Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
MODULE iceitd
!!======================================================================
!! *** MODULE iceitd ***
!! sea-ice : ice thickness distribution
!!======================================================================
!! History : 3.0 ! 2005-12 (M. Vancoppenolle) original code (based on CICE)
!! 4.0 ! 2018 (many people) SI3 [aka Sea Ice cube]
!!----------------------------------------------------------------------
#if defined key_si3
!!----------------------------------------------------------------------
!! 'key_si3' SI3 sea-ice model
!!----------------------------------------------------------------------
!! ice_itd_rem : redistribute ice thicknesses after thermo growth and melt
!! itd_glinear : build g(h) satisfying area and volume constraints
!! itd_shiftice : shift ice across category boundaries, conserving everything
!! ice_itd_reb : rebin ice thicknesses into bounded categories
!! ice_itd_init : read ice thicknesses mean and min from namelist
!!----------------------------------------------------------------------
USE dom_oce ! ocean domain
USE phycst ! physical constants
USE ice1D ! sea-ice: thermodynamic variables
USE ice ! sea-ice: variables
USE icevar ! sea-ice: operations
USE icectl ! sea-ice: conservation tests
USE icetab ! sea-ice: convert 1D<=>2D
!
USE in_out_manager ! I/O manager
USE lib_mpp ! MPP library
USE lib_fortran ! fortran utilities (glob_sum + no signed zero)
USE prtctl ! Print control
USE timing ! Timing
IMPLICIT NONE
PRIVATE
PUBLIC ice_itd_init ! called in icestp
PUBLIC ice_itd_rem ! called in icethd
PUBLIC ice_itd_reb ! called in icecor
INTEGER :: nice_catbnd ! choice of the type of ice category function
! ! associated indices:
INTEGER, PARAMETER :: np_cathfn = 1 ! categories defined by a function
INTEGER, PARAMETER :: np_catusr = 2 ! categories defined by the user
!
! !! ** namelist (namitd) **
LOGICAL :: ln_cat_hfn ! ice categories are defined by function like rn_himean**(-0.05)
REAL(wp) :: rn_himean ! mean thickness of the domain
LOGICAL :: ln_cat_usr ! ice categories are defined by rn_catbnd
REAL(wp), DIMENSION(0:100) :: rn_catbnd ! ice categories bounds
REAL(wp) :: rn_himax ! maximum ice thickness allowed
!
!! * Substitutions
# include "do_loop_substitute.h90"
!!----------------------------------------------------------------------
!! NEMO/ICE 4.0 , NEMO Consortium (2018)
!! $Id: iceitd.F90 15046 2021-06-23 10:46:01Z clem $
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
SUBROUTINE ice_itd_rem( kt )
!!------------------------------------------------------------------
!! *** ROUTINE ice_itd_rem ***
!!
!! ** Purpose : computes the redistribution of ice thickness
!! after thermodynamic growth of ice thickness
!!
!! ** Method : Linear remapping
!!
!! References : W.H. Lipscomb, JGR 2001
!!------------------------------------------------------------------
INTEGER , INTENT (in) :: kt ! Ocean time step
!
INTEGER :: ji, jj, jl, jcat ! dummy loop index
INTEGER :: ipti ! local integer
REAL(wp) :: zx1, zwk1, zdh0, zetamin, zdamax ! local scalars
REAL(wp) :: zx2, zwk2, zda0, zetamax ! - -
REAL(wp) :: zx3
REAL(wp) :: zslope ! used to compute local thermodynamic "speeds"
!
INTEGER , DIMENSION(jpij) :: iptidx ! compute remapping or not
INTEGER , DIMENSION(jpij,jpl-1) :: jdonor ! donor category index
REAL(wp), DIMENSION(jpij,jpl) :: zdhice ! ice thickness increment
REAL(wp), DIMENSION(jpij,jpl) :: g0, g1 ! coefficients for fitting the line of the ITD
REAL(wp), DIMENSION(jpij,jpl) :: hL, hR ! left and right boundary for the ITD for each thickness
REAL(wp), DIMENSION(jpij,jpl-1) :: zdaice, zdvice ! local increment of ice area and volume
REAL(wp), DIMENSION(jpij) :: zhb0, zhb1 ! category boundaries for thinnes categories
REAL(wp), DIMENSION(jpij,0:jpl) :: zhbnew ! new boundaries of ice categories
!!------------------------------------------------------------------
IF( ln_timing ) CALL timing_start('iceitd_rem')
IF( kt == nit000 .AND. lwp ) WRITE(numout,*) '-- ice_itd_rem: remapping ice thickness distribution'
IF( ln_icediachk ) CALL ice_cons_hsm(0, 'iceitd_rem', rdiag_v, rdiag_s, rdiag_t, rdiag_fv, rdiag_fs, rdiag_ft)
IF( ln_icediachk ) CALL ice_cons2D (0, 'iceitd_rem', diag_v, diag_s, diag_t, diag_fv, diag_fs, diag_ft)
!-----------------------------------------------------------------------------------------------
! 1) Identify grid cells with ice
!-----------------------------------------------------------------------------------------------
at_i(:,:) = SUM( a_i, dim=3 )
!
npti = 0 ; nptidx(:) = 0
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
IF ( at_i(ji,jj) > epsi10 ) THEN
npti = npti + 1
nptidx( npti ) = (jj - 1) * jpi + ji
ENDIF
END_2D
!-----------------------------------------------------------------------------------------------
! 2) Compute new category boundaries
!-----------------------------------------------------------------------------------------------
IF( npti > 0 ) THEN
!
zdhice(:,:) = 0._wp
zhbnew(:,:) = 0._wp
!
CALL tab_3d_2d( npti, nptidx(1:npti), h_i_2d (1:npti,1:jpl), h_i )
CALL tab_3d_2d( npti, nptidx(1:npti), h_ib_2d(1:npti,1:jpl), h_i_b )
CALL tab_3d_2d( npti, nptidx(1:npti), a_i_2d (1:npti,1:jpl), a_i )
CALL tab_3d_2d( npti, nptidx(1:npti), a_ib_2d(1:npti,1:jpl), a_i_b )
!
DO jl = 1, jpl
! Compute thickness change in each ice category
DO ji = 1, npti
IF( a_i_2d(ji,jl) > epsi10 ) zdhice(ji,jl) = h_i_2d(ji,jl) - h_ib_2d(ji,jl)
END DO
END DO
!
! --- New boundaries for category 1:jpl-1 --- !
DO jl = 1, jpl - 1
!
DO ji = 1, npti
!
! --- New boundary: Hn* = Hn + Fn*dt --- !
! Fn*dt = ( fn + (fn+1 - fn)/(hn+1 - hn) * (Hn - hn) ) * dt = zdhice + zslope * (Hmax - h_i_b)
!
IF ( a_ib_2d(ji,jl) > epsi10 .AND. a_ib_2d(ji,jl+1) > epsi10 ) THEN ! a(jl+1) & a(jl) /= 0
zslope = ( zdhice(ji,jl+1) - zdhice(ji,jl) ) / ( h_ib_2d(ji,jl+1) - h_ib_2d(ji,jl) )
zhbnew(ji,jl) = hi_max(jl) + zdhice(ji,jl) + zslope * ( hi_max(jl) - h_ib_2d(ji,jl) )
ELSEIF( a_ib_2d(ji,jl) > epsi10 .AND. a_ib_2d(ji,jl+1) <= epsi10 ) THEN ! a(jl+1)=0 => Hn* = Hn + fn*dt
zhbnew(ji,jl) = hi_max(jl) + zdhice(ji,jl)
ELSEIF( a_ib_2d(ji,jl) <= epsi10 .AND. a_ib_2d(ji,jl+1) > epsi10 ) THEN ! a(jl)=0 => Hn* = Hn + fn+1*dt
zhbnew(ji,jl) = hi_max(jl) + zdhice(ji,jl+1)
ELSE ! a(jl+1) & a(jl) = 0
zhbnew(ji,jl) = hi_max(jl)
ENDIF
!
! --- 2 conditions for remapping --- !
! 1) hn(t+1)+espi < Hn* < hn+1(t+1)-epsi
! Note: hn(t+1) must not be too close to either HR or HL otherwise a division by nearly 0 is possible
! in itd_glinear in the case (HR-HL) = 3(Hice - HL) or = 3(HR - Hice)
# if defined key_single
IF( a_i_2d(ji,jl ) > epsi10 .AND. h_i_2d(ji,jl ) > ( zhbnew(ji,jl) - epsi06 ) ) nptidx(ji) = 0
IF( a_i_2d(ji,jl+1) > epsi10 .AND. h_i_2d(ji,jl+1) < ( zhbnew(ji,jl) + epsi06 ) ) nptidx(ji) = 0
# else
IF( a_i_2d(ji,jl ) > epsi10 .AND. h_i_2d(ji,jl ) > ( zhbnew(ji,jl) - epsi10 ) ) nptidx(ji) = 0
IF( a_i_2d(ji,jl+1) > epsi10 .AND. h_i_2d(ji,jl+1) < ( zhbnew(ji,jl) + epsi10 ) ) nptidx(ji) = 0
# endif
!
! 2) Hn-1 < Hn* < Hn+1
IF( zhbnew(ji,jl) < hi_max(jl-1) ) nptidx(ji) = 0
IF( zhbnew(ji,jl) > hi_max(jl+1) ) nptidx(ji) = 0
!
END DO
END DO
!
! --- New boundaries for category jpl --- !
DO ji = 1, npti
IF( a_i_2d(ji,jpl) > epsi10 ) THEN
zhbnew(ji,jpl) = MAX( hi_max(jpl-1), 3._wp * h_i_2d(ji,jpl) - 2._wp * zhbnew(ji,jpl-1) )
ELSE
zhbnew(ji,jpl) = hi_max(jpl)
ENDIF
!
! --- 1 additional condition for remapping (1st category) --- !
! H0+epsi < h1(t) < H1-epsi
! h1(t) must not be too close to either HR or HL otherwise a division by nearly 0 is possible
! in itd_glinear in the case (HR-HL) = 3(Hice - HL) or = 3(HR - Hice)
# if defined key_single
IF( h_ib_2d(ji,1) < ( hi_max(0) + epsi06 ) ) nptidx(ji) = 0
IF( h_ib_2d(ji,1) > ( hi_max(1) - epsi06 ) ) nptidx(ji) = 0
# else
IF( h_ib_2d(ji,1) < ( hi_max(0) + epsi10 ) ) nptidx(ji) = 0
IF( h_ib_2d(ji,1) > ( hi_max(1) - epsi10 ) ) nptidx(ji) = 0
# endif
END DO
!
!-----------------------------------------------------------------------------------------------
! 3) Identify cells where remapping
!-----------------------------------------------------------------------------------------------
ipti = 0 ; iptidx(:) = 0
DO ji = 1, npti
IF( nptidx(ji) /= 0 ) THEN
ipti = ipti + 1
iptidx(ipti) = nptidx(ji)
zhbnew(ipti,:) = zhbnew(ji,:) ! adjust zhbnew to new indices
ENDIF
END DO
nptidx(:) = iptidx(:)
npti = ipti
!
ENDIF
!-----------------------------------------------------------------------------------------------
! 4) Compute g(h)
!-----------------------------------------------------------------------------------------------
IF( npti > 0 ) THEN
!
zhb0(:) = hi_max(0) ; zhb1(:) = hi_max(1)
g0(:,:) = 0._wp ; g1(:,:) = 0._wp
hL(:,:) = 0._wp ; hR(:,:) = 0._wp
!
DO jl = 1, jpl
!
CALL tab_2d_1d( npti, nptidx(1:npti), h_ib_1d(1:npti), h_i_b(:,:,jl) )
CALL tab_2d_1d( npti, nptidx(1:npti), h_i_1d (1:npti), h_i (:,:,jl) )
CALL tab_2d_1d( npti, nptidx(1:npti), a_i_1d (1:npti), a_i (:,:,jl) )
CALL tab_2d_1d( npti, nptidx(1:npti), v_i_1d (1:npti), v_i (:,:,jl) )
!
IF( jl == 1 ) THEN
!
! --- g(h) for category 1 --- !
CALL itd_glinear( zhb0(1:npti) , zhb1(1:npti) , h_ib_1d(1:npti) , a_i_1d(1:npti) , & ! in
& g0 (1:npti,1), g1 (1:npti,1), hL (1:npti,1), hR (1:npti,1) ) ! out
!
! Area lost due to melting of thin ice
DO ji = 1, npti
!
IF( a_i_1d(ji) > epsi10 ) THEN
!
zdh0 = h_i_1d(ji) - h_ib_1d(ji)
IF( zdh0 < 0.0 ) THEN ! remove area from category 1
zdh0 = MIN( -zdh0, hi_max(1) )
!Integrate g(1) from 0 to dh0 to estimate area melted
zetamax = MIN( zdh0, hR(ji,1) ) - hL(ji,1)
!
IF( zetamax > 0.0 ) THEN
zx1 = zetamax
zx2 = 0.5 * zetamax * zetamax
zda0 = g1(ji,1) * zx2 + g0(ji,1) * zx1 ! ice area removed
zdamax = a_i_1d(ji) * (1.0 - h_i_1d(ji) / h_ib_1d(ji) ) ! Constrain new thickness <= h_i
zda0 = MIN( zda0, zdamax ) ! ice area lost due to melting of thin ice (zdamax > 0)
! Remove area, conserving volume
h_i_1d(ji) = h_i_1d(ji) * a_i_1d(ji) / ( a_i_1d(ji) - zda0 )
a_i_1d(ji) = a_i_1d(ji) - zda0
v_i_1d(ji) = a_i_1d(ji) * h_i_1d(ji) ! useless ?
ENDIF
!
ELSE ! if ice accretion zdh0 > 0
! zhbnew was 0, and is shifted to the right to account for thin ice growth in openwater (F0 = f1)
zhbnew(ji,0) = MIN( zdh0, hi_max(1) )
ENDIF
!
ENDIF
!
END DO
!
CALL tab_1d_2d( npti, nptidx(1:npti), h_i_1d(1:npti), h_i(:,:,jl) )
CALL tab_1d_2d( npti, nptidx(1:npti), a_i_1d(1:npti), a_i(:,:,jl) )
CALL tab_1d_2d( npti, nptidx(1:npti), v_i_1d(1:npti), v_i(:,:,jl) )
!
ENDIF ! jl=1
!
! --- g(h) for each thickness category --- !
CALL itd_glinear( zhbnew(1:npti,jl-1), zhbnew(1:npti,jl), h_i_1d(1:npti) , a_i_1d(1:npti) , & ! in
& g0 (1:npti,jl ), g1 (1:npti,jl), hL (1:npti,jl), hR (1:npti,jl) ) ! out
!
END DO
!-----------------------------------------------------------------------------------------------
! 5) Compute area and volume to be shifted across each boundary (Eq. 18)
!-----------------------------------------------------------------------------------------------
DO jl = 1, jpl - 1
!
DO ji = 1, npti
!
! left and right integration limits in eta space
IF (zhbnew(ji,jl) > hi_max(jl)) THEN ! Hn* > Hn => transfer from jl to jl+1
zetamin = MAX( hi_max(jl) , hL(ji,jl) ) - hL(ji,jl) ! hi_max(jl) - hL
zetamax = MIN( zhbnew(ji,jl), hR(ji,jl) ) - hL(ji,jl) ! hR - hL
jdonor(ji,jl) = jl
ELSE ! Hn* <= Hn => transfer from jl+1 to jl
zetamin = 0.0
zetamax = MIN( hi_max(jl), hR(ji,jl+1) ) - hL(ji,jl+1) ! hi_max(jl) - hL
jdonor(ji,jl) = jl + 1
ENDIF
zetamax = MAX( zetamax, zetamin ) ! no transfer if etamax < etamin
!
zx1 = zetamax - zetamin
zwk1 = zetamin * zetamin
zwk2 = zetamax * zetamax
zx2 = 0.5 * ( zwk2 - zwk1 )
zwk1 = zwk1 * zetamin
zwk2 = zwk2 * zetamax
zx3 = 1.0 / 3.0 * ( zwk2 - zwk1 )
jcat = jdonor(ji,jl)
zdaice(ji,jl) = g1(ji,jcat)*zx2 + g0(ji,jcat)*zx1
zdvice(ji,jl) = g1(ji,jcat)*zx3 + g0(ji,jcat)*zx2 + zdaice(ji,jl)*hL(ji,jcat)
!
END DO
END DO
!----------------------------------------------------------------------------------------------
! 6) Shift ice between categories
!----------------------------------------------------------------------------------------------
CALL itd_shiftice ( jdonor(1:npti,:), zdaice(1:npti,:), zdvice(1:npti,:) )
!----------------------------------------------------------------------------------------------
! 7) Make sure h_i >= minimum ice thickness hi_min
!----------------------------------------------------------------------------------------------
CALL tab_2d_1d( npti, nptidx(1:npti), h_i_1d (1:npti), h_i (:,:,1) )
CALL tab_2d_1d( npti, nptidx(1:npti), a_i_1d (1:npti), a_i (:,:,1) )
CALL tab_2d_1d( npti, nptidx(1:npti), a_ip_1d(1:npti), a_ip(:,:,1) )
!
DO ji = 1, npti
IF ( a_i_1d(ji) > epsi10 .AND. h_i_1d(ji) < rn_himin ) THEN
a_i_1d(ji) = a_i_1d(ji) * h_i_1d(ji) / rn_himin
IF( ln_pnd_LEV .OR. ln_pnd_TOPO ) a_ip_1d(ji) = a_ip_1d(ji) * h_i_1d(ji) / rn_himin
h_i_1d(ji) = rn_himin
ENDIF
END DO
!
CALL tab_1d_2d( npti, nptidx(1:npti), h_i_1d (1:npti), h_i (:,:,1) )
CALL tab_1d_2d( npti, nptidx(1:npti), a_i_1d (1:npti), a_i (:,:,1) )
CALL tab_1d_2d( npti, nptidx(1:npti), a_ip_1d(1:npti), a_ip(:,:,1) )
!
ENDIF
!
IF( ln_icediachk ) CALL ice_cons_hsm(1, 'iceitd_rem', rdiag_v, rdiag_s, rdiag_t, rdiag_fv, rdiag_fs, rdiag_ft)
IF( ln_icediachk ) CALL ice_cons2D (1, 'iceitd_rem', diag_v, diag_s, diag_t, diag_fv, diag_fs, diag_ft)
IF( ln_timing ) CALL timing_stop ('iceitd_rem')
!
END SUBROUTINE ice_itd_rem
SUBROUTINE itd_glinear( HbL, Hbr, phice, paice, pg0, pg1, phL, phR )
!!------------------------------------------------------------------
!! *** ROUTINE itd_glinear ***
!!
!! ** Purpose : build g(h) satisfying area and volume constraints (Eq. 6 and 9)
!!
!! ** Method : g(h) is linear and written as: g(eta) = g1(eta) + g0
!! with eta = h - HL
!!------------------------------------------------------------------
REAL(wp), DIMENSION(:), INTENT(in ) :: HbL, HbR ! left and right category boundaries
REAL(wp), DIMENSION(:), INTENT(in ) :: phice, paice ! ice thickness and concentration
REAL(wp), DIMENSION(:), INTENT(inout) :: pg0, pg1 ! coefficients in linear equation for g(eta)
REAL(wp), DIMENSION(:), INTENT(inout) :: phL, phR ! min and max value of range over which g(h) > 0
!
INTEGER :: ji ! horizontal indices
REAL(wp) :: z1_3 , z2_3 ! 1/3 , 2/3
REAL(wp) :: zh13 ! HbL + 1/3 * (HbR - HbL)
REAL(wp) :: zh23 ! HbL + 2/3 * (HbR - HbL)
REAL(wp) :: zdhr ! 1 / (hR - hL)
REAL(wp) :: zwk1, zwk2 ! temporary variables
!!------------------------------------------------------------------
!
z1_3 = 1._wp / 3._wp
z2_3 = 2._wp / 3._wp
!
DO ji = 1, npti
!
IF( paice(ji) > epsi10 .AND. phice(ji) > epsi10 ) THEN
!
! Initialize hL and hR
phL(ji) = HbL(ji)
phR(ji) = HbR(ji)
!
! Change hL or hR if hice falls outside central third of range,
! so that hice is in the central third of the range [HL HR]
zh13 = z1_3 * ( 2._wp * phL(ji) + phR(ji) )
zh23 = z1_3 * ( phL(ji) + 2._wp * phR(ji) )
!
IF ( phice(ji) < zh13 ) THEN ; phR(ji) = 3._wp * phice(ji) - 2._wp * phL(ji) ! move HR to the left
ELSEIF( phice(ji) > zh23 ) THEN ; phL(ji) = 3._wp * phice(ji) - 2._wp * phR(ji) ! move HL to the right
ENDIF
!
! Compute coefficients of g(eta) = g0 + g1*eta
IF( phR(ji) > phL(ji) ) THEN ; zdhr = 1._wp / (phR(ji) - phL(ji))
ELSE ; zdhr = 0._wp ! if hR=hL=hice => no remapping
ENDIF
!!zdhr = 1._wp / (phR(ji) - phL(ji))
zwk1 = 6._wp * paice(ji) * zdhr
zwk2 = ( phice(ji) - phL(ji) ) * zdhr
pg0(ji) = zwk1 * ( z2_3 - zwk2 ) ! Eq. 14
pg1(ji) = 2._wp * zdhr * zwk1 * ( zwk2 - 0.5_wp ) ! Eq. 14
!
ELSE ! remap_flag = .false. or a_i < epsi10
phL(ji) = 0._wp
phR(ji) = 0._wp
pg0(ji) = 0._wp
pg1(ji) = 0._wp
ENDIF
!
END DO
!
END SUBROUTINE itd_glinear
SUBROUTINE itd_shiftice( kdonor, pdaice, pdvice )
!!------------------------------------------------------------------
!! *** ROUTINE itd_shiftice ***
!!
!! ** Purpose : shift ice across category boundaries, conserving everything
!! ( area, volume, energy, age*vol, and mass of salt )
!!------------------------------------------------------------------
INTEGER , DIMENSION(:,:), INTENT(in) :: kdonor ! donor category index
REAL(wp), DIMENSION(:,:), INTENT(in) :: pdaice ! ice area transferred across boundary
REAL(wp), DIMENSION(:,:), INTENT(in) :: pdvice ! ice volume transferred across boundary
!
INTEGER :: ji, jl, jk ! dummy loop indices
INTEGER :: jl2, jl1 ! local integers
REAL(wp) :: ztrans ! ice/snow transferred
REAL(wp), DIMENSION(jpij) :: zworka, zworkv ! workspace
REAL(wp), DIMENSION(jpij,jpl) :: zaTsfn ! - -
REAL(wp), DIMENSION(jpij,nlay_i,jpl) :: ze_i_2d
REAL(wp), DIMENSION(jpij,nlay_s,jpl) :: ze_s_2d
!!------------------------------------------------------------------
CALL tab_3d_2d( npti, nptidx(1:npti), h_i_2d (1:npti,1:jpl), h_i )
CALL tab_3d_2d( npti, nptidx(1:npti), a_i_2d (1:npti,1:jpl), a_i )
CALL tab_3d_2d( npti, nptidx(1:npti), v_i_2d (1:npti,1:jpl), v_i )
CALL tab_3d_2d( npti, nptidx(1:npti), v_s_2d (1:npti,1:jpl), v_s )
CALL tab_3d_2d( npti, nptidx(1:npti), oa_i_2d(1:npti,1:jpl), oa_i )
CALL tab_3d_2d( npti, nptidx(1:npti), sv_i_2d(1:npti,1:jpl), sv_i )
CALL tab_3d_2d( npti, nptidx(1:npti), a_ip_2d(1:npti,1:jpl), a_ip )
CALL tab_3d_2d( npti, nptidx(1:npti), v_ip_2d(1:npti,1:jpl), v_ip )
CALL tab_3d_2d( npti, nptidx(1:npti), v_il_2d(1:npti,1:jpl), v_il )
CALL tab_3d_2d( npti, nptidx(1:npti), t_su_2d(1:npti,1:jpl), t_su )
DO jl = 1, jpl
DO jk = 1, nlay_s
CALL tab_2d_1d( npti, nptidx(1:npti), ze_s_2d(1:npti,jk,jl), e_s(:,:,jk,jl) )
END DO
DO jk = 1, nlay_i
CALL tab_2d_1d( npti, nptidx(1:npti), ze_i_2d(1:npti,jk,jl), e_i(:,:,jk,jl) )
END DO
END DO
! to correct roundoff errors on a_i
CALL tab_2d_1d( npti, nptidx(1:npti), rn_amax_1d(1:npti), rn_amax_2d )
!----------------------------------------------------------------------------------------------
! 1) Define a variable equal to a_i*T_su
!----------------------------------------------------------------------------------------------
DO jl = 1, jpl
DO ji = 1, npti
zaTsfn(ji,jl) = a_i_2d(ji,jl) * t_su_2d(ji,jl)
END DO
END DO
!-------------------------------------------------------------------------------
! 2) Transfer volume and energy between categories
!-------------------------------------------------------------------------------
DO jl = 1, jpl - 1
DO ji = 1, npti
!
jl1 = kdonor(ji,jl)
!
IF( jl1 > 0 ) THEN
!
IF ( jl1 == jl ) THEN ; jl2 = jl1+1
ELSE ; jl2 = jl
ENDIF
!
IF( v_i_2d(ji,jl1) >= epsi10 ) THEN ; zworkv(ji) = pdvice(ji,jl) / v_i_2d(ji,jl1)
ELSE ; zworkv(ji) = 0._wp
ENDIF
IF( a_i_2d(ji,jl1) >= epsi10 ) THEN ; zworka(ji) = pdaice(ji,jl) / a_i_2d(ji,jl1)
ELSE ; zworka(ji) = 0._wp
ENDIF
!
a_i_2d(ji,jl1) = a_i_2d(ji,jl1) - pdaice(ji,jl) ! Ice areas
a_i_2d(ji,jl2) = a_i_2d(ji,jl2) + pdaice(ji,jl)
!
v_i_2d(ji,jl1) = v_i_2d(ji,jl1) - pdvice(ji,jl) ! Ice volumes
v_i_2d(ji,jl2) = v_i_2d(ji,jl2) + pdvice(ji,jl)
!
ztrans = v_s_2d(ji,jl1) * zworkv(ji) ! Snow volumes
v_s_2d(ji,jl1) = v_s_2d(ji,jl1) - ztrans
v_s_2d(ji,jl2) = v_s_2d(ji,jl2) + ztrans
!
ztrans = oa_i_2d(ji,jl1) * zworka(ji) ! Ice age
oa_i_2d(ji,jl1) = oa_i_2d(ji,jl1) - ztrans
oa_i_2d(ji,jl2) = oa_i_2d(ji,jl2) + ztrans
!
ztrans = sv_i_2d(ji,jl1) * zworkv(ji) ! Ice salinity
sv_i_2d(ji,jl1) = sv_i_2d(ji,jl1) - ztrans
sv_i_2d(ji,jl2) = sv_i_2d(ji,jl2) + ztrans
!
ztrans = zaTsfn(ji,jl1) * zworka(ji) ! Surface temperature
zaTsfn(ji,jl1) = zaTsfn(ji,jl1) - ztrans
zaTsfn(ji,jl2) = zaTsfn(ji,jl2) + ztrans
!
IF ( ln_pnd_LEV .OR. ln_pnd_TOPO ) THEN
ztrans = a_ip_2d(ji,jl1) * zworka(ji) ! Pond fraction
a_ip_2d(ji,jl1) = a_ip_2d(ji,jl1) - ztrans
a_ip_2d(ji,jl2) = a_ip_2d(ji,jl2) + ztrans
!
ztrans = v_ip_2d(ji,jl1) * zworkv(ji) ! Pond volume
v_ip_2d(ji,jl1) = v_ip_2d(ji,jl1) - ztrans
v_ip_2d(ji,jl2) = v_ip_2d(ji,jl2) + ztrans
!
IF ( ln_pnd_lids ) THEN ! Pond lid volume
ztrans = v_il_2d(ji,jl1) * zworkv(ji)
v_il_2d(ji,jl1) = v_il_2d(ji,jl1) - ztrans
v_il_2d(ji,jl2) = v_il_2d(ji,jl2) + ztrans
ENDIF
ENDIF
!
ENDIF ! jl1 >0
END DO
!
DO jk = 1, nlay_s !--- Snow heat content
DO ji = 1, npti
!
jl1 = kdonor(ji,jl)
!
IF( jl1 > 0 ) THEN
IF(jl1 == jl) THEN ; jl2 = jl+1
ELSE ; jl2 = jl
ENDIF
ztrans = ze_s_2d(ji,jk,jl1) * zworkv(ji)
ze_s_2d(ji,jk,jl1) = ze_s_2d(ji,jk,jl1) - ztrans
ze_s_2d(ji,jk,jl2) = ze_s_2d(ji,jk,jl2) + ztrans
ENDIF
END DO
END DO
!
DO jk = 1, nlay_i !--- Ice heat content
DO ji = 1, npti
!
jl1 = kdonor(ji,jl)
!
IF( jl1 > 0 ) THEN
IF(jl1 == jl) THEN ; jl2 = jl+1
ELSE ; jl2 = jl
ENDIF
ztrans = ze_i_2d(ji,jk,jl1) * zworkv(ji)
ze_i_2d(ji,jk,jl1) = ze_i_2d(ji,jk,jl1) - ztrans
ze_i_2d(ji,jk,jl2) = ze_i_2d(ji,jk,jl2) + ztrans
ENDIF
END DO
END DO
!
END DO ! boundaries, 1 to jpl-1
!-------------------
! 3) roundoff errors
!-------------------
! clem: The transfer between one category to another can lead to very small negative values (-1.e-20)
! because of truncation error ( i.e. 1. - 1. /= 0 )
CALL ice_var_roundoff( a_i_2d, v_i_2d, v_s_2d, sv_i_2d, oa_i_2d, a_ip_2d, v_ip_2d, v_il_2d, ze_s_2d, ze_i_2d )
! at_i must be <= rn_amax
zworka(1:npti) = SUM( a_i_2d(1:npti,:), dim=2 )
DO jl = 1, jpl
WHERE( zworka(1:npti) > rn_amax_1d(1:npti) ) &
& a_i_2d(1:npti,jl) = a_i_2d(1:npti,jl) * rn_amax_1d(1:npti) / zworka(1:npti)
END DO
!-------------------------------------------------------------------------------
! 4) Update ice thickness and temperature
!-------------------------------------------------------------------------------
# if defined key_single
WHERE( a_i_2d(1:npti,:) >= epsi06 )
# else
WHERE( a_i_2d(1:npti,:) >= epsi20 )
# endif
h_i_2d (1:npti,:) = v_i_2d(1:npti,:) / a_i_2d(1:npti,:)
t_su_2d(1:npti,:) = zaTsfn(1:npti,:) / a_i_2d(1:npti,:)
ELSEWHERE
h_i_2d (1:npti,:) = 0._wp
t_su_2d(1:npti,:) = rt0
END WHERE
!
CALL tab_2d_3d( npti, nptidx(1:npti), h_i_2d (1:npti,1:jpl), h_i )
CALL tab_2d_3d( npti, nptidx(1:npti), a_i_2d (1:npti,1:jpl), a_i )
CALL tab_2d_3d( npti, nptidx(1:npti), v_i_2d (1:npti,1:jpl), v_i )
CALL tab_2d_3d( npti, nptidx(1:npti), v_s_2d (1:npti,1:jpl), v_s )
CALL tab_2d_3d( npti, nptidx(1:npti), oa_i_2d(1:npti,1:jpl), oa_i )
CALL tab_2d_3d( npti, nptidx(1:npti), sv_i_2d(1:npti,1:jpl), sv_i )
CALL tab_2d_3d( npti, nptidx(1:npti), a_ip_2d(1:npti,1:jpl), a_ip )
CALL tab_2d_3d( npti, nptidx(1:npti), v_ip_2d(1:npti,1:jpl), v_ip )
CALL tab_2d_3d( npti, nptidx(1:npti), v_il_2d(1:npti,1:jpl), v_il )
CALL tab_2d_3d( npti, nptidx(1:npti), t_su_2d(1:npti,1:jpl), t_su )
DO jl = 1, jpl
DO jk = 1, nlay_s
CALL tab_1d_2d( npti, nptidx(1:npti), ze_s_2d(1:npti,jk,jl), e_s(:,:,jk,jl) )
END DO
DO jk = 1, nlay_i
CALL tab_1d_2d( npti, nptidx(1:npti), ze_i_2d(1:npti,jk,jl), e_i(:,:,jk,jl) )
END DO
END DO
!
END SUBROUTINE itd_shiftice
SUBROUTINE ice_itd_reb( kt )
!!------------------------------------------------------------------
!! *** ROUTINE ice_itd_reb ***
!!
!! ** Purpose : rebin - rebins thicknesses into defined categories
!!
!! ** Method : If a category thickness is out of bounds, shift part (for down to top)
!! or entire (for top to down) area, volume, and energy
!! to the neighboring category
!!------------------------------------------------------------------
INTEGER , INTENT (in) :: kt ! Ocean time step
INTEGER :: ji, jj, jl ! dummy loop indices
!
INTEGER , DIMENSION(jpij,jpl-1) :: jdonor ! donor category index
REAL(wp), DIMENSION(jpij,jpl-1) :: zdaice, zdvice ! ice area and volume transferred
!!------------------------------------------------------------------
IF( ln_timing ) CALL timing_start('iceitd_reb')
!
IF( kt == nit000 .AND. lwp ) WRITE(numout,*) '-- ice_itd_reb: rebining ice thickness distribution'
!
IF( ln_icediachk ) CALL ice_cons_hsm(0, 'iceitd_reb', rdiag_v, rdiag_s, rdiag_t, rdiag_fv, rdiag_fs, rdiag_ft)
IF( ln_icediachk ) CALL ice_cons2D (0, 'iceitd_reb', diag_v, diag_s, diag_t, diag_fv, diag_fs, diag_ft)
!
jdonor(:,:) = 0
zdaice(:,:) = 0._wp
zdvice(:,:) = 0._wp
!
! !---------------------------------------
DO jl = 1, jpl-1 ! identify thicknesses that are too big
! !---------------------------------------
npti = 0 ; nptidx(:) = 0
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
IF( a_i(ji,jj,jl) > 0._wp .AND. v_i(ji,jj,jl) > (a_i(ji,jj,jl) * hi_max(jl)) ) THEN
npti = npti + 1
nptidx( npti ) = (jj - 1) * jpi + ji
ENDIF
END_2D
!
IF( npti > 0 ) THEN
!!clem CALL tab_2d_1d( npti, nptidx(1:npti), h_i_1d(1:npti), h_i(:,:,jl) )
CALL tab_2d_1d( npti, nptidx(1:npti), a_i_1d(1:npti), a_i(:,:,jl) )
CALL tab_2d_1d( npti, nptidx(1:npti), v_i_1d(1:npti), v_i(:,:,jl) )
!
DO ji = 1, npti
jdonor(ji,jl) = jl
! how much of a_i you send in cat sup is somewhat arbitrary
! these are from CICE => transfer everything
!!zdaice(ji,jl) = a_i_1d(ji)
!!zdvice(ji,jl) = v_i_1d(ji)
! these are from LLN => transfer only half of the category
zdaice(ji,jl) = 0.5_wp * a_i_1d(ji)
zdvice(ji,jl) = v_i_1d(ji) - (1._wp - 0.5_wp) * a_i_1d(ji) * hi_mean(jl)
END DO
!
CALL itd_shiftice( jdonor(1:npti,:), zdaice(1:npti,:), zdvice(1:npti,:) ) ! Shift jl=>jl+1
! Reset shift parameters
jdonor(1:npti,jl) = 0
zdaice(1:npti,jl) = 0._wp
zdvice(1:npti,jl) = 0._wp
ENDIF
!
END DO
! !-----------------------------------------
DO jl = jpl-1, 1, -1 ! Identify thicknesses that are too small
! !-----------------------------------------
npti = 0 ; nptidx(:) = 0
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
IF( a_i(ji,jj,jl+1) > 0._wp .AND. v_i(ji,jj,jl+1) <= (a_i(ji,jj,jl+1) * hi_max(jl)) ) THEN
npti = npti + 1
nptidx( npti ) = (jj - 1) * jpi + ji
ENDIF
END_2D
!
IF( npti > 0 ) THEN
CALL tab_2d_1d( npti, nptidx(1:npti), a_i_1d(1:npti), a_i(:,:,jl+1) ) ! jl+1 is ok
CALL tab_2d_1d( npti, nptidx(1:npti), v_i_1d(1:npti), v_i(:,:,jl+1) ) ! jl+1 is ok
DO ji = 1, npti
jdonor(ji,jl) = jl + 1
zdaice(ji,jl) = a_i_1d(ji)
zdvice(ji,jl) = v_i_1d(ji)
END DO
!
CALL itd_shiftice( jdonor(1:npti,:), zdaice(1:npti,:), zdvice(1:npti,:) ) ! Shift jl+1=>jl
! Reset shift parameters
jdonor(1:npti,jl) = 0
zdaice(1:npti,jl) = 0._wp
zdvice(1:npti,jl) = 0._wp
ENDIF
!
END DO
!
IF( ln_icediachk ) CALL ice_cons_hsm(1, 'iceitd_reb', rdiag_v, rdiag_s, rdiag_t, rdiag_fv, rdiag_fs, rdiag_ft)
IF( ln_icediachk ) CALL ice_cons2D (1, 'iceitd_reb', diag_v, diag_s, diag_t, diag_fv, diag_fs, diag_ft)
IF( ln_timing ) CALL timing_stop ('iceitd_reb')
!
END SUBROUTINE ice_itd_reb
SUBROUTINE ice_itd_init
!!------------------------------------------------------------------
!! *** ROUTINE ice_itd_init ***
!!
!! ** Purpose : Initializes the ice thickness distribution
!! ** Method : ...
!! ** input : Namelist namitd
!!-------------------------------------------------------------------
INTEGER :: jl ! dummy loop index
INTEGER :: ios, ioptio ! Local integer output status for namelist read
REAL(wp) :: zhmax, znum, zden, zalpha ! - -
!
NAMELIST/namitd/ ln_cat_hfn, rn_himean, ln_cat_usr, rn_catbnd, rn_himin, rn_himax
!!------------------------------------------------------------------
!

Jérôme Chanut
committed
rn_catbnd(:) = 0._wp ! Circumvent possible initialization by compiler
! to prevent from errors when writing output
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
READ ( numnam_ice_ref, namitd, IOSTAT = ios, ERR = 901)
901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namitd in reference namelist' )
READ ( numnam_ice_cfg, namitd, IOSTAT = ios, ERR = 902 )
902 IF( ios > 0 ) CALL ctl_nam ( ios , 'namitd in configuration namelist' )
IF(lwm) WRITE( numoni, namitd )
!
IF(lwp) THEN ! control print
WRITE(numout,*)
WRITE(numout,*) 'ice_itd_init: Initialization of ice cat distribution '
WRITE(numout,*) '~~~~~~~~~~~~'
WRITE(numout,*) ' Namelist namitd: '
WRITE(numout,*) ' Ice categories are defined by a function of rn_himean**(-0.05) ln_cat_hfn = ', ln_cat_hfn
WRITE(numout,*) ' mean ice thickness in the domain rn_himean = ', rn_himean
WRITE(numout,*) ' Ice categories are defined by rn_catbnd ln_cat_usr = ', ln_cat_usr
WRITE(numout,*) ' minimum ice thickness allowed rn_himin = ', rn_himin
WRITE(numout,*) ' maximum ice thickness allowed rn_himax = ', rn_himax
ENDIF
!
!-----------------------------------!
! Thickness categories boundaries !
!-----------------------------------!
! !== set the choice of ice categories ==!
ioptio = 0
IF( ln_cat_hfn ) THEN ; ioptio = ioptio + 1 ; nice_catbnd = np_cathfn ; ENDIF
IF( ln_cat_usr ) THEN ; ioptio = ioptio + 1 ; nice_catbnd = np_catusr ; ENDIF
IF( ioptio /= 1 ) CALL ctl_stop( 'ice_itd_init: choose one and only one ice categories boundaries' )
!
SELECT CASE( nice_catbnd )
! !------------------------!
CASE( np_cathfn ) ! h^(-alpha) function
! !------------------------!
zalpha = 0.05_wp
zhmax = 3._wp * rn_himean
hi_max(0) = 0._wp
DO jl = 1, jpl
znum = jpl * ( zhmax+1 )**zalpha
zden = REAL( jpl-jl , wp ) * ( zhmax + 1._wp )**zalpha + REAL( jl , wp )
hi_max(jl) = ( znum / zden )**(1./zalpha) - 1
END DO
! !------------------------!
CASE( np_catusr ) ! user defined
! !------------------------!
DO jl = 0, jpl
hi_max(jl) = rn_catbnd(jl)
END DO
!
END SELECT
!
DO jl = 1, jpl ! mean thickness by category
hi_mean(jl) = ( hi_max(jl) + hi_max(jl-1) ) * 0.5_wp
END DO
!
hi_max(jpl) = rn_himax ! set to a big value to ensure that all ice is thinner than hi_max(jpl)
!
IF(lwp) WRITE(numout,*)
IF(lwp) WRITE(numout,*) ' ===>>> resulting thickness category boundaries :'
IF(lwp) WRITE(numout,*) ' hi_max(:)= ', hi_max(0:jpl)
!
IF( hi_max(1) < rn_himin ) CALL ctl_stop('ice_itd_init: the upper bound of the 1st category must be bigger than rn_himin')
!
END SUBROUTINE ice_itd_init
#else
!!----------------------------------------------------------------------
!! Default option : Empty module NO SI3 sea-ice model
!!----------------------------------------------------------------------
#endif
!!======================================================================
END MODULE iceitd