Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
MODULE stpmlf
!!======================================================================
!! *** MODULE stpMLF ***
!! Time-stepping : manager of the ocean, tracer and ice time stepping
!! using Modified Leap Frog for OCE
!!======================================================================
!! History : OPA ! 1991-03 (G. Madec) Original code
!! - ! 1991-11 (G. Madec)
!! - ! 1992-06 (M. Imbard) add a first output record
!! - ! 1996-04 (G. Madec) introduction of dynspg
!! - ! 1996-04 (M.A. Foujols) introduction of passive tracer
!! 8.0 ! 1997-06 (G. Madec) new architecture of call
!! 8.2 ! 1997-06 (G. Madec, M. Imbard, G. Roullet) free surface
!! - ! 1999-02 (G. Madec, N. Grima) hpg implicit
!! - ! 2000-07 (J-M Molines, M. Imbard) Open Bondary Conditions
!! NEMO 1.0 ! 2002-06 (G. Madec) free form, suppress macro-tasking
!! - ! 2004-08 (C. Talandier) New trends organization
!! - ! 2005-01 (C. Ethe) Add the KPP closure scheme
!! - ! 2005-11 (G. Madec) Reorganisation of tra and dyn calls
!! - ! 2006-01 (L. Debreu, C. Mazauric) Agrif implementation
!! - ! 2006-07 (S. Masson) restart using iom
!! 3.2 ! 2009-02 (G. Madec, R. Benshila) reintroduicing z*-coordinate
!! - ! 2009-06 (S. Masson, G. Madec) TKE restart compatible with key_cpl
!! 3.3 ! 2010-05 (K. Mogensen, A. Weaver, M. Martin, D. Lea) Assimilation interface
!! - ! 2010-10 (C. Ethe, G. Madec) reorganisation of initialisation phase + merge TRC-TRA
!! 3.4 ! 2011-04 (G. Madec, C. Ethe) Merge of dtatem and dtasal
!! 3.6 ! 2012-07 (J. Simeon, G. Madec. C. Ethe) Online coarsening of outputs
!! 3.6 ! 2014-04 (F. Roquet, G. Madec) New equations of state
!! 3.6 ! 2014-10 (E. Clementi, P. Oddo) Add Qiao vertical mixing in case of waves
!! 3.7 ! 2014-10 (G. Madec) LDF simplication
!! - ! 2014-12 (G. Madec) remove KPP scheme
!! - ! 2015-11 (J. Chanut) free surface simplification (remove filtered free surface)
!! 4.0 ! 2017-05 (G. Madec) introduction of the vertical physics manager (zdfphy)
!! 4.1 ! 2019-08 (A. Coward, D. Storkey) rewrite in preparation for new timestepping scheme
!! 4.x ! 2020-08 (S. Techene, G. Madec) quasi eulerian coordinate time stepping
!!----------------------------------------------------------------------
#if defined key_qco || defined key_linssh
!!----------------------------------------------------------------------
!! 'key_qco' Quasi-Eulerian vertical coordinate
!! OR
!! 'key_linssh Fixed in time vertical coordinate
!!----------------------------------------------------------------------
!!
!!----------------------------------------------------------------------
!! stp_MLF : NEMO modified Leap Frog time-stepping with qco or linssh
!!----------------------------------------------------------------------
USE step_oce ! time stepping definition modules
!
USE domqco ! quasi-eulerian coordinate
USE traatf_qco ! time filtering (tra_atf_qco routine)
USE dynatf_qco ! time filtering (dyn_atf_qco routine)
IMPLICIT NONE
PRIVATE
PUBLIC stp_MLF ! called by nemogcm.F90
! !** time level indices **!
INTEGER, PUBLIC :: Nbb, Nnn, Naa, Nrhs !: used by nemo_init
!! * Substitutions
# include "do_loop_substitute.h90"
# include "domzgr_substitute.h90"
!!----------------------------------------------------------------------
!! NEMO/OCE 4.0 , NEMO Consortium (2018)
!! $Id: step.F90 12377 2020-02-12 14:39:06Z acc $
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
#if defined key_agrif
RECURSIVE SUBROUTINE stp_MLF( )
INTEGER :: kstp ! ocean time-step index

sparonuz
committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
#else
SUBROUTINE stp_MLF( kstp )
INTEGER, INTENT(in) :: kstp ! ocean time-step index
#endif
!!----------------------------------------------------------------------
!! *** ROUTINE stp_MLF ***
!!
!! ** Purpose : - Time stepping of OCE (momentum and active tracer eqs.)
!! - Time stepping of SI3 (dynamic and thermodynamic eqs.)
!! - Time stepping of TRC (passive tracer eqs.)
!!
!! ** Method : -1- Update forcings and data
!! -2- Update ocean physics
!! -3- Compute the t and s trends
!! -4- Update t and s
!! -5- Compute the momentum trends
!! -6- Update the horizontal velocity
!! -7- Compute the diagnostics variables (rd,N2, hdiv,w)
!! -8- Outputs and diagnostics
!!----------------------------------------------------------------------
INTEGER :: ji, jj, jk, jtile ! dummy loop indice
REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: zgdept
!! ---------------------------------------------------------------------
#if defined key_agrif
IF( nstop > 0 ) RETURN ! avoid to go further if an error was detected during previous time step (child grid)
kstp = nit000 + Agrif_Nb_Step()
Kbb_a = Nbb; Kmm_a = Nnn; Krhs_a = Nrhs ! agrif_oce module copies of time level indices
IF( lk_agrif_debug ) THEN
IF( Agrif_Root() .and. lwp) WRITE(*,*) '---'
IF(lwp) WRITE(*,*) 'Grid Number', Agrif_Fixed(),' time step ', kstp, 'int tstep', Agrif_NbStepint()
ENDIF
IF( kstp == nit000 + 1 ) lk_agrif_fstep = .FALSE.
# if defined key_xios
IF( Agrif_Nbstepint() == 0 ) CALL iom_swap( cxios_context )
# endif
#endif
!
IF( ln_timing ) CALL timing_start('stp_MLF')
!
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
! model timestep
!<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
!
IF( l_1st_euler ) THEN ! start or restart with Euler 1st time-step
rDt = rn_Dt
r1_Dt = 1._wp / rDt
ENDIF
!
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
! update I/O and calendar
!<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
!
IF( kstp == nit000 ) THEN ! initialize IOM context (must be done after nemo_init for AGRIF+XIOS+OASIS)
CALL iom_init( cxios_context, ld_closedef=.FALSE. ) ! for model grid (including possible AGRIF zoom)
IF( lk_diamlr ) CALL dia_mlr_iom_init ! with additional setup for multiple-linear-regression analysis
CALL iom_init_closedef
IF( ln_crs ) CALL iom_init( TRIM(cxios_context)//"_crs" ) ! for coarse grid
ENDIF
IF( kstp == nitrst .AND. lwxios ) THEN
CALL iom_swap( cw_ocerst_cxt )
CALL iom_init_closedef( cw_ocerst_cxt )
CALL iom_setkt( kstp - nit000 + 1, cw_ocerst_cxt )
#if defined key_top
CALL iom_swap( cw_toprst_cxt )
CALL iom_init_closedef( cw_toprst_cxt )
CALL iom_setkt( kstp - nit000 + 1, cw_toprst_cxt )
#endif
ENDIF
IF( kstp + nn_fsbc - 1 == nitrst .AND. lwxios ) THEN
#if defined key_si3
CALL iom_swap( cw_icerst_cxt )
CALL iom_init_closedef( cw_icerst_cxt )
CALL iom_setkt( kstp - nit000 + 1, cw_icerst_cxt )
#endif
IF( ln_abl ) THEN
CALL iom_swap( cw_ablrst_cxt )
CALL iom_init_closedef( cw_ablrst_cxt )
CALL iom_setkt( kstp - nit000 + 1, cw_ablrst_cxt )
ENDIF
ENDIF
IF( kstp /= nit000 ) CALL day( kstp ) ! Calendar (day was already called at nit000 in day_init)
CALL iom_setkt( kstp - nit000 + 1, cxios_context ) ! tell IOM we are at time step kstp
IF( ln_crs ) CALL iom_setkt( kstp - nit000 + 1, TRIM(cxios_context)//"_crs" ) ! tell IOM we are at time step kstp
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
! Update external forcing (tides, open boundaries, ice shelf interaction and surface boundary condition (including sea-ice)
!<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
IF( ln_tide ) CALL tide_update( kstp ) ! update tide potential
IF( ln_apr_dyn ) CALL sbc_apr ( kstp ) ! atmospheric pressure (NB: call before bdy_dta which needs ssh_ib)
IF( ln_bdy ) CALL bdy_dta ( kstp, Nnn ) ! update dynamic & tracer data at open boundaries
IF( ln_isf ) CALL isf_stp ( kstp, Nnn )
CALL sbc ( kstp, Nbb, Nnn ) ! Sea Boundary Condition (including sea-ice)
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
! Update stochastic parameters and random T/S fluctuations
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
IF( ln_sto_eos ) CALL sto_par( kstp ) ! Stochastic parameters
IF( ln_sto_eos ) CALL sto_pts( ts(:,:,:,:,Nnn) ) ! Random T/S fluctuations
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
! Ocean physics update
!<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
! THERMODYNAMICS
CALL eos_rab( ts(:,:,:,:,Nbb), rab_b, Nnn ) ! before local thermal/haline expension ratio at T-points
CALL eos_rab( ts(:,:,:,:,Nnn), rab_n, Nnn ) ! now local thermal/haline expension ratio at T-points
CALL bn2 ( ts(:,:,:,:,Nbb), rab_b, rn2b, Nnn ) ! before Brunt-Vaisala frequency
CALL bn2 ( ts(:,:,:,:,Nnn), rab_n, rn2, Nnn ) ! now Brunt-Vaisala frequency
! VERTICAL PHYSICS
IF( ln_tile ) CALL dom_tile_start ! [tiling] ZDF tiling loop
DO jtile = 1, nijtile
IF( ln_tile ) CALL dom_tile( ntsi, ntsj, ntei, ntej, ktile = jtile )
CALL zdf_phy( kstp, Nbb, Nnn, Nrhs ) ! vertical physics update (top/bot drag, avt, avs, avm + MLD)
END DO
IF( ln_tile ) CALL dom_tile_stop
! LATERAL PHYSICS
!
IF( ln_zps .OR. l_ldfslp ) CALL eos( ts(:,:,:,:,Nbb), rhd, gdept_0(:,:,:) ) ! before in situ density
IF( ln_zps .AND. .NOT. ln_isfcav) &
& CALL zps_hde ( kstp, jpts, ts(:,:,:,:,Nbb), gtsu, gtsv, & ! Partial steps: before horizontal gradient
& rhd, gru , grv ) ! of t, s, rd at the last ocean level
IF( ln_zps .AND. ln_isfcav) &
& CALL zps_hde_isf( kstp, jpts, ts(:,:,:,:,Nbb), gtsu, gtsv, gtui, gtvi, & ! Partial steps for top cell (ISF)
& rhd, gru , grv , grui, grvi ) ! of t, s, rd at the first ocean level
IF( l_ldfslp ) THEN ! slope of lateral mixing
IF( ln_traldf_triad ) THEN
CALL ldf_slp_triad( kstp, Nbb, Nnn ) ! before slope for triad operator
ELSE
CALL ldf_slp ( kstp, rhd, rn2b, Nbb, Nnn ) ! before slope for standard operator
ENDIF
ENDIF
! ! eddy diffusivity coeff.
IF( l_ldftra_time .OR. l_ldfeiv_time ) CALL ldf_tra( kstp, Nbb, Nnn ) ! and/or eiv coeff.
IF( l_ldfdyn_time ) CALL ldf_dyn( kstp, Nbb ) ! eddy viscosity coeff.
! BBL coefficients
!
IF( ln_trabbl ) CALL bbl( kstp, nit000, Nbb, Nnn ) ! BBL diffusion coefficients and transports
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
! Ocean dynamics : hdiv, ssh, e3, u, v, w
!<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
CALL ssh_nxt ( kstp, Nbb, Nnn, ssh, Naa ) ! after ssh (includes call to div_hor)
IF( .NOT.lk_linssh ) THEN
CALL dom_qco_r3c( ssh(:,:,Naa), r3t(:,:,Naa), r3u(:,:,Naa), r3v(:,:,Naa) ) ! "after" ssh/h_0 ratio at t,u,v pts
IF( ln_dynspg_exp ) &
& CALL dom_qco_r3c( ssh(:,:,Nnn), r3t(:,:,Nnn), r3u(:,:,Nnn), r3v(:,:,Nnn), r3f(:,:) ) ! spg_exp : needed only for "now" ssh/h_0 ratio at f point
ENDIF
CALL wzv ( kstp, Nbb, Nnn, Naa, ww ) ! Nnn cross-level velocity
IF( ln_zad_Aimp ) CALL wAimp ( kstp, Nnn ) ! Adaptive-implicit vertical advection partitioning
ALLOCATE( zgdept(jpi,jpj,jpk) )
DO jk = 1, jpk
zgdept(:,:,jk) = gdept(:,:,jk,Nnn)
END DO
CALL eos ( ts(:,:,:,:,Nnn), rhd, rhop, zgdept ) ! now in situ density for hpg computation
DEALLOCATE( zgdept )
uu(:,:,:,Nrhs) = 0._wp ! set dynamics trends to zero
vv(:,:,:,Nrhs) = 0._wp
IF( ln_dyndmp .AND. ln_c1d ) CALL dyn_dmp( kstp, Nbb, Nnn, uu(:,:,:,Nrhs), vv(:,:,:,Nrhs), Nrhs ) ! internal damping trends- momentum
IF( ln_tile ) CALL dom_tile_start ! [tiling] DYN tiling loop (1)
DO jtile = 1, nijtile
IF( ln_tile ) CALL dom_tile( ntsi, ntsj, ntei, ntej, ktile = jtile )
IF( lk_asminc .AND. ln_asmiau .AND. ln_dyninc ) &
& CALL dyn_asm_inc ( kstp, Nbb, Nnn, uu, vv, Nrhs ) ! apply dynamics assimilation increment
IF( ln_bkgwri ) CALL asm_bkg_wri( kstp, Nnn ) ! output background fields
IF( ln_bdy ) CALL bdy_dyn3d_dmp ( kstp, Nbb, uu, vv, Nrhs ) ! bdy damping trends
#if defined key_agrif
END DO
IF( ln_tile ) CALL dom_tile_stop
IF(.NOT. Agrif_Root()) &
& CALL Agrif_Sponge_dyn ! momentum sponge
IF( ln_tile ) CALL dom_tile_start ! [tiling] DYN tiling loop (1, continued)
DO jtile = 1, nijtile
IF( ln_tile ) CALL dom_tile( ntsi, ntsj, ntei, ntej, ktile = jtile )
#endif
CALL dyn_adv( kstp, Nbb, Nnn , uu, vv, Nrhs ) ! advection (VF or FF) ==> RHS
CALL dyn_vor( kstp, Nnn , uu, vv, Nrhs ) ! vorticity ==> RHS
CALL dyn_ldf( kstp, Nbb, Nnn , uu, vv, Nrhs ) ! lateral mixing
IF( ln_zdfosm ) CALL dyn_osm( kstp, Nnn , uu, vv, Nrhs ) ! OSMOSIS non-local velocity fluxes ==> RHS
CALL dyn_hpg( kstp, Nnn , uu, vv, Nrhs ) ! horizontal gradient of Hydrostatic pressure
END DO
IF( ln_tile ) CALL dom_tile_stop
CALL dyn_spg( kstp, Nbb, Nnn, Nrhs, uu, vv, ssh, uu_b, vv_b, Naa ) ! surface pressure gradient
IF( ln_tile ) CALL dom_tile_start ! [tiling] DYN tiling loop (2)
DO jtile = 1, nijtile
IF( ln_tile ) CALL dom_tile( ntsi, ntsj, ntei, ntej, ktile = jtile )
IF( ln_dynspg_ts ) THEN ! With split-explicit free surface, since now transports have been updated and ssh(:,:,Nrhs)
! as well as vertical scale factors and vertical velocity need to be updated
CALL div_hor ( kstp, Nbb, Nnn ) ! Horizontal divergence (2nd call in time-split case)
IF(.NOT.lk_linssh) CALL dom_qco_r3c( ssh(:,:,Naa), r3t(:,:,Naa), r3u(:,:,Naa), r3v(:,:,Naa), r3f(:,:) ) ! update ssh/h_0 ratio at t,u,v,f pts
ENDIF
CALL dyn_zdf ( kstp, Nbb, Nnn, Nrhs, uu, vv, Naa ) ! vertical diffusion
END DO
IF( ln_tile ) CALL dom_tile_stop
IF( ln_dynspg_ts ) THEN ! vertical scale factors and vertical velocity need to be updated
CALL wzv ( kstp, Nbb, Nnn, Naa, ww ) ! Nnn cross-level velocity
IF( ln_zad_Aimp ) CALL wAimp ( kstp, Nnn ) ! Adaptive-implicit vertical advection partitioning
ENDIF
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
! cool skin
!<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
IF ( ln_diurnal ) CALL diurnal_layers( kstp )
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
! diagnostics and outputs
!<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
IF( ln_floats ) CALL flo_stp ( kstp, Nbb, Nnn ) ! drifting Floats
IF( ln_diacfl ) CALL dia_cfl ( kstp, Nnn ) ! Courant number diagnostics
CALL dia_hth ( kstp, Nnn ) ! Thermocline depth (20 degres isotherm depth)
IF( ln_diadct ) CALL dia_dct ( kstp, Nnn ) ! Transports
CALL dia_ar5 ( kstp, Nnn ) ! ar5 diag
CALL dia_ptr ( kstp, Nnn ) ! Poleward adv/ldf TRansports diagnostics
CALL dia_wri ( kstp, Nnn ) ! ocean model: outputs
IF( ln_crs ) CALL crs_fld ( kstp, Nnn ) ! ocean model: online field coarsening & output
IF( lk_diadetide ) CALL dia_detide( kstp ) ! Weights computation for daily detiding of model diagnostics
IF( lk_diamlr ) CALL dia_mlr ! Update time used in multiple-linear-regression analysis
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
! Now ssh filtering
!<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
CALL ssh_atf ( kstp, Nbb, Nnn, Naa, ssh ) ! time filtering of "now" sea surface height
IF(.NOT.lk_linssh) CALL dom_qco_r3c( ssh(:,:,Nnn), r3t_f, r3u_f, r3v_f ) ! "now" ssh/h_0 ratio from filtrered ssh
#if defined key_top
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
! Passive Tracer Model
!<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
CALL trc_stp ( kstp, Nbb, Nnn, Nrhs, Naa ) ! time-stepping
#endif
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
! Active tracers
!<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
ts(:,:,:,:,Nrhs) = 0._wp ! set tracer trends to zero
IF( ln_tile ) CALL dom_tile_start ! [tiling] TRA tiling loop (1)
DO jtile = 1, nijtile
IF( ln_tile ) CALL dom_tile( ntsi, ntsj, ntei, ntej, ktile = jtile )
IF( lk_asminc .AND. ln_asmiau .AND. &
& ln_trainc ) CALL tra_asm_inc( kstp, Nbb, Nnn, ts, Nrhs ) ! apply tracer assimilation increment
CALL tra_sbc ( kstp, Nnn, ts, Nrhs ) ! surface boundary condition
IF( ln_traqsr ) CALL tra_qsr ( kstp, Nnn, ts, Nrhs ) ! penetrative solar radiation qsr
IF( ln_isf ) CALL tra_isf ( kstp, Nnn, ts, Nrhs ) ! ice shelf heat flux
IF( ln_trabbc ) CALL tra_bbc ( kstp, Nnn, ts, Nrhs ) ! bottom heat flux
IF( ln_trabbl ) CALL tra_bbl ( kstp, Nbb, Nnn, ts, Nrhs ) ! advective (and/or diffusive) bottom boundary layer scheme
IF( ln_tradmp ) CALL tra_dmp ( kstp, Nbb, Nnn, ts, Nrhs ) ! internal damping trends
IF( ln_bdy ) CALL bdy_tra_dmp( kstp, Nbb, ts, Nrhs ) ! bdy damping trends
END DO
IF( ln_tile ) CALL dom_tile_stop
#if defined key_agrif
IF(.NOT. Agrif_Root() ) THEN
CALL Agrif_Sponge_tra ! tracers sponge
ENDIF
#endif
! TEMP: [tiling] Separate loop over tile domains (due to tra_adv workarounds for tiling)
IF( ln_tile ) CALL dom_tile_start ! [tiling] TRA tiling loop (2)
DO jtile = 1, nijtile
IF( ln_tile ) CALL dom_tile( ntsi, ntsj, ntei, ntej, ktile = jtile )
CALL tra_adv ( kstp, Nbb, Nnn, ts, Nrhs ) ! hor. + vert. advection ==> RHS
IF( ln_zdfmfc ) CALL tra_mfc ( kstp, Nbb, ts, Nrhs ) ! Mass Flux Convection
IF( ln_zdfosm ) THEN
CALL tra_osm ( kstp, Nnn, ts, Nrhs ) ! OSMOSIS non-local tracer fluxes ==> RHS
IF( lrst_oce ) CALL osm_rst ( kstp, Nnn, 'WRITE' ) ! write OSMOSIS outputs + ww (so must do here) to restarts
ENDIF
CALL tra_ldf ( kstp, Nbb, Nnn, ts, Nrhs ) ! lateral mixing
CALL tra_zdf ( kstp, Nbb, Nnn, Nrhs, ts, Naa ) ! vertical mixing and after tracer fields
IF( ln_zdfnpc ) CALL tra_npc ( kstp, Nnn, Nrhs, ts, Naa ) ! update after fields by non-penetrative convection
END DO
IF( ln_tile ) CALL dom_tile_stop
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
! Set boundary conditions, time filter and swap time levels
!<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
!!jc1: For agrif, it would be much better to finalize tracers/momentum here (e.g. bdy conditions) and move the swap
!! (and time filtering) after Agrif update. Then restart would be done after and would contain updated fields.
!! If so:
!! (i) no need to call agrif update at initialization time
!! (ii) no need to update "before" fields
!!
!! Apart from creating new tra_swp/dyn_swp routines, this however:
!! (i) makes boundary conditions at initialization time computed from updated fields which is not the case between
!! two restarts => restartability issue. One can circumvent this, maybe, by assuming "interface separation",
!! e.g. a shift of the feedback interface inside child domain.
!! (ii) requires that all restart outputs of updated variables by agrif (e.g. passive tracers/tke/barotropic arrays) are done at the same
!! place.
!!
IF( ln_dynspg_ts ) CALL mlf_baro_corr ( Nnn, Naa, uu, vv ) ! barotrope adjustment
CALL finalize_lbc ( kstp, Nbb , Naa, uu, vv, ts ) ! boundary conditions
CALL tra_atf_qco ( kstp, Nbb, Nnn, Naa , ts ) ! time filtering of "now" tracer arrays
CALL dyn_atf_qco ( kstp, Nbb, Nnn, Naa, uu, vv ) ! time filtering of "now" velocities
IF(.NOT.lk_linssh) THEN
r3t(:,:,Nnn) = r3t_f(:,:) ! update now ssh/h_0 with time filtered values
r3u(:,:,Nnn) = r3u_f(:,:)
r3v(:,:,Nnn) = r3v_f(:,:)
ENDIF
!
! Swap time levels
Nrhs = Nbb
Nbb = Nnn
Nnn = Naa
Naa = Nrhs
!
!
IF( ln_diahsb ) CALL dia_hsb ( kstp, Nbb, Nnn ) ! - ML - global conservation diagnostics
!!gm : This does not only concern the dynamics ==>>> add a new title
!!gm2: why ouput restart before AGRIF update?
!!
!!jc: That would be better, but see comment above
!!
IF( lrst_oce ) CALL rst_write ( kstp, Nbb, Nnn ) ! write output ocean restart file
IF( ln_sto_eos ) CALL sto_rst_write( kstp ) ! write restart file for stochastic parameters
#if defined key_agrif
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
! AGRIF recursive integration
!<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
Kbb_a = Nbb; Kmm_a = Nnn; Krhs_a = Nrhs ! agrif_oce module copies of time level indices
CALL Agrif_Integrate_ChildGrids( stp_MLF ) ! allows to finish all the Child Grids before updating
#endif
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
! Control
!<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
CALL stp_ctl ( kstp, Nnn )
#if defined key_agrif
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
! AGRIF update
!<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
IF( Agrif_NbStepint() == 0 .AND. nstop == 0 ) &
& CALL Agrif_update_all( ) ! Update all components
#endif
IF( ln_diaobs .AND. nstop == 0 ) &
& CALL dia_obs( kstp, Nnn ) ! obs-minus-model (assimilation) diags (after dynamics update)
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
! File manipulation at the end of the first time step
!<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
IF( kstp == nit000 ) THEN ! 1st time step only
CALL iom_close( numror ) ! close input ocean restart file
IF( lrxios ) CALL iom_context_finalize( cr_ocerst_cxt )
IF(lwm) CALL FLUSH ( numond ) ! flush output namelist oce
IF(lwm .AND. numoni /= -1 ) CALL FLUSH ( numoni ) ! flush output namelist ice (if exist)
ENDIF
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
! Coupled mode
!<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
IF( lk_oasis .AND. nstop == 0 ) CALL sbc_cpl_snd( kstp, Nbb, Nnn ) ! coupled mode : field exchanges
!
#if defined key_xios
!>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
! Finalize contextes if end of simulation or error detected
!<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
IF( kstp == nitend .OR. nstop > 0 ) THEN
CALL iom_context_finalize( cxios_context ) ! needed for XIOS+AGRIF
IF( ln_crs ) CALL iom_context_finalize( trim(cxios_context)//"_crs" ) !
ENDIF
#endif
!
IF( l_1st_euler ) THEN ! recover Leap-frog timestep
rDt = 2._wp * rn_Dt
r1_Dt = 1._wp / rDt
l_1st_euler = .FALSE.
ENDIF
!
IF( ln_timing ) CALL timing_stop('stp_MLF')
!
END SUBROUTINE stp_MLF
SUBROUTINE mlf_baro_corr( Kmm, Kaa, puu, pvv )
!!----------------------------------------------------------------------
!! *** ROUTINE mlf_baro_corr ***
!!
!! ** Purpose : Finalize after horizontal velocity.
!!
!! ** Method : * Ensure after velocities transport matches time splitting
!! estimate (ln_dynspg_ts=T)
!!
!! ** Action : puu(Kmm),pvv(Kmm) updated now horizontal velocity (ln_bt_fw=F)
!! puu(Kaa),pvv(Kaa) after horizontal velocity
!!----------------------------------------------------------------------
USE dynspg_ts, ONLY : un_adv, vn_adv ! updated Kmm barotropic transport
!!
INTEGER , INTENT(in ) :: Kmm, Kaa ! before and after time level indices

sparonuz
committed
REAL(dp), DIMENSION(jpi,jpj,jpk,jpt), INTENT(inout) :: puu, pvv ! velocities
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
!
INTEGER :: ji,jj, jk ! dummy loop indices
REAL(wp), DIMENSION(jpi,jpj) :: zue, zve
!!----------------------------------------------------------------------
! Ensure below that barotropic velocities match time splitting estimate
! Compute actual transport and replace it with ts estimate at "after" time step
DO_2D( 0, 0, 0, 0 )
zue(ji,jj) = e3u(ji,jj,1,Kaa) * puu(ji,jj,1,Kaa) * umask(ji,jj,1)
zve(ji,jj) = e3v(ji,jj,1,Kaa) * pvv(ji,jj,1,Kaa) * vmask(ji,jj,1)
END_2D
DO jk = 2, jpkm1
DO_2D( 0, 0, 0, 0 )
zue(ji,jj) = zue(ji,jj) + e3u(ji,jj,jk,Kaa) * puu(ji,jj,jk,Kaa) * umask(ji,jj,jk)
zve(ji,jj) = zve(ji,jj) + e3v(ji,jj,jk,Kaa) * pvv(ji,jj,jk,Kaa) * vmask(ji,jj,jk)
END_2D
END DO
DO jk = 1, jpkm1
DO_2D( 0, 0, 0, 0 )
puu(ji,jj,jk,Kaa) = ( puu(ji,jj,jk,Kaa) - zue(ji,jj) * r1_hu(ji,jj,Kaa) + uu_b(ji,jj,Kaa) ) * umask(ji,jj,jk)
pvv(ji,jj,jk,Kaa) = ( pvv(ji,jj,jk,Kaa) - zve(ji,jj) * r1_hv(ji,jj,Kaa) + vv_b(ji,jj,Kaa) ) * vmask(ji,jj,jk)
END_2D
END DO
!
IF( .NOT.ln_bt_fw ) THEN
! Remove advective velocity from "now velocities"
! prior to asselin filtering
! In the forward case, this is done below after asselin filtering
! so that asselin contribution is removed at the same time
DO jk = 1, jpkm1
puu(:,:,jk,Kmm) = ( puu(:,:,jk,Kmm) - un_adv(:,:)*r1_hu(:,:,Kmm) + uu_b(:,:,Kmm) )*umask(:,:,jk)
pvv(:,:,jk,Kmm) = ( pvv(:,:,jk,Kmm) - vn_adv(:,:)*r1_hv(:,:,Kmm) + vv_b(:,:,Kmm) )*vmask(:,:,jk)
END DO
ENDIF
!
END SUBROUTINE mlf_baro_corr
SUBROUTINE finalize_lbc( kt, Kbb, Kaa, puu, pvv, pts )
!!----------------------------------------------------------------------
!! *** ROUTINE finalize_lbc ***
!!
!! ** Purpose : Apply the boundary condition on the after velocity
!!
!! ** Method : * Apply lateral boundary conditions on after velocity
!! at the local domain boundaries through lbc_lnk call,
!! at the one-way open boundaries (ln_bdy=T),
!! at the AGRIF zoom boundaries (lk_agrif=T)
!!
!! ** Action : puu(Kaa),pvv(Kaa) after horizontal velocity and tracers
!!----------------------------------------------------------------------
#if defined key_agrif
USE agrif_oce_interp
#endif
USE bdydyn ! ocean open boundary conditions (define bdy_dyn)
!!
INTEGER , INTENT(in ) :: kt ! ocean time-step index
INTEGER , INTENT(in ) :: Kbb, Kaa ! before and after time level indices

sparonuz
committed
REAL(dp), DIMENSION(jpi,jpj,jpk,jpt) , INTENT(inout) :: puu, pvv ! velocities to be time filtered
REAL(dp), DIMENSION(jpi,jpj,jpk,jpts,jpt), INTENT(inout) :: pts ! active tracers
!!----------------------------------------------------------------------
!
! Update after tracer and velocity on domain lateral boundaries
!
# if defined key_agrif
CALL Agrif_tra !* AGRIF zoom boundaries
CALL Agrif_dyn( kt )
# endif
! ! local domain boundaries (T-point, unchanged sign)

sparonuz
committed
CALL lbc_lnk( 'finalize_lbc', puu(:,:,:, Kaa), 'U', -1._dp, pvv(:,:,: ,Kaa), 'V', -1._dp &
& , pts(:,:,:,jp_tem,Kaa), 'T', 1._dp, pts(:,:,:,jp_sal,Kaa), 'T', 1._dp )
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
!
! lbc_lnk needed for zdf_sh2 when using nn_hls = 2, moved here to allow tiling in zdf_phy
IF( nn_hls == 2 .AND. l_zdfsh2 ) CALL lbc_lnk( 'stp', avm_k, 'W', 1.0_wp )
! dom_qco_r3c defines over [nn_hls, nn_hls-1, nn_hls, nn_hls-1]
IF( nn_hls == 2 .AND. .NOT. lk_linssh ) THEN
CALL lbc_lnk( 'finalize_lbc', r3u(:,:,Kaa), 'U', 1._wp, r3v(:,:,Kaa), 'V', 1._wp, &
& r3u_f(:,:), 'U', 1._wp, r3v_f(:,:), 'V', 1._wp )
ENDIF
! !* BDY open boundaries
IF( ln_bdy ) THEN
CALL bdy_tra( kt, Kbb, pts, Kaa )
IF( ln_dynspg_exp ) CALL bdy_dyn( kt, Kbb, puu, pvv, Kaa )
IF( ln_dynspg_ts ) CALL bdy_dyn( kt, Kbb, puu, pvv, Kaa, dyn3d_only=.true. )
ENDIF
!
END SUBROUTINE finalize_lbc
#else
!!----------------------------------------------------------------------
!! default option EMPTY MODULE qco not activated
!!----------------------------------------------------------------------
#endif
!!======================================================================
END MODULE stpmlf