Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
MODULE dynhpg
!!======================================================================
!! *** MODULE dynhpg ***
!! Ocean dynamics: hydrostatic pressure gradient trend
!!======================================================================
!! History : OPA ! 1987-09 (P. Andrich, M.-A. Foujols) hpg_zco: Original code
!! 5.0 ! 1991-11 (G. Madec)
!! 7.0 ! 1996-01 (G. Madec) hpg_sco: Original code for s-coordinates
!! 8.0 ! 1997-05 (G. Madec) split dynber into dynkeg and dynhpg
!! 8.5 ! 2002-07 (G. Madec) F90: Free form and module
!! 8.5 ! 2002-08 (A. Bozec) hpg_zps: Original code
!! NEMO 1.0 ! 2005-10 (A. Beckmann, B.W. An) various s-coordinate options
!! ! Original code for hpg_ctl, hpg_hel hpg_wdj, hpg_djc, hpg_rot
!! - ! 2005-11 (G. Madec) style & small optimisation
!! 3.3 ! 2010-10 (C. Ethe, G. Madec) reorganisation of initialisation phase
!! 3.4 ! 2011-11 (H. Liu) hpg_prj: Original code for s-coordinates
!! ! (A. Coward) suppression of hel, wdj and rot options
!! 3.6 ! 2014-11 (P. Mathiot) hpg_isf: original code for ice shelf cavity
!! 4.2 ! 2020-12 (M. Bell, A. Young) hpg_djc: revised djc scheme
!!----------------------------------------------------------------------
!!----------------------------------------------------------------------
!! dyn_hpg : update the momentum trend with the now horizontal
!! gradient of the hydrostatic pressure
!! dyn_hpg_init : initialisation and control of options
!! hpg_zco : z-coordinate scheme
!! hpg_zps : z-coordinate plus partial steps (interpolation)
!! hpg_sco : s-coordinate (standard jacobian formulation)
!! hpg_isf : s-coordinate (sco formulation) adapted to ice shelf
!! hpg_djc : s-coordinate (Density Jacobian with Cubic polynomial)
!! hpg_prj : s-coordinate (Pressure Jacobian with Cubic polynomial)
!!----------------------------------------------------------------------
USE oce ! ocean dynamics and tracers
USE isf_oce , ONLY : risfload ! ice shelf (risfload variable)
USE isfload , ONLY : isf_load ! ice shelf (isf_load routine )
USE sbc_oce ! surface variable (only for the flag with ice shelf)
USE dom_oce ! ocean space and time domain
USE wet_dry ! wetting and drying
USE phycst ! physical constants
USE trd_oce ! trends: ocean variables
USE trddyn ! trend manager: dynamics
USE zpshde ! partial step: hor. derivative (zps_hde routine)
!
USE in_out_manager ! I/O manager
USE prtctl ! Print control
USE lbclnk ! lateral boundary condition
USE lib_mpp ! MPP library
USE eosbn2 ! compute density
USE timing ! Timing
USE iom
IMPLICIT NONE
PRIVATE
PUBLIC dyn_hpg ! routine called by step module
PUBLIC dyn_hpg_init ! routine called by opa module
! !!* Namelist namdyn_hpg : hydrostatic pressure gradient
LOGICAL, PUBLIC :: ln_hpg_zco !: z-coordinate - full steps
LOGICAL, PUBLIC :: ln_hpg_zps !: z-coordinate - partial steps (interpolation)
LOGICAL, PUBLIC :: ln_hpg_sco !: s-coordinate (standard jacobian formulation)
LOGICAL, PUBLIC :: ln_hpg_djc !: s-coordinate (Density Jacobian with Cubic polynomial)
LOGICAL, PUBLIC :: ln_hpg_prj !: s-coordinate (Pressure Jacobian scheme)
LOGICAL, PUBLIC :: ln_hpg_isf !: s-coordinate similar to sco modify for isf
! !! Flag to control the type of hydrostatic pressure gradient
INTEGER, PARAMETER :: np_ERROR =-10 ! error in specification of lateral diffusion
INTEGER, PARAMETER :: np_zco = 0 ! z-coordinate - full steps
INTEGER, PARAMETER :: np_zps = 1 ! z-coordinate - partial steps (interpolation)
INTEGER, PARAMETER :: np_sco = 2 ! s-coordinate (standard jacobian formulation)
INTEGER, PARAMETER :: np_djc = 3 ! s-coordinate (Density Jacobian with Cubic polynomial)
INTEGER, PARAMETER :: np_prj = 4 ! s-coordinate (Pressure Jacobian scheme)
INTEGER, PARAMETER :: np_isf = 5 ! s-coordinate similar to sco modify for isf
!
INTEGER, PUBLIC :: nhpg !: type of pressure gradient scheme used ! (deduced from ln_hpg_... flags) (PUBLIC for TAM)
!
LOGICAL :: ln_hpg_djc_vnh, ln_hpg_djc_vnv ! flag to specify hpg_djc boundary condition type
REAL(wp), PUBLIC :: aco_bc_hor, bco_bc_hor, aco_bc_vrt, bco_bc_vrt !: coefficients for hpg_djc hor and vert boundary conditions
!! * Substitutions
# include "do_loop_substitute.h90"
# include "domzgr_substitute.h90"
!!----------------------------------------------------------------------
!! NEMO/OCE 4.0 , NEMO Consortium (2018)
!! $Id: dynhpg.F90 15529 2021-11-23 15:00:19Z techene $
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
SUBROUTINE dyn_hpg( kt, Kmm, puu, pvv, Krhs )
!!---------------------------------------------------------------------
!! *** ROUTINE dyn_hpg ***
!!
!! ** Method : Call the hydrostatic pressure gradient routine
!! using the scheme defined in the namelist
!!
!! ** Action : - Update (puu(:,:,:,Krhs),pvv(:,:,:,Krhs)) with the now hydrastatic pressure trend
!! - send trends to trd_dyn for futher diagnostics (l_trddyn=T)
!!----------------------------------------------------------------------
INTEGER , INTENT( in ) :: kt ! ocean time-step index
INTEGER , INTENT( in ) :: Kmm, Krhs ! ocean time level indices
REAL(wp), DIMENSION(jpi,jpj,jpk,jpt), INTENT(inout) :: puu, pvv ! ocean velocities and RHS of momentum equation
!
REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: ztrdu, ztrdv
!!----------------------------------------------------------------------
!
IF( ln_timing ) CALL timing_start('dyn_hpg')
!
IF( l_trddyn ) THEN ! Temporary saving of puu(:,:,:,Krhs) and pvv(:,:,:,Krhs) trends (l_trddyn)
ALLOCATE( ztrdu(jpi,jpj,jpk) , ztrdv(jpi,jpj,jpk) )
ztrdu(:,:,:) = puu(:,:,:,Krhs)
ztrdv(:,:,:) = pvv(:,:,:,Krhs)
ENDIF
!
SELECT CASE ( nhpg ) ! Hydrostatic pressure gradient computation
CASE ( np_zco ) ; CALL hpg_zco ( kt, Kmm, puu, pvv, Krhs ) ! z-coordinate
CASE ( np_zps ) ; CALL hpg_zps ( kt, Kmm, puu, pvv, Krhs ) ! z-coordinate plus partial steps (interpolation)
CASE ( np_sco ) ; CALL hpg_sco ( kt, Kmm, puu, pvv, Krhs ) ! s-coordinate (standard jacobian formulation)
CASE ( np_djc ) ; CALL hpg_djc ( kt, Kmm, puu, pvv, Krhs ) ! s-coordinate (Density Jacobian with Cubic polynomial)
CASE ( np_prj ) ; CALL hpg_prj ( kt, Kmm, puu, pvv, Krhs ) ! s-coordinate (Pressure Jacobian scheme)
CASE ( np_isf ) ; CALL hpg_isf ( kt, Kmm, puu, pvv, Krhs ) ! s-coordinate similar to sco modify for ice shelf
END SELECT
!
IF( l_trddyn ) THEN ! save the hydrostatic pressure gradient trends for momentum trend diagnostics
ztrdu(:,:,:) = puu(:,:,:,Krhs) - ztrdu(:,:,:)
ztrdv(:,:,:) = pvv(:,:,:,Krhs) - ztrdv(:,:,:)
CALL trd_dyn( ztrdu, ztrdv, jpdyn_hpg, kt, Kmm )
DEALLOCATE( ztrdu , ztrdv )
ENDIF
!
IF(sn_cfctl%l_prtctl) CALL prt_ctl( tab3d_1=puu(:,:,:,Krhs), clinfo1=' hpg - Ua: ', mask1=umask, &
& tab3d_2=pvv(:,:,:,Krhs), clinfo2= ' Va: ', mask2=vmask, clinfo3='dyn' )
!
IF( ln_timing ) CALL timing_stop('dyn_hpg')
!
END SUBROUTINE dyn_hpg
SUBROUTINE dyn_hpg_init( Kmm )
!!----------------------------------------------------------------------
!! *** ROUTINE dyn_hpg_init ***
!!
!! ** Purpose : initializations for the hydrostatic pressure gradient
!! computation and consistency control
!!
!! ** Action : Read the namelist namdyn_hpg and check the consistency
!! with the type of vertical coordinate used (zco, zps, sco)
!!----------------------------------------------------------------------
INTEGER, INTENT( in ) :: Kmm ! ocean time level index
!
INTEGER :: ioptio = 0 ! temporary integer
INTEGER :: ios ! Local integer output status for namelist read
!!
INTEGER :: ji, jj, jk, ikt ! dummy loop indices ISF
REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: zts_top, zrhd ! hypothesys on isf density
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zrhdtop_isf ! density at bottom of ISF
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: ziceload ! density at bottom of ISF
!!
NAMELIST/namdyn_hpg/ ln_hpg_zco, ln_hpg_zps, ln_hpg_sco, &
& ln_hpg_djc, ln_hpg_prj, ln_hpg_isf, &
& ln_hpg_djc_vnh, ln_hpg_djc_vnv
!!----------------------------------------------------------------------
!
READ ( numnam_ref, namdyn_hpg, IOSTAT = ios, ERR = 901)
901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namdyn_hpg in reference namelist' )
!
READ ( numnam_cfg, namdyn_hpg, IOSTAT = ios, ERR = 902 )
902 IF( ios > 0 ) CALL ctl_nam ( ios , 'namdyn_hpg in configuration namelist' )
IF(lwm) WRITE ( numond, namdyn_hpg )
!
IF(lwp) THEN ! Control print
WRITE(numout,*)
WRITE(numout,*) 'dyn_hpg_init : hydrostatic pressure gradient initialisation'
WRITE(numout,*) '~~~~~~~~~~~~'
WRITE(numout,*) ' Namelist namdyn_hpg : choice of hpg scheme'
WRITE(numout,*) ' z-coord. - full steps ln_hpg_zco = ', ln_hpg_zco
WRITE(numout,*) ' z-coord. - partial steps (interpolation) ln_hpg_zps = ', ln_hpg_zps
WRITE(numout,*) ' s-coord. (standard jacobian formulation) ln_hpg_sco = ', ln_hpg_sco
WRITE(numout,*) ' s-coord. (standard jacobian formulation) for isf ln_hpg_isf = ', ln_hpg_isf
WRITE(numout,*) ' s-coord. (Density Jacobian: Cubic polynomial) ln_hpg_djc = ', ln_hpg_djc
WRITE(numout,*) ' s-coord. (Pressure Jacobian: Cubic polynomial) ln_hpg_prj = ', ln_hpg_prj
ENDIF
!
IF( .NOT.ln_linssh .AND. (ln_hpg_zco.OR.ln_hpg_zps) ) &
& CALL ctl_stop( 'dyn_hpg_init : non-linear free surface incompatible with hpg_zco or hpg_zps' )
!
IF( (.NOT.ln_hpg_isf .AND. ln_isfcav) .OR. (ln_hpg_isf .AND. .NOT.ln_isfcav) ) &
& CALL ctl_stop( 'dyn_hpg_init : ln_hpg_isf=T requires ln_isfcav=T and vice versa' )
!
!
! ! Set nhpg from ln_hpg_... flags & consistency check
nhpg = np_ERROR
ioptio = 0
IF( ln_hpg_zco ) THEN ; nhpg = np_zco ; ioptio = ioptio +1 ; ENDIF
IF( ln_hpg_zps ) THEN ; nhpg = np_zps ; ioptio = ioptio +1 ; ENDIF
IF( ln_hpg_sco ) THEN ; nhpg = np_sco ; ioptio = ioptio +1 ; ENDIF
IF( ln_hpg_djc ) THEN ; nhpg = np_djc ; ioptio = ioptio +1 ; ENDIF
IF( ln_hpg_prj ) THEN ; nhpg = np_prj ; ioptio = ioptio +1 ; ENDIF
IF( ln_hpg_isf ) THEN ; nhpg = np_isf ; ioptio = ioptio +1 ; ENDIF
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
!
IF( ioptio /= 1 ) CALL ctl_stop( 'NO or several hydrostatic pressure gradient options used' )
!
IF(lwp) THEN
WRITE(numout,*)
SELECT CASE( nhpg )
CASE( np_zco ) ; WRITE(numout,*) ' ==>>> z-coord. - full steps '
CASE( np_zps ) ; WRITE(numout,*) ' ==>>> z-coord. - partial steps (interpolation)'
CASE( np_sco ) ; WRITE(numout,*) ' ==>>> s-coord. (standard jacobian formulation)'
CASE( np_djc ) ; WRITE(numout,*) ' ==>>> s-coord. (Density Jacobian: Cubic polynomial)'
CASE( np_prj ) ; WRITE(numout,*) ' ==>>> s-coord. (Pressure Jacobian: Cubic polynomial)'
CASE( np_isf ) ; WRITE(numout,*) ' ==>>> s-coord. (standard jacobian formulation) for isf'
END SELECT
WRITE(numout,*)
ENDIF
!
IF ( ln_hpg_djc ) THEN
IF (ln_hpg_djc_vnh) THEN ! Von Neumann boundary condition
IF(lwp) WRITE(numout,*) ' horizontal bc: von Neumann '
aco_bc_hor = 6.0_wp/5.0_wp
bco_bc_hor = 7.0_wp/15.0_wp
ELSE ! Linear extrapolation
IF(lwp) WRITE(numout,*) ' horizontal bc: linear extrapolation'
aco_bc_hor = 3.0_wp/2.0_wp
bco_bc_hor = 1.0_wp/2.0_wp
END IF
IF (ln_hpg_djc_vnv) THEN ! Von Neumann boundary condition
IF(lwp) WRITE(numout,*) ' vertical bc: von Neumann '
aco_bc_vrt = 6.0_wp/5.0_wp
bco_bc_vrt = 7.0_wp/15.0_wp
ELSE ! Linear extrapolation
IF(lwp) WRITE(numout,*) ' vertical bc: linear extrapolation'
aco_bc_vrt = 3.0_wp/2.0_wp
bco_bc_vrt = 1.0_wp/2.0_wp
END IF
END IF
!
END SUBROUTINE dyn_hpg_init
SUBROUTINE hpg_zco( kt, Kmm, puu, pvv, Krhs )
!!---------------------------------------------------------------------
!! *** ROUTINE hpg_zco ***
!!
!! ** Method : z-coordinate case, levels are horizontal surfaces.
!! The now hydrostatic pressure gradient at a given level, jk,
!! is computed by taking the vertical integral of the in-situ
!! density gradient along the model level from the suface to that
!! level: zhpi = grav .....
!! zhpj = grav .....
!! add it to the general momentum trend (puu(:,:,:,Krhs),pvv(:,:,:,Krhs)).
!! puu(:,:,:,Krhs) = puu(:,:,:,Krhs) - 1/e1u * zhpi
!! pvv(:,:,:,Krhs) = pvv(:,:,:,Krhs) - 1/e2v * zhpj
!!
!! ** Action : - Update (puu(:,:,:,Krhs),pvv(:,:,:,Krhs)) with the now hydrastatic pressure trend
!!----------------------------------------------------------------------
INTEGER , INTENT( in ) :: kt ! ocean time-step index
INTEGER , INTENT( in ) :: Kmm, Krhs ! ocean time level indices
REAL(wp), DIMENSION(jpi,jpj,jpk,jpt), INTENT(inout) :: puu, pvv ! ocean velocities and RHS of momentum equation
!
INTEGER :: ji, jj, jk ! dummy loop indices
REAL(wp) :: zcoef0, zcoef1 ! temporary scalars
REAL(wp), DIMENSION(A2D(nn_hls)) :: zhpi, zhpj
!!----------------------------------------------------------------------
!
IF( .NOT. l_istiled .OR. ntile == 1 ) THEN ! Do only on the first tile
IF( kt == nit000 ) THEN
IF(lwp) WRITE(numout,*)
IF(lwp) WRITE(numout,*) 'dyn:hpg_zco : hydrostatic pressure gradient trend'
IF(lwp) WRITE(numout,*) '~~~~~~~~~~~ z-coordinate case '
ENDIF
ENDIF
!
zcoef0 = - grav * 0.5_wp ! Local constant initialization
!
DO_2D( 0, 0, 0, 0 ) ! Surface value
zcoef1 = zcoef0 * e3w(ji,jj,1,Kmm)
! ! hydrostatic pressure gradient
zhpi(ji,jj) = zcoef1 * ( rhd(ji+1,jj,1) - rhd(ji,jj,1) ) * r1_e1u(ji,jj)
zhpj(ji,jj) = zcoef1 * ( rhd(ji,jj+1,1) - rhd(ji,jj,1) ) * r1_e2v(ji,jj)
! ! add to the general momentum trend
puu(ji,jj,1,Krhs) = puu(ji,jj,1,Krhs) + zhpi(ji,jj)
pvv(ji,jj,1,Krhs) = pvv(ji,jj,1,Krhs) + zhpj(ji,jj)
END_2D
!
DO_3D( 0, 0, 0, 0, 2, jpkm1 ) ! interior value (2=<jk=<jpkm1)
zcoef1 = zcoef0 * e3w(ji,jj,jk,Kmm)
! ! hydrostatic pressure gradient
zhpi(ji,jj) = zhpi(ji,jj) + zcoef1 * ( ( rhd(ji+1,jj,jk)+rhd(ji+1,jj,jk-1) ) &
& - ( rhd(ji ,jj,jk)+rhd(ji ,jj,jk-1) ) ) * r1_e1u(ji,jj)
zhpj(ji,jj) = zhpj(ji,jj) + zcoef1 * ( ( rhd(ji,jj+1,jk)+rhd(ji,jj+1,jk-1) ) &
& - ( rhd(ji,jj, jk)+rhd(ji,jj ,jk-1) ) ) * r1_e2v(ji,jj)
! ! add to the general momentum trend
puu(ji,jj,jk,Krhs) = puu(ji,jj,jk,Krhs) + zhpi(ji,jj)
pvv(ji,jj,jk,Krhs) = pvv(ji,jj,jk,Krhs) + zhpj(ji,jj)
END_3D
!
END SUBROUTINE hpg_zco
SUBROUTINE hpg_zps( kt, Kmm, puu, pvv, Krhs )
!!---------------------------------------------------------------------
!! *** ROUTINE hpg_zps ***
!!
!! ** Method : z-coordinate plus partial steps case. blahblah...
!!
!! ** Action : - Update (puu(:,:,:,Krhs),pvv(:,:,:,Krhs)) with the now hydrastatic pressure trend
!!----------------------------------------------------------------------
INTEGER , INTENT( in ) :: kt ! ocean time-step index
INTEGER , INTENT( in ) :: Kmm, Krhs ! ocean time level indices
REAL(wp), DIMENSION(jpi,jpj,jpk,jpt), INTENT(inout) :: puu, pvv ! ocean velocities and RHS of momentum equation
!!
INTEGER :: ji, jj, jk ! dummy loop indices
INTEGER :: iku, ikv ! temporary integers
REAL(wp) :: zcoef0, zcoef1, zcoef2, zcoef3 ! temporary scalars
REAL(wp), DIMENSION(A2D(nn_hls),jpk ) :: zhpi, zhpj
REAL(wp), DIMENSION(A2D(nn_hls),jpts) :: zgtsu, zgtsv
REAL(wp), DIMENSION(A2D(nn_hls) ) :: zgru, zgrv
!!----------------------------------------------------------------------
!
IF( .NOT. l_istiled .OR. ntile == 1 ) THEN ! Do only on the first tile
IF( kt == nit000 ) THEN
IF(lwp) WRITE(numout,*)
IF(lwp) WRITE(numout,*) 'dyn:hpg_zps : hydrostatic pressure gradient trend'
IF(lwp) WRITE(numout,*) '~~~~~~~~~~~ z-coordinate with partial steps - vector optimization'
ENDIF
ENDIF
! Partial steps: Compute NOW horizontal gradient of t, s, rd at the last ocean level
CALL zps_hde( kt, Kmm, jpts, ts(:,:,:,:,Kmm), zgtsu, zgtsv, rhd, zgru , zgrv )
! Local constant initialization
zcoef0 = - grav * 0.5_wp
! Surface value (also valid in partial step case)
DO_2D( 0, 0, 0, 0 )
zcoef1 = zcoef0 * e3w(ji,jj,1,Kmm)
! hydrostatic pressure gradient
zhpi(ji,jj,1) = zcoef1 * ( rhd(ji+1,jj ,1) - rhd(ji,jj,1) ) * r1_e1u(ji,jj)
zhpj(ji,jj,1) = zcoef1 * ( rhd(ji ,jj+1,1) - rhd(ji,jj,1) ) * r1_e2v(ji,jj)
! add to the general momentum trend
puu(ji,jj,1,Krhs) = puu(ji,jj,1,Krhs) + zhpi(ji,jj,1)
pvv(ji,jj,1,Krhs) = pvv(ji,jj,1,Krhs) + zhpj(ji,jj,1)
END_2D
! interior value (2=<jk=<jpkm1)
DO_3D( 0, 0, 0, 0, 2, jpkm1 )
zcoef1 = zcoef0 * e3w(ji,jj,jk,Kmm)
! hydrostatic pressure gradient
zhpi(ji,jj,jk) = zhpi(ji,jj,jk-1) &
& + zcoef1 * ( ( rhd(ji+1,jj,jk) + rhd(ji+1,jj,jk-1) ) &
& - ( rhd(ji ,jj,jk) + rhd(ji ,jj,jk-1) ) ) * r1_e1u(ji,jj)
zhpj(ji,jj,jk) = zhpj(ji,jj,jk-1) &
& + zcoef1 * ( ( rhd(ji,jj+1,jk) + rhd(ji,jj+1,jk-1) ) &
& - ( rhd(ji,jj, jk) + rhd(ji,jj ,jk-1) ) ) * r1_e2v(ji,jj)
! add to the general momentum trend
puu(ji,jj,jk,Krhs) = puu(ji,jj,jk,Krhs) + zhpi(ji,jj,jk)
pvv(ji,jj,jk,Krhs) = pvv(ji,jj,jk,Krhs) + zhpj(ji,jj,jk)
END_3D
! partial steps correction at the last level (use zgru & zgrv computed in zpshde.F90)
DO_2D( 0, 0, 0, 0 )
iku = mbku(ji,jj)
ikv = mbkv(ji,jj)
zcoef2 = zcoef0 * MIN( e3w(ji,jj,iku,Kmm), e3w(ji+1,jj ,iku,Kmm) )
zcoef3 = zcoef0 * MIN( e3w(ji,jj,ikv,Kmm), e3w(ji ,jj+1,ikv,Kmm) )
IF( iku > 1 ) THEN ! on i-direction (level 2 or more)
puu (ji,jj,iku,Krhs) = puu(ji,jj,iku,Krhs) - zhpi(ji,jj,iku) ! subtract old value
zhpi(ji,jj,iku) = zhpi(ji,jj,iku-1) & ! compute the new one
& + zcoef2 * ( rhd(ji+1,jj,iku-1) - rhd(ji,jj,iku-1) + zgru(ji,jj) ) * r1_e1u(ji,jj)
puu (ji,jj,iku,Krhs) = puu(ji,jj,iku,Krhs) + zhpi(ji,jj,iku) ! add the new one to the general momentum trend
ENDIF
IF( ikv > 1 ) THEN ! on j-direction (level 2 or more)
pvv (ji,jj,ikv,Krhs) = pvv(ji,jj,ikv,Krhs) - zhpj(ji,jj,ikv) ! subtract old value
zhpj(ji,jj,ikv) = zhpj(ji,jj,ikv-1) & ! compute the new one
& + zcoef3 * ( rhd(ji,jj+1,ikv-1) - rhd(ji,jj,ikv-1) + zgrv(ji,jj) ) * r1_e2v(ji,jj)
pvv (ji,jj,ikv,Krhs) = pvv(ji,jj,ikv,Krhs) + zhpj(ji,jj,ikv) ! add the new one to the general momentum trend
ENDIF
END_2D
!
END SUBROUTINE hpg_zps
SUBROUTINE hpg_sco( kt, Kmm, puu, pvv, Krhs )
!!---------------------------------------------------------------------
!! *** ROUTINE hpg_sco ***
!!
!! ** Method : s-coordinate case. Jacobian scheme.
!! The now hydrostatic pressure gradient at a given level, jk,
!! is computed by taking the vertical integral of the in-situ
!! density gradient along the model level from the suface to that
!! level. s-coordinates (ln_sco): a corrective term is added
!! to the horizontal pressure gradient :
!! zhpi = grav ..... + 1/e1u mi(rhd) di[ grav dep3w ]
!! zhpj = grav ..... + 1/e2v mj(rhd) dj[ grav dep3w ]
!! add it to the general momentum trend (puu(:,:,:,Krhs),pvv(:,:,:,Krhs)).
!! puu(:,:,:,Krhs) = puu(:,:,:,Krhs) - 1/e1u * zhpi
!! pvv(:,:,:,Krhs) = pvv(:,:,:,Krhs) - 1/e2v * zhpj
!!
!! ** Action : - Update (puu(:,:,:,Krhs),pvv(:,:,:,Krhs)) with the now hydrastatic pressure trend
!!----------------------------------------------------------------------
INTEGER , INTENT( in ) :: kt ! ocean time-step index
INTEGER , INTENT( in ) :: Kmm, Krhs ! ocean time level indices
REAL(wp), DIMENSION(jpi,jpj,jpk,jpt), INTENT(inout) :: puu, pvv ! ocean velocities and RHS of momentum equation
!!
INTEGER :: ji, jj, jk, jii, jjj ! dummy loop indices
REAL(wp) :: zcoef0, zuap, zvap, ztmp ! local scalars
LOGICAL :: ll_tmp1, ll_tmp2 ! local logical variables
REAL(wp), DIMENSION(A2D(nn_hls),jpk) :: zhpi, zhpj
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: zcpx, zcpy !W/D pressure filter
!!----------------------------------------------------------------------
!
IF( ln_wd_il ) ALLOCATE(zcpx(A2D(nn_hls)), zcpy(A2D(nn_hls)))
!
IF( .NOT. l_istiled .OR. ntile == 1 ) THEN ! Do only on the first tile
IF( kt == nit000 ) THEN
IF(lwp) WRITE(numout,*)
IF(lwp) WRITE(numout,*) 'dyn:hpg_sco : hydrostatic pressure gradient trend'
IF(lwp) WRITE(numout,*) '~~~~~~~~~~~ s-coordinate case, OCE original scheme used'
ENDIF
ENDIF
!
zcoef0 = - grav * 0.5_wp
!
IF( ln_wd_il ) THEN
DO_2D( 0, 0, 0, 0 )
ll_tmp1 = MIN( ssh(ji,jj,Kmm) , ssh(ji+1,jj,Kmm) ) > &
& MAX( -ht_0(ji,jj) , -ht_0(ji+1,jj) ) .AND. &
& MAX( ssh(ji,jj,Kmm) + ht_0(ji,jj), ssh(ji+1,jj,Kmm) + ht_0(ji+1,jj) ) &
& > rn_wdmin1 + rn_wdmin2
ll_tmp2 = ( ABS( ssh(ji,jj,Kmm) - ssh(ji+1,jj,Kmm) ) > 1.E-12 ) .AND. ( &
& MAX( ssh(ji,jj,Kmm) , ssh(ji+1,jj,Kmm) ) > &
& MAX( -ht_0(ji,jj) , -ht_0(ji+1,jj) ) + rn_wdmin1 + rn_wdmin2 )
IF(ll_tmp1) THEN
zcpx(ji,jj) = 1.0_wp
ELSE IF(ll_tmp2) THEN
! no worries about ssh(ji+1,jj,Kmm) - ssh(ji ,jj,Kmm) = 0, it won't happen ! here
zcpx(ji,jj) = ABS( (ssh(ji+1,jj,Kmm) + ht_0(ji+1,jj) - ssh(ji,jj,Kmm) - ht_0(ji,jj)) &
& / (ssh(ji+1,jj,Kmm) - ssh(ji ,jj,Kmm)) )
ELSE
zcpx(ji,jj) = 0._wp
END IF
ll_tmp1 = MIN( ssh(ji,jj,Kmm) , ssh(ji,jj+1,Kmm) ) > &
& MAX( -ht_0(ji,jj) , -ht_0(ji,jj+1) ) .AND. &
& MAX( ssh(ji,jj,Kmm) + ht_0(ji,jj), ssh(ji,jj+1,Kmm) + ht_0(ji,jj+1) ) &
& > rn_wdmin1 + rn_wdmin2
ll_tmp2 = ( ABS( ssh(ji,jj,Kmm) - ssh(ji,jj+1,Kmm) ) > 1.E-12 ) .AND. ( &
& MAX( ssh(ji,jj,Kmm) , ssh(ji,jj+1,Kmm) ) > &
& MAX( -ht_0(ji,jj) , -ht_0(ji,jj+1) ) + rn_wdmin1 + rn_wdmin2 )
IF(ll_tmp1) THEN
zcpy(ji,jj) = 1.0_wp
ELSE IF(ll_tmp2) THEN
! no worries about ssh(ji,jj+1,Kmm) - ssh(ji,jj ,Kmm) = 0, it won't happen ! here
zcpy(ji,jj) = ABS( (ssh(ji,jj+1,Kmm) + ht_0(ji,jj+1) - ssh(ji,jj,Kmm) - ht_0(ji,jj)) &
& / (ssh(ji,jj+1,Kmm) - ssh(ji,jj ,Kmm)) )
ELSE
zcpy(ji,jj) = 0._wp
END IF
END_2D
END IF
!
DO_2D( 0, 0, 0, 0 ) ! Surface value
! ! hydrostatic pressure gradient along s-surfaces
zhpi(ji,jj,1) = zcoef0 * r1_e1u(ji,jj) &
& * ( e3w(ji+1,jj ,1,Kmm) * rhd(ji+1,jj ,1) &
& - e3w(ji ,jj ,1,Kmm) * rhd(ji ,jj ,1) )
zhpj(ji,jj,1) = zcoef0 * r1_e2v(ji,jj) &
& * ( e3w(ji ,jj+1,1,Kmm) * rhd(ji ,jj+1,1) &
& - e3w(ji ,jj ,1,Kmm) * rhd(ji ,jj ,1) )
! ! s-coordinate pressure gradient correction
zuap = -zcoef0 * ( rhd (ji+1,jj,1) + rhd (ji,jj,1) ) &
& * ( gde3w(ji+1,jj,1) - gde3w(ji,jj,1) ) * r1_e1u(ji,jj)
zvap = -zcoef0 * ( rhd (ji,jj+1,1) + rhd (ji,jj,1) ) &
& * ( gde3w(ji,jj+1,1) - gde3w(ji,jj,1) ) * r1_e2v(ji,jj)
!
IF( ln_wd_il ) THEN
zhpi(ji,jj,1) = zhpi(ji,jj,1) * zcpx(ji,jj)
zhpj(ji,jj,1) = zhpj(ji,jj,1) * zcpy(ji,jj)
zuap = zuap * zcpx(ji,jj)
zvap = zvap * zcpy(ji,jj)
ENDIF
! ! add to the general momentum trend
puu(ji,jj,1,Krhs) = puu(ji,jj,1,Krhs) + zhpi(ji,jj,1) + zuap
pvv(ji,jj,1,Krhs) = pvv(ji,jj,1,Krhs) + zhpj(ji,jj,1) + zvap
END_2D
!
DO_3D( 0, 0, 0, 0, 2, jpkm1 ) ! interior value (2=<jk=<jpkm1)
! ! hydrostatic pressure gradient along s-surfaces
zhpi(ji,jj,jk) = zhpi(ji,jj,jk-1) + zcoef0 * r1_e1u(ji,jj) &
& * ( e3w(ji+1,jj,jk,Kmm) * ( rhd(ji+1,jj,jk) + rhd(ji+1,jj,jk-1) ) &
& - e3w(ji ,jj,jk,Kmm) * ( rhd(ji ,jj,jk) + rhd(ji ,jj,jk-1) ) )
zhpj(ji,jj,jk) = zhpj(ji,jj,jk-1) + zcoef0 * r1_e2v(ji,jj) &
& * ( e3w(ji,jj+1,jk,Kmm) * ( rhd(ji,jj+1,jk) + rhd(ji,jj+1,jk-1) ) &
& - e3w(ji,jj ,jk,Kmm) * ( rhd(ji,jj, jk) + rhd(ji,jj ,jk-1) ) )
! ! s-coordinate pressure gradient correction
zuap = -zcoef0 * ( rhd (ji+1,jj ,jk) + rhd (ji,jj,jk) ) &
& * ( gde3w(ji+1,jj ,jk) - gde3w(ji,jj,jk) ) * r1_e1u(ji,jj)
zvap = -zcoef0 * ( rhd (ji ,jj+1,jk) + rhd (ji,jj,jk) ) &
& * ( gde3w(ji ,jj+1,jk) - gde3w(ji,jj,jk) ) * r1_e2v(ji,jj)
!
IF( ln_wd_il ) THEN
zhpi(ji,jj,jk) = zhpi(ji,jj,jk) * zcpx(ji,jj)
zhpj(ji,jj,jk) = zhpj(ji,jj,jk) * zcpy(ji,jj)
zuap = zuap * zcpx(ji,jj)
zvap = zvap * zcpy(ji,jj)
ENDIF
!
! add to the general momentum trend
puu(ji,jj,jk,Krhs) = puu(ji,jj,jk,Krhs) + zhpi(ji,jj,jk) + zuap
pvv(ji,jj,jk,Krhs) = pvv(ji,jj,jk,Krhs) + zhpj(ji,jj,jk) + zvap
END_3D
!
IF( ln_wd_il ) DEALLOCATE( zcpx , zcpy )
!
END SUBROUTINE hpg_sco
SUBROUTINE hpg_isf( kt, Kmm, puu, pvv, Krhs )
!!---------------------------------------------------------------------
!! *** ROUTINE hpg_isf ***
!!
!! ** Method : s-coordinate case. Jacobian scheme.
!! The now hydrostatic pressure gradient at a given level, jk,
!! is computed by taking the vertical integral of the in-situ
!! density gradient along the model level from the suface to that
!! level. s-coordinates (ln_sco): a corrective term is added
!! to the horizontal pressure gradient :
!! zhpi = grav ..... + 1/e1u mi(rhd) di[ grav dep3w ]
!! zhpj = grav ..... + 1/e2v mj(rhd) dj[ grav dep3w ]
!! add it to the general momentum trend (puu(:,:,:,Krhs),pvv(:,:,:,Krhs)).
!! puu(:,:,:,Krhs) = puu(:,:,:,Krhs) - 1/e1u * zhpi
!! pvv(:,:,:,Krhs) = pvv(:,:,:,Krhs) - 1/e2v * zhpj
!! iceload is added
!!
!! ** Action : - Update (puu(:,:,:,Krhs),pvv(:,:,:,Krhs)) with the now hydrastatic pressure trend
!!----------------------------------------------------------------------
INTEGER , INTENT( in ) :: kt ! ocean time-step index
INTEGER , INTENT( in ) :: Kmm, Krhs ! ocean time level indices
REAL(wp), DIMENSION(jpi,jpj,jpk,jpt), INTENT(inout) :: puu, pvv ! ocean velocities and RHS of momentum equation
!!
INTEGER :: ji, jj, jk ! dummy loop indices
INTEGER :: ikt , ikti1, iktj1 ! local integer
REAL(wp) :: ze3w, ze3wi1, ze3wj1 ! local scalars
REAL(wp) :: zcoef0, zuap, zvap ! - -
REAL(wp), DIMENSION(A2D(nn_hls),jpk ) :: zhpi, zhpj
REAL(wp), DIMENSION(A2D(nn_hls),jpts) :: zts_top
REAL(wp), DIMENSION(A2D(nn_hls)) :: zrhd_top, zdep_top
!!----------------------------------------------------------------------
!
zcoef0 = - grav * 0.5_wp ! Local constant initialization
!
! ! iniitialised to 0. zhpi zhpi
zhpi(:,:,:) = 0._wp ; zhpj(:,:,:) = 0._wp
! compute rhd at the ice/oce interface (ocean side)
! usefull to reduce residual current in the test case ISOMIP with no melting
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
ikt = mikt(ji,jj)
zts_top(ji,jj,1) = ts(ji,jj,ikt,1,Kmm)
zts_top(ji,jj,2) = ts(ji,jj,ikt,2,Kmm)
zdep_top(ji,jj) = MAX( risfdep(ji,jj) , gdept(ji,jj,1,Kmm) )
END_2D
CALL eos( zts_top, zdep_top, zrhd_top )
! !===========================!
! !===== surface value =====!
! !===========================!
DO_2D( 0, 0, 0, 0 )
ikt = mikt(ji ,jj ) ; ze3w = e3w(ji ,jj ,ikt ,Kmm)
ikti1 = mikt(ji+1,jj ) ; ze3wi1 = e3w(ji+1,jj ,ikti1,Kmm)
iktj1 = mikt(ji ,jj+1) ; ze3wj1 = e3w(ji ,jj+1,iktj1,Kmm)
! ! hydrostatic pressure gradient along s-surfaces and ice shelf pressure
! ! we assume ISF is in isostatic equilibrium
zhpi(ji,jj,1) = zcoef0 * r1_e1u(ji,jj) * ( risfload(ji+1,jj) - risfload(ji,jj) &
& + 0.5_wp * ( ze3wi1 * ( rhd(ji+1,jj,ikti1) + zrhd_top(ji+1,jj) ) &
& - ze3w * ( rhd(ji ,jj,ikt ) + zrhd_top(ji ,jj) ) ) )
zhpj(ji,jj,1) = zcoef0 * r1_e2v(ji,jj) * ( risfload(ji,jj+1) - risfload(ji,jj) &
& + 0.5_wp * ( ze3wj1 * ( rhd(ji,jj+1,iktj1) + zrhd_top(ji,jj+1) ) &
& - ze3w * ( rhd(ji,jj ,ikt ) + zrhd_top(ji,jj ) ) ) )
! ! s-coordinate pressure gradient correction (=0 if z coordinate)
zuap = -zcoef0 * ( rhd (ji+1,jj,1) + rhd (ji,jj,1) ) &
& * ( gde3w(ji+1,jj,1) - gde3w(ji,jj,1) ) * r1_e1u(ji,jj)
zvap = -zcoef0 * ( rhd (ji,jj+1,1) + rhd (ji,jj,1) ) &
& * ( gde3w(ji,jj+1,1) - gde3w(ji,jj,1) ) * r1_e2v(ji,jj)
! ! add to the general momentum trend
puu(ji,jj,1,Krhs) = puu(ji,jj,1,Krhs) + (zhpi(ji,jj,1) + zuap) * umask(ji,jj,1)
pvv(ji,jj,1,Krhs) = pvv(ji,jj,1,Krhs) + (zhpj(ji,jj,1) + zvap) * vmask(ji,jj,1)
END_2D
!
! !=============================!
! !===== interior values =====!
! !=============================!
DO_3D( 0, 0, 0, 0, 2, jpkm1 )
ze3w = e3w(ji ,jj ,jk,Kmm)
ze3wi1 = e3w(ji+1,jj ,jk,Kmm)
ze3wj1 = e3w(ji ,jj+1,jk,Kmm)
! ! hydrostatic pressure gradient along s-surfaces
zhpi(ji,jj,jk) = zhpi(ji,jj,jk-1) + zcoef0 / e1u(ji,jj) &
& * ( ze3wi1 * ( rhd(ji+1,jj,jk) + rhd(ji+1,jj,jk-1) ) * wmask(ji+1,jj,jk) &
& - ze3w * ( rhd(ji ,jj,jk) + rhd(ji ,jj,jk-1) ) * wmask(ji ,jj,jk) )
zhpj(ji,jj,jk) = zhpj(ji,jj,jk-1) + zcoef0 / e2v(ji,jj) &
& * ( ze3wj1 * ( rhd(ji,jj+1,jk) + rhd(ji,jj+1,jk-1) ) * wmask(ji,jj+1,jk) &
& - ze3w * ( rhd(ji,jj, jk) + rhd(ji,jj ,jk-1) ) * wmask(ji,jj ,jk) )
! ! s-coordinate pressure gradient correction
zuap = -zcoef0 * ( rhd (ji+1,jj ,jk) + rhd (ji,jj,jk) ) &
& * ( gde3w(ji+1,jj ,jk) - gde3w(ji,jj,jk) ) / e1u(ji,jj)
zvap = -zcoef0 * ( rhd (ji ,jj+1,jk) + rhd (ji,jj,jk) ) &
& * ( gde3w(ji ,jj+1,jk) - gde3w(ji,jj,jk) ) / e2v(ji,jj)
! ! add to the general momentum trend
puu(ji,jj,jk,Krhs) = puu(ji,jj,jk,Krhs) + (zhpi(ji,jj,jk) + zuap) * umask(ji,jj,jk)
pvv(ji,jj,jk,Krhs) = pvv(ji,jj,jk,Krhs) + (zhpj(ji,jj,jk) + zvap) * vmask(ji,jj,jk)
END_3D
!
END SUBROUTINE hpg_isf
SUBROUTINE hpg_djc( kt, Kmm, puu, pvv, Krhs )
!!---------------------------------------------------------------------
!! *** ROUTINE hpg_djc ***
!!
!! ** Method : Density Jacobian with Cubic polynomial scheme
!!
!! Reference: Shchepetkin and McWilliams, J. Geophys. Res., 108(C3), 3090, 2003
!!----------------------------------------------------------------------
INTEGER , INTENT( in ) :: kt ! ocean time-step index
INTEGER , INTENT( in ) :: Kmm, Krhs ! ocean time level indices
REAL(wp), DIMENSION(jpi,jpj,jpk,jpt), INTENT(inout) :: puu, pvv ! ocean velocities and RHS of momentum equation
!!
INTEGER :: ji, jj, jk ! dummy loop indices
INTEGER :: iktb, iktt ! jk indices at tracer points for top and bottom points
REAL(wp) :: zcoef0, zep, cffw ! temporary scalars
REAL(wp) :: z_grav_10, z1_12, z1_cff
REAL(wp) :: cffu, cffx ! " "
REAL(wp) :: cffv, cffy ! " "
LOGICAL :: ll_tmp1, ll_tmp2 ! local logical variables
REAL(wp), DIMENSION(A2D(nn_hls),jpk) :: zhpi, zhpj
REAL(wp), DIMENSION(A2D(nn_hls),jpk) :: zdzx, zdzy, zdzz ! Primitive grid differences ('delta_xyz')
REAL(wp), DIMENSION(A2D(nn_hls),jpk) :: zdz_i, zdz_j, zdz_k ! Harmonic average of primitive grid differences ('d_xyz')
REAL(wp), DIMENSION(A2D(nn_hls),jpk) :: zdrhox, zdrhoy, zdrhoz ! Primitive rho differences ('delta_rho')
REAL(wp), DIMENSION(A2D(nn_hls),jpk) :: zdrho_i, zdrho_j, zdrho_k ! Harmonic average of primitive rho differences ('d_rho')
REAL(wp), DIMENSION(A2D(nn_hls),jpk) :: z_rho_i, z_rho_j, z_rho_k ! Face intergrals
REAL(wp), DIMENSION(A2D(nn_hls)) :: zz_dz_i, zz_dz_j, zz_drho_i, zz_drho_j ! temporary arrays
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: zcpx, zcpy !W/D pressure filter
!!----------------------------------------------------------------------
!
IF( ln_wd_il ) THEN
ALLOCATE( zcpx(A2D(nn_hls)) , zcpy(A2D(nn_hls)) )
DO_2D( 0, 0, 0, 0 )
ll_tmp1 = MIN( ssh(ji,jj,Kmm) , ssh(ji+1,jj,Kmm) ) > &
& MAX( -ht_0(ji,jj) , -ht_0(ji+1,jj) ) .AND. &
& MAX( ssh(ji,jj,Kmm) + ht_0(ji,jj), ssh(ji+1,jj,Kmm) + ht_0(ji+1,jj) ) &
& > rn_wdmin1 + rn_wdmin2
ll_tmp2 = ( ABS( ssh(ji,jj,Kmm) - ssh(ji+1,jj,Kmm) ) > 1.E-12 ) .AND. ( &
& MAX( ssh(ji,jj,Kmm) , ssh(ji+1,jj,Kmm) ) > &
& MAX( -ht_0(ji,jj) , -ht_0(ji+1,jj) ) + rn_wdmin1 + rn_wdmin2 )
IF(ll_tmp1) THEN
zcpx(ji,jj) = 1.0_wp
ELSE IF(ll_tmp2) THEN
! no worries about ssh(ji+1,jj,Kmm) - ssh(ji ,jj,Kmm) = 0, it won't happen ! here
zcpx(ji,jj) = ABS( (ssh(ji+1,jj,Kmm) + ht_0(ji+1,jj) - ssh(ji,jj,Kmm) - ht_0(ji,jj)) &
& / (ssh(ji+1,jj,Kmm) - ssh(ji ,jj,Kmm)) )
ELSE
zcpx(ji,jj) = 0._wp
END IF
ll_tmp1 = MIN( ssh(ji,jj,Kmm) , ssh(ji,jj+1,Kmm) ) > &
& MAX( -ht_0(ji,jj) , -ht_0(ji,jj+1) ) .AND. &
& MAX( ssh(ji,jj,Kmm) + ht_0(ji,jj), ssh(ji,jj+1,Kmm) + ht_0(ji,jj+1) ) &
& > rn_wdmin1 + rn_wdmin2
ll_tmp2 = ( ABS( ssh(ji,jj,Kmm) - ssh(ji,jj+1,Kmm) ) > 1.E-12 ) .AND. ( &
& MAX( ssh(ji,jj,Kmm) , ssh(ji,jj+1,Kmm) ) > &
& MAX( -ht_0(ji,jj) , -ht_0(ji,jj+1) ) + rn_wdmin1 + rn_wdmin2 )
IF(ll_tmp1) THEN
zcpy(ji,jj) = 1.0_wp
ELSE IF(ll_tmp2) THEN
! no worries about ssh(ji,jj+1,Kmm) - ssh(ji,jj ,Kmm) = 0, it won't happen ! here
zcpy(ji,jj) = ABS( (ssh(ji,jj+1,Kmm) + ht_0(ji,jj+1) - ssh(ji,jj,Kmm) - ht_0(ji,jj)) &
& / (ssh(ji,jj+1,Kmm) - ssh(ji,jj ,Kmm)) )
ELSE
zcpy(ji,jj) = 0._wp
END IF
END_2D
END IF
IF( .NOT. l_istiled .OR. ntile == 1 ) THEN ! Do only on the first tile
IF( kt == nit000 ) THEN
IF(lwp) WRITE(numout,*)
IF(lwp) WRITE(numout,*) 'dyn:hpg_djc : hydrostatic pressure gradient trend'
IF(lwp) WRITE(numout,*) '~~~~~~~~~~~ s-coordinate case, density Jacobian with cubic polynomial scheme'
ENDIF
ENDIF
! Local constant initialization
zcoef0 = - grav * 0.5_wp
z_grav_10 = grav / 10._wp
z1_12 = 1.0_wp / 12._wp
!----------------------------------------------------------------------------------------
! 1. compute and store elementary vertical differences in provisional arrays
!----------------------------------------------------------------------------------------
!!bug gm Not a true bug, but... zdzz=e3w for zdzx, zdzy verify what it is really
DO_3D( 1, 1, 1, 1, 2, jpkm1 )
zdrhoz(ji,jj,jk) = rhd (ji ,jj ,jk) - rhd (ji,jj,jk-1)
zdzz (ji,jj,jk) = - gde3w(ji ,jj ,jk) + gde3w(ji,jj,jk-1)
END_3D
!-------------------------------------------------------------------------
! 2. compute harmonic averages for vertical differences using eq. 5.18
!-------------------------------------------------------------------------
zep = 1.e-15
!! mb zdrho_k, zdz_k, zdrho_i, zdz_i, zdrho_j, zdz_j re-centred about the point (ji,jj,jk)
zdrho_k(:,:,:) = 0._wp
zdz_k (:,:,:) = 0._wp
DO_3D( 1, 1, 1, 1, 2, jpk-2 )
cffw = MAX( 2._wp * zdrhoz(ji,jj,jk) * zdrhoz(ji,jj,jk+1), 0._wp )
z1_cff = zdrhoz(ji,jj,jk) + zdrhoz(ji,jj,jk+1)
zdrho_k(ji,jj,jk) = cffw / SIGN( MAX( ABS(z1_cff), zep ), z1_cff )
zdz_k(ji,jj,jk) = 2._wp * zdzz(ji,jj,jk) * zdzz(ji,jj,jk+1) &
& / ( zdzz(ji,jj,jk) + zdzz(ji,jj,jk+1) )
END_3D
!----------------------------------------------------------------------------------
! 3. apply boundary conditions at top and bottom using 5.36-5.37
!----------------------------------------------------------------------------------
! mb for sea-ice shelves we will need to re-write this upper boundary condition in the same form as the lower boundary condition
DO_2D( 1, 1, 1, 1 )
zdrho_k(ji,jj,1) = aco_bc_vrt * ( rhd (ji,jj,2) - rhd (ji,jj,1) ) - bco_bc_vrt * zdrho_k(ji,jj,2)
zdz_k (ji,jj,1) = aco_bc_vrt * (-gde3w(ji,jj,2) + gde3w(ji,jj,1) ) - bco_bc_vrt * zdz_k (ji,jj,2)
END_2D
DO_2D( 1, 1, 1, 1 )
IF ( mbkt(ji,jj)>1 ) THEN
iktb = mbkt(ji,jj)
zdrho_k(ji,jj,iktb) = aco_bc_vrt * ( rhd(ji,jj,iktb) - rhd(ji,jj,iktb-1) ) - bco_bc_vrt * zdrho_k(ji,jj,iktb-1)
zdz_k (ji,jj,iktb) = aco_bc_vrt * (-gde3w(ji,jj,iktb) + gde3w(ji,jj,iktb-1) ) - bco_bc_vrt * zdz_k (ji,jj,iktb-1)
END IF
END_2D
!--------------------------------------------------------------
! 4. Compute side face integrals
!-------------------------------------------------------------
!! ssh replaces e3w_n ; gde3w is a depth; the formulae involve heights
!! rho_k stores grav * FX / rho_0
!--------------------------------------------------------------
! 4. a) Upper half of top-most grid box, compute and store
!-------------------------------------------------------------
! *** AY note: ssh(ji,jj,Kmm) + gde3w(ji,jj,1) = e3w(ji,jj,1,Kmm)
DO_2D( 0, 1, 0, 1)
z_rho_k(ji,jj,1) = grav * gdept(ji,jj,1,Kmm) &
& * ( rhd(ji,jj,1) &
& -0.5_wp * ( rhd(ji,jj,2) - rhd(ji,jj,1) ) &
& * gdept(ji,jj,1,Kmm) / e3w(ji,jj,2,Kmm) &
& )
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
END_2D
!--------------------------------------------------------------
! 4. b) Interior faces, compute and store
!-------------------------------------------------------------
DO_3D( 0, 1, 0, 1, 2, jpkm1 )
z_rho_k(ji,jj,jk) = zcoef0 * ( rhd (ji,jj,jk) + rhd (ji,jj,jk-1) ) &
& * ( - gde3w(ji,jj,jk) + gde3w(ji,jj,jk-1) ) &
& + z_grav_10 * ( &
& ( zdrho_k (ji,jj,jk) - zdrho_k (ji,jj,jk-1) ) &
& * ( - gde3w(ji,jj,jk) + gde3w(ji,jj,jk-1) - z1_12 * ( zdz_k (ji,jj,jk) + zdz_k (ji,jj,jk-1) ) ) &
& - ( zdz_k (ji,jj,jk) - zdz_k (ji,jj,jk-1) ) &
& * ( rhd (ji,jj,jk) - rhd (ji,jj,jk-1) - z1_12 * ( zdrho_k(ji,jj,jk) + zdrho_k(ji,jj,jk-1) ) ) &
& )
END_3D
!----------------------------------------------------------------------------------------
! 5. compute and store elementary horizontal differences in provisional arrays
!----------------------------------------------------------------------------------------
zdrhox(:,:,:) = 0._wp
zdzx (:,:,:) = 0._wp
zdrhoy(:,:,:) = 0._wp
zdzy (:,:,:) = 0._wp
DO_3D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 1, jpkm1 )
zdrhox(ji,jj,jk) = rhd (ji+1,jj ,jk) - rhd (ji ,jj ,jk)
zdzx (ji,jj,jk) = gde3w(ji ,jj ,jk) - gde3w(ji+1,jj ,jk)
zdrhoy(ji,jj,jk) = rhd (ji ,jj+1,jk) - rhd (ji ,jj ,jk)
zdzy (ji,jj,jk) = gde3w(ji ,jj ,jk) - gde3w(ji ,jj+1,jk)
END_3D
IF( nn_hls == 1 ) CALL lbc_lnk( 'dynhpg', zdrhox, 'U', -1._wp, zdzx, 'U', -1._wp, zdrhoy, 'V', -1._wp, zdzy, 'V', -1._wp )
!-------------------------------------------------------------------------
! 6. compute harmonic averages using eq. 5.18
!-------------------------------------------------------------------------
DO_3D( 0, 1, 0, 1, 1, jpkm1 )
cffu = MAX( 2._wp * zdrhox(ji-1,jj,jk) * zdrhox(ji,jj,jk), 0._wp )
z1_cff = zdrhox(ji-1,jj,jk) + zdrhox(ji,jj,jk)
zdrho_i(ji,jj,jk) = cffu / SIGN( MAX( ABS(z1_cff), zep ), z1_cff )
cffx = MAX( 2._wp * zdzx(ji-1,jj,jk) * zdzx(ji,jj,jk), 0._wp )
z1_cff = zdzx(ji-1,jj,jk) + zdzx(ji,jj,jk)
zdz_i(ji,jj,jk) = cffx / SIGN( MAX( ABS(z1_cff), zep ), z1_cff )
cffv = MAX( 2._wp * zdrhoy(ji,jj-1,jk) * zdrhoy(ji,jj,jk), 0._wp )
z1_cff = zdrhoy(ji,jj-1,jk) + zdrhoy(ji,jj,jk)
zdrho_j(ji,jj,jk) = cffv / SIGN( MAX( ABS(z1_cff), zep ), z1_cff )
cffy = MAX( 2._wp * zdzy(ji,jj-1,jk) * zdzy(ji,jj,jk), 0._wp )
z1_cff = zdzy(ji,jj-1,jk) + zdzy(ji,jj,jk)
zdz_j(ji,jj,jk) = cffy / SIGN( MAX( ABS(z1_cff), zep ), z1_cff )
END_3D
!!! Note that zdzx, zdzy, zdzz, zdrhox, zdrhoy and zdrhoz should NOT be used beyond this point
!----------------------------------------------------------------------------------
! 6B. apply boundary conditions at side boundaries using 5.36-5.37
!----------------------------------------------------------------------------------
DO jk = 1, jpkm1
zz_drho_i(:,:) = zdrho_i(:,:,jk)
zz_dz_i (:,:) = zdz_i (:,:,jk)
zz_drho_j(:,:) = zdrho_j(:,:,jk)
zz_dz_j (:,:) = zdz_j (:,:,jk)
! Walls coming from left: should check from 2 to jpi-1 (and jpj=2-jpj)
DO_2D( 0, 0, 0, 1 )
IF ( umask(ji,jj,jk) > 0.5_wp .AND. umask(ji-1,jj,jk) < 0.5_wp .AND. umask(ji+1,jj,jk) > 0.5_wp) THEN
zz_drho_i(ji,jj) = aco_bc_hor * ( rhd (ji+1,jj,jk) - rhd (ji,jj,jk) ) - bco_bc_hor * zdrho_i(ji+1,jj,jk)
zz_dz_i (ji,jj) = aco_bc_hor * (-gde3w(ji+1,jj,jk) + gde3w(ji,jj,jk) ) - bco_bc_hor * zdz_i (ji+1,jj,jk)
END IF
END_2D
! Walls coming from right: should check from 3 to jpi (and jpj=2-jpj)
DO_2D( -1, 1, 0, 1 )
IF ( umask(ji,jj,jk) < 0.5_wp .AND. umask(ji-1,jj,jk) > 0.5_wp .AND. umask(ji-2,jj,jk) > 0.5_wp) THEN
zz_drho_i(ji,jj) = aco_bc_hor * ( rhd (ji,jj,jk) - rhd (ji-1,jj,jk) ) - bco_bc_hor * zdrho_i(ji-1,jj,jk)
zz_dz_i (ji,jj) = aco_bc_hor * (-gde3w(ji,jj,jk) + gde3w(ji-1,jj,jk) ) - bco_bc_hor * zdz_i (ji-1,jj,jk)
END IF
END_2D
! Walls coming from left: should check from 2 to jpj-1 (and jpi=2-jpi)
DO_2D( 0, 1, 0, 0 )
IF ( vmask(ji,jj,jk) > 0.5_wp .AND. vmask(ji,jj-1,jk) < 0.5_wp .AND. vmask(ji,jj+1,jk) > 0.5_wp) THEN
zz_drho_j(ji,jj) = aco_bc_hor * ( rhd (ji,jj+1,jk) - rhd (ji,jj,jk) ) - bco_bc_hor * zdrho_j(ji,jj+1,jk)
zz_dz_j (ji,jj) = aco_bc_hor * (-gde3w(ji,jj+1,jk) + gde3w(ji,jj,jk) ) - bco_bc_hor * zdz_j (ji,jj+1,jk)
END IF
END_2D
! Walls coming from right: should check from 3 to jpj (and jpi=2-jpi)
DO_2D( 0, 1, -1, 1 )
IF ( vmask(ji,jj,jk) < 0.5_wp .AND. vmask(ji,jj-1,jk) > 0.5_wp .AND. vmask(ji,jj-2,jk) > 0.5_wp) THEN
zz_drho_j(ji,jj) = aco_bc_hor * ( rhd (ji,jj,jk) - rhd (ji,jj-1,jk) ) - bco_bc_hor * zdrho_j(ji,jj-1,jk)
zz_dz_j (ji,jj) = aco_bc_hor * (-gde3w(ji,jj,jk) + gde3w(ji,jj-1,jk) ) - bco_bc_hor * zdz_j (ji,jj-1,jk)
END IF
END_2D
zdrho_i(:,:,jk) = zz_drho_i(:,:)
zdz_i (:,:,jk) = zz_dz_i (:,:)
zdrho_j(:,:,jk) = zz_drho_j(:,:)
zdz_j (:,:,jk) = zz_dz_j (:,:)
END DO
!--------------------------------------------------------------
! 7. Calculate integrals on side faces
!-------------------------------------------------------------
DO_3D( 0, 0, 0, 0, 1, jpkm1 )
! two -ve signs cancel in next two lines (within zcoef0 and because gde3w is a depth not a height)
z_rho_i(ji,jj,jk) = zcoef0 * ( rhd (ji+1,jj,jk) + rhd (ji,jj,jk) ) &
& * ( gde3w(ji+1,jj,jk) - gde3w(ji,jj,jk) )
IF ( umask(ji-1, jj, jk) > 0.5 .OR. umask(ji+1, jj, jk) > 0.5 ) THEN
z_rho_i(ji,jj,jk) = z_rho_i(ji,jj,jk) - z_grav_10 * ( &
& ( zdrho_i (ji+1,jj,jk) - zdrho_i (ji,jj,jk) ) &
& * ( - gde3w(ji+1,jj,jk) + gde3w(ji,jj,jk) - z1_12 * ( zdz_i (ji+1,jj,jk) + zdz_i (ji,jj,jk) ) ) &
& - ( zdz_i (ji+1,jj,jk) - zdz_i (ji,jj,jk) ) &
& * ( rhd (ji+1,jj,jk) - rhd (ji,jj,jk) - z1_12 * ( zdrho_i(ji+1,jj,jk) + zdrho_i(ji,jj,jk) ) ) &
& )
END IF
z_rho_j(ji,jj,jk) = zcoef0 * ( rhd (ji,jj+1,jk) + rhd (ji,jj,jk) ) &
& * ( gde3w(ji,jj+1,jk) - gde3w(ji,jj,jk) )
IF ( vmask(ji, jj-1, jk) > 0.5 .OR. vmask(ji, jj+1, jk) > 0.5 ) THEN
z_rho_j(ji,jj,jk) = z_rho_j(ji,jj,jk) - z_grav_10 * ( &
& ( zdrho_j (ji,jj+1,jk) - zdrho_j (ji,jj,jk) ) &
& * ( - gde3w(ji,jj+1,jk) + gde3w(ji,jj,jk) - z1_12 * ( zdz_j (ji,jj+1,jk) + zdz_j (ji,jj,jk) ) ) &
& - ( zdz_j (ji,jj+1,jk) - zdz_j (ji,jj,jk) ) &
& * ( rhd (ji,jj+1,jk) - rhd (ji,jj,jk) - z1_12 * ( zdrho_j(ji,jj+1,jk) + zdrho_j(ji,jj,jk) ) ) &
& )
END IF
END_3D
!--------------------------------------------------------------
! 8. Integrate in the vertical
!-------------------------------------------------------------
!
! ---------------
! Surface value
! ---------------
DO_2D( 0, 0, 0, 0 )
zhpi(ji,jj,1) = ( z_rho_k(ji,jj,1) - z_rho_k(ji+1,jj ,1) - z_rho_i(ji,jj,1) ) * r1_e1u(ji,jj)
zhpj(ji,jj,1) = ( z_rho_k(ji,jj,1) - z_rho_k(ji ,jj+1,1) - z_rho_j(ji,jj,1) ) * r1_e2v(ji,jj)
IF( ln_wd_il ) THEN
zhpi(ji,jj,1) = zhpi(ji,jj,1) * zcpx(ji,jj)
zhpj(ji,jj,1) = zhpj(ji,jj,1) * zcpy(ji,jj)
ENDIF
! add to the general momentum trend
puu(ji,jj,1,Krhs) = puu(ji,jj,1,Krhs) + zhpi(ji,jj,1)
pvv(ji,jj,1,Krhs) = pvv(ji,jj,1,Krhs) + zhpj(ji,jj,1)
END_2D
! ----------------
! interior value (2=<jk=<jpkm1)
! ----------------
DO_3D( 0, 0, 0, 0, 2, jpkm1 )
! hydrostatic pressure gradient along s-surfaces
zhpi(ji,jj,jk) = zhpi(ji,jj,jk-1) &
& + ( ( z_rho_k(ji,jj,jk) - z_rho_k(ji+1,jj,jk ) ) &
& - ( z_rho_i(ji,jj,jk) - z_rho_i(ji ,jj,jk-1) ) ) * r1_e1u(ji,jj)
zhpj(ji,jj,jk) = zhpj(ji,jj,jk-1) &
& + ( ( z_rho_k(ji,jj,jk) - z_rho_k(ji,jj+1,jk ) ) &
& -( z_rho_j(ji,jj,jk) - z_rho_j(ji,jj ,jk-1) ) ) * r1_e2v(ji,jj)
IF( ln_wd_il ) THEN
zhpi(ji,jj,jk) = zhpi(ji,jj,jk) * zcpx(ji,jj)
zhpj(ji,jj,jk) = zhpj(ji,jj,jk) * zcpy(ji,jj)
ENDIF
! add to the general momentum trend
puu(ji,jj,jk,Krhs) = puu(ji,jj,jk,Krhs) + zhpi(ji,jj,jk)
pvv(ji,jj,jk,Krhs) = pvv(ji,jj,jk,Krhs) + zhpj(ji,jj,jk)
END_3D
!
IF( ln_wd_il ) DEALLOCATE( zcpx, zcpy )
!
END SUBROUTINE hpg_djc
SUBROUTINE hpg_prj( kt, Kmm, puu, pvv, Krhs )
!!---------------------------------------------------------------------
!! *** ROUTINE hpg_prj ***
!!
!! ** Method : s-coordinate case.
!! A Pressure-Jacobian horizontal pressure gradient method
!! based on the constrained cubic-spline interpolation for
!! all vertical coordinate systems
!!
!! ** Action : - Update (puu(:,:,:,Krhs),pvv(:,:,:,Krhs)) with the now hydrastatic pressure trend
!!----------------------------------------------------------------------
INTEGER, PARAMETER :: polynomial_type = 1 ! 1: cubic spline, 2: linear
INTEGER , INTENT( in ) :: kt ! ocean time-step index
INTEGER , INTENT( in ) :: Kmm, Krhs ! ocean time level indices
REAL(wp), DIMENSION(jpi,jpj,jpk,jpt), INTENT(inout) :: puu, pvv ! ocean velocities and RHS of momentum equation
!!
INTEGER :: ji, jj, jk, jkk ! dummy loop indices
REAL(wp) :: zcoef0, znad ! local scalars
!
!! The local variables for the correction term
INTEGER :: jk1, jis, jid, jjs, jjd
LOGICAL :: ll_tmp1, ll_tmp2 ! local logical variables
REAL(wp) :: zuijk, zvijk, zpwes, zpwed, zpnss, zpnsd, zdeps
REAL(wp) :: zrhdt1
REAL(wp) :: zdpdx1, zdpdx2, zdpdy1, zdpdy2
REAL(wp), DIMENSION(A2D(nn_hls)) :: zpgu, zpgv ! 2D workspace
REAL(wp), DIMENSION(A2D(nn_hls)) :: zsshu_n, zsshv_n
REAL(wp), DIMENSION(A2D(nn_hls),jpk) :: zdept, zrhh
REAL(wp), DIMENSION(A2D(nn_hls),jpk) :: zhpi, zu, zv, fsp, xsp, asp, bsp, csp, dsp
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: zcpx, zcpy !W/D pressure filter
!!----------------------------------------------------------------------
!
IF( .NOT. l_istiled .OR. ntile == 1 ) THEN ! Do only on the first tile
IF( kt == nit000 ) THEN
IF(lwp) WRITE(numout,*)
IF(lwp) WRITE(numout,*) 'dyn:hpg_prj : hydrostatic pressure gradient trend'
IF(lwp) WRITE(numout,*) '~~~~~~~~~~~ s-coordinate case, cubic spline pressure Jacobian'
ENDIF
ENDIF
! Local constant initialization
zcoef0 = - grav
znad = 1._wp
IF( ln_linssh ) znad = 1._wp
!
! ---------------
! Surface pressure gradient to be removed
! ---------------
DO_2D( 0, 0, 0, 0 )
zpgu(ji,jj) = - grav * ( ssh(ji+1,jj,Kmm) - ssh(ji,jj,Kmm) ) * r1_e1u(ji,jj)
zpgv(ji,jj) = - grav * ( ssh(ji,jj+1,Kmm) - ssh(ji,jj,Kmm) ) * r1_e2v(ji,jj)
END_2D
!
IF( ln_wd_il ) THEN
ALLOCATE( zcpx(A2D(nn_hls)) , zcpy(A2D(nn_hls)) )
DO_2D( 0, 0, 0, 0 )
ll_tmp1 = MIN( ssh(ji,jj,Kmm) , ssh(ji+1,jj,Kmm) ) > &
& MAX( -ht_0(ji,jj) , -ht_0(ji+1,jj) ) .AND. &
& MAX( ssh(ji,jj,Kmm) + ht_0(ji,jj), ssh(ji+1,jj,Kmm) + ht_0(ji+1,jj) ) > &
& rn_wdmin1 + rn_wdmin2
ll_tmp2 = ( ABS( ssh(ji,jj,Kmm) - ssh(ji+1,jj,Kmm) ) > 1.E-12 ) .AND. &
& ( MAX( ssh(ji,jj,Kmm) , ssh(ji+1,jj,Kmm) ) > &
& MAX( -ht_0(ji,jj) , -ht_0(ji+1,jj) ) + rn_wdmin1 + rn_wdmin2 )
IF(ll_tmp1) THEN
zcpx(ji,jj) = 1.0_wp
ELSE IF(ll_tmp2) THEN
! no worries about ssh(ji+1,jj,Kmm) - ssh(ji ,jj,Kmm) = 0, it won't happen ! here
zcpx(ji,jj) = ABS( (ssh(ji+1,jj,Kmm) + ht_0(ji+1,jj) - ssh(ji,jj,Kmm) - ht_0(ji,jj)) &
& / (ssh(ji+1,jj,Kmm) - ssh(ji ,jj,Kmm)) )
zcpx(ji,jj) = MAX(MIN( zcpx(ji,jj) , 1.0_wp),0.0_wp)
ELSE
zcpx(ji,jj) = 0._wp
END IF
ll_tmp1 = MIN( ssh(ji,jj,Kmm) , ssh(ji,jj+1,Kmm) ) > &
& MAX( -ht_0(ji,jj) , -ht_0(ji,jj+1) ) .AND. &
& MAX( ssh(ji,jj,Kmm) + ht_0(ji,jj), ssh(ji,jj+1,Kmm) + ht_0(ji,jj+1) ) > &
& rn_wdmin1 + rn_wdmin2
ll_tmp2 = ( ABS( ssh(ji,jj,Kmm) - ssh(ji,jj+1,Kmm) ) > 1.E-12 ) .AND. &
& ( MAX( ssh(ji,jj,Kmm) , ssh(ji,jj+1,Kmm) ) > &
& MAX( -ht_0(ji,jj) , -ht_0(ji,jj+1) ) + rn_wdmin1 + rn_wdmin2 )
IF(ll_tmp1) THEN
zcpy(ji,jj) = 1.0_wp
ELSE IF(ll_tmp2) THEN
! no worries about ssh(ji,jj+1,Kmm) - ssh(ji,jj ,Kmm) = 0, it won't happen ! here
zcpy(ji,jj) = ABS( (ssh(ji,jj+1,Kmm) + ht_0(ji,jj+1) - ssh(ji,jj,Kmm) - ht_0(ji,jj)) &
& / (ssh(ji,jj+1,Kmm) - ssh(ji,jj ,Kmm)) )
zcpy(ji,jj) = MAX(MIN( zcpy(ji,jj) , 1.0_wp),0.0_wp)
ELSE
zcpy(ji,jj) = 0._wp
ENDIF
END_2D
ENDIF
! Clean 3-D work arrays
zhpi(:,:,:) = 0._wp
zrhh(:,:,:) = rhd(A2D(nn_hls),:)
! Preparing vertical density profile "zrhh(:,:,:)" for hybrid-sco coordinate
DO_2D( 1, 1, 1, 1 )
jk = mbkt(ji,jj)
IF( jk <= 1 ) THEN ; zrhh(ji,jj, : ) = 0._wp
ELSEIF( jk == 2 ) THEN ; zrhh(ji,jj,jk+1:jpk) = rhd(ji,jj,jk)
ELSEIF( jk < jpkm1 ) THEN
DO jkk = jk+1, jpk
zrhh(ji,jj,jkk) = interp1(gde3w(ji,jj,jkk ), gde3w(ji,jj,jkk-1), &
& gde3w(ji,jj,jkk-2), zrhh (ji,jj,jkk-1), zrhh(ji,jj,jkk-2))
END DO
ENDIF
END_2D
! Transfer the depth of "T(:,:,:)" to vertical coordinate "zdept(:,:,:)"
DO_2D( 1, 1, 1, 1 )
zdept(ji,jj,1) = 0.5_wp * e3w(ji,jj,1,Kmm) - ssh(ji,jj,Kmm)
END_2D
DO_3D( 1, 1, 1, 1, 2, jpk )
zdept(ji,jj,jk) = zdept(ji,jj,jk-1) + e3w(ji,jj,jk,Kmm)
END_3D
fsp(:,:,:) = zrhh (:,:,:)
xsp(:,:,:) = zdept(:,:,:)
! Construct the vertical density profile with the
! constrained cubic spline interpolation
! rho(z) = asp + bsp*z + csp*z^2 + dsp*z^3
CALL cspline( fsp, xsp, asp, bsp, csp, dsp, polynomial_type )
! Integrate the hydrostatic pressure "zhpi(:,:,:)" at "T(ji,jj,1)"
DO_2D( 0, 1, 0, 1 )
zrhdt1 = zrhh(ji,jj,1) - interp3( zdept(ji,jj,1), asp(ji,jj,1), bsp(ji,jj,1), &
& csp(ji,jj,1), dsp(ji,jj,1) ) * 0.25_wp * e3w(ji,jj,1,Kmm)
! assuming linear profile across the top half surface layer
zhpi(ji,jj,1) = 0.5_wp * e3w(ji,jj,1,Kmm) * zrhdt1
END_2D
! Calculate the pressure "zhpi(:,:,:)" at "T(ji,jj,2:jpkm1)"
DO_3D( 0, 1, 0, 1, 2, jpkm1 )
zhpi(ji,jj,jk) = zhpi(ji,jj,jk-1) + &
& integ_spline( zdept(ji,jj,jk-1), zdept(ji,jj,jk), &
& asp (ji,jj,jk-1), bsp (ji,jj,jk-1), &
& csp (ji,jj,jk-1), dsp (ji,jj,jk-1) )
END_3D
! Z coordinate of U(ji,jj,1:jpkm1) and V(ji,jj,1:jpkm1)
! Prepare zsshu_n and zsshv_n
DO_2D( 0, 0, 0, 0 )
!!gm BUG ? if it is ssh at u- & v-point then it should be:
! zsshu_n(ji,jj) = (e1e2t(ji,jj) * ssh(ji,jj,Kmm) + e1e2t(ji+1,jj) * ssh(ji+1,jj,Kmm)) * &
! & r1_e1e2u(ji,jj) * umask(ji,jj,1) * 0.5_wp
! zsshv_n(ji,jj) = (e1e2t(ji,jj) * ssh(ji,jj,Kmm) + e1e2t(ji,jj+1) * ssh(ji,jj+1,Kmm)) * &
! & r1_e1e2v(ji,jj) * vmask(ji,jj,1) * 0.5_wp
!!gm not this:
zsshu_n(ji,jj) = (e1e2u(ji,jj) * ssh(ji,jj,Kmm) + e1e2u(ji+1, jj) * ssh(ji+1,jj,Kmm)) * &
& r1_e1e2u(ji,jj) * umask(ji,jj,1) * 0.5_wp
zsshv_n(ji,jj) = (e1e2v(ji,jj) * ssh(ji,jj,Kmm) + e1e2v(ji+1, jj) * ssh(ji,jj+1,Kmm)) * &
& r1_e1e2v(ji,jj) * vmask(ji,jj,1) * 0.5_wp
END_2D
DO_2D( 0, 0, 0, 0 )
zu(ji,jj,1) = - ( e3u(ji,jj,1,Kmm) - zsshu_n(ji,jj) )
zv(ji,jj,1) = - ( e3v(ji,jj,1,Kmm) - zsshv_n(ji,jj) )
END_2D
DO_3D( 0, 0, 0, 0, 2, jpkm1 )
zu(ji,jj,jk) = zu(ji,jj,jk-1) - e3u(ji,jj,jk,Kmm)
zv(ji,jj,jk) = zv(ji,jj,jk-1) - e3v(ji,jj,jk,Kmm)
END_3D
DO_3D( 0, 0, 0, 0, 1, jpkm1 )
zu(ji,jj,jk) = zu(ji,jj,jk) + 0.5_wp * e3u(ji,jj,jk,Kmm)
zv(ji,jj,jk) = zv(ji,jj,jk) + 0.5_wp * e3v(ji,jj,jk,Kmm)
END_3D
DO_3D( 0, 0, 0, 0, 1, jpkm1 )
zu(ji,jj,jk) = MIN( zu(ji,jj,jk) , MAX( -zdept(ji,jj,jk) , -zdept(ji+1,jj,jk) ) )
zu(ji,jj,jk) = MAX( zu(ji,jj,jk) , MIN( -zdept(ji,jj,jk) , -zdept(ji+1,jj,jk) ) )
zv(ji,jj,jk) = MIN( zv(ji,jj,jk) , MAX( -zdept(ji,jj,jk) , -zdept(ji,jj+1,jk) ) )
zv(ji,jj,jk) = MAX( zv(ji,jj,jk) , MIN( -zdept(ji,jj,jk) , -zdept(ji,jj+1,jk) ) )
END_3D
DO_3D( 0, 0, 0, 0, 1, jpkm1 )
zpwes = 0._wp; zpwed = 0._wp
zpnss = 0._wp; zpnsd = 0._wp
zuijk = zu(ji,jj,jk)
zvijk = zv(ji,jj,jk)
!!!!! for u equation
IF( jk <= mbku(ji,jj) ) THEN
IF( -zdept(ji+1,jj,jk) >= -zdept(ji,jj,jk) ) THEN
jis = ji + 1; jid = ji
ELSE
jis = ji; jid = ji +1
ENDIF
! integrate the pressure on the shallow side
jk1 = jk
DO WHILE ( -zdept(jis,jj,jk1) > zuijk )
IF( jk1 == mbku(ji,jj) ) THEN
zuijk = -zdept(jis,jj,jk1)
EXIT
ENDIF
zdeps = MIN(zdept(jis,jj,jk1+1), -zuijk)
zpwes = zpwes + &
integ_spline(zdept(jis,jj,jk1), zdeps, &
asp(jis,jj,jk1), bsp(jis,jj,jk1), &
csp(jis,jj,jk1), dsp(jis,jj,jk1))
jk1 = jk1 + 1
END DO
! integrate the pressure on the deep side
jk1 = jk
DO WHILE ( -zdept(jid,jj,jk1) < zuijk )
IF( jk1 == 1 ) THEN
zdeps = zdept(jid,jj,1) + MIN(zuijk, ssh(jid,jj,Kmm)*znad)
zrhdt1 = zrhh(jid,jj,1) - interp3(zdept(jid,jj,1), asp(jid,jj,1), &
bsp(jid,jj,1) , csp(jid,jj,1), &
dsp(jid,jj,1)) * zdeps
zpwed = zpwed + 0.5_wp * (zrhh(jid,jj,1) + zrhdt1) * zdeps
EXIT
ENDIF
zdeps = MAX(zdept(jid,jj,jk1-1), -zuijk)
zpwed = zpwed + &
integ_spline(zdeps, zdept(jid,jj,jk1), &
asp(jid,jj,jk1-1), bsp(jid,jj,jk1-1), &
csp(jid,jj,jk1-1), dsp(jid,jj,jk1-1) )
jk1 = jk1 - 1
END DO
! update the momentum trends in u direction
zdpdx1 = zcoef0 * r1_e1u(ji,jj) * ( zhpi(ji+1,jj,jk) - zhpi(ji,jj,jk) )
IF( .NOT.ln_linssh ) THEN
zdpdx2 = zcoef0 * r1_e1u(ji,jj) * &
& ( REAL(jis-jid, wp) * (zpwes + zpwed) + (ssh(ji+1,jj,Kmm)-ssh(ji,jj,Kmm)) )
ELSE
zdpdx2 = zcoef0 * r1_e1u(ji,jj) * REAL(jis-jid, wp) * (zpwes + zpwed)
ENDIF
IF( ln_wd_il ) THEN
zdpdx1 = zdpdx1 * zcpx(ji,jj) * wdrampu(ji,jj)
zdpdx2 = zdpdx2 * zcpx(ji,jj) * wdrampu(ji,jj)
ENDIF
puu(ji,jj,jk,Krhs) = puu(ji,jj,jk,Krhs) + (zdpdx1 + zdpdx2 - zpgu(ji,jj)) * umask(ji,jj,jk)
ENDIF
!!!!! for v equation
IF( jk <= mbkv(ji,jj) ) THEN
IF( -zdept(ji,jj+1,jk) >= -zdept(ji,jj,jk) ) THEN
jjs = jj + 1; jjd = jj
ELSE
jjs = jj ; jjd = jj + 1
ENDIF
! integrate the pressure on the shallow side
jk1 = jk
DO WHILE ( -zdept(ji,jjs,jk1) > zvijk )
IF( jk1 == mbkv(ji,jj) ) THEN
zvijk = -zdept(ji,jjs,jk1)
EXIT
ENDIF
zdeps = MIN(zdept(ji,jjs,jk1+1), -zvijk)
zpnss = zpnss + &
integ_spline(zdept(ji,jjs,jk1), zdeps, &
asp(ji,jjs,jk1), bsp(ji,jjs,jk1), &
csp(ji,jjs,jk1), dsp(ji,jjs,jk1) )
jk1 = jk1 + 1
END DO
! integrate the pressure on the deep side
jk1 = jk
DO WHILE ( -zdept(ji,jjd,jk1) < zvijk )
IF( jk1 == 1 ) THEN
zdeps = zdept(ji,jjd,1) + MIN(zvijk, ssh(ji,jjd,Kmm)*znad)
zrhdt1 = zrhh(ji,jjd,1) - interp3(zdept(ji,jjd,1), asp(ji,jjd,1), &
bsp(ji,jjd,1) , csp(ji,jjd,1), &
dsp(ji,jjd,1) ) * zdeps
zpnsd = zpnsd + 0.5_wp * (zrhh(ji,jjd,1) + zrhdt1) * zdeps
EXIT
ENDIF
zdeps = MAX(zdept(ji,jjd,jk1-1), -zvijk)
zpnsd = zpnsd + &
integ_spline(zdeps, zdept(ji,jjd,jk1), &
asp(ji,jjd,jk1-1), bsp(ji,jjd,jk1-1), &
csp(ji,jjd,jk1-1), dsp(ji,jjd,jk1-1) )
jk1 = jk1 - 1
END DO
! update the momentum trends in v direction
zdpdy1 = zcoef0 * r1_e2v(ji,jj) * ( zhpi(ji,jj+1,jk) - zhpi(ji,jj,jk) )
IF( .NOT.ln_linssh ) THEN
zdpdy2 = zcoef0 * r1_e2v(ji,jj) * &
( REAL(jjs-jjd, wp) * (zpnss + zpnsd) + (ssh(ji,jj+1,Kmm)-ssh(ji,jj,Kmm)) )
ELSE
zdpdy2 = zcoef0 * r1_e2v(ji,jj) * REAL(jjs-jjd, wp) * (zpnss + zpnsd )
ENDIF
IF( ln_wd_il ) THEN
zdpdy1 = zdpdy1 * zcpy(ji,jj) * wdrampv(ji,jj)
zdpdy2 = zdpdy2 * zcpy(ji,jj) * wdrampv(ji,jj)
ENDIF
pvv(ji,jj,jk,Krhs) = pvv(ji,jj,jk,Krhs) + (zdpdy1 + zdpdy2 - zpgv(ji,jj)) * vmask(ji,jj,jk)
ENDIF
!
END_3D
!
IF( ln_wd_il ) DEALLOCATE( zcpx, zcpy )
!
END SUBROUTINE hpg_prj
SUBROUTINE cspline( fsp, xsp, asp, bsp, csp, dsp, polynomial_type )
!!----------------------------------------------------------------------
!! *** ROUTINE cspline ***
!!
!! ** Purpose : constrained cubic spline interpolation
!!
!! ** Method : f(x) = asp + bsp*x + csp*x^2 + dsp*x^3
!!
!! Reference: CJC Kruger, Constrained Cubic Spline Interpoltation
!!----------------------------------------------------------------------
REAL(wp), DIMENSION(A2D(nn_hls),jpk), INTENT(in ) :: fsp, xsp ! value and coordinate
REAL(wp), DIMENSION(A2D(nn_hls),jpk), INTENT( out) :: asp, bsp, csp, dsp ! coefficients of the interpoated function
INTEGER , INTENT(in ) :: polynomial_type ! 1: cubic spline ; 2: Linear
!
INTEGER :: ji, jj, jk ! dummy loop indices
REAL(wp) :: zdf1, zdf2, zddf1, zddf2, ztmp1, ztmp2, zdxtmp
REAL(wp) :: zdxtmp1, zdxtmp2, zalpha
REAL(wp) :: zdf(jpk)
!!----------------------------------------------------------------------
!
IF (polynomial_type == 1) THEN ! Constrained Cubic Spline
DO_2D( 1, 1, 1, 1 )
!!Fritsch&Butland's method, 1984 (preferred, but more computation)
! DO jk = 2, jpkm1-1
! zdxtmp1 = xsp(ji,jj,jk) - xsp(ji,jj,jk-1)
! zdxtmp2 = xsp(ji,jj,jk+1) - xsp(ji,jj,jk)
! zdf1 = ( fsp(ji,jj,jk) - fsp(ji,jj,jk-1) ) / zdxtmp1
! zdf2 = ( fsp(ji,jj,jk+1) - fsp(ji,jj,jk) ) / zdxtmp2
!
! zalpha = ( zdxtmp1 + 2._wp * zdxtmp2 ) / ( zdxtmp1 + zdxtmp2 ) / 3._wp
!
! IF(zdf1 * zdf2 <= 0._wp) THEN
! zdf(jk) = 0._wp
! ELSE
! zdf(jk) = zdf1 * zdf2 / ( ( 1._wp - zalpha ) * zdf1 + zalpha * zdf2 )
! ENDIF
! END DO
!!Simply geometric average
DO jk = 2, jpk-2
zdf1 = (fsp(ji,jj,jk ) - fsp(ji,jj,jk-1)) / (xsp(ji,jj,jk ) - xsp(ji,jj,jk-1))
zdf2 = (fsp(ji,jj,jk+1) - fsp(ji,jj,jk )) / (xsp(ji,jj,jk+1) - xsp(ji,jj,jk ))
IF(zdf1 * zdf2 <= 0._wp) THEN
zdf(jk) = 0._wp
ELSE
zdf(jk) = 2._wp * zdf1 * zdf2 / (zdf1 + zdf2)
ENDIF
END DO
zdf(1) = 1.5_wp * ( fsp(ji,jj,2) - fsp(ji,jj,1) ) / &
& ( xsp(ji,jj,2) - xsp(ji,jj,1) ) - 0.5_wp * zdf(2)
zdf(jpkm1) = 1.5_wp * ( fsp(ji,jj,jpkm1) - fsp(ji,jj,jpkm1-1) ) / &
& ( xsp(ji,jj,jpkm1) - xsp(ji,jj,jpkm1-1) ) - 0.5_wp * zdf(jpk - 2)
DO jk = 1, jpk-2
zdxtmp = xsp(ji,jj,jk+1) - xsp(ji,jj,jk)
ztmp1 = (zdf(jk+1) + 2._wp * zdf(jk)) / zdxtmp
ztmp2 = 6._wp * (fsp(ji,jj,jk+1) - fsp(ji,jj,jk)) / zdxtmp / zdxtmp
zddf1 = -2._wp * ztmp1 + ztmp2
ztmp1 = (2._wp * zdf(jk+1) + zdf(jk)) / zdxtmp
zddf2 = 2._wp * ztmp1 - ztmp2
dsp(ji,jj,jk) = (zddf2 - zddf1) / 6._wp / zdxtmp
csp(ji,jj,jk) = ( xsp(ji,jj,jk+1) * zddf1 - xsp(ji,jj,jk)*zddf2 ) / 2._wp / zdxtmp
bsp(ji,jj,jk) = ( fsp(ji,jj,jk+1) - fsp(ji,jj,jk) ) / zdxtmp - &
& csp(ji,jj,jk) * ( xsp(ji,jj,jk+1) + xsp(ji,jj,jk) ) - &
& dsp(ji,jj,jk) * ((xsp(ji,jj,jk+1) + xsp(ji,jj,jk))**2 - &
& xsp(ji,jj,jk+1) * xsp(ji,jj,jk))
asp(ji,jj,jk) = fsp(ji,jj,jk) - xsp(ji,jj,jk) * (bsp(ji,jj,jk) + &
& (xsp(ji,jj,jk) * (csp(ji,jj,jk) + &
& dsp(ji,jj,jk) * xsp(ji,jj,jk))))
END DO
END_2D
ELSEIF ( polynomial_type == 2 ) THEN ! Linear
DO_3D( 1, 1, 1, 1, 1, jpk-2 )
zdxtmp =xsp(ji,jj,jk+1) - xsp(ji,jj,jk)
ztmp1 = fsp(ji,jj,jk+1) - fsp(ji,jj,jk)
dsp(ji,jj,jk) = 0._wp
csp(ji,jj,jk) = 0._wp
bsp(ji,jj,jk) = ztmp1 / zdxtmp
asp(ji,jj,jk) = fsp(ji,jj,jk) - bsp(ji,jj,jk) * xsp(ji,jj,jk)
END_3D
!
ELSE
CALL ctl_stop( 'invalid polynomial type in cspline' )
ENDIF
!
END SUBROUTINE cspline
FUNCTION interp1(x, xl, xr, fl, fr) RESULT(f)
!!----------------------------------------------------------------------
!! *** ROUTINE interp1 ***
!!
!! ** Purpose : 1-d linear interpolation
!!
!! ** Method : interpolation is straight forward
!! extrapolation is also permitted (no value limit)
!!----------------------------------------------------------------------
REAL(wp), INTENT(in) :: x, xl, xr, fl, fr
REAL(wp) :: f ! result of the interpolation (extrapolation)
REAL(wp) :: zdeltx
!!----------------------------------------------------------------------
!
zdeltx = xr - xl
IF( abs(zdeltx) <= 10._wp * EPSILON(x) ) THEN
f = 0.5_wp * (fl + fr)
ELSE
f = ( (x - xl ) * fr - ( x - xr ) * fl ) / zdeltx
ENDIF
!
END FUNCTION interp1
FUNCTION interp2( x, a, b, c, d ) RESULT(f)
!!----------------------------------------------------------------------
!! *** ROUTINE interp1 ***
!!
!! ** Purpose : 1-d constrained cubic spline interpolation
!!
!! ** Method : cubic spline interpolation
!!
!!----------------------------------------------------------------------
REAL(wp), INTENT(in) :: x, a, b, c, d
REAL(wp) :: f ! value from the interpolation
!!----------------------------------------------------------------------
!
f = a + x* ( b + x * ( c + d * x ) )
!
END FUNCTION interp2
FUNCTION interp3( x, a, b, c, d ) RESULT(f)
!!----------------------------------------------------------------------
!! *** ROUTINE interp1 ***
!!
!! ** Purpose : Calculate the first order of derivative of
!! a cubic spline function y=a+b*x+c*x^2+d*x^3
!!
!! ** Method : f=dy/dx=b+2*c*x+3*d*x^2
!!
!!----------------------------------------------------------------------
REAL(wp), INTENT(in) :: x, a, b, c, d
REAL(wp) :: f ! value from the interpolation
!!----------------------------------------------------------------------
!
f = b + x * ( 2._wp * c + 3._wp * d * x)
!
END FUNCTION interp3
FUNCTION integ_spline( xl, xr, a, b, c, d ) RESULT(f)
!!----------------------------------------------------------------------
!! *** ROUTINE interp1 ***
!!
!! ** Purpose : 1-d constrained cubic spline integration
!!
!! ** Method : integrate polynomial a+bx+cx^2+dx^3 from xl to xr
!!
!!----------------------------------------------------------------------
REAL(wp), INTENT(in) :: xl, xr, a, b, c, d
REAL(wp) :: za1, za2, za3
REAL(wp) :: f ! integration result
!!----------------------------------------------------------------------
!
za1 = 0.5_wp * b
za2 = c / 3.0_wp
za3 = 0.25_wp * d
!
f = xr * ( a + xr * ( za1 + xr * ( za2 + za3 * xr ) ) ) - &
& xl * ( a + xl * ( za1 + xl * ( za2 + za3 * xl ) ) )
!
END FUNCTION integ_spline
!!======================================================================
END MODULE dynhpg