Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
MODULE icethd
!!======================================================================
!! *** MODULE icethd ***
!! sea-ice : master routine for thermodynamics
!!======================================================================
!! History : 1.0 ! 2000-01 (M.A. Morales Maqueda, H. Goosse, T. Fichefet) original code 1D
!! 4.0 ! 2018 (many people) SI3 [aka Sea Ice cube]
!!----------------------------------------------------------------------
#if defined key_si3
!!----------------------------------------------------------------------
!! 'key_si3' SI3 sea-ice model
!!----------------------------------------------------------------------
!! ice_thd : thermodynamics of sea ice
!! ice_thd_init : initialisation of sea-ice thermodynamics
!!----------------------------------------------------------------------
USE phycst ! physical constants
USE dom_oce ! ocean space and time domain variables
USE ice ! sea-ice: variables
!!gm list trop longue ==>>> why not passage en argument d'appel ?
USE sbc_oce , ONLY : sss_m, sst_m, e3t_m, utau, vtau, ssu_m, ssv_m, frq_m, sprecip, ln_cpl
USE sbc_ice , ONLY : qsr_oce, qns_oce, qemp_oce, qsr_ice, qns_ice, dqns_ice, evap_ice, qprec_ice, qevap_ice, &
& qml_ice, qcn_ice, qtr_ice_top
USE ice1D ! sea-ice: thermodynamics variables
USE icethd_zdf ! sea-ice: vertical heat diffusion
USE icethd_dh ! sea-ice: ice-snow growth and melt
USE icethd_da ! sea-ice: lateral melting
USE icethd_sal ! sea-ice: salinity
USE icethd_ent ! sea-ice: enthalpy redistribution
USE icethd_do ! sea-ice: growth in open water
USE icethd_pnd ! sea-ice: melt ponds
USE iceitd ! sea-ice: remapping thickness distribution
USE icecor ! sea-ice: corrections
USE icetab ! sea-ice: 1D <==> 2D transformation
USE icevar ! sea-ice: operations
USE icectl ! sea-ice: control print
!
USE in_out_manager ! I/O manager
USE iom ! I/O manager library
USE lib_mpp ! MPP library
USE lib_fortran ! fortran utilities (glob_sum + no signed zero)
USE lbclnk ! lateral boundary conditions (or mpp links)
USE timing ! Timing
IMPLICIT NONE
PRIVATE
PUBLIC ice_thd ! called by limstp module
PUBLIC ice_thd_init ! called by ice_init
!! for convergence tests
REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: ztice_cvgerr, ztice_cvgstp
!! * Substitutions
# include "do_loop_substitute.h90"
!!----------------------------------------------------------------------
!! NEMO/ICE 4.0 , NEMO Consortium (2018)
!! $Id: icethd.F90 15388 2021-10-17 11:33:47Z clem $
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
SUBROUTINE ice_thd( kt )
!!-------------------------------------------------------------------
!! *** ROUTINE ice_thd ***
!!
!! ** Purpose : This routine manages ice thermodynamics
!!
!! ** Action : - computation of oceanic sensible heat flux at the ice base
!! energy budget in the leads
!! net fluxes on top of ice and of ocean
!! - selection of grid cells with ice
!! - call ice_thd_zdf for vertical heat diffusion
!! - call ice_thd_dh for vertical ice growth and melt
!! - call ice_thd_pnd for melt ponds
!! - call ice_thd_ent for enthalpy remapping
!! - call ice_thd_sal for ice desalination
!! - call ice_thd_temp to retrieve temperature from ice enthalpy
!! - call ice_thd_mono for extra lateral ice melt if active virtual thickness distribution
!! - call ice_thd_da for lateral ice melt
!! - back to the geographic grid
!! - call ice_thd_rem for remapping thickness distribution
!! - call ice_thd_do for ice growth in leads
!!-------------------------------------------------------------------
INTEGER, INTENT(in) :: kt ! number of iteration
!
INTEGER :: ji, jj, jk, jl ! dummy loop indices
!!-------------------------------------------------------------------
! controls
IF( ln_timing ) CALL timing_start('icethd') ! timing
IF( ln_icediachk ) CALL ice_cons_hsm(0, 'icethd', rdiag_v, rdiag_s, rdiag_t, rdiag_fv, rdiag_fs, rdiag_ft) ! conservation
IF( ln_icediachk ) CALL ice_cons2D (0, 'icethd', diag_v, diag_s, diag_t, diag_fv, diag_fs, diag_ft) ! conservation
IF( kt == nit000 .AND. lwp ) THEN
WRITE(numout,*)
WRITE(numout,*) 'ice_thd: sea-ice thermodynamics'
WRITE(numout,*) '~~~~~~~'
ENDIF
! convergence tests
IF( ln_zdf_chkcvg ) THEN
ALLOCATE( ztice_cvgerr(jpi,jpj,jpl) , ztice_cvgstp(jpi,jpj,jpl) )
ztice_cvgerr = 0._wp ; ztice_cvgstp = 0._wp
ENDIF
!
CALL ice_thd_frazil !--- frazil ice: collection thickness (ht_i_new) & fraction of frazil (fraz_frac)
!
!-------------------------------------------------------------------------------------------!
! Thermodynamic computation (only on grid points covered by ice) => loop over ice categories
!-------------------------------------------------------------------------------------------!
DO jl = 1, jpl
! select ice covered grid points
npti = 0 ; nptidx(:) = 0
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
IF ( a_i(ji,jj,jl) > epsi10 ) THEN
npti = npti + 1
nptidx(npti) = (jj - 1) * jpi + ji
ENDIF
END_2D
IF( npti > 0 ) THEN ! If there is no ice, do nothing.
!
CALL ice_thd_1d2d( jl, 1 ) ! --- Move to 1D arrays --- !
! ! --- & Change units of e_i, e_s from J/m2 to J/m3 --- !
!
s_i_new (1:npti) = 0._wp ; dh_s_tot(1:npti) = 0._wp ! --- some init --- ! (important to have them here)
dh_i_sum (1:npti) = 0._wp ; dh_i_bom(1:npti) = 0._wp ; dh_i_itm (1:npti) = 0._wp
dh_i_sub (1:npti) = 0._wp ; dh_i_bog(1:npti) = 0._wp
dh_snowice(1:npti) = 0._wp ; dh_s_mlt(1:npti) = 0._wp
!
CALL ice_thd_zdf ! --- Ice-Snow temperature --- !
!
IF( ln_icedH ) THEN ! --- Growing/Melting --- !
CALL ice_thd_dh ! Ice-Snow thickness
CALL ice_thd_ent( e_i_1d(1:npti,:) ) ! Ice enthalpy remapping
ENDIF
CALL ice_thd_sal( ln_icedS ) ! --- Ice salinity --- !
!
CALL ice_thd_temp ! --- Temperature update --- !
!
IF( ln_icedH .AND. ln_virtual_itd ) &
& CALL ice_thd_mono ! --- Extra lateral melting if virtual_itd --- !
!
IF( ln_icedA ) CALL ice_thd_da ! --- Lateral melting --- !
!
CALL ice_thd_1d2d( jl, 2 ) ! --- Change units of e_i, e_s from J/m3 to J/m2 --- !
! ! --- & Move to 2D arrays --- !
ENDIF
!
END DO
!
IF( ln_icediachk ) CALL ice_cons_hsm(1, 'icethd', rdiag_v, rdiag_s, rdiag_t, rdiag_fv, rdiag_fs, rdiag_ft)
IF( ln_icediachk ) CALL ice_cons2D (1, 'icethd', diag_v, diag_s, diag_t, diag_fv, diag_fs, diag_ft)
!
IF ( ln_pnd .AND. ln_icedH ) &
& CALL ice_thd_pnd ! --- Melt ponds --- !
!
IF( jpl > 1 ) CALL ice_itd_rem( kt ) ! --- Transport ice between thickness categories --- !
!
IF( ln_icedO ) CALL ice_thd_do ! --- Frazil ice growth in leads --- !
!
CALL ice_cor( kt , 2 ) ! --- Corrections --- !
!
oa_i(:,:,:) = oa_i(:,:,:) + a_i(:,:,:) * rDt_ice ! --- Ice natural aging incrementation
!
DO_2D( 0, 0, 0, 0 ) ! --- Ice velocity corrections
IF( at_i(ji,jj) == 0._wp ) THEN ! if ice has melted
IF( at_i(ji+1,jj) == 0._wp ) u_ice(ji ,jj) = 0._wp ! right side
IF( at_i(ji-1,jj) == 0._wp ) u_ice(ji-1,jj) = 0._wp ! left side
IF( at_i(ji,jj+1) == 0._wp ) v_ice(ji,jj ) = 0._wp ! upper side
IF( at_i(ji,jj-1) == 0._wp ) v_ice(ji,jj-1) = 0._wp ! bottom side
ENDIF
END_2D
CALL lbc_lnk( 'icethd', u_ice, 'U', -1.0_wp, v_ice, 'V', -1.0_wp )
!
! convergence tests
IF( ln_zdf_chkcvg ) THEN
CALL iom_put( 'tice_cvgerr', ztice_cvgerr ) ; DEALLOCATE( ztice_cvgerr )
CALL iom_put( 'tice_cvgstp', ztice_cvgstp ) ; DEALLOCATE( ztice_cvgstp )
ENDIF
!
! controls
IF( ln_icectl ) CALL ice_prt (kt, iiceprt, jiceprt, 1, ' - ice thermodyn. - ') ! prints
IF( sn_cfctl%l_prtctl ) &
& CALL ice_prt3D ('icethd') ! prints
IF( ln_timing ) CALL timing_stop('icethd') ! timing
!
END SUBROUTINE ice_thd
SUBROUTINE ice_thd_temp
!!-----------------------------------------------------------------------
!! *** ROUTINE ice_thd_temp ***
!!
!! ** Purpose : Computes sea ice temperature (Kelvin) from enthalpy
!!
!! ** Method : Formula (Bitz and Lipscomb, 1999)
!!-------------------------------------------------------------------
INTEGER :: ji, jk ! dummy loop indices
REAL(wp) :: ztmelts, zbbb, zccc ! local scalar
!!-------------------------------------------------------------------
! Recover ice temperature
DO jk = 1, nlay_i
DO ji = 1, npti
ztmelts = -rTmlt * sz_i_1d(ji,jk)
! Conversion q(S,T) -> T (second order equation)
zbbb = ( rcp - rcpi ) * ztmelts + e_i_1d(ji,jk) * r1_rhoi - rLfus
zccc = SQRT( MAX( zbbb * zbbb - 4._wp * rcpi * rLfus * ztmelts, 0._wp ) )
t_i_1d(ji,jk) = rt0 - ( zbbb + zccc ) * 0.5_wp * r1_rcpi
! mask temperature
rswitch = 1._wp - MAX( 0._wp , SIGN( 1._wp , - h_i_1d(ji) ) )
t_i_1d(ji,jk) = rswitch * t_i_1d(ji,jk) + ( 1._wp - rswitch ) * rt0
END DO
END DO
!
END SUBROUTINE ice_thd_temp
SUBROUTINE ice_thd_mono
!!-----------------------------------------------------------------------
!! *** ROUTINE ice_thd_mono ***
!!
!! ** Purpose : Lateral melting in case virtual_itd
!! ( dA = A/2h dh )
!!-----------------------------------------------------------------------
INTEGER :: ji ! dummy loop indices
REAL(wp) :: zhi_bef ! ice thickness before thermo
REAL(wp) :: zdh_mel, zda_mel ! net melting
REAL(wp) :: zvi, zvs ! ice/snow volumes
!!-----------------------------------------------------------------------
!
DO ji = 1, npti
zdh_mel = MIN( 0._wp, dh_i_itm(ji) + dh_i_sum(ji) + dh_i_bom(ji) + dh_snowice(ji) + dh_i_sub(ji) )
IF( zdh_mel < 0._wp .AND. a_i_1d(ji) > 0._wp ) THEN
zvi = a_i_1d(ji) * h_i_1d(ji)
zvs = a_i_1d(ji) * h_s_1d(ji)
! lateral melting = concentration change
zhi_bef = h_i_1d(ji) - zdh_mel
rswitch = MAX( 0._wp , SIGN( 1._wp , zhi_bef - epsi20 ) )
zda_mel = rswitch * a_i_1d(ji) * zdh_mel / ( 2._wp * MAX( zhi_bef, epsi20 ) )
a_i_1d(ji) = MAX( epsi20, a_i_1d(ji) + zda_mel )
! adjust thickness
h_i_1d(ji) = zvi / a_i_1d(ji)
h_s_1d(ji) = zvs / a_i_1d(ji)
! retrieve total concentration
at_i_1d(ji) = a_i_1d(ji)
END IF
END DO
!
END SUBROUTINE ice_thd_mono
SUBROUTINE ice_thd_1d2d( kl, kn )
!!-----------------------------------------------------------------------
!! *** ROUTINE ice_thd_1d2d ***
!!
!! ** Purpose : move arrays from 1d to 2d and the reverse
!!-----------------------------------------------------------------------
INTEGER, INTENT(in) :: kl ! index of the ice category
INTEGER, INTENT(in) :: kn ! 1= from 2D to 1D ; 2= from 1D to 2D
!
INTEGER :: jk ! dummy loop indices
!!-----------------------------------------------------------------------
!
SELECT CASE( kn )
! !---------------------!
CASE( 1 ) !== from 2D to 1D ==!
! !---------------------!
CALL tab_2d_1d( npti, nptidx(1:npti), at_i_1d(1:npti), at_i )
CALL tab_2d_1d( npti, nptidx(1:npti), a_i_1d (1:npti), a_i (:,:,kl) )
CALL tab_2d_1d( npti, nptidx(1:npti), h_i_1d (1:npti), h_i (:,:,kl) )
CALL tab_2d_1d( npti, nptidx(1:npti), h_s_1d (1:npti), h_s (:,:,kl) )
CALL tab_2d_1d( npti, nptidx(1:npti), t_su_1d(1:npti), t_su(:,:,kl) )
CALL tab_2d_1d( npti, nptidx(1:npti), s_i_1d (1:npti), s_i (:,:,kl) )
DO jk = 1, nlay_s
CALL tab_2d_1d( npti, nptidx(1:npti), t_s_1d(1:npti,jk), t_s(:,:,jk,kl) )
CALL tab_2d_1d( npti, nptidx(1:npti), e_s_1d(1:npti,jk), e_s(:,:,jk,kl) )
END DO
DO jk = 1, nlay_i
CALL tab_2d_1d( npti, nptidx(1:npti), t_i_1d (1:npti,jk), t_i (:,:,jk,kl) )
CALL tab_2d_1d( npti, nptidx(1:npti), e_i_1d (1:npti,jk), e_i (:,:,jk,kl) )
CALL tab_2d_1d( npti, nptidx(1:npti), sz_i_1d(1:npti,jk), sz_i(:,:,jk,kl) )
END DO
!
CALL tab_2d_1d( npti, nptidx(1:npti), qprec_ice_1d (1:npti), qprec_ice )
CALL tab_2d_1d( npti, nptidx(1:npti), qsr_ice_1d (1:npti), qsr_ice (:,:,kl) )
CALL tab_2d_1d( npti, nptidx(1:npti), qns_ice_1d (1:npti), qns_ice (:,:,kl) )
CALL tab_2d_1d( npti, nptidx(1:npti), evap_ice_1d (1:npti), evap_ice(:,:,kl) )
CALL tab_2d_1d( npti, nptidx(1:npti), dqns_ice_1d (1:npti), dqns_ice(:,:,kl) )
CALL tab_2d_1d( npti, nptidx(1:npti), t_bo_1d (1:npti), t_bo )
CALL tab_2d_1d( npti, nptidx(1:npti), sprecip_1d (1:npti), sprecip )
CALL tab_2d_1d( npti, nptidx(1:npti), qsb_ice_bot_1d(1:npti), qsb_ice_bot )
CALL tab_2d_1d( npti, nptidx(1:npti), fhld_1d (1:npti), fhld )
CALL tab_2d_1d( npti, nptidx(1:npti), qml_ice_1d (1:npti), qml_ice (:,:,kl) )
CALL tab_2d_1d( npti, nptidx(1:npti), qcn_ice_1d (1:npti), qcn_ice (:,:,kl) )
CALL tab_2d_1d( npti, nptidx(1:npti), qtr_ice_top_1d(1:npti), qtr_ice_top(:,:,kl) )
!
CALL tab_2d_1d( npti, nptidx(1:npti), wfx_snw_sni_1d(1:npti), wfx_snw_sni )
CALL tab_2d_1d( npti, nptidx(1:npti), wfx_snw_sum_1d(1:npti), wfx_snw_sum )
CALL tab_2d_1d( npti, nptidx(1:npti), wfx_sub_1d (1:npti), wfx_sub )
CALL tab_2d_1d( npti, nptidx(1:npti), wfx_snw_sub_1d(1:npti), wfx_snw_sub )
CALL tab_2d_1d( npti, nptidx(1:npti), wfx_ice_sub_1d(1:npti), wfx_ice_sub )
CALL tab_2d_1d( npti, nptidx(1:npti), wfx_err_sub_1d(1:npti), wfx_err_sub )
!
CALL tab_2d_1d( npti, nptidx(1:npti), wfx_bog_1d (1:npti), wfx_bog )
CALL tab_2d_1d( npti, nptidx(1:npti), wfx_bom_1d (1:npti), wfx_bom )
CALL tab_2d_1d( npti, nptidx(1:npti), wfx_sum_1d (1:npti), wfx_sum )
CALL tab_2d_1d( npti, nptidx(1:npti), wfx_sni_1d (1:npti), wfx_sni )
CALL tab_2d_1d( npti, nptidx(1:npti), wfx_res_1d (1:npti), wfx_res )
CALL tab_2d_1d( npti, nptidx(1:npti), wfx_spr_1d (1:npti), wfx_spr )
CALL tab_2d_1d( npti, nptidx(1:npti), wfx_lam_1d (1:npti), wfx_lam )
!
CALL tab_2d_1d( npti, nptidx(1:npti), sfx_bog_1d (1:npti), sfx_bog )
CALL tab_2d_1d( npti, nptidx(1:npti), sfx_bom_1d (1:npti), sfx_bom )
CALL tab_2d_1d( npti, nptidx(1:npti), sfx_sum_1d (1:npti), sfx_sum )
CALL tab_2d_1d( npti, nptidx(1:npti), sfx_sni_1d (1:npti), sfx_sni )
CALL tab_2d_1d( npti, nptidx(1:npti), sfx_bri_1d (1:npti), sfx_bri )
CALL tab_2d_1d( npti, nptidx(1:npti), sfx_res_1d (1:npti), sfx_res )
CALL tab_2d_1d( npti, nptidx(1:npti), sfx_sub_1d (1:npti), sfx_sub )
CALL tab_2d_1d( npti, nptidx(1:npti), sfx_lam_1d (1:npti), sfx_lam )
!
CALL tab_2d_1d( npti, nptidx(1:npti), hfx_thd_1d (1:npti), hfx_thd )
CALL tab_2d_1d( npti, nptidx(1:npti), hfx_spr_1d (1:npti), hfx_spr )
CALL tab_2d_1d( npti, nptidx(1:npti), hfx_sum_1d (1:npti), hfx_sum )
CALL tab_2d_1d( npti, nptidx(1:npti), hfx_bom_1d (1:npti), hfx_bom )
CALL tab_2d_1d( npti, nptidx(1:npti), hfx_bog_1d (1:npti), hfx_bog )
CALL tab_2d_1d( npti, nptidx(1:npti), hfx_dif_1d (1:npti), hfx_dif )
CALL tab_2d_1d( npti, nptidx(1:npti), hfx_opw_1d (1:npti), hfx_opw )
CALL tab_2d_1d( npti, nptidx(1:npti), hfx_snw_1d (1:npti), hfx_snw )
CALL tab_2d_1d( npti, nptidx(1:npti), hfx_sub_1d (1:npti), hfx_sub )
CALL tab_2d_1d( npti, nptidx(1:npti), hfx_res_1d (1:npti), hfx_res )
CALL tab_2d_1d( npti, nptidx(1:npti), hfx_err_dif_1d(1:npti), hfx_err_dif )
!
! ocean surface fields
CALL tab_2d_1d( npti, nptidx(1:npti), sst_1d(1:npti), sst_m )
CALL tab_2d_1d( npti, nptidx(1:npti), sss_1d(1:npti), sss_m )
CALL tab_2d_1d( npti, nptidx(1:npti), frq_m_1d(1:npti), frq_m )
!
! to update ice age
CALL tab_2d_1d( npti, nptidx(1:npti), o_i_1d (1:npti), o_i (:,:,kl) )
CALL tab_2d_1d( npti, nptidx(1:npti), oa_i_1d(1:npti), oa_i(:,:,kl) )
!
! --- Change units of e_i, e_s from J/m2 to J/m3 --- !
! Here we make sure that we don't divide by very small, but physically
! meaningless, products of sea ice thicknesses/snow depths and sea ice
! concentration
WHERE( (h_i_1d(1:npti) * a_i_1d(1:npti)) > epsi20 )
e_i_1d(1:npti,jk) = e_i_1d(1:npti,jk) / (h_i_1d(1:npti) * a_i_1d(1:npti)) * nlay_i
ELSEWHERE
e_i_1d(1:npti,jk) = 0._wp
ENDWHERE
WHERE( (h_s_1d(1:npti) * a_i_1d(1:npti)) > epsi20 )
e_s_1d(1:npti,jk) = e_s_1d(1:npti,jk) / (h_s_1d(1:npti) * a_i_1d(1:npti)) * nlay_s
ELSEWHERE
e_s_1d(1:npti,jk) = 0._wp
ENDWHERE
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
END DO
!
! !---------------------!
CASE( 2 ) !== from 1D to 2D ==!
! !---------------------!
! --- Change units of e_i, e_s from J/m3 to J/m2 --- !
DO jk = 1, nlay_i
e_i_1d(1:npti,jk) = e_i_1d(1:npti,jk) * h_i_1d(1:npti) * a_i_1d(1:npti) * r1_nlay_i
END DO
DO jk = 1, nlay_s
e_s_1d(1:npti,jk) = e_s_1d(1:npti,jk) * h_s_1d(1:npti) * a_i_1d(1:npti) * r1_nlay_s
END DO
!
! Change thickness to volume (replaces routine ice_var_eqv2glo)
v_i_1d (1:npti) = h_i_1d (1:npti) * a_i_1d (1:npti)
v_s_1d (1:npti) = h_s_1d (1:npti) * a_i_1d (1:npti)
sv_i_1d(1:npti) = s_i_1d (1:npti) * v_i_1d (1:npti)
oa_i_1d(1:npti) = o_i_1d (1:npti) * a_i_1d (1:npti)
CALL tab_1d_2d( npti, nptidx(1:npti), at_i_1d(1:npti), at_i )
CALL tab_1d_2d( npti, nptidx(1:npti), a_i_1d (1:npti), a_i (:,:,kl) )
CALL tab_1d_2d( npti, nptidx(1:npti), h_i_1d (1:npti), h_i (:,:,kl) )
CALL tab_1d_2d( npti, nptidx(1:npti), h_s_1d (1:npti), h_s (:,:,kl) )
CALL tab_1d_2d( npti, nptidx(1:npti), t_su_1d(1:npti), t_su(:,:,kl) )
CALL tab_1d_2d( npti, nptidx(1:npti), s_i_1d (1:npti), s_i (:,:,kl) )
DO jk = 1, nlay_s
CALL tab_1d_2d( npti, nptidx(1:npti), t_s_1d(1:npti,jk), t_s(:,:,jk,kl) )
CALL tab_1d_2d( npti, nptidx(1:npti), e_s_1d(1:npti,jk), e_s(:,:,jk,kl) )
END DO
DO jk = 1, nlay_i
CALL tab_1d_2d( npti, nptidx(1:npti), t_i_1d (1:npti,jk), t_i (:,:,jk,kl) )
CALL tab_1d_2d( npti, nptidx(1:npti), e_i_1d (1:npti,jk), e_i (:,:,jk,kl) )
CALL tab_1d_2d( npti, nptidx(1:npti), sz_i_1d(1:npti,jk), sz_i(:,:,jk,kl) )
END DO
!
CALL tab_1d_2d( npti, nptidx(1:npti), wfx_snw_sni_1d(1:npti), wfx_snw_sni )
CALL tab_1d_2d( npti, nptidx(1:npti), wfx_snw_sum_1d(1:npti), wfx_snw_sum )
CALL tab_1d_2d( npti, nptidx(1:npti), wfx_sub_1d (1:npti), wfx_sub )
CALL tab_1d_2d( npti, nptidx(1:npti), wfx_snw_sub_1d(1:npti), wfx_snw_sub )
CALL tab_1d_2d( npti, nptidx(1:npti), wfx_ice_sub_1d(1:npti), wfx_ice_sub )
CALL tab_1d_2d( npti, nptidx(1:npti), wfx_err_sub_1d(1:npti), wfx_err_sub )
!
CALL tab_1d_2d( npti, nptidx(1:npti), wfx_bog_1d (1:npti), wfx_bog )
CALL tab_1d_2d( npti, nptidx(1:npti), wfx_bom_1d (1:npti), wfx_bom )
CALL tab_1d_2d( npti, nptidx(1:npti), wfx_sum_1d (1:npti), wfx_sum )
CALL tab_1d_2d( npti, nptidx(1:npti), wfx_sni_1d (1:npti), wfx_sni )
CALL tab_1d_2d( npti, nptidx(1:npti), wfx_res_1d (1:npti), wfx_res )
CALL tab_1d_2d( npti, nptidx(1:npti), wfx_spr_1d (1:npti), wfx_spr )
CALL tab_1d_2d( npti, nptidx(1:npti), wfx_lam_1d (1:npti), wfx_lam )
!
CALL tab_1d_2d( npti, nptidx(1:npti), sfx_bog_1d (1:npti), sfx_bog )
CALL tab_1d_2d( npti, nptidx(1:npti), sfx_bom_1d (1:npti), sfx_bom )
CALL tab_1d_2d( npti, nptidx(1:npti), sfx_sum_1d (1:npti), sfx_sum )
CALL tab_1d_2d( npti, nptidx(1:npti), sfx_sni_1d (1:npti), sfx_sni )
CALL tab_1d_2d( npti, nptidx(1:npti), sfx_bri_1d (1:npti), sfx_bri )
CALL tab_1d_2d( npti, nptidx(1:npti), sfx_res_1d (1:npti), sfx_res )
CALL tab_1d_2d( npti, nptidx(1:npti), sfx_sub_1d (1:npti), sfx_sub )
CALL tab_1d_2d( npti, nptidx(1:npti), sfx_lam_1d (1:npti), sfx_lam )
!
CALL tab_1d_2d( npti, nptidx(1:npti), hfx_thd_1d (1:npti), hfx_thd )
CALL tab_1d_2d( npti, nptidx(1:npti), hfx_spr_1d (1:npti), hfx_spr )
CALL tab_1d_2d( npti, nptidx(1:npti), hfx_sum_1d (1:npti), hfx_sum )
CALL tab_1d_2d( npti, nptidx(1:npti), hfx_bom_1d (1:npti), hfx_bom )
CALL tab_1d_2d( npti, nptidx(1:npti), hfx_bog_1d (1:npti), hfx_bog )
CALL tab_1d_2d( npti, nptidx(1:npti), hfx_dif_1d (1:npti), hfx_dif )
CALL tab_1d_2d( npti, nptidx(1:npti), hfx_opw_1d (1:npti), hfx_opw )
CALL tab_1d_2d( npti, nptidx(1:npti), hfx_snw_1d (1:npti), hfx_snw )
CALL tab_1d_2d( npti, nptidx(1:npti), hfx_sub_1d (1:npti), hfx_sub )
CALL tab_1d_2d( npti, nptidx(1:npti), hfx_res_1d (1:npti), hfx_res )
CALL tab_1d_2d( npti, nptidx(1:npti), hfx_err_dif_1d(1:npti), hfx_err_dif )
!
CALL tab_1d_2d( npti, nptidx(1:npti), qns_ice_1d (1:npti), qns_ice (:,:,kl) )
CALL tab_1d_2d( npti, nptidx(1:npti), qtr_ice_bot_1d(1:npti), qtr_ice_bot(:,:,kl) )
! effective conductivity and 1st layer temperature (ln_cndflx=T)
CALL tab_1d_2d( npti, nptidx(1:npti), cnd_ice_1d(1:npti), cnd_ice(:,:,kl) )
CALL tab_1d_2d( npti, nptidx(1:npti), t1_ice_1d (1:npti), t1_ice (:,:,kl) )
! Melt ponds
CALL tab_1d_2d( npti, nptidx(1:npti), dh_i_sum (1:npti) , dh_i_sum_2d(:,:,kl) )
CALL tab_1d_2d( npti, nptidx(1:npti), dh_s_mlt (1:npti) , dh_s_mlt_2d(:,:,kl) )
! SIMIP diagnostics
CALL tab_1d_2d( npti, nptidx(1:npti), t_si_1d (1:npti), t_si (:,:,kl) )
CALL tab_1d_2d( npti, nptidx(1:npti), qcn_ice_bot_1d(1:npti), qcn_ice_bot(:,:,kl) )
CALL tab_1d_2d( npti, nptidx(1:npti), qcn_ice_top_1d(1:npti), qcn_ice_top(:,:,kl) )
CALL tab_1d_2d( npti, nptidx(1:npti), qml_ice_1d (1:npti), qml_ice (:,:,kl) )
! extensive variables
CALL tab_1d_2d( npti, nptidx(1:npti), v_i_1d (1:npti), v_i (:,:,kl) )
CALL tab_1d_2d( npti, nptidx(1:npti), v_s_1d (1:npti), v_s (:,:,kl) )
CALL tab_1d_2d( npti, nptidx(1:npti), sv_i_1d(1:npti), sv_i(:,:,kl) )
CALL tab_1d_2d( npti, nptidx(1:npti), oa_i_1d(1:npti), oa_i(:,:,kl) )
! check convergence of heat diffusion scheme
IF( ln_zdf_chkcvg ) THEN
CALL tab_1d_2d( npti, nptidx(1:npti), tice_cvgerr_1d(1:npti), ztice_cvgerr(:,:,kl) )
CALL tab_1d_2d( npti, nptidx(1:npti), tice_cvgstp_1d(1:npti), ztice_cvgstp(:,:,kl) )
ENDIF
!
END SELECT
!
END SUBROUTINE ice_thd_1d2d
SUBROUTINE ice_thd_init
!!-------------------------------------------------------------------
!! *** ROUTINE ice_thd_init ***
!!
!! ** Purpose : Physical constants and parameters associated with
!! ice thermodynamics
!!
!! ** Method : Read the namthd namelist and check the parameters
!! called at the first timestep (nit000)
!!
!! ** input : Namelist namthd
!!-------------------------------------------------------------------
INTEGER :: ios ! Local integer output status for namelist read
!!
NAMELIST/namthd/ ln_icedH, ln_icedA, ln_icedO, ln_icedS, ln_leadhfx
!!-------------------------------------------------------------------
!
READ ( numnam_ice_ref, namthd, IOSTAT = ios, ERR = 901)
901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namthd in reference namelist' )
READ ( numnam_ice_cfg, namthd, IOSTAT = ios, ERR = 902 )
902 IF( ios > 0 ) CALL ctl_nam ( ios , 'namthd in configuration namelist' )
IF(lwm) WRITE( numoni, namthd )
!
IF(lwp) THEN ! control print
WRITE(numout,*)
WRITE(numout,*) 'ice_thd_init: Ice Thermodynamics'
WRITE(numout,*) '~~~~~~~~~~~~'
WRITE(numout,*) ' Namelist namthd:'
WRITE(numout,*) ' activate ice thick change from top/bot (T) or not (F) ln_icedH = ', ln_icedH
WRITE(numout,*) ' activate lateral melting (T) or not (F) ln_icedA = ', ln_icedA
WRITE(numout,*) ' activate ice growth in open-water (T) or not (F) ln_icedO = ', ln_icedO
WRITE(numout,*) ' activate gravity drainage and flushing (T) or not (F) ln_icedS = ', ln_icedS
WRITE(numout,*) ' heat in the leads is used to melt sea-ice before warming the ocean ln_leadhfx = ', ln_leadhfx
ENDIF
!
CALL ice_thd_zdf_init ! set ice heat diffusion parameters
IF( ln_icedA ) CALL ice_thd_da_init ! set ice lateral melting parameters
IF( ln_icedO ) CALL ice_thd_do_init ! set ice growth in open water parameters
CALL ice_thd_sal_init ! set ice salinity parameters
CALL ice_thd_pnd_init ! set melt ponds parameters
!
END SUBROUTINE ice_thd_init
#else
!!----------------------------------------------------------------------
!! Default option Dummy module NO SI3 sea-ice model
!!----------------------------------------------------------------------
#endif
!!======================================================================
END MODULE icethd