 1 ! right position of the box
jj2 = MIN(mjg(jj)+2, jpjglo) - njmpp + 1 ! upper position of the box
IF( ji2 <= jpi .AND. jj2 <= jpj ) THEN ! the box is fully included in the local mpi domain
p3d(ji:ji2,jj:jj2,jn) = SUM(p3d(ji:ji2,jj:jj2,jn))
ENDIF
ENDIF
END_2D
END DO
CALL lbc_lnk( 'lib_fortran', p3d, 'T', 1.0_wp )
! no need for 2nd exchange when nn_hls > 1
IF( nn_hls == 1 ) THEN
IF( mpiRnei(nn_hls,jpwe) > -1 ) THEN ! 1st column was changed during the previous call to lbc_lnk
IF( MOD(mig( 1), 3) == 1 ) & ! 1st box start at i=1 -> column 1 to 3 correctly computed locally
p3d( 1,:,:) = p3d( 2,:,:) ! previous lbc_lnk corrupted column 1 -> put it back using column 2
IF( MOD(mig( 1), 3) == 2 ) & ! 1st box start at i=3 -> column 1 and 2 correctly computed on west neighbourh
p3d( 2,:,:) = p3d( 1,:,:) ! previous lbc_lnk fix column 1 -> copy it to column 2
ENDIF
IF( mpiRnei(nn_hls,jpea) > -1 ) THEN
IF( MOD(mig(jpi-2), 3) == 1 ) p3d( jpi,:,:) = p3d(jpi-1,:,:)
IF( MOD(mig(jpi-2), 3) == 0 ) p3d(jpi-1,:,:) = p3d( jpi,:,:)
ENDIF
IF( mpiRnei(nn_hls,jpso) > -1 ) THEN
IF( MOD(mjg( 1), 3) == 1 ) p3d(:, 1,:) = p3d(:, 2,:)
IF( MOD(mjg( 1), 3) == 2 ) p3d(:, 2,:) = p3d(:, 1,:)
ENDIF
IF( mpiRnei(nn_hls,jpno) > -1 ) THEN
IF( MOD(mjg(jpj-2), 3) == 1 ) p3d(:, jpj,:) = p3d(:,jpj-1,:)
IF( MOD(mjg(jpj-2), 3) == 0 ) p3d(:,jpj-1,:) = p3d(:, jpj,:)
ENDIF
CALL lbc_lnk( 'lib_fortran', p3d, 'T', 1.0_wp )
ENDIF
END SUBROUTINE sum3x3_3d
FUNCTION glob_sum_vec_3d( cdname, ptab ) RESULT( ptmp )
!!----------------------------------------------------------------------

sparonuz
committed
CHARACTER(len=*), INTENT(in) :: cdname ! name of the calling subroutine
REAL(dp), DIMENSION(:,:,:), INTENT(in) :: ptab ! array on which operation is applied
REAL(dp), DIMENSION(SIZE(ptab,3)) :: ptmp

sparonuz
committed
REAL(dp) :: ztmp
INTEGER :: ji , jj , jk ! dummy loop indices
INTEGER :: ipi, ipj, ipk ! dimensions
INTEGER :: iis, iie, ijs, ije ! loop start and end
!!-----------------------------------------------------------------------
!
ipi = SIZE(ptab,1) ! 1st dimension
ipj = SIZE(ptab,2) ! 2nd dimension
ipk = SIZE(ptab,3) ! 3rd dimension
!
IF( ipi == jpi .AND. ipj == jpj ) THEN ! do 2D loop only over the inner domain (-> avoid to use undefined values)
iis = Nis0 ; iie = Nie0
ijs = Njs0 ; ije = Nje0
ELSE ! I think we are never in this case...
iis = 1 ; iie = jpi
ijs = 1 ; ije = jpj
ENDIF
!
ALLOCATE( ctmp(ipk) )
!
DO jk = 1, ipk

sparonuz
committed
ctmp(jk) = CMPLX( 0.e0, 0.e0, dp ) ! warning ctmp is cumulated
DO jj = ijs, ije
DO ji = iis, iie
ztmp = ptab(ji,jj,jk) * tmask_i(ji,jj)

sparonuz
committed
CALL DDPDD( CMPLX( ztmp, 0.e0, dp ), ctmp(jk) )
END DO
END DO
END DO
CALL mpp_sum( cdname, ctmp(:) ) ! sum over the global domain
!

sparonuz
committed
ptmp = REAL( ctmp(:), dp )
!
DEALLOCATE( ctmp )
!
END FUNCTION glob_sum_vec_3d
FUNCTION glob_sum_vec_4d( cdname, ptab ) RESULT( ptmp )
!!----------------------------------------------------------------------

sparonuz
committed
CHARACTER(len=*), INTENT(in) :: cdname ! name of the calling subroutine
REAL(dp), DIMENSION(:,:,:,:), INTENT(in) :: ptab ! array on which operation is applied
REAL(dp), DIMENSION(SIZE(ptab,4)) :: ptmp

sparonuz
committed
REAL(dp) :: ztmp
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
INTEGER :: ji , jj , jk , jl ! dummy loop indices
INTEGER :: ipi, ipj, ipk, ipl ! dimensions
INTEGER :: iis, iie, ijs, ije ! loop start and end
!!-----------------------------------------------------------------------
!
ipi = SIZE(ptab,1) ! 1st dimension
ipj = SIZE(ptab,2) ! 2nd dimension
ipk = SIZE(ptab,3) ! 3rd dimension
ipl = SIZE(ptab,4) ! 4th dimension
!
IF( ipi == jpi .AND. ipj == jpj ) THEN ! do 2D loop only over the inner domain (-> avoid to use undefined values)
iis = Nis0 ; iie = Nie0
ijs = Njs0 ; ije = Nje0
ELSE ! I think we are never in this case...
iis = 1 ; iie = jpi
ijs = 1 ; ije = jpj
ENDIF
!
ALLOCATE( ctmp(ipl) )
!
DO jl = 1, ipl
ctmp(jl) = CMPLX( 0.e0, 0.e0, dp ) ! warning ctmp is cumulated
DO jk = 1, ipk
DO jj = ijs, ije
DO ji = iis, iie
ztmp = ptab(ji,jj,jk,jl) * tmask_i(ji,jj)

sparonuz
committed
CALL DDPDD( CMPLX( ztmp, 0.e0, dp ), ctmp(jl) )
END DO
END DO
END DO
END DO
CALL mpp_sum( cdname, ctmp(:) ) ! sum over the global domain
!

sparonuz
committed
ptmp = REAL( ctmp(:), dp )
!
DEALLOCATE( ctmp )
!
END FUNCTION glob_sum_vec_4d
FUNCTION glob_min_vec_3d( cdname, ptab ) RESULT( ptmp )
!!----------------------------------------------------------------------

sparonuz
committed
CHARACTER(len=*), INTENT(in) :: cdname ! name of the calling subroutine
REAL(wp), DIMENSION(:,:,:), INTENT(in) :: ptab ! array on which operation is applied
REAL(dp), DIMENSION(SIZE(ptab,3)) :: ptmp
!
INTEGER :: jk ! dummy loop indice & dimension
INTEGER :: ipk ! dimension
!!-----------------------------------------------------------------------
!
ipk = SIZE(ptab,3)
DO jk = 1, ipk
ptmp(jk) = MINVAL( ptab(:,:,jk) * tmask_i(:,:) )
ENDDO
!
CALL mpp_min( cdname, ptmp (:) )
!
END FUNCTION glob_min_vec_3d
FUNCTION glob_min_vec_4d( cdname, ptab ) RESULT( ptmp )
!!----------------------------------------------------------------------

sparonuz
committed
CHARACTER(len=*), INTENT(in) :: cdname ! name of the calling subroutine
REAL(wp), DIMENSION(:,:,:,:), INTENT(in) :: ptab ! array on which operation is applied
REAL(dp), DIMENSION(SIZE(ptab,4)) :: ptmp
!
INTEGER :: jk , jl ! dummy loop indice & dimension
INTEGER :: ipk, ipl ! dimension
!!-----------------------------------------------------------------------
!
ipk = SIZE(ptab,3)
ipl = SIZE(ptab,4)
DO jl = 1, ipl
ptmp(jl) = MINVAL( ptab(:,:,1,jl) * tmask_i(:,:) )
DO jk = 2, ipk
ptmp(jl) = MIN( ptmp(jl), MINVAL( ptab(:,:,jk,jl) * tmask_i(:,:) ) )
ENDDO
ENDDO
!
CALL mpp_min( cdname, ptmp (:) )
!
END FUNCTION glob_min_vec_4d
FUNCTION glob_max_vec_3d( cdname, ptab ) RESULT( ptmp )
!!----------------------------------------------------------------------

sparonuz
committed
CHARACTER(len=*), INTENT(in) :: cdname ! name of the calling subroutine
REAL(wp), DIMENSION(:,:,:), INTENT(in) :: ptab ! array on which operation is applied
REAL(dp), DIMENSION(SIZE(ptab,3)) :: ptmp
!
INTEGER :: jk ! dummy loop indice & dimension
INTEGER :: ipk ! dimension
!!-----------------------------------------------------------------------
!
ipk = SIZE(ptab,3)
DO jk = 1, ipk
ptmp(jk) = MAXVAL( ptab(:,:,jk) * tmask_i(:,:) )
ENDDO
!
CALL mpp_max( cdname, ptmp (:) )
!
END FUNCTION glob_max_vec_3d
FUNCTION glob_max_vec_4d( cdname, ptab ) RESULT( ptmp )
!!----------------------------------------------------------------------

sparonuz
committed
CHARACTER(len=*), INTENT(in) :: cdname ! name of the calling subroutine
REAL(wp), DIMENSION(:,:,:,:), INTENT(in) :: ptab ! array on which operation is applied
REAL(dp), DIMENSION(SIZE(ptab,4)) :: ptmp
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
!
INTEGER :: jk , jl ! dummy loop indice & dimension
INTEGER :: ipk, ipl ! dimension
!!-----------------------------------------------------------------------
!
ipk = SIZE(ptab,3)
ipl = SIZE(ptab,4)
DO jl = 1, ipl
ptmp(jl) = MAXVAL( ptab(:,:,1,jl) * tmask_i(:,:) )
DO jk = 2, ipk
ptmp(jl) = MAX( ptmp(jl), MAXVAL( ptab(:,:,jk,jl) * tmask_i(:,:) ) )
ENDDO
ENDDO
!
CALL mpp_max( cdname, ptmp (:) )
!
END FUNCTION glob_max_vec_4d
SUBROUTINE DDPDD( ydda, yddb )
!!----------------------------------------------------------------------
!! *** ROUTINE DDPDD ***
!!
!! ** Purpose : Add a scalar element to a sum
!!
!!
!! ** Method : The code uses the compensated summation with doublet

sparonuz
committed
!! (sum,error) emulated using complex numbers. ydda is the
!! scalar to add to the summ yddb
!!
!! ** Action : This does only work for MPI.
!!
!! References : Using Acurate Arithmetics to Improve Numerical
!! Reproducibility and Sability in Parallel Applications
!! Yun HE and Chris H. Q. DING, Journal of Supercomputing 18, 259-277, 2001
!!----------------------------------------------------------------------
COMPLEX(dp), INTENT(in ) :: ydda
COMPLEX(dp), INTENT(inout) :: yddb
!
REAL(dp) :: zerr, zt1, zt2 ! local work variables
!!-----------------------------------------------------------------------
!
! Compute ydda + yddb using Knuth's trick.
zt1 = REAL(ydda) + REAL(yddb)
zerr = zt1 - REAL(ydda)
zt2 = ( (REAL(yddb) - zerr) + (REAL(ydda) - (zt1 - zerr)) ) &
& + AIMAG(ydda) + AIMAG(yddb)
!
! The result is t1 + t2, after normalization.
yddb = CMPLX( zt1 + zt2, zt2 - ((zt1 + zt2) - zt1), dp )
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
!
END SUBROUTINE DDPDD
#if defined key_nosignedzero
!!----------------------------------------------------------------------
!! 'key_nosignedzero' F90 SIGN
!!----------------------------------------------------------------------
FUNCTION SIGN_SCALAR( pa, pb )
!!-----------------------------------------------------------------------
!! *** FUNCTION SIGN_SCALAR ***
!!
!! ** Purpose : overwrite f95 behaviour of intrinsinc sign function
!!-----------------------------------------------------------------------
REAL(wp) :: pa,pb ! input
REAL(wp) :: SIGN_SCALAR ! result
!!-----------------------------------------------------------------------
IF ( pb >= 0.e0) THEN ; SIGN_SCALAR = ABS(pa)
ELSE ; SIGN_SCALAR =-ABS(pa)
ENDIF
END FUNCTION SIGN_SCALAR
FUNCTION SIGN_ARRAY_1D( pa, pb )
!!-----------------------------------------------------------------------
!! *** FUNCTION SIGN_ARRAY_1D ***
!!
!! ** Purpose : overwrite f95 behaviour of intrinsinc sign function
!!-----------------------------------------------------------------------
REAL(wp) :: pa,pb(:) ! input
REAL(wp) :: SIGN_ARRAY_1D(SIZE(pb,1)) ! result
!!-----------------------------------------------------------------------
WHERE ( pb >= 0.e0 ) ; SIGN_ARRAY_1D = ABS(pa)
ELSEWHERE ; SIGN_ARRAY_1D =-ABS(pa)
END WHERE
END FUNCTION SIGN_ARRAY_1D
FUNCTION SIGN_ARRAY_2D(pa,pb)
!!-----------------------------------------------------------------------
!! *** FUNCTION SIGN_ARRAY_2D ***
!!
!! ** Purpose : overwrite f95 behaviour of intrinsinc sign function
!!-----------------------------------------------------------------------
REAL(wp) :: pa,pb(:,:) ! input
REAL(wp) :: SIGN_ARRAY_2D(SIZE(pb,1),SIZE(pb,2)) ! result
!!-----------------------------------------------------------------------
WHERE ( pb >= 0.e0 ) ; SIGN_ARRAY_2D = ABS(pa)
ELSEWHERE ; SIGN_ARRAY_2D =-ABS(pa)
END WHERE
END FUNCTION SIGN_ARRAY_2D
FUNCTION SIGN_ARRAY_3D(pa,pb)
!!-----------------------------------------------------------------------
!! *** FUNCTION SIGN_ARRAY_3D ***
!!
!! ** Purpose : overwrite f95 behaviour of intrinsinc sign function
!!-----------------------------------------------------------------------
REAL(wp) :: pa,pb(:,:,:) ! input
REAL(wp) :: SIGN_ARRAY_3D(SIZE(pb,1),SIZE(pb,2),SIZE(pb,3)) ! result
!!-----------------------------------------------------------------------
WHERE ( pb >= 0.e0 ) ; SIGN_ARRAY_3D = ABS(pa)
ELSEWHERE ; SIGN_ARRAY_3D =-ABS(pa)
END WHERE
END FUNCTION SIGN_ARRAY_3D
FUNCTION SIGN_ARRAY_1D_A(pa,pb)
!!-----------------------------------------------------------------------
!! *** FUNCTION SIGN_ARRAY_1D_A ***
!!
!! ** Purpose : overwrite f95 behaviour of intrinsinc sign function
!!-----------------------------------------------------------------------
REAL(wp) :: pa(:),pb(:) ! input
REAL(wp) :: SIGN_ARRAY_1D_A(SIZE(pb,1)) ! result
!!-----------------------------------------------------------------------
WHERE ( pb >= 0.e0 ) ; SIGN_ARRAY_1D_A = ABS(pa)
ELSEWHERE ; SIGN_ARRAY_1D_A =-ABS(pa)
END WHERE
END FUNCTION SIGN_ARRAY_1D_A
FUNCTION SIGN_ARRAY_2D_A(pa,pb)
!!-----------------------------------------------------------------------
!! *** FUNCTION SIGN_ARRAY_2D_A ***
!!
!! ** Purpose : overwrite f95 behaviour of intrinsinc sign function
!!-----------------------------------------------------------------------
REAL(wp) :: pa(:,:),pb(:,:) ! input
REAL(wp) :: SIGN_ARRAY_2D_A(SIZE(pb,1),SIZE(pb,2)) ! result
!!-----------------------------------------------------------------------
WHERE ( pb >= 0.e0 ) ; SIGN_ARRAY_2D_A = ABS(pa)
ELSEWHERE ; SIGN_ARRAY_2D_A =-ABS(pa)
END WHERE
END FUNCTION SIGN_ARRAY_2D_A
FUNCTION SIGN_ARRAY_3D_A(pa,pb)
!!-----------------------------------------------------------------------
!! *** FUNCTION SIGN_ARRAY_3D_A ***
!!
!! ** Purpose : overwrite f95 behaviour of intrinsinc sign function
!!-----------------------------------------------------------------------
REAL(wp) :: pa(:,:,:),pb(:,:,:) ! input
REAL(wp) :: SIGN_ARRAY_3D_A(SIZE(pb,1),SIZE(pb,2),SIZE(pb,3)) ! result
!!-----------------------------------------------------------------------
WHERE ( pb >= 0.e0 ) ; SIGN_ARRAY_3D_A = ABS(pa)
ELSEWHERE ; SIGN_ARRAY_3D_A =-ABS(pa)
END WHERE
END FUNCTION SIGN_ARRAY_3D_A
FUNCTION SIGN_ARRAY_1D_B(pa,pb)
!!-----------------------------------------------------------------------
!! *** FUNCTION SIGN_ARRAY_1D_B ***
!!
!! ** Purpose : overwrite f95 behaviour of intrinsinc sign function
!!-----------------------------------------------------------------------
REAL(wp) :: pa(:),pb ! input
REAL(wp) :: SIGN_ARRAY_1D_B(SIZE(pa,1)) ! result
!!-----------------------------------------------------------------------
IF( pb >= 0.e0 ) THEN ; SIGN_ARRAY_1D_B = ABS(pa)
ELSE ; SIGN_ARRAY_1D_B =-ABS(pa)
ENDIF
END FUNCTION SIGN_ARRAY_1D_B
FUNCTION SIGN_ARRAY_2D_B(pa,pb)
!!-----------------------------------------------------------------------
!! *** FUNCTION SIGN_ARRAY_2D_B ***
!!
!! ** Purpose : overwrite f95 behaviour of intrinsinc sign function
!!-----------------------------------------------------------------------
REAL(wp) :: pa(:,:),pb ! input
REAL(wp) :: SIGN_ARRAY_2D_B(SIZE(pa,1),SIZE(pa,2)) ! result
!!-----------------------------------------------------------------------
IF( pb >= 0.e0 ) THEN ; SIGN_ARRAY_2D_B = ABS(pa)
ELSE ; SIGN_ARRAY_2D_B =-ABS(pa)
ENDIF
END FUNCTION SIGN_ARRAY_2D_B
FUNCTION SIGN_ARRAY_3D_B(pa,pb)
!!-----------------------------------------------------------------------
!! *** FUNCTION SIGN_ARRAY_3D_B ***
!!
!! ** Purpose : overwrite f95 behaviour of intrinsinc sign function
!!-----------------------------------------------------------------------
REAL(wp) :: pa(:,:,:),pb ! input
REAL(wp) :: SIGN_ARRAY_3D_B(SIZE(pa,1),SIZE(pa,2),SIZE(pa,3)) ! result
!!-----------------------------------------------------------------------
IF( pb >= 0.e0 ) THEN ; SIGN_ARRAY_3D_B = ABS(pa)
ELSE ; SIGN_ARRAY_3D_B =-ABS(pa)
ENDIF
END FUNCTION SIGN_ARRAY_3D_B
#endif
!!======================================================================
END MODULE lib_fortran