Skip to content
Snippets Groups Projects
vremap.F90 16.2 KiB
Newer Older
Guillaume Samson's avatar
Guillaume Samson committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
#define PPR_LIB      /* USE PPR library */
MODULE vremap
!$AGRIF_DO_NOT_TREAT
   !!======================================================================
   !!                       ***  MODULE  vremap  ***
   !! Ocean physics:  Vertical remapping routines
   !!
   !!======================================================================
   !! History : 4.0  !  2019-09  (Jérôme Chanut)  Original code
   !!----------------------------------------------------------------------
   !!----------------------------------------------------------------------
   !!
   !!----------------------------------------------------------------------
   USE par_oce
#if defined PPR_LIB
   USE ppr_1d   ! D. Engwirda piecewise polynomial reconstruction library
#endif

   IMPLICIT NONE
   PRIVATE

   PUBLIC   reconstructandremap, remap_linear

   !! * Substitutions
#  include "do_loop_substitute.h90"
   !!----------------------------------------------------------------------
   !! NEMO/OCE 4.0 , NEMO Consortium (2018)
   !! $Id: vremap 11573 2019-09-19 09:18:03Z jchanut $ 
   !! Software governed by the CeCILL license (see ./LICENSE)
   !!----------------------------------------------------------------------
CONTAINS

#if ! defined PPR_LIB
   SUBROUTINE reconstructandremap(ptin, phin, ptout, phout, kjpk_in, kjpk_out, kn_var)      
      !!----------------------------------------------------------------------
      !!                    ***  ROUTINE  reconstructandremap ***
      !!
      !! ** Purpose :   Brief description of the routine
      !!
      !! ** Method  :   description of the methodoloy used to achieve the
      !!                objectives of the routine. Be as clear as possible!
      !!
      !! ** Action  : - first action (share memory array/varible modified
      !!                in this routine
      !!              - second action .....
      !!              - .....
      !!
      !! References :   Author et al., Short_name_review, Year
      !!                Give references if exist otherwise suppress these lines
      !!-----------------------------------------------------------------------
      INTEGER , INTENT(in   )                      ::   kjpk_in    ! Number of input levels
      INTEGER , INTENT(in   )                      ::   kjpk_out   ! Number of output levels
      INTEGER , INTENT(in   )                      ::   kn_var     ! Number of variables
      REAL(wp), INTENT(in   ), DIMENSION(kjpk_in)  ::   phin       ! Input thicknesses
      REAL(wp), INTENT(in   ), DIMENSION(kjpk_out) ::   phout      ! Output thicknesses
      REAL(wp), INTENT(in   ), DIMENSION(kjpk_in , kn_var) ::   ptin       ! Input data
      REAL(wp), INTENT(inout), DIMENSION(kjpk_out, kn_var) ::   ptout      ! Remapped data
      !
      INTEGER             :: jk, jn, k1, kbox, ktop, ka, kbot
      REAL(wp), PARAMETER :: dpthin = 1.D-3, dsmll = 1.0D-8
      REAL(wp)            :: q, q01, q02, q001, q002, q0
      REAL(wp)            :: tsum, qbot, rpsum, zbox, ztop, zthk, zbot, offset, qtop
      REAL(wp)            :: coeffremap(kjpk_in,3), zwork(kjpk_in,3), zwork2(kjpk_in+1,3)
      REAL(wp)            :: z_win(1:kjpk_in+1), z_wout(1:kjpk_out+1)
      !!-----------------------------------------------------------------------

      z_win(1)=0._wp ; z_wout(1)= 0._wp
      DO jk = 1, kjpk_in
         z_win(jk+1)=z_win(jk)+phin(jk)
      END DO 
      
      DO jk = 1, kjpk_out
         z_wout(jk+1)=z_wout(jk)+phout(jk)       
      END DO       

      DO jk = 2, kjpk_in
         zwork(jk,1)=1._wp/(phin(jk-1)+phin(jk))
      END DO
        
      DO jk = 2, kjpk_in-1
         q0 = 1._wp / (phin(jk-1)+phin(jk)+phin(jk+1))
         zwork(jk,2) = phin(jk-1) + 2._wp*phin(jk) + phin(jk+1)
         zwork(jk,3) = q0
      END DO       
     
      DO jn = 1, kn_var

         DO jk = 2,kjpk_in
            zwork2(jk,1) = zwork(jk,1)*(ptin(jk,jn)-ptin(jk-1,jn))
         END DO
        
         coeffremap(:,1) = ptin(:,jn)
 
         DO jk = 2, kjpk_in-1
            q001 = phin(jk)*zwork2(jk+1,1)
            q002 = phin(jk)*zwork2(jk,1)        
            IF (q001*q002 < 0._wp) then
               q001 = 0._wp
               q002 = 0._wp
            ENDIF
            q=zwork(jk,2)
            q01=q*zwork2(jk+1,1)
            q02=q*zwork2(jk,1)
            IF (abs(q001) > abs(q02)) q001 = q02
            IF (abs(q002) > abs(q01)) q002 = q01
        
            q=(q001-q002)*zwork(jk,3)
            q001=q001-q*phin(jk+1)
            q002=q002+q*phin(jk-1)
        
            coeffremap(jk,3)=coeffremap(jk,1)+q001
            coeffremap(jk,2)=coeffremap(jk,1)-q002
        
            zwork2(jk,1)=(2._wp*q001-q002)**2
            zwork2(jk,2)=(2._wp*q002-q001)**2
         ENDDO
        
         DO jk = 1, kjpk_in
            IF(jk.EQ.1 .OR. jk.EQ.kjpk_in .OR. phin(jk).LE.dpthin) THEN
               coeffremap(jk,3) = coeffremap(jk,1)
               coeffremap(jk,2) = coeffremap(jk,1)
               zwork2(jk,1) = 0._wp
               zwork2(jk,2) = 0._wp
            ENDIF
         END DO
        
         DO jk = 2, kjpk_in
            q002 = max(zwork2(jk-1,2),dsmll)
            q001 = max(zwork2(jk,1)  ,dsmll)
            zwork2(jk,3) = (q001*coeffremap(jk-1,3)+q002*coeffremap(jk,2))/(q001+q002)
         END DO
        
         zwork2(1,3) = 2._wp*coeffremap(1,1)-zwork2(2,3)
         zwork2(kjpk_in+1,3)=2._wp*coeffremap(kjpk_in,1)-zwork2(kjpk_in,3)
 
         DO jk = 1, kjpk_in
            q01=zwork2(jk+1,3)-coeffremap(jk,1)
            q02=coeffremap(jk,1)-zwork2(jk,3)
            q001=2._wp*q01
            q002=2._wp*q02
            IF (q01*q02<0._wp) then
               q01=0._wp
               q02=0._wp
            ELSEIF (abs(q01)>abs(q002)) then
               q01=q002
            ELSEIF (abs(q02)>abs(q001)) then
               q02=q001
            ENDIF
            coeffremap(jk,2)=coeffremap(jk,1)-q02
            coeffremap(jk,3)=coeffremap(jk,1)+q01
         ENDDO

         zbot=0._wp
         kbot=1
         DO jk=1,kjpk_out
            ztop=zbot  !top is bottom of previous layer
            ktop=kbot
            IF     (ztop.GE.z_win(ktop+1)) then
               ktop=ktop+1
            ENDIF
        
            zbot=z_wout(jk+1)
            zthk=zbot-ztop

            IF(zthk.GT.dpthin .AND. ztop.LT.z_wout(kjpk_out+1)) THEN
 
               kbot=ktop
               DO while (z_win(kbot+1).lt.zbot.and.kbot.lt.kjpk_in)
                  kbot=kbot+1
               ENDDO
               zbox=zbot
               DO k1= jk+1,kjpk_out
                  IF     (z_wout(k1+1)-z_wout(k1).GT.dpthin) THEN
                     exit !thick layer
                  ELSE
                     zbox=z_wout(k1+1)  !include thin adjacent layers
                     IF(zbox.EQ.z_wout(kjpk_out+1)) THEN
                        exit !at bottom
                     ENDIF
                  ENDIF
               ENDDO
               zthk=zbox-ztop

               kbox=ktop
               DO while (z_win(kbox+1).lt.zbox.and.kbox.lt.kjpk_in)
                  kbox=kbox+1
               ENDDO
          
               IF(ktop.EQ.kbox) THEN
                  IF(z_wout(jk).NE.z_win(kbox).OR.z_wout(jk+1).NE.z_win(kbox+1)) THEN
                     IF(phin(kbox).GT.dpthin) THEN
                        q001 = (zbox-z_win(kbox))/phin(kbox)
                        q002 = (ztop-z_win(kbox))/phin(kbox)
                        q01=q001**2+q002**2+q001*q002+1._wp-2._wp*(q001+q002)
                        q02=q01-1._wp+(q001+q002)
                        q0=1._wp-q01-q02
                     ELSE
                        q0  = 1._wp
                        q01 = 0._wp
                        q02 = 0._wp
                     ENDIF
                     ptout(jk,jn)=q0*coeffremap(kbox,1)+q01*coeffremap(kbox,2)+q02*coeffremap(kbox,3)
                  ELSE
                     ptout(jk,jn) = ptin(kbox,jn)
                  ENDIF 
               ELSE
                  IF(ktop.LE.jk .AND. kbox.GE.jk) THEN
                     ka = jk
                  ELSEIF (kbox-ktop.GE.3) THEN
                     ka = (kbox+ktop)/2
                  ELSEIF (phin(ktop).GE.phin(kbox)) THEN
                     ka = ktop
                  ELSE
                     ka = kbox
                  ENDIF !choose ka
    
                  offset=coeffremap(ka,1)
    
                  qtop = z_win(ktop+1)-ztop !partial layer thickness
                  IF(phin(ktop).GT.dpthin) THEN
                     q=(ztop-z_win(ktop))/phin(ktop)
                     q01=q*(q-1._wp)
                     q02=q01+q
                     q0=1._wp-q01-q02            
                  ELSE
                     q0  = 1._wp
                     q01 = 0._wp
                     q02 = 0._wp
                  ENDIF
               
                  tsum =((q0*coeffremap(ktop,1)+q01*coeffremap(ktop,2)+q02*coeffremap(ktop,3))-offset)*qtop
    
                  DO k1= ktop+1,kbox-1
                     tsum =tsum +(coeffremap(k1,1)-offset)*phin(k1)
                  ENDDO !k1
               
                  qbot = zbox-z_win(kbox) !partial layer thickness
                  IF(phin(kbox).GT.dpthin) THEN
                     q=qbot/phin(kbox)
                     q01=(q-1._wp)**2
                     q02=q01-1._wp+q
                     q0=1_wp-q01-q02                            
                  ELSE
                     q0  = 1._wp
                     q01 = 0._wp
                     q02 = 0._wp
                  ENDIF
              
                  tsum = tsum +((q0*coeffremap(kbox,1)+q01*coeffremap(kbox,2)+q02*coeffremap(kbox,3))-offset)*qbot
               
                  rpsum=1._wp / zthk
                  ptout(jk,jn)=offset+tsum*rpsum
                 
               ENDIF !single or multiple layers
            ELSE
               IF (jk==1) THEN
                  write(*,'(a7,i4,i4,3f12.5)')'problem = ',kjpk_in,kjpk_out,zthk,z_wout(jk+1),phout(1)
               ENDIF
               ptout(jk,jn) = ptout(jk-1,jn)
             
            ENDIF !normal:thin layer
         ENDDO !jk

      END DO ! loop over variables
            
   END SUBROUTINE reconstructandremap

#else

   SUBROUTINE reconstructandremap(ptin, phin, ptout, phout, kjpk_in, kjpk_out, kn_var)
      !!----------------------------------------------------------------------
      !!                    *** ROUTINE  reconstructandremap ***
      !!
      !! ** Purpose :   Conservative remapping of a vertical column 
      !!                from one set of layers to an other one.
      !!
      !! ** Method  :   Uses D. Engwirda Piecewise Polynomial Reconstruction library.
      !!                https://github.com/dengwirda/PPR
      !!                
      !!
      !! References :   Engwirda, Darren & Kelley, Maxwell. (2015). A WENO-type 
      !!                slope-limiter for a family of piecewise polynomial methods. 
      !!                https://arxiv.org/abs/1606.08188
      !!-----------------------------------------------------------------------
      INTEGER , INTENT(in   )                      ::   kjpk_in    ! Number of input levels
      INTEGER , INTENT(in   )                      ::   kjpk_out   ! Number of output levels
      INTEGER , INTENT(in   )                      ::   kn_var     ! Number of variables
      REAL(wp), INTENT(in   ), DIMENSION(kjpk_in)  ::   phin       ! Input thicknesses
      REAL(wp), INTENT(in   ), DIMENSION(kjpk_out) ::   phout      ! Output thicknesses
      REAL(wp), INTENT(in   ), DIMENSION(kjpk_in , kn_var) ::   ptin       ! Input data
      REAL(wp), INTENT(inout), DIMENSION(kjpk_out, kn_var) ::   ptout      ! Remapped data
      !
      INTEGER, PARAMETER :: ndof = 1
      INTEGER  :: jk, jn
      REAL(wp) ::  zwin(kjpk_in+1) ,  ztin(ndof, kn_var, kjpk_in)
      REAL(wp) :: zwout(kjpk_out+1), ztout(ndof, kn_var, kjpk_out)
      TYPE(rmap_work) :: work
      TYPE(rmap_opts) :: opts
      TYPE(rcon_ends) :: bc_l(kn_var)
      TYPE(rcon_ends) :: bc_r(kn_var)
      !!--------------------------------------------------------------------
     
      ! Set interfaces and input data:
      zwin(1) = 0._wp
      DO jk = 2, kjpk_in + 1
         zwin(jk) = zwin(jk-1) + phin(jk-1) 
      END DO
      
      DO jn = 1, kn_var 
         DO jk = 1, kjpk_in
            ztin(ndof, jn, jk) =  ptin(jk, jn)
         END DO
      END DO

      zwout(1) = 0._wp
      DO jk = 2, kjpk_out + 1
         zwout(jk) = zwout(jk-1) + phout(jk-1) 
      END DO

      ! specify methods
!      opts%edge_meth = p1e_method     ! 1st-order edge interp.
!      opts%cell_meth = pcm_method
!      opts%cell_meth = plm_method     ! PLM method in cells
      opts%edge_meth = p3e_method     ! 3rd-order edge interp.
      opts%cell_meth = ppm_method     ! PPM method in cells    
!      opts%edge_meth = p5e_method     ! 5th-order edge interp.
!      opts%cell_meth = pqm_method     ! PQM method in cells

      ! limiter
!      opts%cell_lims = null_limit     ! no lim.
!      opts%cell_lims = weno_limit
      opts%cell_lims = mono_limit     ! monotone limiter   
 
      ! set boundary conditions
      bc_l%bcopt = bcon_loose         ! "loose" = extrapolate
      bc_r%bcopt = bcon_loose
!      bc_l%bcopt = bcon_slope        
!      bc_r%bcopt = bcon_slope

      ! init. method workspace
      CALL work%init(kjpk_in+1, kn_var, opts)

      ! remap
      CALL rmap1d(kjpk_in+1, kjpk_out+1, kn_var, ndof, &
      &           zwin, zwout, ztin, ztout,            &
      &           bc_l, bc_r, work, opts)

      ! clear method workspace
      CALL work%free()

      DO jn = 1, kn_var 
         DO jk = 1, kjpk_out
            ptout(jk, jn) = ztout(1, jn, jk)
         END DO
      END DO
            
   END SUBROUTINE reconstructandremap
#endif

   SUBROUTINE remap_linear(ptin, pzin, ptout, pzout, kjpk_in, kjpk_out, kn_var)
      !!----------------------------------------------------------------------
      !!                    *** ROUTINE  remap_linear ***
      !!
      !! ** Purpose :   Linear interpolation based on input/ouputs depths
      !!
      !!-----------------------------------------------------------------------
      INTEGER , INTENT(in   )                      ::   kjpk_in    ! Number of input levels
      INTEGER , INTENT(in   )                      ::   kjpk_out   ! Number of output levels
      INTEGER , INTENT(in   )                      ::   kn_var     ! Number of variables
      REAL(wp), INTENT(in   ), DIMENSION(kjpk_in)  ::   pzin       ! Input depths
      REAL(wp), INTENT(in   ), DIMENSION(kjpk_out) ::   pzout      ! Output depths
      REAL(wp), INTENT(in   ), DIMENSION(kjpk_in , kn_var) ::   ptin       ! Input data
      REAL(wp), INTENT(inout), DIMENSION(kjpk_out, kn_var) ::   ptout      ! Interpolated data
      !
      INTEGER  :: jkin, jkout, jn
      !!--------------------------------------------------------------------
      !      
      DO jkout = 1, kjpk_out !  Loop over destination grid
         !
         IF     ( pzout(jkout) <=  pzin(  1    ) ) THEN ! Surface extrapolation	
            DO jn = 1, kn_var 
! linear
!               ptout(jkout,jn) = ptin(1 ,jn) + &
!                               & (pzout(jkout) - pzin(1)) / (pzin(2)    - pzin(1)) &
!                               &                          * (ptin(2,jn) - ptin(1,jn))
               ptout(jkout,jn) = ptin(1,jn)
            END DO
         ELSEIF ( pzout(jkout) >= pzin(kjpk_in) ) THEN ! Bottom extrapolation 
            DO jn = 1, kn_var 
! linear
!               ptout(jkout,jn) = ptin(kjpk_in ,jn) + &
!                               & (pzout(jkout) - pzin(kjpk_in)) / (pzin(kjpk_in)    - pzin(kjpk_in-1)) &
!                               &                                * (ptin(kjpk_in,jn) - ptin(kjpk_in-1,jn))
               ptout(jkout,jn) = ptin(kjpk_in ,jn)
            END DO
         ELSEIF ( ( pzout(jkout) > pzin(1) ).AND.( pzout(jkout) < pzin(kjpk_in) )) THEN
            DO jkin = 1, kjpk_in - 1 !  Loop over source grid
               IF ( pzout(jkout) < pzin(jkin+1) ) THEN
                  DO jn = 1, kn_var
                     ptout(jkout,jn) =  ptin(jkin,jn) + &
                                     & (pzout(jkout) - pzin(jkin)) / (pzin(jkin+1)    - pzin(jkin)) &
                                     &                             * (ptin(jkin+1,jn) - ptin(jkin,jn))
                  END DO  
                  EXIT
               ENDIF  
            END DO
         ENDIF
         !
      END DO

   END SUBROUTINE remap_linear

   !!======================================================================
!$AGRIF_END_DO_NOT_TREAT
END MODULE vremap