Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
MODULE icedyn_rhg_vp
!!======================================================================
!! *** MODULE icedyn_rhg_vp ***
!! Sea-Ice dynamics : Viscous-plastic rheology with LSR technique
!!======================================================================
!!
!! History : - ! 1997-20 (J. Zhang, M. Losch) Original code, implementation into mitGCM
!! 4.0 ! 2020-09 (M. Vancoppenolle) Adaptation to SI3
!!
!!----------------------------------------------------------------------
#if defined key_si3
!!----------------------------------------------------------------------
!! 'key_si3' SI3 sea-ice model
!!----------------------------------------------------------------------
!! ice_dyn_rhg_vp : computes ice velocities from VP rheolog with LSR solvery
!!----------------------------------------------------------------------
USE phycst ! Physical constants
USE dom_oce ! Ocean domain
USE sbc_oce , ONLY : ln_ice_embd, nn_fsbc, ssh_m
USE sbc_ice , ONLY : utau_ice, vtau_ice, snwice_mass, snwice_mass_b
USE ice ! sea-ice: ice variables
USE icevar ! ice_var_sshdyn
USE icedyn_rdgrft ! sea-ice: ice strength
USE bdy_oce , ONLY : ln_bdy
USE bdyice
#if defined key_agrif
USE agrif_ice_interp
#endif
!
USE in_out_manager ! I/O manager
USE iom ! I/O manager library
USE lib_mpp ! MPP library
USE lib_fortran ! fortran utilities (glob_sum + no signed zero)
USE lbclnk ! lateral boundary conditions (or mpp links)
USE prtctl ! Print control
USE netcdf ! NetCDF library for convergence test
IMPLICIT NONE
PRIVATE
PUBLIC ice_dyn_rhg_vp ! called by icedyn_rhg.F90
INTEGER :: nn_nvp ! total number of VP iterations (n_out_vp*n_inn_vp)
LOGICAL :: lp_zebra_vp =.TRUE. ! activate zebra (solve the linear system problem every odd j-band, then one every even one)
REAL(wp) :: zrelaxu_vp=0.95 ! U-relaxation factor (MV: can probably be merged with V-factor once ok)
REAL(wp) :: zrelaxv_vp=0.95 ! V-relaxation factor
REAL(wp) :: zuerr_max_vp=0.80 ! maximum velocity error, above which a forcing error is considered and solver is stopped
REAL(wp) :: zuerr_min_vp=1.e-04 ! minimum velocity error, beyond which convergence is assumed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
!! for convergence tests
INTEGER :: ncvgid ! netcdf file id
INTEGER :: nvarid_ures, nvarid_vres, nvarid_velres
INTEGER :: nvarid_uerr_max, nvarid_verr_max, nvarid_velerr_max
INTEGER :: nvarid_umad, nvarid_vmad, nvarid_velmad
INTEGER :: nvarid_umad_outer, nvarid_vmad_outer, nvarid_velmad_outer
INTEGER :: nvarid_mke
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: fimask ! mask at F points for the ice
!! * Substitutions
# include "do_loop_substitute.h90"
!!----------------------------------------------------------------------
!! NEMO/ICE 4.0 , NEMO Consortium (2018)
!! $Id: icedyn_rhg_vp.F90 13279 2020-07-09 10:39:43Z clem $
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
SUBROUTINE ice_dyn_rhg_vp( kt, pshear_i, pdivu_i, pdelta_i )
!!-------------------------------------------------------------------
!!
!! *** SUBROUTINE ice_dyn_rhg_vp ***
!! VP-LSR-C-grid
!!
!! ** Purpose : determines sea ice drift from wind stress, ice-ocean
!! stress and sea-surface slope. Internal forces assume viscous-plastic rheology (Hibler, 1979)
!!
!! ** Method
!!
!! The resolution algorithm follows from Zhang and Hibler (1997) and Losch (2010)
!! with elements from Lemieux and Tremblay (2008) and Lemieux and Tremblay (2009)
!!
!! The components of the momentum equations are arranged following the ideas of Zhang and Hibler (1997)
!!
!! f1(u) = g1(v)
!! f2(v) = g2(u)
!!
!! The right-hand side (RHS) is explicit
!! The left-hand side (LHS) is implicit
!! Coriolis is part of explicit terms, whereas ice-ocean drag is implicit
!!
!! Two iteration levels (outer and inner loops) are used to solve the equations
!!
!! The outer loop (OL, typically 10 iterations) is there to deal with the (strong) non-linearities in the equation
!!
!! The inner loop (IL, typically 1500 iterations) is there to solve the linear problem with a line-successive-relaxation algorithm
!!
!! The velocity used in the non-linear terms uses a "modified euler time step" (not sure its the correct term),
!!! with uk = ( uk-1 + uk-2 ) / 2.
!!
!! * Spatial discretization
!!
!! Assumes a C-grid
!!
!! The points in the C-grid look like this, my darling
!!
!! (ji,jj)
!! |
!! |
!! (ji-1,jj) | (ji,jj)
!! ---------
!! | |
!! | (ji,jj) |------(ji,jj)
!! | |
!! ---------
!! (ji-1,jj-1) (ji,jj-1)
!!
!! ** Inputs : - wind forcing (stress), oceanic currents
!! ice total volume (vt_i) per unit area
!! snow total volume (vt_s) per unit area
!!
!! ** Action :
!!
!! ** Steps :
!!
!! ** Notes :
!!
!! References : Zhang and Hibler, JGR 1997; Losch et al., OM 2010., Lemieux et al., 2008, 2009, ...
!!
!!
!!-------------------------------------------------------------------
!!
INTEGER , INTENT(in ) :: kt ! time step
REAL(wp), DIMENSION(:,:), INTENT( out) :: pshear_i , pdivu_i , pdelta_i !
!!
LOGICAL :: ll_u_iterate, ll_v_iterate ! continue iteration or not
!
INTEGER :: ji, ji2, jj, jj2, jn ! dummy loop indices
INTEGER :: i_out, i_inn, i_inn_tot !
INTEGER :: ji_min, jj_min !
INTEGER :: nn_zebra_vp ! number of zebra steps
!
REAL(wp) :: zrhoco ! rho0 * rn_cio
REAL(wp) :: ecc2, z1_ecc2 ! square of yield ellipse eccenticity
REAL(wp) :: zglob_area ! global ice area for diagnostics
REAL(wp) :: zkt ! isotropic tensile strength for landfast ice
REAL(wp) :: zm1, zm2, zm3, zmassU, zmassV ! ice/snow mass and volume
REAL(wp) :: zds2, zdt, zdt2, zdiv, zdiv2 ! temporary scalars
REAL(wp) :: zp_delstar_f !
REAL(wp) :: zu_cV, zv_cU !
REAL(wp) :: zfac, zfac1, zfac2, zfac3
REAL(wp) :: zt12U, zt11U, zt22U, zt21U, zt122U, zt121U
REAL(wp) :: zt12V, zt11V, zt22V, zt21V, zt122V, zt121V
REAL(wp) :: zAA3, zw, ztau, zuerr_max, zverr_max
!
REAL(wp), DIMENSION(jpi,jpj) :: za_iU , za_iV ! ice fraction on U/V points
REAL(wp), DIMENSION(jpi,jpj) :: zmU_t, zmV_t ! Acceleration term contribution to RHS
REAL(wp), DIMENSION(jpi,jpj) :: zmassU_t, zmassV_t ! Mass per unit area divided by time step
!
REAL(wp), DIMENSION(jpi,jpj) :: zdeltat, zdelstar_t ! Delta & Delta* at T-points
REAL(wp), DIMENSION(jpi,jpj) :: ztens, zshear ! Tension, shear
REAL(wp), DIMENSION(jpi,jpj) :: zp_delstar_t ! P/delta* at T points
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
REAL(wp), DIMENSION(jpi,jpj) :: zzt, zet ! Viscosity pre-factors at T points
REAL(wp), DIMENSION(jpi,jpj) :: zef ! Viscosity pre-factor at F point
!
REAL(wp), DIMENSION(jpi,jpj) :: zmt ! Mass per unit area at t-point
REAL(wp), DIMENSION(jpi,jpj) :: zmf ! Coriolis factor (m*f) at t-point
REAL(wp), DIMENSION(jpi,jpj) :: v_oceU, u_oceV, v_iceU, u_iceV ! ocean/ice u/v component on V/U points
REAL(wp), DIMENSION(jpi,jpj) :: zu_c, zv_c ! "current" ice velocity (m/s), average of previous two OL iterates
REAL(wp), DIMENSION(jpi,jpj) :: zu_b, zv_b ! velocity at previous sub-iterate
REAL(wp), DIMENSION(jpi,jpj) :: zuerr, zverr ! absolute U/Vvelocity difference between current and previous sub-iterates
!
REAL(wp), DIMENSION(jpi,jpj) :: zds ! shear
REAL(wp), DIMENSION(jpi,jpj) :: zsshdyn ! array used for the calculation of ice surface slope:
! ! ocean surface (ssh_m) if ice is not embedded
! ! ice bottom surface if ice is embedded
REAL(wp), DIMENSION(jpi,jpj) :: zCwU, zCwV ! ice-ocean drag pre-factor (rho*c*module(u))
REAL(wp), DIMENSION(jpi,jpj) :: zspgU, zspgV ! surface pressure gradient at U/V points
REAL(wp), DIMENSION(jpi,jpj) :: zCorU, zCorV ! Coriolis stress array
REAL(wp), DIMENSION(jpi,jpj) :: ztaux_ai, ztauy_ai ! ice-atm. stress at U-V points
REAL(wp), DIMENSION(jpi,jpj) :: ztaux_oi_rhsu, ztauy_oi_rhsv ! ice-ocean stress RHS contribution at U-V points
REAL(wp), DIMENSION(jpi,jpj) :: zs1_rhsu, zs2_rhsu, zs12_rhsu ! internal stress contributions to RHSU
REAL(wp), DIMENSION(jpi,jpj) :: zs1_rhsv, zs2_rhsv, zs12_rhsv ! internal stress contributions to RHSV
REAL(wp), DIMENSION(jpi,jpj) :: zf_rhsu, zf_rhsv ! U- and V- components of internal force RHS contributions
REAL(wp), DIMENSION(jpi,jpj) :: zrhsu, zrhsv ! U and V RHS
REAL(wp), DIMENSION(jpi,jpj) :: zAU, zBU, zCU, zDU, zEU ! Linear system coefficients, U equation
REAL(wp), DIMENSION(jpi,jpj) :: zAV, zBV, zCV, zDV, zEV ! Linear system coefficients, V equation
REAL(wp), DIMENSION(jpi,jpj) :: zFU, zFU_prime, zBU_prime ! Rearranged linear system coefficients, U equation
REAL(wp), DIMENSION(jpi,jpj) :: zFV, zFV_prime, zBV_prime ! Rearranged linear system coefficients, V equation
!!! REAL(wp), DIMENSION(jpi,jpj) :: ztaux_bi, ztauy_bi ! ice-OceanBottom stress at U-V points (landfast)
!!! REAL(wp), DIMENSION(jpi,jpj) :: ztaux_base, ztauy_base ! ice-bottom stress at U-V points (landfast)
!
REAL(wp), DIMENSION(jpi,jpj) :: zmsk00
REAL(wp), DIMENSION(jpi,jpj) :: zmsk01x, zmsk01y ! mask for lots of ice (1), little ice (0)
REAL(wp), DIMENSION(jpi,jpj) :: zmsk00x, zmsk00y ! mask for ice presence (1), no ice (0)
!
REAL(wp), PARAMETER :: zepsi = 1.0e-20_wp ! tolerance parameter
REAL(wp), PARAMETER :: zmmin = 1._wp ! ice mass (kg/m2) below which ice velocity becomes very small
REAL(wp), PARAMETER :: zamin = 0.001_wp ! ice concentration below which ice velocity becomes very small
!! --- diags
REAL(wp) :: zsig1, zsig2, zsig12, zdelta, z1_strength, zfac_x, zfac_y
REAL(wp), DIMENSION(jpi,jpj) :: zs1, zs2, zs12, zs12f ! stress tensor components
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zsig_I, zsig_II, zsig1_p, zsig2_p
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: ztaux_oi, ztauy_oi
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zdiag_xmtrp_ice, zdiag_ymtrp_ice ! X/Y-component of ice mass transport (kg/s, SIMIP)
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zdiag_xmtrp_snw, zdiag_ymtrp_snw ! X/Y-component of snow mass transport (kg/s, SIMIP)
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zdiag_xatrp, zdiag_yatrp ! X/Y-component of area transport (m2/s, SIMIP)
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zvel_res ! Residual of the linear system at last iteration
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zvel_diff ! Absolute velocity difference @last outer iteration
!!----------------------------------------------------------------------------------------------------------------------
IF( kt == nit000 .AND. lwp ) WRITE(numout,*) '-- ice_dyn_rhg_vp: VP sea-ice rheology (LSR solver)'
IF( lwp ) WRITE(numout,*) '-- ice_dyn_rhg_vp: VP sea-ice rheology (LSR solver)'
!------------------------------------------------------------------------------!
!
! --- Initialization
!
!------------------------------------------------------------------------------!
! for diagnostics and convergence tests
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
zmsk00(ji,jj) = MAX( 0._wp , SIGN( 1._wp , at_i(ji,jj) - epsi06 ) ) ! 1 if ice , 0 if no ice
END_2D
IF ( lp_zebra_vp ) THEN; nn_zebra_vp = 2
ELSE; nn_zebra_vp = 1; ENDIF
nn_nvp = nn_vp_nout * nn_vp_ninn ! maximum number of iterations
IF( lwp ) WRITE(numout,*) ' lp_zebra_vp : ', lp_zebra_vp
IF( lwp ) WRITE(numout,*) ' nn_zebra_vp : ', nn_zebra_vp
IF( lwp ) WRITE(numout,*) ' nn_nvp : ', nn_nvp
zrhoco = rho0 * rn_cio
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
! ecc2: square of yield ellipse eccentricity
ecc2 = rn_ecc * rn_ecc
z1_ecc2 = 1._wp / ecc2
! Initialise convergence checks
IF( nn_rhg_chkcvg /= 0 ) THEN
! ice area for global mean kinetic energy (m2)
zglob_area = glob_sum( 'ice_rhg_vp', at_i(:,:) * e1e2t(:,:) * tmask(:,:,1) )
ENDIF
! Landfast param from Lemieux(2016): add isotropic tensile strength (following Konig Beatty and Holland, 2010)
! MV: Not working yet...
IF( ln_landfast_L16 ) THEN ; zkt = rn_lf_tensile
ELSE ; zkt = 0._wp
ENDIF
zs1_rhsu(:,:) = 0._wp; zs2_rhsu(:,:) = 0._wp; zs1_rhsv(:,:) = 0._wp; zs2_rhsv(:,:) = 0._wp
zrhsu (:,:) = 0._wp; zrhsv (:,:) = 0._wp; zf_rhsu(:,:) = 0._wp; zf_rhsv(:,:) = 0._wp
zAU(:,:) = 0._wp; zBU(:,:) = 0._wp; zCU(:,:) = 0._wp; zDU(:,:) = 0._wp; zEU(:,:) = 0._wp
zAV(:,:) = 0._wp; zBV(:,:) = 0._wp; zCV(:,:) = 0._wp; zDV(:,:) = 0._wp; zEV(:,:) = 0._wp
!------------------------------------------------------------------------------!
!
! --- Time-independent quantities
!
!------------------------------------------------------------------------------!
CALL ice_strength ! strength at T points
!---------------------------
! -- F-mask (code from EVP)
!---------------------------
IF( kt == nit000 ) THEN
! MartinV:
! In EVP routine, fimask is applied on shear at F-points, in order to enforce the lateral boundary condition (no-slip, ..., free-slip)
! I am not sure the same recipe applies here
! - ocean/land mask
ALLOCATE( fimask(jpi,jpj) )
IF( rn_ishlat == 0._wp ) THEN
DO_2D( 0, 0, 0, 0 )
fimask(ji,jj) = tmask(ji,jj,1) * tmask(ji+1,jj,1) * tmask(ji,jj+1,1) * tmask(ji+1,jj+1,1)
END_2D
ELSE
DO_2D( 0, 0, 0, 0 )
fimask(ji,jj) = tmask(ji,jj,1) * tmask(ji+1,jj,1) * tmask(ji,jj+1,1) * tmask(ji+1,jj+1,1)
! Lateral boundary conditions on velocity (modify fimask)
IF( fimask(ji,jj) == 0._wp ) THEN
fimask(ji,jj) = rn_ishlat * MIN( 1._wp , MAX( umask(ji,jj,1), umask(ji,jj+1,1), &
& vmask(ji,jj,1), vmask(ji+1,jj,1) ) )
ENDIF
END_2D
CALL lbc_lnk( 'icedyn_rhg_vp', fimask, 'F', 1._wp )
ENDIF
!----------------------------------------------------------------------------------------------------------
! -- Time-independent pre-factors for acceleration, ocean drag, coriolis, atmospheric drag, surface tilt
!----------------------------------------------------------------------------------------------------------
! Compute all terms & factors independent of velocities, or only depending on velocities at previous time step
! sea surface height
! embedded sea ice: compute representative ice top surface
! non-embedded sea ice: use ocean surface for slope calculation
zsshdyn(:,:) = ice_var_sshdyn( ssh_m, snwice_mass, snwice_mass_b)
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
zmt(ji,jj) = rhos * vt_s(ji,jj) + rhoi * vt_i(ji,jj) ! Snow and ice mass at T-point
zmf(ji,jj) = zmt(ji,jj) * ff_t(ji,jj) ! Coriolis factor at T points (m*f)
END_2D
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) ! 2->jpj-1; 2->jpi-1
! Ice fraction at U-V points
za_iU(ji,jj) = 0.5_wp * ( at_i(ji,jj) * e1e2t(ji,jj) + at_i(ji+1,jj) * e1e2t(ji+1,jj) ) * r1_e1e2u(ji,jj) * umask(ji,jj,1)
za_iV(ji,jj) = 0.5_wp * ( at_i(ji,jj) * e1e2t(ji,jj) + at_i(ji,jj+1) * e1e2t(ji,jj+1) ) * r1_e1e2v(ji,jj) * vmask(ji,jj,1)
! Snow and ice mass at U-V points
zm1 = zmt(ji,jj)
zm2 = zmt(ji+1,jj)
zmassU = 0.5_wp * ( zm1 * e1e2t(ji,jj) + zm2 * e1e2t(ji+1,jj) ) * r1_e1e2u(ji,jj) * umask(ji,jj,1)
zmassV = 0.5_wp * ( zm1 * e1e2t(ji,jj) + zm3 * e1e2t(ji,jj+1) ) * r1_e1e2v(ji,jj) * vmask(ji,jj,1)
! Mass per unit area divided by time step
zmassU_t(ji,jj) = zmassU * r1_Dt_ice
zmassV_t(ji,jj) = zmassV * r1_Dt_ice
! Acceleration term contribution to RHS (depends on velocity at previous time step)
zmU_t(ji,jj) = zmassU_t(ji,jj) * u_ice(ji,jj)
zmV_t(ji,jj) = zmassV_t(ji,jj) * v_ice(ji,jj)
v_oceU(ji,jj) = 0.25_wp * ( v_oce(ji,jj) + v_oce(ji,jj-1) + v_oce(ji+1,jj) + v_oce(ji+1,jj-1) ) * umask(ji,jj,1)
u_oceV(ji,jj) = 0.25_wp * ( u_oce(ji,jj) + u_oce(ji-1,jj) + u_oce(ji,jj+1) + u_oce(ji-1,jj+1) ) * vmask(ji,jj,1)
! Wind stress
ztaux_ai(ji,jj) = za_iU(ji,jj) * utau_ice(ji,jj)
ztauy_ai(ji,jj) = za_iV(ji,jj) * vtau_ice(ji,jj)
! Force due to sea surface tilt(- m*g*GRAD(ssh))
zspgU(ji,jj) = - zmassU * grav * ( zsshdyn(ji+1,jj) - zsshdyn(ji,jj) ) * r1_e1u(ji,jj)
zspgV(ji,jj) = - zmassV * grav * ( zsshdyn(ji,jj+1) - zsshdyn(ji,jj) ) * r1_e2v(ji,jj)
! Mask for ice presence (1) or absence (0)
zmsk00x(ji,jj) = 1._wp - MAX( 0._wp, SIGN( 1._wp, -zmassU ) ) ! 0 if no ice
zmsk00y(ji,jj) = 1._wp - MAX( 0._wp, SIGN( 1._wp, -zmassV ) ) ! 0 if no ice
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
! Mask for lots of ice (1) or little ice (0)
IF ( zmassU <= zmmin .AND. za_iU(ji,jj) <= zamin ) THEN ; zmsk01x(ji,jj) = 0._wp
ELSE ; zmsk01x(ji,jj) = 1._wp ; ENDIF
IF ( zmassV <= zmmin .AND. za_iV(ji,jj) <= zamin ) THEN ; zmsk01y(ji,jj) = 0._wp
ELSE ; zmsk01y(ji,jj) = 1._wp ; ENDIF
END_2D
!------------------------------------------------------------------------------!
!
! --- Start outer loop
!
!------------------------------------------------------------------------------!
zu_c(:,:) = u_ice(:,:)
zv_c(:,:) = v_ice(:,:)
i_inn_tot = 0
DO i_out = 1, nn_vp_nout
! Velocities used in the non linear terms are the average of the past two iterates
! u_it = 0.5 * ( u_{it-1} + u_{it-2} )
! Also used in Hibler and Ackley (1983); Zhang and Hibler (1997); Lemieux and Tremblay (2009)
zu_c(:,:) = 0.5_wp * ( u_ice(:,:) + zu_c(:,:) )
zv_c(:,:) = 0.5_wp * ( v_ice(:,:) + zv_c(:,:) )
!------------------------------------------------------------------------------!
!
! --- Right-hand side (RHS) of the linear problem
!
!------------------------------------------------------------------------------!
! In the outer loop, one needs to update all RHS terms
! with explicit velocity dependencies (viscosities, coriolis, ocean stress)
! as a function of "current" velocities (uc, vc)
!------------------------------------------
! -- Strain rates, viscosities and P/Delta
!------------------------------------------
! --- divergence, tension & shear (Appendix B of Hunke & Dukowicz, 2002) --- !
DO_2D( nn_hls, nn_hls-1, nn_hls, nn_hls-1 ) ! 1->jpi-1
! loops start at 1 since there is no boundary condition (lbc_lnk) at i=1 and j=1 for F points
! shear at F points
zds(ji,jj) = ( ( zu_c(ji,jj+1) * r1_e1u(ji,jj+1) - zu_c(ji,jj) * r1_e1u(ji,jj) ) * e1f(ji,jj) * e1f(ji,jj) &
& + ( zv_c(ji+1,jj) * r1_e2v(ji+1,jj) - zv_c(ji,jj) * r1_e2v(ji,jj) ) * e2f(ji,jj) * e2f(ji,jj) &
& ) * r1_e1e2f(ji,jj) * fimask(ji,jj)
END_2D
CALL lbc_lnk( 'icedyn_rhg_vp', zds, 'F', 1. ) ! necessary, zds2 uses jpi/jpj values for zds
DO_2D( nn_hls-1, nn_hls, nn_hls-1, nn_hls ) ! 2 -> jpj; 2,jpi !!! CHECK !!!
! loop to jpi,jpj to avoid making a communication for zs1,zs2,zs12
! shear**2 at T points (doc eq. A16)
zds2 = ( zds(ji,jj ) * zds(ji,jj ) * e1e2f(ji,jj ) + zds(ji-1,jj ) * zds(ji-1,jj ) * e1e2f(ji-1,jj ) &
& + zds(ji,jj-1) * zds(ji,jj-1) * e1e2f(ji,jj-1) + zds(ji-1,jj-1) * zds(ji-1,jj-1) * e1e2f(ji-1,jj-1) &
& ) * 0.25_wp * r1_e1e2t(ji,jj)
! divergence at T points
zdiv = ( e2u(ji,jj) * zu_c(ji,jj) - e2u(ji-1,jj) * zu_c(ji-1,jj) &
& + e1v(ji,jj) * zv_c(ji,jj) - e1v(ji,jj-1) * zv_c(ji,jj-1) &
& ) * r1_e1e2t(ji,jj)
zdiv2 = zdiv * zdiv
! tension at T points
zdt = ( ( zu_c(ji,jj) * r1_e2u(ji,jj) - zu_c(ji-1,jj) * r1_e2u(ji-1,jj) ) * e2t(ji,jj) * e2t(ji,jj) &
& - ( zv_c(ji,jj) * r1_e1v(ji,jj) - zv_c(ji,jj-1) * r1_e1v(ji,jj-1) ) * e1t(ji,jj) * e1t(ji,jj) &
& ) * r1_e1e2t(ji,jj)
zdt2 = zdt * zdt
! delta at T points
zdeltat(ji,jj) = SQRT( zdiv2 + ( zdt2 + zds2 ) * z1_ecc2 )
! delta* at T points (following Lemieux and Dupont, GMD 2020)
zdelstar_t(ji,jj) = zdeltat(ji,jj) + rn_creepl ! OPT zdelstar_t can be totally removed and put into next line directly. Could change results
! P/delta* at T-points
zp_delstar_t(ji,jj) = strength(ji,jj) / zdelstar_t(ji,jj)
zzt(ji,jj) = zp_delstar_t(ji,jj) * r1_e1e2t(ji,jj)
zet(ji,jj) = zzt(ji,jj) * z1_ecc2
CALL lbc_lnk( 'icedyn_rhg_vp', zp_delstar_t , 'T', 1. ) ! necessary, used for ji = 1 and jj = 1
DO_2D( nn_hls, nn_hls-1, nn_hls, nn_hls-1 )! 1-> jpj-1; 1->jpi-1
! P/delta* at F points
zp_delstar_f = 0.25_wp * ( zp_delstar_t(ji,jj) + zp_delstar_t(ji+1,jj) + zp_delstar_t(ji,jj+1) + zp_delstar_t(ji+1,jj+1) )
! Temporary zef factor at F-point
zef(ji,jj) = zp_delstar_f * r1_e1e2f(ji,jj) * z1_ecc2 * fimask(ji,jj) * 0.5_wp
END_2D
!---------------------------------------------------
! -- Ocean-ice drag and Coriolis RHS contributions
!---------------------------------------------------
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) ! 2->jpj-1; 2->jpi-1
!--- ice u-velocity @V points, v-velocity @U points (for non-linear drag computation)
zu_cV = 0.25_wp * ( zu_c(ji,jj) + zu_c(ji-1,jj) + zu_c(ji,jj+1) + zu_c(ji-1,jj+1) ) * vmask(ji,jj,1)
zv_cU = 0.25_wp * ( zv_c(ji,jj) + zv_c(ji,jj-1) + zv_c(ji+1,jj) + zv_c(ji+1,jj-1) ) * umask(ji,jj,1)
!--- non-linear drag coefficients (need to be updated at each outer loop, see Lemieux and Tremblay JGR09, p.3, beginning of Section 3)
zCwU(ji,jj) = za_iU(ji,jj) * zrhoco * SQRT( ( zu_c (ji,jj) - u_oce (ji,jj) ) * ( zu_c (ji,jj) - u_oce (ji,jj) ) &
& + ( zv_cU - v_oceU(ji,jj) ) * ( zv_cU - v_oceU(ji,jj) ) )
zCwV(ji,jj) = za_iV(ji,jj) * zrhoco * SQRT( ( zv_c (ji,jj) - v_oce (ji,jj) ) * ( zv_c (ji,jj) - v_oce (ji,jj) ) &
& + ( zu_cV - u_oceV(ji,jj) ) * ( zu_cV - u_oceV(ji,jj) ) )
!--- Ocean-ice drag contributions to RHS
ztaux_oi_rhsu(ji,jj) = zCwU(ji,jj) * u_oce(ji,jj)
ztauy_oi_rhsv(ji,jj) = zCwV(ji,jj) * v_oce(ji,jj)
!--- U-component of Coriolis Force (energy conserving formulation)
zCorU(ji,jj) = 0.25_wp * r1_e1u(ji,jj) * &
& ( zmf(ji ,jj) * ( e1v(ji ,jj) * zv_c(ji ,jj) + e1v(ji ,jj-1) * zv_c(ji ,jj-1) ) &
& + zmf(ji+1,jj) * ( e1v(ji+1,jj) * zv_c(ji+1,jj) + e1v(ji+1,jj-1) * zv_c(ji+1,jj-1) ) )
!--- V-component of Coriolis Force (energy conserving formulation)
zCorV(ji,jj) = - 0.25_wp * r1_e2v(ji,jj) * &
& ( zmf(ji,jj ) * ( e2u(ji,jj ) * zu_c(ji,jj ) + e2u(ji-1,jj ) * zu_c(ji-1,jj ) ) &
& + zmf(ji,jj+1) * ( e2u(ji,jj+1) * zu_c(ji,jj+1) + e2u(ji-1,jj+1) * zu_c(ji-1,jj+1) ) )
END_2D
!-------------------------------------
! -- Internal stress RHS contribution
!-------------------------------------
! --- Stress contributions at T-points
DO_2D( nn_hls-1, nn_hls, nn_hls-1, nn_hls ) ! 2 -> jpj; 2,jpi !!! CHECK !!!
! loop to jpi,jpj to avoid making a communication for zs1 & zs2
! sig1 contribution to RHS of U-equation at T-points
zs1_rhsu(ji,jj) = zzt(ji,jj) * ( e1v(ji,jj) * zv_c(ji,jj) - e1v(ji,jj-1) * zv_c(ji,jj-1) ) &
& - zp_delstar_t(ji,jj) * zdeltat(ji,jj)
! sig2 contribution to RHS of U-equation at T-points
zs2_rhsu(ji,jj) = - zet(ji,jj) * ( r1_e1v(ji,jj) * zv_c(ji,jj) - r1_e1v(ji,jj-1) * zv_c(ji,jj-1) ) * e1t(ji,jj) * e1t(ji,jj)
! sig1 contribution to RHS of V-equation at T-points
zs1_rhsv(ji,jj) = zzt(ji,jj) * ( e2u(ji,jj) * zu_c(ji,jj) - e2u(ji-1,jj) * zu_c(ji-1,jj) ) &
& - zp_delstar_t(ji,jj) * zdeltat(ji,jj)
! sig2 contribution to RHS of V-equation at T-points
zs2_rhsv(ji,jj) = zet(ji,jj) * ( r1_e2u(ji,jj) * zu_c(ji,jj) - r1_e2u(ji-1,jj) * zu_c(ji-1,jj) ) * e2t(ji,jj) * e2t(ji,jj)
END_2D
! --- Stress contributions at F-points
! MV NOTE: I applied fimask on zds, by mimetism on EVP, but without deep understanding of what I was doing
! My guess is that this is the way to enforce boundary conditions on strain rate tensor
DO_2D( nn_hls, nn_hls-1, nn_hls, nn_hls-1 ) ! 1->jpi-1
! sig12 contribution to RHS of U equation at F-points
zs12_rhsu(ji,jj) = zef(ji,jj) * ( r1_e2v(ji+1,jj) * zv_c(ji+1,jj) + r1_e2v(ji,jj) * zv_c(ji,jj) ) * e2f(ji,jj) * e2f(ji,jj) * fimask(ji,jj)
! sig12 contribution to RHS of V equation at F-points
zs12_rhsv(ji,jj) = zef(ji,jj) * ( r1_e1u(ji,jj+1) * zu_c(ji,jj+1) + r1_e1u(ji,jj) * zu_c(ji,jj) ) * e1f(ji,jj) * e1f(ji,jj) * fimask(ji,jj)
END_2D
! --- Internal force contributions to RHS, taken as divergence of stresses (Appendix C of Hunke and Dukowicz, 2002)
! OPT: merge with next loop and use intermediate scalars for zf_rhsu
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) ! 2->jpj-1; 2->jpi-1
! --- U component of internal force contribution to RHS at U points
zf_rhsu(ji,jj) = 0.5_wp * r1_e1e2u(ji,jj) * &
( e2u(ji,jj) * ( zs1_rhsu(ji+1,jj) - zs1_rhsu(ji,jj) ) &
& + r1_e2u(ji,jj) * ( e2t(ji+1,jj) * e2t(ji+1,jj) * zs2_rhsu(ji+1,jj) - e2t(ji,jj) * e2t(ji,jj) * zs2_rhsu(ji,jj) ) &
& + 2._wp * r1_e1u(ji,jj) * ( e1f(ji,jj) * e1f(ji,jj) * zs12_rhsu(ji,jj) - e1f(ji,jj-1) * e1f(ji,jj-1) * zs12_rhsu(ji,jj-1) ) )
! --- V component of internal force contribution to RHS at V points
zf_rhsv(ji,jj) = 0.5_wp * r1_e1e2v(ji,jj) * &
& ( e1v(ji,jj) * ( zs1_rhsv(ji,jj+1) - zs1_rhsv(ji,jj) ) &
& - r1_e1v(ji,jj) * ( e1t(ji,jj+1) * e1t(ji,jj+1) * zs2_rhsv(ji,jj+1) - e1t(ji,jj) * e1t(ji,jj) * zs2_rhsv(ji,jj) ) &
& + 2._wp * r1_e2v(ji,jj) * ( e2f(ji,jj) * e2f(ji,jj) * zs12_rhsv(ji,jj) - e2f(ji-1,jj) * e2f(ji-1,jj) * zs12_rhsv(ji-1,jj) ) )
END_2D
!---------------------------
! -- Sum RHS contributions
!---------------------------
! OPT: could use intermediate scalars to reduce memory access
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) ! 2->jpj-1; 2->jpi-1
zrhsu(ji,jj) = zmU_t(ji,jj) + ztaux_ai(ji,jj) + ztaux_oi_rhsu(ji,jj) + zspgU(ji,jj) + zCorU(ji,jj) + zf_rhsu(ji,jj)
zrhsv(ji,jj) = zmV_t(ji,jj) + ztauy_ai(ji,jj) + ztauy_oi_rhsv(ji,jj) + zspgV(ji,jj) + zCorV(ji,jj) + zf_rhsv(ji,jj)
END_2D
!---------------------------------------------------------------------------------------!
!
! --- Linear system matrix
!
!---------------------------------------------------------------------------------------!
! Linear system matrix contains all implicit contributions
! 1) internal forces, 2) acceleration, 3) ice-ocean drag
! The linear system equation is written as follows
! AU * u_{i-1,j} + BU * u_{i,j} + CU * u_{i+1,j}
! = DU * u_{i,j-1} + EU * u_{i,j+1} + RHS (! my convention, not the same as ZH97 )
! MV Note 1: martin losch applies boundary condition to BU in mitGCM - check whether it is necessary here ?
! MV Note 2: "T" factor calculations can be optimized by putting things out of the loop
! only zzt and zet are iteration-dependent, other only depend on scale factors
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) ! 2->jpj-1; 2->jpi-1
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
!-------------------------------------
! -- Internal forces LHS contribution
!-------------------------------------
!
! --- U-component
!
! "T" factors (intermediate results)
!
zfac = 0.5_wp * r1_e1e2u(ji,jj)
zfac1 = zfac * e2u(ji,jj)
zfac2 = zfac * r1_e2u(ji,jj)
zfac3 = 2._wp * zfac * r1_e1u(ji,jj)
zt11U = zfac1 * zzt(ji,jj)
zt12U = zfac1 * zzt(ji+1,jj)
zt21U = zfac2 * zet(ji,jj) * e2t(ji,jj) * e2t(ji,jj) * e2t(ji,jj) * e2t(ji,jj)
zt22U = zfac2 * zet(ji+1,jj) * e2t(ji+1,jj) * e2t(ji+1,jj) * e2t(ji+1,jj) * e2t(ji+1,jj)
zt121U = zfac3 * zef(ji,jj-1) * e1f(ji,jj-1) * e1f(ji,jj-1) * e1f(ji,jj-1) * e1f(ji,jj-1)
zt122U = zfac3 * zef(ji,jj) * e1f(ji,jj) * e1f(ji,jj) * e1f(ji,jj) * e1f(ji,jj)
!
! Linear system coefficients
!
zAU(ji,jj) = - zt11U * e2u(ji-1,jj) - zt21U * r1_e2u(ji-1,jj)
zBU(ji,jj) = ( zt11U + zt12U ) * e2u(ji,jj) + ( zt21U + zt22U ) * r1_e2u(ji,jj) + ( zt121U + zt122U ) * r1_e1u(ji,jj)
zCU(ji,jj) = - zt12U * e2u(ji+1,jj) - zt22U * r1_e2u(ji+1,jj)
zDU(ji,jj) = zt121U * r1_e1u(ji,jj-1)
zEU(ji,jj) = zt122U * r1_e1u(ji,jj+1)
!
! --- V-component
!
! "T" factors (intermediate results)
!
zfac = 0.5_wp * r1_e1e2v(ji,jj)
zfac1 = zfac * e1v(ji,jj)
zfac2 = zfac * r1_e1v(ji,jj)
zfac3 = 2._wp * zfac * r1_e2v(ji,jj)
zt11V = zfac1 * zzt(ji,jj)
zt12V = zfac1 * zzt(ji,jj+1)
zt21V = zfac2 * zet(ji,jj) * e1t(ji,jj) * e1t(ji,jj) * e1t(ji,jj) * e1t(ji,jj)
zt22V = zfac2 * zet(ji,jj+1) * e1t(ji,jj+1) * e1t(ji,jj+1) * e1t(ji,jj+1) * e1t(ji,jj+1)
zt121V = zfac3 * zef(ji-1,jj) * e2f(ji-1,jj) * e2f(ji-1,jj) * e2f(ji-1,jj) * e2f(ji-1,jj)
zt122V = zfac3 * zef(ji,jj) * e2f(ji,jj) * e2f(ji,jj) * e2f(ji,jj) * e2f(ji,jj)
!
! Linear system coefficients
!
zAV(ji,jj) = - zt11V * e1v(ji,jj-1) - zt21V * r1_e1v(ji,jj-1)
zBV(ji,jj) = ( zt11V + zt12V ) * e1v(ji,jj) + ( zt21V + zt22V ) * r1_e1v(ji,jj) + ( zt122V + zt121V ) * r1_e2v(ji,jj)
zCV(ji,jj) = - zt12V * e1v(ji,jj+1) - zt22V * r1_e1v(ji,jj+1)
zDV(ji,jj) = zt121V * r1_e2v(ji-1,jj)
zEV(ji,jj) = zt122V * r1_e2v(ji+1,jj)
!-----------------------------------------------------
! -- Ocean-ice drag and acceleration LHS contribution
!-----------------------------------------------------
zBU(ji,jj) = zBU(ji,jj) + zCwU(ji,jj) + zmassU_t(ji,jj)
zBV(ji,jj) = zBV(ji,jj) + zCwV(ji,jj) + zmassV_t(ji,jj)
END_2D
!------------------------------------------------------------------------------!
!
! --- Inner loop: solve linear system, check convergence
!
!------------------------------------------------------------------------------!
! Inner loop solves the linear problem .. requires 1500 iterations
ll_u_iterate = .TRUE.
ll_v_iterate = .TRUE.
DO i_inn = 1, nn_vp_ninn ! inner loop iterations
!--- mitgcm computes initial value of residual here...
i_inn_tot = i_inn_tot + 1
! l_full_nf_update = i_inn_tot == nn_nvp ! false: disable full North fold update (performances) for iter = 1 to nn_nevp-1
zu_b(:,:) = u_ice(:,:) ! velocity at previous inner-iterate
zv_b(:,:) = v_ice(:,:)
IF ( ll_u_iterate .OR. ll_v_iterate ) THEN
! ---------------------------- !
IF ( ll_u_iterate ) THEN ! --- Solve for u-velocity --- !
! ---------------------------- !
! What follows could be subroutinized...
! Thomas Algorithm for tridiagonal solver
! A*u(i-1,j)+B*u(i,j)+C*u(i+1,j) = F
zFU(:,:) = 0._wp ; zFU_prime(:,:) = 0._wp ; zBU_prime(:,:) = 0._wp;
DO jn = 1, nn_zebra_vp ! "zebra" loop (! red-black-sor!!! )
! OPT: could be even better optimized with a true red-black SOR
IF ( jn == 1 ) THEN ; jj_min = 2
ELSE ; jj_min = 3
!------------------------
! Independent term (zFU)
!------------------------
! note: these are key lines linking information between processors
! u_ice/v_ice need to be lbc_linked
! sub-domain boundary condition substitution
! see Zhang and Hibler, 1997, Appendix B
zAA3 = 0._wp
IF ( ji == 2 ) zAA3 = zAA3 - zAU(ji,jj) * u_ice(ji-1,jj)
IF ( ji == jpi - 1 ) zAA3 = zAA3 - zCU(ji,jj) * u_ice(ji+1,jj)
! right hand side
zFU(ji,jj) = ( zrhsu(ji,jj) & ! right-hand side terms
& + zAA3 & ! boundary condition translation
& + zDU(ji,jj) * u_ice(ji,jj-1) & ! internal force, j-1
& + zEU(ji,jj) * u_ice(ji,jj+1) ) * umask(ji,jj,1) ! internal force, j+1
END DO
END DO
!---------------
! Forward sweep
!---------------
DO jj = jj_min, jpj - 1, nn_zebra_vp
zBU_prime(2,jj) = zBU(2,jj)
zFU_prime(2,jj) = zFU(2,jj)
zfac = SIGN( 1._wp , zBU(ji-1,jj) ) * MAX( 0._wp , SIGN( 1._wp , ABS( zBU(ji-1,jj) ) - epsi20 ) )
zw = zfac * zAU(ji,jj) / MAX ( ABS( zBU(ji-1,jj) ) , epsi20 )
zBU_prime(ji,jj) = zBU(ji,jj) - zw * zCU(ji-1,jj)
zFU_prime(ji,jj) = zFU(ji,jj) - zw * zFU(ji-1,jj)
END DO
END DO
!-----------------------------
! Backward sweep & relaxation
!-----------------------------
DO jj = jj_min, jpj - 1, nn_zebra_vp
! --- Backward sweep
! last row
zfac = SIGN( 1._wp , zBU_prime(jpi-1,jj) ) * MAX( 0._wp , SIGN( 1._wp , ABS( zBU_prime(jpi-1,jj) ) - epsi20 ) )
u_ice(jpi-1,jj) = zfac * zFU_prime(jpi-1,jj) / MAX( ABS ( zBU_prime(jpi-1,jj) ) , epsi20 ) &
& * umask(jpi-1,jj,1)
DO ji = jpi - 2 , 2, -1 ! all other rows ! ---> original backward loop
zfac = SIGN( 1._wp , zBU_prime(ji,jj) ) * MAX( 0._wp , SIGN( 1._wp , ABS( zBU_prime(ji,jj) ) - epsi20 ) )
u_ice(ji,jj) = zfac * ( zFU_prime(ji,jj) - zCU(ji,jj) * u_ice(ji+1,jj) ) * umask(ji,jj,1) &
& / MAX ( ABS ( zBU_prime(ji,jj) ) , epsi20 )
END DO
!--- Relaxation and masking (for low-ice/no-ice cases)
DO ji = 2, jpi - 1
u_ice(ji,jj) = zu_b(ji,jj) + zrelaxu_vp * ( u_ice(ji,jj) - zu_b(ji,jj) ) ! relaxation
u_ice(ji,jj) = zmsk00x(ji,jj) & ! masking
& * ( zmsk01x(ji,jj) * u_ice(ji,jj) &
& + ( 1._wp - zmsk01x(ji,jj) ) * u_oce(ji,jj) * 0.01_wp ) * umask(ji,jj,1)
END DO
END DO ! jj
CALL lbc_lnk( 'icedyn_rhg_vp', u_ice, 'U', -1. )
END DO ! zebra loop
ENDIF ! ll_u_iterate
! ! ---------------------------- !
IF ( ll_v_iterate ) THEN ! --- Solve for V-velocity --- !
! ! ---------------------------- !
! MV OPT: what follows could be subroutinized...
! Thomas Algorithm for tridiagonal solver
! A*v(i,j-1)+B*v(i,j)+C*v(i,j+1) = F
! It is intentional to have a ji then jj loop for V-velocity
!!! ZH97 explain it is critical for convergence speed
zFV(:,:) = 0._wp ; zFV_prime(:,:) = 0._wp ; zBV_prime(:,:) = 0._wp;
IF ( jn == 1 ) THEN ; ji_min = 2
ELSE ; ji_min = 3
ENDIF
DO ji = ji_min, jpi - 1, nn_zebra_vp
!------------------------
! Independent term (zFV)
!------------------------
! subdomain boundary condition substitution (check it is correctly applied !!!)
! see Zhang and Hibler, 1997, Appendix B
zAA3 = 0._wp
IF ( jj == 2 ) zAA3 = zAA3 - zAV(ji,jj) * v_ice(ji,jj-1)
IF ( jj == jpj - 1 ) zAA3 = zAA3 - zCV(ji,jj) * v_ice(ji,jj+1)
! right hand side
zFV(ji,jj) = ( zrhsv(ji,jj) & ! right-hand side terms
& + zAA3 & ! boundary condition translation
& + zDV(ji,jj) * v_ice(ji-1,jj) & ! internal force, j-1
& + zEV(ji,jj) * v_ice(ji+1,jj) ) * vmask(ji,jj,1) ! internal force, j+1
END DO
END DO
!---------------
! Forward sweep
!---------------
DO ji = ji_min, jpi - 1, nn_zebra_vp
zBV_prime(ji,2) = zBV(ji,2)
zFV_prime(ji,2) = zFV(ji,2)
zfac = SIGN( 1._wp , zBV(ji,jj-1) ) * MAX( 0._wp , SIGN( 1._wp , ABS( zBV(ji,jj-1) ) - epsi20 ) )
zw = zfac * zAV(ji,jj) / MAX ( ABS( zBV(ji,jj-1) ) , epsi20 )
zBV_prime(ji,jj) = zBV(ji,jj) - zw * zCV(ji,jj-1)
zFV_prime(ji,jj) = zFV(ji,jj) - zw * zFV(ji,jj-1)
END DO
END DO
!-----------------------------
! Backward sweep & relaxation
!-----------------------------
DO ji = ji_min, jpi - 1, nn_zebra_vp
! --- Backward sweep
! last row
zfac = SIGN( 1._wp , zBV_prime(ji,jpj-1) ) * MAX( 0._wp , SIGN( 1._wp , ABS( zBV_prime(ji,jpj-1) ) - epsi20 ) )
v_ice(ji,jpj-1) = zfac * zFV_prime(ji,jpj-1) / MAX ( ABS(zBV_prime(ji,jpj-1) ) , epsi20 ) &
& * vmask(ji,jpj-1,1) ! last row
DO jj = jpj-2, 2, -1 ! original back loop
zfac = SIGN( 1._wp , zBV_prime(ji,jj) ) * MAX( 0._wp , SIGN( 1._wp , ABS( zBV_prime(ji,jj) ) - epsi20 ) )
v_ice(ji,jj) = zfac * ( zFV_prime(ji,jj) - zCV(ji,jj) * v_ice(ji,jj+1) ) * vmask(ji,jj,1) &
& / MAX ( ABS( zBV_prime(ji,jj) ) , epsi20 )
END DO
! --- Relaxation & masking
DO jj = 2, jpj - 1
v_ice(ji,jj) = zv_b(ji,jj) + zrelaxv_vp * ( v_ice(ji,jj) - zv_b(ji,jj) ) ! relaxation
v_ice(ji,jj) = zmsk00y(ji,jj) & ! masking
& * ( zmsk01y(ji,jj) * v_ice(ji,jj) &
& + ( 1._wp - zmsk01y(ji,jj) ) * v_oce(ji,jj) * 0.01_wp ) * vmask(ji,jj,1)
END DO ! jj
END DO ! ji
CALL lbc_lnk( 'icedyn_rhg_vp', v_ice, 'V', -1. )
END DO ! zebra loop
ENDIF ! ll_v_iterate
! I suspect the communication should go into the zebra loop if we want reproducibility
!--------------------------------------------------------------------------------------
! -- Check convergence based on maximum velocity difference, continue or stop the loop
!--------------------------------------------------------------------------------------
!------
! on U
!------
! MV OPT: if the number of iterations to convergence is really variable, and keep the convergence check
! then we must optimize the use of the mpp_max, which is prohibitive
zuerr_max = 0._wp
IF ( ll_u_iterate .AND. MOD ( i_inn, nn_vp_chkcvg ) == 0 ) THEN
! - Maximum U-velocity difference
zuerr(:,:) = 0._wp
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) ! 2->jpj-1; 2->jpi-1
zuerr(ji,jj) = ABS ( ( u_ice(ji,jj) - zu_b(ji,jj) ) ) * umask(ji,jj,1)
END_2D
zuerr_max = MAXVAL( zuerr )
CALL mpp_max( 'icedyn_rhg_evp', zuerr_max ) ! max over the global domain - damned!
! - Stop if max error is too large ("safeguard against bad forcing" of original Zhang routine)
IF ( i_inn > 1 .AND. zuerr_max > zuerr_max_vp ) THEN
IF ( lwp ) WRITE(numout,*) " VP rheology error was too large : ", zuerr_max, " in outer U-iteration ", i_out, " after ", i_inn, " iterations, we stopped "
ll_u_iterate = .FALSE.
ENDIF
! - Stop if error small enough
IF ( zuerr_max < zuerr_min_vp ) THEN
IF ( lwp ) WRITE(numout,*) " VP rheology nicely done in outer U-iteration ", i_out, " after ", i_inn, " iterations, finished! "
ll_u_iterate = .FALSE.
ENDIF
ENDIF ! ll_u_iterate
!------
! on V
!------
zverr_max = 0._wp
IF ( ll_v_iterate .AND. MOD ( i_inn, nn_vp_chkcvg ) == 0 ) THEN
! - Maximum V-velocity difference
zverr(:,:) = 0._wp
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) ! 2->jpj-1; 2->jpi-1
zverr(ji,jj) = ABS ( ( v_ice(ji,jj) - zv_b(ji,jj) ) ) * vmask(ji,jj,1)
END_2D
zverr_max = MAXVAL( zverr )
CALL mpp_max( 'icedyn_rhg_evp', zverr_max ) ! max over the global domain - damned!
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
! - Stop if error is too large ("safeguard against bad forcing" of original Zhang routine)
IF ( i_inn > 1 .AND. zverr_max > zuerr_max_vp ) THEN
IF ( lwp ) WRITE(numout,*) " VP rheology error was too large : ", zverr_max, " in outer V-iteration ", i_out, " after ", i_inn, " iterations, we stopped "
ll_v_iterate = .FALSE.
ENDIF
! - Stop if error small enough
IF ( zverr_max < zuerr_min_vp ) THEN
IF ( lwp ) WRITE(numout,*) " VP rheology nicely done in outer V-iteration ", i_out, " after ", i_inn, " iterations, finished! "
ll_v_iterate = .FALSE.
ENDIF
ENDIF ! ll_v_iterate
ENDIF ! --- end ll_u_iterate or ll_v_iterate
!---------------------------------------------------------------------------------------
!
! --- Calculate extra convergence diagnostics and save them
!
!---------------------------------------------------------------------------------------
IF( nn_rhg_chkcvg/=0 .AND. MOD ( i_inn - 1, nn_vp_chkcvg ) == 0 ) THEN
CALL rhg_cvg_vp( kt, i_out, i_inn, i_inn_tot, nn_vp_nout, nn_vp_ninn, nn_nvp, &
& u_ice, v_ice, zu_b, zv_b, zu_c, zv_c, &
& zmt, za_iU, za_iV, zuerr_max, zverr_max, zglob_area, &
& zrhsu, zAU, zBU, zCU, zDU, zEU, zFU, &
& zrhsv, zAV, zBV, zCV, zDV, zEV, zFV, &
zvel_res, zvel_diff )
ENDIF
END DO ! i_inn, end of inner loop
END DO ! End of outer loop (i_out) =============================================================================================
IF( nn_rhg_chkcvg/=0 ) THEN
IF( iom_use('velo_res') ) CALL iom_put( 'velo_res', zvel_res ) ! linear system residual @last inner&outer iteration
IF( iom_use('velo_ero') ) CALL iom_put( 'velo_ero', zvel_diff ) ! abs velocity difference @last outer iteration
IF( iom_use('uice_eri') ) CALL iom_put( 'uice_eri', zuerr ) ! abs velocity difference @last inner iteration
IF( iom_use('vice_eri') ) CALL iom_put( 'vice_eri', zverr ) ! abs velocity difference @last inner iteration
DEALLOCATE( zvel_res , zvel_diff )
ENDIF ! nn_rhg_chkcvg
!------------------------------------------------------------------------------!
!
! --- Recompute delta, shear and div (inputs for mechanical redistribution)
!
!------------------------------------------------------------------------------!
!
! MV OPT: subroutinize ?
DO_2D( nn_hls, nn_hls, nn_hls-1, nn_hls-1 ) ! 1->jpj-1; 1->jpi-1
! shear at F points
zds(ji,jj) = ( ( u_ice(ji,jj+1) * r1_e1u(ji,jj+1) - u_ice(ji,jj) * r1_e1u(ji,jj) ) * e1f(ji,jj) * e1f(ji,jj) &
& + ( v_ice(ji+1,jj) * r1_e2v(ji+1,jj) - v_ice(ji,jj) * r1_e2v(ji,jj) ) * e2f(ji,jj) * e2f(ji,jj) &
& ) * r1_e1e2f(ji,jj) * fimask(ji,jj)
END_2D
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) ! 2->jpj-1; 2->jpi-1
! tension**2 at T points
zdt = ( ( u_ice(ji,jj) * r1_e2u(ji,jj) - u_ice(ji-1,jj) * r1_e2u(ji-1,jj) ) * e2t(ji,jj) * e2t(ji,jj) &
& - ( v_ice(ji,jj) * r1_e1v(ji,jj) - v_ice(ji,jj-1) * r1_e1v(ji,jj-1) ) * e1t(ji,jj) * e1t(ji,jj) &
& ) * r1_e1e2t(ji,jj)
zdt2 = zdt * zdt
! shear**2 at T points (doc eq. A16)
zds2 = ( zds(ji,jj ) * zds(ji,jj ) * e1e2f(ji,jj ) + zds(ji-1,jj ) * zds(ji-1,jj ) * e1e2f(ji-1,jj ) &
& + zds(ji,jj-1) * zds(ji,jj-1) * e1e2f(ji,jj-1) + zds(ji-1,jj-1) * zds(ji-1,jj-1) * e1e2f(ji-1,jj-1) &
& ) * 0.25_wp * r1_e1e2t(ji,jj)
! maximum shear rate at T points (includees tension, output only)
pshear_i(ji,jj) = SQRT( zdt2 + zds2 ) ! i think this is maximum shear rate and not actual shear --- i'm not totally sure here