Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
MODULE icectl
!!======================================================================
!! *** MODULE icectl ***
!! sea-ice : controls and prints
!!======================================================================
!! History : 3.5 ! 2015-01 (M. Vancoppenolle) Original code
!! 3.7 ! 2016-10 (C. Rousset) Add routine ice_prt3D
!! 4.0 ! 2018 (many people) SI3 [aka Sea Ice cube]
!!----------------------------------------------------------------------
#if defined key_si3
!!----------------------------------------------------------------------
!! 'key_si3' SI3 sea-ice model
!!----------------------------------------------------------------------
!! ice_cons_hsm : conservation tests on heat, salt and mass during a time step (global)
!! ice_cons_final : conservation tests on heat, salt and mass at end of time step (global)
!! ice_cons2D : conservation tests on heat, salt and mass at each gridcell
!! ice_ctl : control prints in case of crash
!! ice_prt : control prints at a given grid point
!! ice_prt3D : control prints of ice arrays
!!----------------------------------------------------------------------
USE phycst ! physical constants
USE oce ! ocean dynamics and tracers
USE dom_oce ! ocean space and time domain
USE ice ! sea-ice: variables
USE ice1D ! sea-ice: thermodynamics variables
USE sbc_oce ! Surface boundary condition: ocean fields
USE sbc_ice ! Surface boundary condition: ice fields
!
USE in_out_manager ! I/O manager
USE iom ! I/O manager library
USE lib_mpp ! MPP library
USE lib_fortran ! fortran utilities (glob_sum + no signed zero)
USE timing ! Timing
USE prtctl ! Print control
IMPLICIT NONE
PRIVATE
PUBLIC ice_cons_hsm
PUBLIC ice_cons_final
PUBLIC ice_cons2D
PUBLIC ice_ctl
PUBLIC ice_prt
PUBLIC ice_prt3D
PUBLIC ice_drift_wri
PUBLIC ice_drift_init
! thresold rates for conservation
! these values are changed by the namelist parameter rn_icechk, so that threshold = zchk * rn_icechk
Clement Rousset
committed
REAL(wp), PARAMETER :: rchk_m = 2.5e-7 ! kg/m2/s <=> 1e-6 m of ice per hour spuriously gained/lost
REAL(wp), PARAMETER :: rchk_s = 2.5e-6 ! g/m2/s <=> 1e-6 m of ice per hour spuriously gained/lost (considering s=10g/kg)
REAL(wp), PARAMETER :: rchk_t = 7.5e-2 ! W/m2 <=> 1e-6 m of ice per hour spuriously gained/lost (considering Lf=3e5J/kg)
! for drift outputs
CHARACTER(LEN=50) :: clname="icedrift_diagnostics.ascii" ! ascii filename
INTEGER :: numicedrift ! outfile unit
REAL(wp) :: rdiag_icemass, rdiag_icesalt, rdiag_iceheat
REAL(wp) :: rdiag_adv_icemass, rdiag_adv_icesalt, rdiag_adv_iceheat
!! * Substitutions
# include "do_loop_substitute.h90"
!!----------------------------------------------------------------------
!! NEMO/ICE 4.0 , NEMO Consortium (2018)
!! $Id: icectl.F90 15377 2021-10-14 20:50:18Z clem $
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
SUBROUTINE ice_cons_hsm( icount, cd_routine, pdiag_v, pdiag_s, pdiag_t, pdiag_fv, pdiag_fs, pdiag_ft )
!!-------------------------------------------------------------------
!! *** ROUTINE ice_cons_hsm ***
!!
!! ** Purpose : Test the conservation of heat, salt and mass for each ice routine
!! + test if ice concentration and volume are > 0
!!
!! ** Method : This is an online diagnostics which can be activated with ln_icediachk=true
!! It prints in ocean.output if there is a violation of conservation at each time-step
Clement Rousset
committed
!! The thresholds (rchk_m, rchk_s, rchk_t) determine violations
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
!! For salt and heat thresholds, ice is considered to have a salinity of 10
!! and a heat content of 3e5 J/kg (=latent heat of fusion)
!!-------------------------------------------------------------------
INTEGER , INTENT(in) :: icount ! called at: =0 the begining of the routine, =1 the end
CHARACTER(len=*), INTENT(in) :: cd_routine ! name of the routine
REAL(wp) , INTENT(inout) :: pdiag_v, pdiag_s, pdiag_t, pdiag_fv, pdiag_fs, pdiag_ft
!!
REAL(wp) :: zdiag_mass, zdiag_salt, zdiag_heat
REAL(wp), DIMENSION(jpi,jpj,10) :: ztmp3
REAL(wp), DIMENSION(jpi,jpj,jpl,8) :: ztmp4
REAL(wp), DIMENSION(10) :: zchk3
REAL(wp), DIMENSION(8) :: zchk4
!!-------------------------------------------------------------------
!
! -- quantities -- !
ztmp3(:,:,1) = SUM( v_i * rhoi + v_s * rhos + ( v_ip + v_il ) * rhow, dim=3 ) * e1e2t ! volume
ztmp3(:,:,2) = SUM( sv_i * rhoi, dim=3 ) * e1e2t ! salt
ztmp3(:,:,3) = ( SUM( SUM( e_i, dim=4 ), dim=3 ) + SUM( SUM( e_s, dim=4 ), dim=3 ) ) * e1e2t ! heat
!
! -- fluxes -- !
ztmp3(:,:,4) = ( wfx_bog + wfx_bom + wfx_sum + wfx_sni + wfx_opw + wfx_res + wfx_dyn + wfx_lam + wfx_pnd & ! mass
& + wfx_snw_sni + wfx_snw_sum + wfx_snw_dyn + wfx_snw_sub + wfx_ice_sub + wfx_spr ) * e1e2t
ztmp3(:,:,5) = ( sfx_bri + sfx_bog + sfx_bom + sfx_sum + sfx_sni + sfx_opw & ! salt
& + sfx_res + sfx_dyn + sfx_sub + sfx_lam ) * e1e2t
ztmp3(:,:,6) = ( hfx_sum + hfx_bom + hfx_bog + hfx_dif + hfx_opw + hfx_snw & ! heat
& - hfx_thd - hfx_dyn - hfx_res - hfx_sub - hfx_spr ) * e1e2t
!
! -- global sum -- !
zchk3(1:6) = glob_sum_vec( 'icectl', ztmp3(:,:,1:6) )
IF( icount == 0 ) THEN
!
pdiag_v = zchk3(1)
pdiag_s = zchk3(2)
pdiag_t = zchk3(3)
pdiag_fv = zchk3(4)
pdiag_fs = zchk3(5)
pdiag_ft = zchk3(6)
!
ELSEIF( icount == 1 ) THEN
!
! -- mass, salt and heat diags -- !
zdiag_mass = ( zchk3(1) - pdiag_v ) * r1_Dt_ice + ( zchk3(4) - pdiag_fv )
zdiag_salt = ( zchk3(2) - pdiag_s ) * r1_Dt_ice + ( zchk3(5) - pdiag_fs )
zdiag_heat = ( zchk3(3) - pdiag_t ) * r1_Dt_ice + ( zchk3(6) - pdiag_ft )
! -- max concentration diag -- !
ztmp3(:,:,7) = SUM( a_i, dim=3 )
zchk3(7) = glob_max( 'icectl', ztmp3(:,:,7) )
! -- advection scheme is conservative? -- !
ztmp3(:,:,8 ) = diag_adv_mass * e1e2t
ztmp3(:,:,9 ) = diag_adv_heat * e1e2t
ztmp3(:,:,10) = SUM( a_i + epsi10, dim=3 ) * e1e2t ! ice area (+epsi10 to set a threshold > 0 when there is no ice)
zchk3(8:10) = glob_sum_vec( 'icectl', ztmp3(:,:,8:10) )
! -- min diags -- !
ztmp4(:,:,:,1) = v_i
ztmp4(:,:,:,2) = v_s
ztmp4(:,:,:,3) = v_ip
ztmp4(:,:,:,4) = v_il
ztmp4(:,:,:,5) = a_i
ztmp4(:,:,:,6) = sv_i
ztmp4(:,:,:,7) = SUM( e_i, dim=3 )
ztmp4(:,:,:,8) = SUM( e_s, dim=3 )
zchk4(1:8) = glob_min_vec( 'icectl', ztmp4(:,:,:,1:8) )
IF( lwp ) THEN
! check conservation issues
Clement Rousset
committed
IF( ABS(zdiag_mass) > rchk_m * rn_icechk_glo * zchk3(10) ) &
& WRITE(numout,*) cd_routine,' : violation mass cons. [kg] = ',zdiag_mass * rDt_ice
Clement Rousset
committed
IF( ABS(zdiag_salt) > rchk_s * rn_icechk_glo * zchk3(10) ) &
& WRITE(numout,*) cd_routine,' : violation salt cons. [g] = ',zdiag_salt * rDt_ice
Clement Rousset
committed
IF( ABS(zdiag_heat) > rchk_t * rn_icechk_glo * zchk3(10) ) &
& WRITE(numout,*) cd_routine,' : violation heat cons. [J] = ',zdiag_heat * rDt_ice
! check negative values
IF( zchk4(1) < 0. ) WRITE(numout,*) cd_routine,' : violation v_i < 0 = ',zchk4(1)
IF( zchk4(2) < 0. ) WRITE(numout,*) cd_routine,' : violation v_s < 0 = ',zchk4(2)
IF( zchk4(3) < 0. ) WRITE(numout,*) cd_routine,' : violation v_ip < 0 = ',zchk4(3)
IF( zchk4(4) < 0. ) WRITE(numout,*) cd_routine,' : violation v_il < 0 = ',zchk4(4)
IF( zchk4(5) < 0. ) WRITE(numout,*) cd_routine,' : violation a_i < 0 = ',zchk4(5)
IF( zchk4(6) < 0. ) WRITE(numout,*) cd_routine,' : violation s_i < 0 = ',zchk4(6)
IF( zchk4(7) < 0. ) WRITE(numout,*) cd_routine,' : violation e_i < 0 = ',zchk4(7)
IF( zchk4(8) < 0. ) WRITE(numout,*) cd_routine,' : violation e_s < 0 = ',zchk4(8)
! check maximum ice concentration
IF( zchk3(7)>MAX(rn_amax_n,rn_amax_s)+epsi10 .AND. cd_routine /= 'icedyn_adv' .AND. cd_routine /= 'icedyn_rdgrft' ) &
& WRITE(numout,*) cd_routine,' : violation a_i > amax = ',zchk3(7)
! check if advection scheme is conservative
Clement Rousset
committed
IF( ABS(zchk3(8)) > rchk_m * rn_icechk_glo * zchk3(10) .AND. cd_routine == 'icedyn_adv' ) &
& WRITE(numout,*) cd_routine,' : violation adv scheme [kg] = ',zchk3(8) * rDt_ice
Clement Rousset
committed
IF( ABS(zchk3(9)) > rchk_t * rn_icechk_glo * zchk3(10) .AND. cd_routine == 'icedyn_adv' ) &
& WRITE(numout,*) cd_routine,' : violation adv scheme [J] = ',zchk3(9) * rDt_ice
ENDIF
!
ENDIF
END SUBROUTINE ice_cons_hsm
SUBROUTINE ice_cons_final( cd_routine )
!!-------------------------------------------------------------------
!! *** ROUTINE ice_cons_final ***
!!
!! ** Purpose : Test the conservation of heat, salt and mass at the end of each ice time-step
!!
!! ** Method : This is an online diagnostics which can be activated with ln_icediachk=true
!! It prints in ocean.output if there is a violation of conservation at each time-step
Clement Rousset
committed
!! The thresholds (rchk_m, rchk_s, rchk_t) determine the violations
!! For salt and heat thresholds, ice is considered to have a salinity of 10
!! and a heat content of 3e5 J/kg (=latent heat of fusion)
!!-------------------------------------------------------------------
CHARACTER(len=*), INTENT(in) :: cd_routine ! name of the routine
!!
REAL(wp), DIMENSION(jpi,jpj,4) :: ztmp
REAL(wp), DIMENSION(4) :: zchk
!!-------------------------------------------------------------------
ztmp(:,:,1) = ( wfx_ice + wfx_snw + wfx_spr + wfx_sub + wfx_pnd + diag_vice + diag_vsnw + diag_vpnd - diag_adv_mass ) * e1e2t ! mass diag
ztmp(:,:,2) = ( sfx + diag_sice - diag_adv_salt ) * e1e2t ! salt
ztmp(:,:,3) = ( qt_oce_ai - qt_atm_oi + diag_heat - diag_adv_heat ) * e1e2t ! heat
! equivalent to this:
!! ( -diag_heat + hfx_sum + hfx_bom + hfx_bog + hfx_dif + hfx_opw + hfx_snw &
!! & - hfx_thd - hfx_dyn - hfx_res - hfx_sub - hfx_spr ) * e1e2t )
ztmp(:,:,4) = SUM( a_i + epsi10, dim=3 ) * e1e2t ! ice area (+epsi10 to set a threshold > 0 when there is no ice)
! global sums
zchk(1:4) = glob_sum_vec( 'icectl', ztmp(:,:,1:4) )
IF( lwp ) THEN
Clement Rousset
committed
IF( ABS(zchk(1)) > rchk_m * rn_icechk_glo * zchk(4) ) &
& WRITE(numout,*) cd_routine,' : violation mass cons. [kg] = ',zchk(1) * rDt_ice
Clement Rousset
committed
IF( ABS(zchk(2)) > rchk_s * rn_icechk_glo * zchk(4) ) &
& WRITE(numout,*) cd_routine,' : violation salt cons. [g] = ',zchk(2) * rDt_ice
Clement Rousset
committed
IF( ABS(zchk(3)) > rchk_t * rn_icechk_glo * zchk(4) ) &
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
& WRITE(numout,*) cd_routine,' : violation heat cons. [J] = ',zchk(3) * rDt_ice
ENDIF
!
END SUBROUTINE ice_cons_final
SUBROUTINE ice_cons2D( icount, cd_routine, pdiag_v, pdiag_s, pdiag_t, pdiag_fv, pdiag_fs, pdiag_ft )
!!-------------------------------------------------------------------
!! *** ROUTINE ice_cons2D ***
!!
!! ** Purpose : Test the conservation of heat, salt and mass for each ice routine
!! + test if ice concentration and volume are > 0
!!
!! ** Method : This is an online diagnostics which can be activated with ln_icediachk=true
!! It stops the code if there is a violation of conservation at any gridcell
!!-------------------------------------------------------------------
INTEGER , INTENT(in) :: icount ! called at: =0 the begining of the routine, =1 the end
CHARACTER(len=*), INTENT(in) :: cd_routine ! name of the routine
REAL(wp) , DIMENSION(jpi,jpj), INTENT(inout) :: pdiag_v, pdiag_s, pdiag_t, pdiag_fv, pdiag_fs, pdiag_ft
!!
REAL(wp), DIMENSION(jpi,jpj) :: zdiag_mass, zdiag_salt, zdiag_heat, &
& zdiag_amin, zdiag_vmin, zdiag_smin, zdiag_emin !!, zdiag_amax
INTEGER :: jl, jk
LOGICAL :: ll_stop_m = .FALSE.
LOGICAL :: ll_stop_s = .FALSE.
LOGICAL :: ll_stop_t = .FALSE.
CHARACTER(len=120) :: clnam ! filename for the output
!!-------------------------------------------------------------------
!
IF( icount == 0 ) THEN
pdiag_v = SUM( v_i * rhoi + v_s * rhos + ( v_ip + v_il ) * rhow, dim=3 )
pdiag_s = SUM( sv_i * rhoi , dim=3 )
pdiag_t = SUM( SUM( e_i, dim=4 ), dim=3 ) + SUM( SUM( e_s, dim=4 ), dim=3 )
! mass flux
pdiag_fv = wfx_bog + wfx_bom + wfx_sum + wfx_sni + wfx_opw + wfx_res + wfx_dyn + wfx_lam + wfx_pnd + &
& wfx_snw_sni + wfx_snw_sum + wfx_snw_dyn + wfx_snw_sub + wfx_ice_sub + wfx_spr
! salt flux
pdiag_fs = sfx_bri + sfx_bog + sfx_bom + sfx_sum + sfx_sni + sfx_opw + sfx_res + sfx_dyn + sfx_sub + sfx_lam
! heat flux
pdiag_ft = hfx_sum + hfx_bom + hfx_bog + hfx_dif + hfx_opw + hfx_snw &
& - hfx_thd - hfx_dyn - hfx_res - hfx_sub - hfx_spr
ELSEIF( icount == 1 ) THEN
! -- mass diag -- !
zdiag_mass = ( SUM( v_i * rhoi + v_s * rhos + ( v_ip + v_il ) * rhow, dim=3 ) - pdiag_v ) * r1_Dt_ice &
& + ( wfx_bog + wfx_bom + wfx_sum + wfx_sni + wfx_opw + wfx_res + wfx_dyn + wfx_lam + wfx_pnd + &
& wfx_snw_sni + wfx_snw_sum + wfx_snw_dyn + wfx_snw_sub + wfx_ice_sub + wfx_spr ) &
& - pdiag_fv
Clement Rousset
committed
IF( MAXVAL( ABS(zdiag_mass) ) > rchk_m * rn_icechk_cel ) ll_stop_m = .TRUE.
!
! -- salt diag -- !
zdiag_salt = ( SUM( sv_i * rhoi , dim=3 ) - pdiag_s ) * r1_Dt_ice &
& + ( sfx_bri + sfx_bog + sfx_bom + sfx_sum + sfx_sni + sfx_opw + sfx_res + sfx_dyn + sfx_sub + sfx_lam ) &
& - pdiag_fs
Clement Rousset
committed
IF( MAXVAL( ABS(zdiag_salt) ) > rchk_s * rn_icechk_cel ) ll_stop_s = .TRUE.
!
! -- heat diag -- !
zdiag_heat = ( SUM( SUM( e_i, dim=4 ), dim=3 ) + SUM( SUM( e_s, dim=4 ), dim=3 ) - pdiag_t ) * r1_Dt_ice &
& + ( hfx_sum + hfx_bom + hfx_bog + hfx_dif + hfx_opw + hfx_snw &
& - hfx_thd - hfx_dyn - hfx_res - hfx_sub - hfx_spr ) &
& - pdiag_ft
Clement Rousset
committed
IF( MAXVAL( ABS(zdiag_heat) ) > rchk_t * rn_icechk_cel ) ll_stop_t = .TRUE.
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
!
! -- other diags -- !
! a_i < 0
zdiag_amin(:,:) = 0._wp
DO jl = 1, jpl
WHERE( a_i(:,:,jl) < 0._wp ) zdiag_amin(:,:) = 1._wp
ENDDO
! v_i < 0
zdiag_vmin(:,:) = 0._wp
DO jl = 1, jpl
WHERE( v_i(:,:,jl) < 0._wp ) zdiag_vmin(:,:) = 1._wp
ENDDO
! s_i < 0
zdiag_smin(:,:) = 0._wp
DO jl = 1, jpl
WHERE( s_i(:,:,jl) < 0._wp ) zdiag_smin(:,:) = 1._wp
ENDDO
! e_i < 0
zdiag_emin(:,:) = 0._wp
DO jl = 1, jpl
DO jk = 1, nlay_i
WHERE( e_i(:,:,jk,jl) < 0._wp ) zdiag_emin(:,:) = 1._wp
ENDDO
ENDDO
! a_i > amax
!WHERE( SUM( a_i, dim=3 ) > ( MAX( rn_amax_n, rn_amax_s ) + epsi10 ) ; zdiag_amax(:,:) = 1._wp
!ELSEWHERE ; zdiag_amax(:,:) = 0._wp
!END WHERE
IF( ll_stop_m .OR. ll_stop_s .OR. ll_stop_t ) THEN
clnam = 'diag_ice_conservation_'//cd_routine
CALL ice_cons_wri( clnam, zdiag_mass, zdiag_salt, zdiag_heat, zdiag_amin, zdiag_vmin, zdiag_smin, zdiag_emin )
ENDIF
IF( ll_stop_m ) CALL ctl_stop( 'STOP', cd_routine//': ice mass conservation issue' )
IF( ll_stop_s ) CALL ctl_stop( 'STOP', cd_routine//': ice salt conservation issue' )
IF( ll_stop_t ) CALL ctl_stop( 'STOP', cd_routine//': ice heat conservation issue' )
ENDIF
END SUBROUTINE ice_cons2D
SUBROUTINE ice_cons_wri( cdfile_name, pdiag_mass, pdiag_salt, pdiag_heat, pdiag_amin, pdiag_vmin, pdiag_smin, pdiag_emin )
!!---------------------------------------------------------------------
!! *** ROUTINE ice_cons_wri ***
!!
!! ** Purpose : create a NetCDF file named cdfile_name which contains
!! the instantaneous fields when conservation issue occurs
!!
!! ** Method : NetCDF files using ioipsl
!!----------------------------------------------------------------------
CHARACTER(len=*), INTENT( in ) :: cdfile_name ! name of the file created
REAL(wp), DIMENSION(:,:), INTENT( in ) :: pdiag_mass, pdiag_salt, pdiag_heat, &
& pdiag_amin, pdiag_vmin, pdiag_smin, pdiag_emin !!, pdiag_amax
!!
INTEGER :: inum
!!----------------------------------------------------------------------
!
IF(lwp) WRITE(numout,*)
IF(lwp) WRITE(numout,*) 'ice_cons_wri : single instantaneous ice state'
IF(lwp) WRITE(numout,*) '~~~~~~~~~~~~~ named :', cdfile_name, '...nc'
IF(lwp) WRITE(numout,*)
CALL iom_open( TRIM(cdfile_name), inum, ldwrt = .TRUE., kdlev = jpl, cdcomp = 'ICE' )
CALL iom_rstput( 0, 0, inum, 'cons_mass', pdiag_mass(:,:) , ktype = jp_r8 ) ! ice mass spurious lost/gain
CALL iom_rstput( 0, 0, inum, 'cons_salt', pdiag_salt(:,:) , ktype = jp_r8 ) ! ice salt spurious lost/gain
CALL iom_rstput( 0, 0, inum, 'cons_heat', pdiag_heat(:,:) , ktype = jp_r8 ) ! ice heat spurious lost/gain
! other diags
CALL iom_rstput( 0, 0, inum, 'aneg_count', pdiag_amin(:,:) , ktype = jp_r8 ) !
CALL iom_rstput( 0, 0, inum, 'vneg_count', pdiag_vmin(:,:) , ktype = jp_r8 ) !
CALL iom_rstput( 0, 0, inum, 'sneg_count', pdiag_smin(:,:) , ktype = jp_r8 ) !
CALL iom_rstput( 0, 0, inum, 'eneg_count', pdiag_emin(:,:) , ktype = jp_r8 ) !
! mean state
CALL iom_rstput( 0, 0, inum, 'icecon' , SUM(a_i ,dim=3) , ktype = jp_r8 ) !
CALL iom_rstput( 0, 0, inum, 'icevol' , SUM(v_i ,dim=3) , ktype = jp_r8 ) !
CALL iom_rstput( 0, 0, inum, 'snwvol' , SUM(v_s ,dim=3) , ktype = jp_r8 ) !
CALL iom_rstput( 0, 0, inum, 'pndvol' , SUM(v_ip,dim=3) , ktype = jp_r8 ) !
CALL iom_rstput( 0, 0, inum, 'lidvol' , SUM(v_il,dim=3) , ktype = jp_r8 ) !
CALL iom_close( inum )
END SUBROUTINE ice_cons_wri
SUBROUTINE ice_ctl( kt )
!!-------------------------------------------------------------------
!! *** ROUTINE ice_ctl ***
!!
!! ** Purpose : control checks
!!-------------------------------------------------------------------
INTEGER, INTENT(in) :: kt ! ocean time step
INTEGER :: ja, ji, jj, jk, jl ! dummy loop indices
INTEGER :: ialert_id ! number of the current alert
REAL(wp) :: ztmelts ! ice layer melting point
CHARACTER (len=30), DIMENSION(20) :: cl_alname ! name of alert
INTEGER , DIMENSION(20) :: inb_alp ! number of alerts positive
!!-------------------------------------------------------------------
inb_alp(:) = 0
ialert_id = 0
! Alert if very high salinity
ialert_id = ialert_id + 1 ! reference number of this alert
cl_alname(ialert_id) = ' Very high salinity ' ! name of the alert
DO jl = 1, jpl
DO_2D( 0, 0, 0, 0 )
IF( v_i(ji,jj,jl) > epsi10 ) THEN
IF( sv_i(ji,jj,jl) / v_i(ji,jj,jl) > rn_simax ) THEN
WRITE(numout,*) ' ALERTE : Very high salinity ',sv_i(ji,jj,jl)/v_i(ji,jj,jl)
WRITE(numout,*) ' at i,j,l = ',ji,jj,jl
inb_alp(ialert_id) = inb_alp(ialert_id) + 1
ENDIF
ENDIF
END_2D
END DO
! Alert if very low salinity
ialert_id = ialert_id + 1 ! reference number of this alert
cl_alname(ialert_id) = ' Very low salinity ' ! name of the alert
DO jl = 1, jpl
DO_2D( 0, 0, 0, 0 )
IF( v_i(ji,jj,jl) > epsi10 ) THEN
IF( sv_i(ji,jj,jl) / v_i(ji,jj,jl) < rn_simin ) THEN
WRITE(numout,*) ' ALERTE : Very low salinity ',sv_i(ji,jj,jl),v_i(ji,jj,jl)
WRITE(numout,*) ' at i,j,l = ',ji,jj,jl
inb_alp(ialert_id) = inb_alp(ialert_id) + 1
ENDIF
ENDIF
END_2D
END DO
! Alert if very cold ice
ialert_id = ialert_id + 1 ! reference number of this alert
cl_alname(ialert_id) = ' Very cold ice ' ! name of the alert
DO jl = 1, jpl
DO_3D( 0, 0, 0, 0, 1, nlay_i )
ztmelts = -rTmlt * sz_i(ji,jj,jk,jl) + rt0
IF( t_i(ji,jj,jk,jl) < -50.+rt0 .AND. v_i(ji,jj,jl) > epsi10 ) THEN
WRITE(numout,*) ' ALERTE : Very cold ice ',(t_i(ji,jj,jk,jl)-rt0)
WRITE(numout,*) ' at i,j,k,l = ',ji,jj,jk,jl
inb_alp(ialert_id) = inb_alp(ialert_id) + 1
ENDIF
END_3D
END DO
! Alert if very warm ice
ialert_id = ialert_id + 1 ! reference number of this alert
cl_alname(ialert_id) = ' Very warm ice ' ! name of the alert
DO jl = 1, jpl
DO_3D( 0, 0, 0, 0, 1, nlay_i )
ztmelts = -rTmlt * sz_i(ji,jj,jk,jl) + rt0
IF( t_i(ji,jj,jk,jl) > ztmelts .AND. v_i(ji,jj,jl) > epsi10 ) THEN
WRITE(numout,*) ' ALERTE : Very warm ice',(t_i(ji,jj,jk,jl)-rt0)
WRITE(numout,*) ' at i,j,k,l = ',ji,jj,jk,jl
inb_alp(ialert_id) = inb_alp(ialert_id) + 1
ENDIF
END_3D
END DO
! Alerte if very thick ice
ialert_id = ialert_id + 1 ! reference number of this alert
cl_alname(ialert_id) = ' Very thick ice ' ! name of the alert
jl = jpl
DO_2D( 0, 0, 0, 0 )
IF( h_i(ji,jj,jl) > 50._wp ) THEN
WRITE(numout,*) ' ALERTE : Very thick ice ',h_i(ji,jj,jl)
WRITE(numout,*) ' at i,j,l = ',ji,jj,jl
inb_alp(ialert_id) = inb_alp(ialert_id) + 1
ENDIF
END_2D
! Alerte if very thin ice
ialert_id = ialert_id + 1 ! reference number of this alert
cl_alname(ialert_id) = ' Very thin ice ' ! name of the alert
jl = 1
DO_2D( 0, 0, 0, 0 )
IF( h_i(ji,jj,jl) < rn_himin ) THEN
WRITE(numout,*) ' ALERTE : Very thin ice ',h_i(ji,jj,jl)
WRITE(numout,*) ' at i,j,l = ',ji,jj,jl
inb_alp(ialert_id) = inb_alp(ialert_id) + 1
ENDIF
END_2D
! Alert if very fast ice
ialert_id = ialert_id + 1 ! reference number of this alert
cl_alname(ialert_id) = ' Very fast ice ' ! name of the alert
DO_2D( 0, 0, 0, 0 )
IF( MAX( ABS( u_ice(ji,jj) ), ABS( v_ice(ji,jj) ) ) > 2. ) THEN
WRITE(numout,*) ' ALERTE : Very fast ice ',MAX( ABS( u_ice(ji,jj) ), ABS( v_ice(ji,jj) ) )
WRITE(numout,*) ' at i,j = ',ji,jj
inb_alp(ialert_id) = inb_alp(ialert_id) + 1
ENDIF
END_2D
! Alert if there is ice on continents
ialert_id = ialert_id + 1 ! reference number of this alert
cl_alname(ialert_id) = ' Ice on continents ' ! name of the alert
DO_2D( 0, 0, 0, 0 )
IF( tmask(ji,jj,1) == 0._wp .AND. ( at_i(ji,jj) > 0._wp .OR. vt_i(ji,jj) > 0._wp ) ) THEN
WRITE(numout,*) ' ALERTE : Ice on continents ',at_i(ji,jj),vt_i(ji,jj)
WRITE(numout,*) ' at i,j = ',ji,jj
inb_alp(ialert_id) = inb_alp(ialert_id) + 1
ENDIF
END_2D
! Alert if incompatible ice concentration and volume
ialert_id = ialert_id + 1 ! reference number of this alert
cl_alname(ialert_id) = ' Incompatible ice conc and vol ' ! name of the alert
DO_2D( 0, 0, 0, 0 )
IF( ( vt_i(ji,jj) == 0._wp .AND. at_i(ji,jj) > 0._wp ) .OR. &
& ( vt_i(ji,jj) > 0._wp .AND. at_i(ji,jj) == 0._wp ) ) THEN
WRITE(numout,*) ' ALERTE : Incompatible ice conc and vol ',at_i(ji,jj),vt_i(ji,jj)
WRITE(numout,*) ' at i,j = ',ji,jj
inb_alp(ialert_id) = inb_alp(ialert_id) + 1
ENDIF
END_2D
! sum of the alerts on all processors
IF( lk_mpp ) THEN
DO ja = 1, ialert_id
CALL mpp_sum('icectl', inb_alp(ja))
END DO
ENDIF
! print alerts
IF( lwp ) THEN
WRITE(numout,*) ' time step ',kt
WRITE(numout,*) ' All alerts at the end of ice model '
DO ja = 1, ialert_id
WRITE(numout,*) ja, cl_alname(ja)//' : ', inb_alp(ja), ' times ! '
END DO
ENDIF
!
END SUBROUTINE ice_ctl
SUBROUTINE ice_prt( kt, ki, kj, kn, cd1 )
!!-------------------------------------------------------------------
!! *** ROUTINE ice_prt ***
!!
!! ** Purpose : Writes global ice state on the (i,j) point
!! in ocean.ouput
!! 3 possibilities exist
!! n = 1/-1 -> simple ice state
!! n = 2 -> exhaustive state
!! n = 3 -> ice/ocean salt fluxes
!!
!! ** input : point coordinates (i,j)
!! n : number of the option
!!-------------------------------------------------------------------
INTEGER , INTENT(in) :: kt ! ocean time step
INTEGER , INTENT(in) :: ki, kj, kn ! ocean gridpoint indices
CHARACTER(len=*), INTENT(in) :: cd1 !
!!
INTEGER :: jl, ji, jj
!!-------------------------------------------------------------------
DO ji = mi0(ki), mi1(ki)
DO jj = mj0(kj), mj1(kj)
WRITE(numout,*) ' time step ',kt,' ',cd1 ! print title
!----------------
! Simple state
!----------------
IF ( kn == 1 .OR. kn == -1 ) THEN
WRITE(numout,*) ' ice_prt - Point : ',ji,jj
WRITE(numout,*) ' ~~~~~~~~~~~~~~ '
WRITE(numout,*) ' Simple state '
WRITE(numout,*) ' masks s,u,v : ', tmask(ji,jj,1), umask(ji,jj,1), vmask(ji,jj,1)
WRITE(numout,*) ' lat - long : ', gphit(ji,jj), glamt(ji,jj)
WRITE(numout,*) ' - Ice drift '
WRITE(numout,*) ' ~~~~~~~~~~~ '
WRITE(numout,*) ' u_ice(i-1,j) : ', u_ice(ji-1,jj)
WRITE(numout,*) ' u_ice(i ,j) : ', u_ice(ji,jj)
WRITE(numout,*) ' v_ice(i ,j-1): ', v_ice(ji,jj-1)
WRITE(numout,*) ' v_ice(i ,j) : ', v_ice(ji,jj)
WRITE(numout,*) ' strength : ', strength(ji,jj)
WRITE(numout,*) ' - Cell values '
WRITE(numout,*) ' ~~~~~~~~~~~ '
WRITE(numout,*) ' at_i : ', at_i(ji,jj)
WRITE(numout,*) ' ato_i : ', ato_i(ji,jj)
WRITE(numout,*) ' vt_i : ', vt_i(ji,jj)
WRITE(numout,*) ' vt_s : ', vt_s(ji,jj)
DO jl = 1, jpl
WRITE(numout,*) ' - Category (', jl,')'
WRITE(numout,*) ' ~~~~~~~~~~~ '
WRITE(numout,*) ' a_i : ', a_i(ji,jj,jl)
WRITE(numout,*) ' h_i : ', h_i(ji,jj,jl)
WRITE(numout,*) ' h_s : ', h_s(ji,jj,jl)
WRITE(numout,*) ' v_i : ', v_i(ji,jj,jl)
WRITE(numout,*) ' v_s : ', v_s(ji,jj,jl)
WRITE(numout,*) ' e_s : ', e_s(ji,jj,1:nlay_s,jl)
WRITE(numout,*) ' e_i : ', e_i(ji,jj,1:nlay_i,jl)
WRITE(numout,*) ' t_su : ', t_su(ji,jj,jl)
WRITE(numout,*) ' t_snow : ', t_s(ji,jj,1:nlay_s,jl)
WRITE(numout,*) ' t_i : ', t_i(ji,jj,1:nlay_i,jl)
WRITE(numout,*) ' s_i : ', s_i(ji,jj,jl)
WRITE(numout,*) ' sv_i : ', sv_i(ji,jj,jl)
WRITE(numout,*)
END DO
ENDIF
!--------------------
! Exhaustive state
!--------------------
IF ( kn .EQ. 2 ) THEN
WRITE(numout,*) ' ice_prt - Point : ',ji,jj
WRITE(numout,*) ' ~~~~~~~~~~~~~~ '
WRITE(numout,*) ' Exhaustive state '
WRITE(numout,*) ' lat - long ', gphit(ji,jj), glamt(ji,jj)
WRITE(numout,*)
WRITE(numout,*) ' - Cell values '
WRITE(numout,*) ' ~~~~~~~~~~~ '
WRITE(numout,*) ' at_i : ', at_i(ji,jj)
WRITE(numout,*) ' vt_i : ', vt_i(ji,jj)
WRITE(numout,*) ' vt_s : ', vt_s(ji,jj)
WRITE(numout,*) ' u_ice(i-1,j) : ', u_ice(ji-1,jj)
WRITE(numout,*) ' u_ice(i ,j) : ', u_ice(ji,jj)
WRITE(numout,*) ' v_ice(i ,j-1): ', v_ice(ji,jj-1)
WRITE(numout,*) ' v_ice(i ,j) : ', v_ice(ji,jj)
WRITE(numout,*) ' strength : ', strength(ji,jj)
WRITE(numout,*)
DO jl = 1, jpl
WRITE(numout,*) ' - Category (',jl,')'
WRITE(numout,*) ' ~~~~~~~~ '
WRITE(numout,*) ' h_i : ', h_i(ji,jj,jl) , ' h_s : ', h_s(ji,jj,jl)
WRITE(numout,*) ' t_i : ', t_i(ji,jj,1:nlay_i,jl)
WRITE(numout,*) ' t_su : ', t_su(ji,jj,jl) , ' t_s : ', t_s(ji,jj,1:nlay_s,jl)
WRITE(numout,*) ' s_i : ', s_i(ji,jj,jl) , ' o_i : ', o_i(ji,jj,jl)
WRITE(numout,*) ' a_i : ', a_i(ji,jj,jl) , ' a_i_b : ', a_i_b(ji,jj,jl)
WRITE(numout,*) ' v_i : ', v_i(ji,jj,jl) , ' v_i_b : ', v_i_b(ji,jj,jl)
WRITE(numout,*) ' v_s : ', v_s(ji,jj,jl) , ' v_s_b : ', v_s_b(ji,jj,jl)
WRITE(numout,*) ' e_i1 : ', e_i(ji,jj,1,jl) , ' ei1 : ', e_i_b(ji,jj,1,jl)
WRITE(numout,*) ' e_i2 : ', e_i(ji,jj,2,jl) , ' ei2_b : ', e_i_b(ji,jj,2,jl)
WRITE(numout,*) ' e_snow : ', e_s(ji,jj,1,jl) , ' e_snow_b : ', e_s_b(ji,jj,1,jl)
WRITE(numout,*) ' sv_i : ', sv_i(ji,jj,jl) , ' sv_i_b : ', sv_i_b(ji,jj,jl)
END DO !jl
WRITE(numout,*)
WRITE(numout,*) ' - Heat / FW fluxes '
WRITE(numout,*) ' ~~~~~~~~~~~~~~~~ '
WRITE(numout,*) ' - Heat fluxes in and out the ice ***'
WRITE(numout,*) ' qsr_ini : ', (1._wp-at_i_b(ji,jj)) * qsr(ji,jj) + SUM( a_i_b(ji,jj,:) * qsr_ice(ji,jj,:) )
WRITE(numout,*) ' qns_ini : ', (1._wp-at_i_b(ji,jj)) * qns(ji,jj) + SUM( a_i_b(ji,jj,:) * qns_ice(ji,jj,:) )
WRITE(numout,*)
WRITE(numout,*)
WRITE(numout,*) ' sst : ', sst_m(ji,jj)
WRITE(numout,*) ' sss : ', sss_m(ji,jj)
WRITE(numout,*)
WRITE(numout,*) ' - Stresses '
WRITE(numout,*) ' ~~~~~~~~ '
WRITE(numout,*) ' utau_ice : ', utau_ice(ji,jj)
WRITE(numout,*) ' vtau_ice : ', vtau_ice(ji,jj)
WRITE(numout,*) ' utau : ', utau (ji,jj)
WRITE(numout,*) ' vtau : ', vtau (ji,jj)
ENDIF
!---------------------
! Salt / heat fluxes
!---------------------
IF ( kn .EQ. 3 ) THEN
WRITE(numout,*) ' ice_prt - Point : ',ji,jj
WRITE(numout,*) ' ~~~~~~~~~~~~~~ '
WRITE(numout,*) ' - Salt / Heat Fluxes '
WRITE(numout,*) ' ~~~~~~~~~~~~~~~~ '
WRITE(numout,*) ' lat - long ', gphit(ji,jj), glamt(ji,jj)
WRITE(numout,*)
WRITE(numout,*) ' - Heat fluxes at bottom interface ***'
WRITE(numout,*) ' qsr : ', qsr(ji,jj)
WRITE(numout,*) ' qns : ', qns(ji,jj)
WRITE(numout,*)
WRITE(numout,*) ' hfx_mass : ', hfx_thd(ji,jj) + hfx_dyn(ji,jj) + hfx_snw(ji,jj) + hfx_res(ji,jj)
WRITE(numout,*) ' qt_atm_oi : ', qt_atm_oi(ji,jj)
WRITE(numout,*) ' qt_oce_ai : ', qt_oce_ai(ji,jj)
WRITE(numout,*) ' dhc : ', diag_heat(ji,jj)
WRITE(numout,*)
WRITE(numout,*) ' hfx_dyn : ', hfx_dyn(ji,jj)
WRITE(numout,*) ' hfx_thd : ', hfx_thd(ji,jj)
WRITE(numout,*) ' hfx_res : ', hfx_res(ji,jj)
WRITE(numout,*) ' qsb_ice_bot : ', qsb_ice_bot(ji,jj)
WRITE(numout,*) ' qlead : ', qlead(ji,jj) * r1_Dt_ice
WRITE(numout,*)
WRITE(numout,*) ' - Salt fluxes at bottom interface ***'
WRITE(numout,*) ' emp : ', emp (ji,jj)
WRITE(numout,*) ' sfx : ', sfx (ji,jj)
WRITE(numout,*) ' sfx_res : ', sfx_res(ji,jj)
WRITE(numout,*) ' sfx_bri : ', sfx_bri(ji,jj)
WRITE(numout,*) ' sfx_dyn : ', sfx_dyn(ji,jj)
WRITE(numout,*)
WRITE(numout,*) ' - Momentum fluxes '
WRITE(numout,*) ' utau : ', utau(ji,jj)
WRITE(numout,*) ' vtau : ', vtau(ji,jj)
ENDIF
WRITE(numout,*) ' '
!
END DO
END DO
!
END SUBROUTINE ice_prt
SUBROUTINE ice_prt3D( cd_routine )
!!-------------------------------------------------------------------
!! *** ROUTINE ice_prt3D ***
!!
!! ** Purpose : CTL prints of ice arrays in case sn_cfctl%prtctl is activated
!!
!!-------------------------------------------------------------------
CHARACTER(len=*), INTENT(in) :: cd_routine ! name of the routine
INTEGER :: jk, jl ! dummy loop indices
CALL prt_ctl_info(' ========== ')
CALL prt_ctl_info( cd_routine )
CALL prt_ctl_info(' ========== ')
CALL prt_ctl_info(' - Cell values : ')
CALL prt_ctl_info(' ~~~~~~~~~~~~~ ')
CALL prt_ctl(tab2d_1=e1e2t , clinfo1=' cell area :', mask1=tmask)
CALL prt_ctl(tab2d_1=at_i , clinfo1=' at_i :', mask1=tmask)
CALL prt_ctl(tab2d_1=ato_i , clinfo1=' ato_i :', mask1=tmask)
CALL prt_ctl(tab2d_1=vt_i , clinfo1=' vt_i :', mask1=tmask)
CALL prt_ctl(tab2d_1=vt_s , clinfo1=' vt_s :', mask1=tmask)
CALL prt_ctl(tab2d_1=divu_i , clinfo1=' divu_i :', mask1=tmask)
CALL prt_ctl(tab2d_1=delta_i , clinfo1=' delta_i :', mask1=tmask)
CALL prt_ctl(tab2d_1=stress1_i , clinfo1=' stress1_i :', mask1=tmask)
CALL prt_ctl(tab2d_1=stress2_i , clinfo1=' stress2_i :', mask1=tmask)
CALL prt_ctl(tab2d_1=stress12_i , clinfo1=' stress12_i :') ! should be fmask
CALL prt_ctl(tab2d_1=strength , clinfo1=' strength :', mask1=tmask)
CALL prt_ctl(tab2d_1=delta_i , clinfo1=' delta_i :', mask1=tmask)
CALL prt_ctl(tab2d_1=u_ice , clinfo1=' u_ice :', mask1=umask, &
& tab2d_2=v_ice , clinfo2=' v_ice :', mask2=vmask)
DO jl = 1, jpl
CALL prt_ctl_info(' ')
CALL prt_ctl_info(' - Category : ', ivar=jl)
CALL prt_ctl_info(' ~~~~~~~~~~')
CALL prt_ctl(tab2d_1=h_i (:,:,jl) , clinfo1= ' h_i : ', mask1=tmask)
CALL prt_ctl(tab2d_1=h_s (:,:,jl) , clinfo1= ' h_s : ', mask1=tmask)
CALL prt_ctl(tab2d_1=t_su(:,:,jl) , clinfo1= ' t_su : ', mask1=tmask)
CALL prt_ctl(tab2d_1=t_s (:,:,1,jl), clinfo1= ' t_snow : ', mask1=tmask)
CALL prt_ctl(tab2d_1=s_i (:,:,jl) , clinfo1= ' s_i : ', mask1=tmask)
CALL prt_ctl(tab2d_1=o_i (:,:,jl) , clinfo1= ' o_i : ', mask1=tmask)
CALL prt_ctl(tab2d_1=a_i (:,:,jl) , clinfo1= ' a_i : ', mask1=tmask)
CALL prt_ctl(tab2d_1=v_i (:,:,jl) , clinfo1= ' v_i : ', mask1=tmask)
CALL prt_ctl(tab2d_1=v_s (:,:,jl) , clinfo1= ' v_s : ', mask1=tmask)
CALL prt_ctl(tab2d_1=e_s (:,:,1,jl), clinfo1= ' e_snow : ', mask1=tmask)
CALL prt_ctl(tab2d_1=sv_i(:,:,jl) , clinfo1= ' sv_i : ', mask1=tmask)
CALL prt_ctl(tab2d_1=oa_i(:,:,jl) , clinfo1= ' oa_i : ', mask1=tmask)
DO jk = 1, nlay_i
CALL prt_ctl_info(' - Layer : ', ivar=jk)
CALL prt_ctl(tab2d_1=t_i(:,:,jk,jl) , clinfo1= ' t_i : ', mask1=tmask)
CALL prt_ctl(tab2d_1=e_i(:,:,jk,jl) , clinfo1= ' e_i : ', mask1=tmask)
END DO
END DO
CALL prt_ctl_info(' ')
CALL prt_ctl_info(' - Stresses : ')
CALL prt_ctl_info(' ~~~~~~~~~~ ')
CALL prt_ctl(tab2d_1=utau , clinfo1= ' utau : ', mask1 = umask, &
& tab2d_2=vtau , clinfo2= ' vtau : ', mask2 = vmask)
CALL prt_ctl(tab2d_1=utau_ice , clinfo1= ' utau_ice : ', mask1 = umask, &
& tab2d_2=vtau_ice , clinfo2= ' vtau_ice : ', mask2 = vmask)
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
END SUBROUTINE ice_prt3D
SUBROUTINE ice_drift_wri( kt )
!!-------------------------------------------------------------------
!! *** ROUTINE ice_drift_wri ***
!!
!! ** Purpose : conservation of mass, salt and heat
!! write the drift in a ascii file at each time step
!! and the total run drifts
!!-------------------------------------------------------------------
INTEGER, INTENT(in) :: kt ! ice time-step index
!
REAL(wp), DIMENSION(jpi,jpj,6) :: ztmp
REAL(wp), DIMENSION(6) :: zchk
!!-------------------------------------------------------------------
!
IF( kt == nit000 .AND. lwp ) THEN
WRITE(numout,*)
WRITE(numout,*) 'ice_drift_wri: sea-ice drifts'
WRITE(numout,*) '~~~~~~~~~~~~~'
ENDIF
!
! -- 2D budgets (must be close to 0) -- !
ztmp(:,:,1) = wfx_ice (:,:) + wfx_snw (:,:) + wfx_spr (:,:) + wfx_sub(:,:) + wfx_pnd(:,:) &
& + diag_vice(:,:) + diag_vsnw(:,:) + diag_vpnd(:,:) - diag_adv_mass(:,:)
ztmp(:,:,2) = sfx(:,:) + diag_sice(:,:) - diag_adv_salt(:,:)
ztmp(:,:,3) = qt_oce_ai(:,:) - qt_atm_oi(:,:) + diag_heat(:,:) - diag_adv_heat(:,:)
! write outputs
CALL iom_put( 'icedrift_mass', ztmp(:,:,1) )
CALL iom_put( 'icedrift_salt', ztmp(:,:,2) )
CALL iom_put( 'icedrift_heat', ztmp(:,:,3) )
! -- 1D budgets -- !
ztmp(:,:,1) = ztmp(:,:,1) * e1e2t * rDt_ice ! mass
ztmp(:,:,2) = ztmp(:,:,2) * e1e2t * rDt_ice * 1.e-3 ! salt
ztmp(:,:,3) = ztmp(:,:,3) * e1e2t ! heat
ztmp(:,:,4) = diag_adv_mass * e1e2t * rDt_ice
ztmp(:,:,5) = diag_adv_salt * e1e2t * rDt_ice * 1.e-3
ztmp(:,:,6) = diag_adv_heat * e1e2t
! global sums
zchk(1:6) = glob_sum_vec( 'icectl', ztmp(:,:,1:6) )
! ! write out to file
IF( lwp ) THEN
! check global drift (must be close to 0)
WRITE(numicedrift,FMT='(2x,i6,3x,a19,4x,f25.5)') kt, 'mass drift [kg]', zchk(1)
WRITE(numicedrift,FMT='(11x, a19,4x,f25.5)') 'salt drift [kg]', zchk(2)
WRITE(numicedrift,FMT='(11x, a19,4x,f25.5)') 'heat drift [W] ', zchk(3)
! check drift from advection scheme (can be /=0 with bdy but not sure why)
WRITE(numicedrift,FMT='(11x, a19,4x,f25.5)') 'mass drift adv [kg]', zchk(4)
WRITE(numicedrift,FMT='(11x, a19,4x,f25.5)') 'salt drift adv [kg]', zchk(5)
WRITE(numicedrift,FMT='(11x, a19,4x,f25.5)') 'heat drift adv [W] ', zchk(6)
ENDIF
! ! drifts
rdiag_icemass = rdiag_icemass + zchk(1)
rdiag_icesalt = rdiag_icesalt + zchk(2)
rdiag_iceheat = rdiag_iceheat + zchk(3)
rdiag_adv_icemass = rdiag_adv_icemass + zchk(4)
rdiag_adv_icesalt = rdiag_adv_icesalt + zchk(5)
rdiag_adv_iceheat = rdiag_adv_iceheat + zchk(6)
!
! ! output drifts and close ascii file
IF( kt == nitend - nn_fsbc + 1 .AND. lwp ) THEN
! to ascii file
WRITE(numicedrift,*) '******************************************'
WRITE(numicedrift,FMT='(3x,a23,6x,E10.2)') 'Run mass drift [kg]', rdiag_icemass
WRITE(numicedrift,FMT='(3x,a23,6x,E10.2)') 'Run mass drift adv [kg]', rdiag_adv_icemass
WRITE(numicedrift,*) '******************************************'
WRITE(numicedrift,FMT='(3x,a23,6x,E10.2)') 'Run salt drift [kg]', rdiag_icesalt
WRITE(numicedrift,FMT='(3x,a23,6x,E10.2)') 'Run salt drift adv [kg]', rdiag_adv_icesalt
WRITE(numicedrift,*) '******************************************'
WRITE(numicedrift,FMT='(3x,a23,6x,E10.2)') 'Run heat drift [W] ', rdiag_iceheat
WRITE(numicedrift,FMT='(3x,a23,6x,E10.2)') 'Run heat drift adv [W] ', rdiag_adv_iceheat
CLOSE( numicedrift )
!
! to ocean output
WRITE(numout,*)
WRITE(numout,*) 'ice_drift_wri: ice drifts information for the run '
WRITE(numout,*) '~~~~~~~~~~~~~'
! check global drift (must be close to 0)
WRITE(numout,*) ' sea-ice mass drift [kg] = ', rdiag_icemass
WRITE(numout,*) ' sea-ice salt drift [kg] = ', rdiag_icesalt
WRITE(numout,*) ' sea-ice heat drift [W] = ', rdiag_iceheat
! check drift from advection scheme (can be /=0 with bdy but not sure why)
WRITE(numout,*) ' sea-ice mass drift adv [kg] = ', rdiag_adv_icemass
WRITE(numout,*) ' sea-ice salt drift adv [kg] = ', rdiag_adv_icesalt
WRITE(numout,*) ' sea-ice heat drift adv [W] = ', rdiag_adv_iceheat
ENDIF
!
END SUBROUTINE ice_drift_wri
SUBROUTINE ice_drift_init
!!----------------------------------------------------------------------
!! *** ROUTINE ice_drift_init ***
!!
!! ** Purpose : create output file, initialise arrays
!!----------------------------------------------------------------------
!
IF( .NOT.ln_icediachk ) RETURN ! exit
!
IF(lwp) THEN
WRITE(numout,*)
WRITE(numout,*) 'ice_drift_init: Output ice drifts to ',TRIM(clname), ' file'
WRITE(numout,*) '~~~~~~~~~~~~~'
WRITE(numout,*)
!
! create output ascii file
CALL ctl_opn( numicedrift, clname, 'UNKNOWN', 'FORMATTED', 'SEQUENTIAL', 1, numout, lwp, narea )
WRITE(numicedrift,*) 'Timestep Drifts'
WRITE(numicedrift,*) '******************************************'
ENDIF
!
rdiag_icemass = 0._wp
rdiag_icesalt = 0._wp
rdiag_iceheat = 0._wp
rdiag_adv_icemass = 0._wp
rdiag_adv_icesalt = 0._wp
rdiag_adv_iceheat = 0._wp
!
END SUBROUTINE ice_drift_init
#else
!!----------------------------------------------------------------------
!! Default option Empty Module No SI3 sea-ice model
!!----------------------------------------------------------------------
#endif
!!======================================================================
END MODULE icectl