Skip to content
Snippets Groups Projects
icevar.F90 64.3 KiB
Newer Older
Guillaume Samson's avatar
Guillaume Samson committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
MODULE icevar
   !!======================================================================
   !!                       ***  MODULE icevar ***
   !!   sea-ice:  series of functions to transform or compute ice variables
   !!======================================================================
   !! History :   -   !  2006-01  (M. Vancoppenolle) Original code
   !!            4.0  !  2018     (many people)      SI3 [aka Sea Ice cube]
   !!----------------------------------------------------------------------
#if defined key_si3
   !!----------------------------------------------------------------------
   !!   'key_si3'                                       SI3 sea-ice model
   !!----------------------------------------------------------------------
   !!
   !!                 There are three sets of variables
   !!                 VGLO : global variables of the model
   !!                        - v_i (jpi,jpj,jpl)
   !!                        - v_s (jpi,jpj,jpl)
   !!                        - a_i (jpi,jpj,jpl)
   !!                        - t_s (jpi,jpj,jpl)
   !!                        - e_i (jpi,jpj,nlay_i,jpl)
   !!                        - e_s (jpi,jpj,nlay_s,jpl)
   !!                        - sv_i(jpi,jpj,jpl)
   !!                        - oa_i(jpi,jpj,jpl)
   !!                 VEQV : equivalent variables sometimes used in the model
   !!                        - h_i(jpi,jpj,jpl)
   !!                        - h_s(jpi,jpj,jpl)
   !!                        - t_i(jpi,jpj,nlay_i,jpl)
   !!                        ...
   !!                 VAGG : aggregate variables, averaged/summed over all
   !!                        thickness categories
   !!                        - vt_i(jpi,jpj)
   !!                        - vt_s(jpi,jpj)
   !!                        - at_i(jpi,jpj)
   !!                        - st_i(jpi,jpj)
   !!                        - et_s(jpi,jpj)  total snow heat content
   !!                        - et_i(jpi,jpj)  total ice thermal content
   !!                        - sm_i(jpi,jpj)  mean ice salinity
   !!                        - tm_i(jpi,jpj)  mean ice temperature
   !!                        - tm_s(jpi,jpj)  mean snw temperature
   !!----------------------------------------------------------------------
   !!   ice_var_agg       : integrate variables over layers and categories
   !!   ice_var_glo2eqv   : transform from VGLO to VEQV
   !!   ice_var_eqv2glo   : transform from VEQV to VGLO
   !!   ice_var_salprof   : salinity profile in the ice
   !!   ice_var_salprof1d : salinity profile in the ice 1D
   !!   ice_var_zapsmall  : remove very small area and volume
   !!   ice_var_zapneg    : remove negative ice fields
   !!   ice_var_roundoff  : remove negative values arising from roundoff erros
   !!   ice_var_bv        : brine volume
   !!   ice_var_enthalpy  : compute ice and snow enthalpies from temperature
   !!   ice_var_sshdyn    : compute equivalent ssh in lead
   !!   ice_var_itd       : convert N-cat to M-cat
   !!   ice_var_snwfra    : fraction of ice covered by snow
   !!   ice_var_snwblow   : distribute snow fall between ice and ocean
   !!----------------------------------------------------------------------
   USE dom_oce        ! ocean space and time domain
   USE phycst         ! physical constants (ocean directory)
   USE sbc_oce , ONLY : sss_m, ln_ice_embd, nn_fsbc
   USE ice            ! sea-ice: variables
   USE ice1D          ! sea-ice: thermodynamics variables
   !
   USE in_out_manager ! I/O manager
   USE lib_mpp        ! MPP library
   USE lib_fortran    ! fortran utilities (glob_sum + no signed zero)

   IMPLICIT NONE
   PRIVATE

   PUBLIC   ice_var_agg
   PUBLIC   ice_var_glo2eqv
   PUBLIC   ice_var_eqv2glo
   PUBLIC   ice_var_salprof
   PUBLIC   ice_var_salprof1d
   PUBLIC   ice_var_zapsmall
   PUBLIC   ice_var_zapneg
   PUBLIC   ice_var_roundoff
   PUBLIC   ice_var_bv
   PUBLIC   ice_var_enthalpy
   PUBLIC   ice_var_sshdyn
   PUBLIC   ice_var_itd
   PUBLIC   ice_var_snwfra
   PUBLIC   ice_var_snwblow

   INTERFACE ice_var_itd
      MODULE PROCEDURE ice_var_itd_1c1c, ice_var_itd_Nc1c, ice_var_itd_1cMc, ice_var_itd_NcMc
   END INTERFACE

   !! * Substitutions
#  include "do_loop_substitute.h90"

   INTERFACE ice_var_snwfra
      MODULE PROCEDURE ice_var_snwfra_1d, ice_var_snwfra_2d, ice_var_snwfra_3d
   END INTERFACE

   INTERFACE ice_var_snwblow
      MODULE PROCEDURE ice_var_snwblow_1d, ice_var_snwblow_2d
   END INTERFACE

   !!----------------------------------------------------------------------
   !! NEMO/ICE 4.0 , NEMO Consortium (2018)
   !! $Id: icevar.F90 15385 2021-10-15 13:52:48Z clem $
   !! Software governed by the CeCILL license (see ./LICENSE)
   !!----------------------------------------------------------------------
CONTAINS

   SUBROUTINE ice_var_agg( kn )
      !!-------------------------------------------------------------------
      !!                ***  ROUTINE ice_var_agg  ***
      !!
      !! ** Purpose :   aggregates ice-thickness-category variables to
      !!              all-ice variables, i.e. it turns VGLO into VAGG
      !!-------------------------------------------------------------------
      INTEGER, INTENT( in ) ::   kn     ! =1 state variables only
      !                                 ! >1 state variables + others
      !
      INTEGER ::   ji, jj, jk, jl   ! dummy loop indices
      REAL(wp), ALLOCATABLE, DIMENSION(:,:) ::   z1_at_i, z1_vt_i, z1_vt_s
      !!-------------------------------------------------------------------
      !
      !                                      ! integrated values
      vt_i(:,:) =       SUM( v_i (:,:,:)           , dim=3 )
      vt_s(:,:) =       SUM( v_s (:,:,:)           , dim=3 )
      st_i(:,:) =       SUM( sv_i(:,:,:)           , dim=3 )
      at_i(:,:) =       SUM( a_i (:,:,:)           , dim=3 )
      et_s(:,:)  = SUM( SUM( e_s (:,:,:,:), dim=4 ), dim=3 )
      et_i(:,:)  = SUM( SUM( e_i (:,:,:,:), dim=4 ), dim=3 )
      !
      at_ip(:,:) = SUM( a_ip(:,:,:), dim=3 ) ! melt ponds
      vt_ip(:,:) = SUM( v_ip(:,:,:), dim=3 )
      vt_il(:,:) = SUM( v_il(:,:,:), dim=3 )
      !
      ato_i(:,:) = 1._wp - at_i(:,:)         ! open water fraction
      !
      !!GS: tm_su always needed by ABL over sea-ice
      ALLOCATE( z1_at_i(jpi,jpj) )
      WHERE( at_i(:,:) > epsi20 )   ;   z1_at_i(:,:) = 1._wp / at_i(:,:)
      ELSEWHERE                     ;   z1_at_i(:,:) = 0._wp
      END WHERE
      tm_su(:,:) = SUM( t_su(:,:,:) * a_i(:,:,:) , dim=3 ) * z1_at_i(:,:)
      WHERE( at_i(:,:)<=epsi20 ) tm_su(:,:) = rt0
      !
      ! The following fields are calculated for diagnostics and outputs only
      ! ==> Do not use them for other purposes
      IF( kn > 1 ) THEN
         !
         ALLOCATE( z1_vt_i(jpi,jpj) , z1_vt_s(jpi,jpj) )
         WHERE( vt_i(:,:) > epsi20 )   ;   z1_vt_i(:,:) = 1._wp / vt_i(:,:)
         ELSEWHERE                     ;   z1_vt_i(:,:) = 0._wp
         END WHERE
         WHERE( vt_s(:,:) > epsi20 )   ;   z1_vt_s(:,:) = 1._wp / vt_s(:,:)
         ELSEWHERE                     ;   z1_vt_s(:,:) = 0._wp
         END WHERE
         !
         !                          ! mean ice/snow thickness
         hm_i(:,:) = vt_i(:,:) * z1_at_i(:,:)
         hm_s(:,:) = vt_s(:,:) * z1_at_i(:,:)
         !
         !                          ! mean temperature (K), salinity and age
         tm_si(:,:) = SUM( t_si(:,:,:) * a_i(:,:,:) , dim=3 ) * z1_at_i(:,:)
         om_i (:,:) = SUM( oa_i(:,:,:)              , dim=3 ) * z1_at_i(:,:)
         sm_i (:,:) =      st_i(:,:)                          * z1_vt_i(:,:)
         !
         tm_i(:,:) = 0._wp
         tm_s(:,:) = 0._wp
         DO jl = 1, jpl
            DO jk = 1, nlay_i
               tm_i(:,:) = tm_i(:,:) + r1_nlay_i * t_i (:,:,jk,jl) * v_i(:,:,jl) * z1_vt_i(:,:)
            END DO
            DO jk = 1, nlay_s
               tm_s(:,:) = tm_s(:,:) + r1_nlay_s * t_s (:,:,jk,jl) * v_s(:,:,jl) * z1_vt_s(:,:)
            END DO
         END DO
         !
         !                           ! put rt0 where there is no ice
         WHERE( at_i(:,:)<=epsi20 )
            tm_si(:,:) = rt0
            tm_i (:,:) = rt0
            tm_s (:,:) = rt0
         END WHERE
         !
         !                           ! mean melt pond depth
         WHERE( at_ip(:,:) > epsi20 )   ;   hm_ip(:,:) = vt_ip(:,:) / at_ip(:,:)   ;   hm_il(:,:) = vt_il(:,:) / at_ip(:,:)
         ELSEWHERE                      ;   hm_ip(:,:) = 0._wp                     ;   hm_il(:,:) = 0._wp
         END WHERE
         !
         DEALLOCATE( z1_vt_i , z1_vt_s )
         !
      ENDIF
      !
      DEALLOCATE( z1_at_i )
      !
   END SUBROUTINE ice_var_agg


   SUBROUTINE ice_var_glo2eqv
      !!-------------------------------------------------------------------
      !!                ***  ROUTINE ice_var_glo2eqv ***
      !!
      !! ** Purpose :   computes equivalent variables as function of
      !!              global variables, i.e. it turns VGLO into VEQV
      !!-------------------------------------------------------------------
      INTEGER  ::   ji, jj, jk, jl   ! dummy loop indices
      REAL(wp) ::   ze_i             ! local scalars
      REAL(wp) ::   ze_s, ztmelts, zbbb, zccc       !   -      -
      REAL(wp) ::   zhmax, z1_zhmax                 !   -      -
      REAL(wp) ::   zlay_i, zlay_s                  !   -      -
      REAL(wp), PARAMETER ::   zhl_max =  0.015_wp  ! pond lid thickness above which the ponds disappear from the albedo calculation
      REAL(wp), PARAMETER ::   zhl_min =  0.005_wp  ! pond lid thickness below which the full pond area is used in the albedo calculation
      REAL(wp), DIMENSION(jpi,jpj,jpl) ::   z1_a_i, z1_v_i, z1_a_ip, za_s_fra
      !!-------------------------------------------------------------------

!!gm Question 2:  It is possible to define existence of sea-ice in a common way between
!!                ice area and ice volume ?
!!                the idea is to be able to define one for all at the begining of this routine
!!                a criteria for icy area (i.e. a_i > epsi20 and v_i > epsi20 )

      !---------------------------------------------------------------
      ! Ice thickness, snow thickness, ice salinity, ice age and ponds
      !---------------------------------------------------------------
      !                                            !--- inverse of the ice area
      WHERE( a_i(:,:,:) > epsi20 )   ;   z1_a_i(:,:,:) = 1._wp / a_i(:,:,:)
      ELSEWHERE                      ;   z1_a_i(:,:,:) = 0._wp
      END WHERE
      !
      WHERE( v_i(:,:,:) > epsi20 )   ;   z1_v_i(:,:,:) = 1._wp / v_i(:,:,:)
      ELSEWHERE                      ;   z1_v_i(:,:,:) = 0._wp
      END WHERE
      !
      WHERE( a_ip(:,:,:) > epsi20 )  ;   z1_a_ip(:,:,:) = 1._wp / a_ip(:,:,:)
      ELSEWHERE                      ;   z1_a_ip(:,:,:) = 0._wp
      END WHERE
      !                                           !--- ice thickness
      h_i(:,:,:) = v_i (:,:,:) * z1_a_i(:,:,:)

      zhmax    =          hi_max(jpl)
      z1_zhmax =  1._wp / hi_max(jpl)
      WHERE( h_i(:,:,jpl) > zhmax )   ! bound h_i by hi_max (i.e. 99 m) with associated update of ice area
         h_i   (:,:,jpl) = zhmax
         a_i   (:,:,jpl) = v_i(:,:,jpl) * z1_zhmax
         z1_a_i(:,:,jpl) = zhmax * z1_v_i(:,:,jpl)
      END WHERE
      !                                           !--- snow thickness
      h_s(:,:,:) = v_s (:,:,:) * z1_a_i(:,:,:)
      !                                           !--- ice age
      o_i(:,:,:) = oa_i(:,:,:) * z1_a_i(:,:,:)
      !                                           !--- pond and lid thickness
      h_ip(:,:,:) = v_ip(:,:,:) * z1_a_ip(:,:,:)
      h_il(:,:,:) = v_il(:,:,:) * z1_a_ip(:,:,:)
      !                                           !--- melt pond effective area (used for albedo)
      a_ip_frac(:,:,:) = a_ip(:,:,:) * z1_a_i(:,:,:)
      WHERE    ( h_il(:,:,:) <= zhl_min )  ;   a_ip_eff(:,:,:) = a_ip_frac(:,:,:)       ! lid is very thin.  Expose all the pond
      ELSEWHERE( h_il(:,:,:) >= zhl_max )  ;   a_ip_eff(:,:,:) = 0._wp                  ! lid is very thick. Cover all the pond up with ice and snow
      ELSEWHERE                            ;   a_ip_eff(:,:,:) = a_ip_frac(:,:,:) * &   ! lid is in between. Expose part of the pond
         &                                                       ( zhl_max - h_il(:,:,:) ) / ( zhl_max - zhl_min )
      END WHERE
      !
      CALL ice_var_snwfra( h_s, za_s_fra )           ! calculate ice fraction covered by snow
      a_ip_eff = MIN( a_ip_eff, 1._wp - za_s_fra )   ! make sure (a_ip_eff + a_s_fra) <= 1
      !
      !                                           !---  salinity (with a minimum value imposed everywhere)
      IF( nn_icesal == 2 ) THEN
         WHERE( v_i(:,:,:) > epsi20 )   ;   s_i(:,:,:) = MAX( rn_simin , MIN( rn_simax, sv_i(:,:,:) * z1_v_i(:,:,:) ) )
         ELSEWHERE                      ;   s_i(:,:,:) = rn_simin
         END WHERE
      ENDIF
      CALL ice_var_salprof   ! salinity profile

      !-------------------
      ! Ice temperature   [K]   (with a minimum value (rt0 - 100.))
      !-------------------
      zlay_i   = REAL( nlay_i , wp )    ! number of layers
      DO jl = 1, jpl
         DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, nlay_i )
            IF ( v_i(ji,jj,jl) > epsi20 ) THEN     !--- icy area
               !
               ze_i             =   e_i (ji,jj,jk,jl) * z1_v_i(ji,jj,jl) * zlay_i             ! Energy of melting e(S,T) [J.m-3]
               ztmelts          = - sz_i(ji,jj,jk,jl) * rTmlt                                 ! Ice layer melt temperature [C]
               ! Conversion q(S,T) -> T (second order equation)
               zbbb             = ( rcp - rcpi ) * ztmelts + ze_i * r1_rhoi - rLfus
               zccc             = SQRT( MAX( zbbb * zbbb - 4._wp * rcpi * rLfus * ztmelts , 0._wp) )
               t_i(ji,jj,jk,jl) = MAX( -100._wp , MIN( -( zbbb + zccc ) * 0.5_wp * r1_rcpi , ztmelts ) ) + rt0   ! [K] with bounds: -100 < t_i < ztmelts
               !
            ELSE                                   !--- no ice
               t_i(ji,jj,jk,jl) = rt0
            ENDIF
         END_3D
      END DO

      !--------------------
      ! Snow temperature   [K]   (with a minimum value (rt0 - 100.))
      !--------------------
      zlay_s = REAL( nlay_s , wp )
      DO jk = 1, nlay_s
         WHERE( v_s(:,:,:) > epsi20 )        !--- icy area
            t_s(:,:,jk,:) = rt0 + MAX( -100._wp ,  &
                 &                MIN( r1_rcpi * ( -r1_rhos * ( e_s(:,:,jk,:) / v_s(:,:,:) * zlay_s ) + rLfus ) , 0._wp ) )
         ELSEWHERE                           !--- no ice
            t_s(:,:,jk,:) = rt0
         END WHERE
      END DO
      !
      ! integrated values
      vt_i (:,:) = SUM( v_i , dim=3 )
      vt_s (:,:) = SUM( v_s , dim=3 )
      at_i (:,:) = SUM( a_i , dim=3 )
      !
   END SUBROUTINE ice_var_glo2eqv


   SUBROUTINE ice_var_eqv2glo
      !!-------------------------------------------------------------------
      !!                ***  ROUTINE ice_var_eqv2glo ***
      !!
      !! ** Purpose :   computes global variables as function of
      !!              equivalent variables,  i.e. it turns VEQV into VGLO
      !!-------------------------------------------------------------------
      !
      v_i (:,:,:) = h_i (:,:,:) * a_i (:,:,:)
      v_s (:,:,:) = h_s (:,:,:) * a_i (:,:,:)
      sv_i(:,:,:) = s_i (:,:,:) * v_i (:,:,:)
      v_ip(:,:,:) = h_ip(:,:,:) * a_ip(:,:,:)
      v_il(:,:,:) = h_il(:,:,:) * a_ip(:,:,:)
      !
   END SUBROUTINE ice_var_eqv2glo


   SUBROUTINE ice_var_salprof
      !!-------------------------------------------------------------------
      !!                ***  ROUTINE ice_var_salprof ***
      !!
      !! ** Purpose :   computes salinity profile in function of bulk salinity
      !!
      !! ** Method  : If bulk salinity greater than zsi1,
      !!              the profile is assumed to be constant (S_inf)
      !!              If bulk salinity lower than zsi0,
      !!              the profile is linear with 0 at the surface (S_zero)
      !!              If it is between zsi0 and zsi1, it is a
      !!              alpha-weighted linear combination of s_inf and s_zero
      !!
      !! ** References : Vancoppenolle et al., 2007
      !!-------------------------------------------------------------------
      INTEGER  ::   ji, jj, jk, jl   ! dummy loop index
      REAL(wp) ::   z1_dS
      REAL(wp) ::   ztmp1, ztmp2, zs0, zs
      REAL(wp), ALLOCATABLE, DIMENSION(:,:) ::   z_slope_s, zalpha    ! case 2 only
      REAL(wp), PARAMETER :: zsi0 = 3.5_wp
      REAL(wp), PARAMETER :: zsi1 = 4.5_wp
      !!-------------------------------------------------------------------

!!gm Question: Remove the option 3 ?  How many years since it last use ?

      SELECT CASE ( nn_icesal )
      !
      !               !---------------------------------------!
      CASE( 1 )       !  constant salinity in time and space  !
         !            !---------------------------------------!
         sz_i(:,:,:,:) = rn_icesal
         s_i (:,:,:)   = rn_icesal
         !
         !            !---------------------------------------------!
      CASE( 2 )       !  time varying salinity with linear profile  !
         !            !---------------------------------------------!
         z1_dS = 1._wp / ( zsi1 - zsi0 )
         !
         ALLOCATE( z_slope_s(jpi,jpj) , zalpha(jpi,jpj) )
         !
         DO jl = 1, jpl

            DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
               !                                      ! Slope of the linear profile
               IF( h_i(ji,jj,jl) > epsi20 ) THEN
                  z_slope_s(ji,jj) = 2._wp * s_i(ji,jj,jl) / h_i(ji,jj,jl)
               ELSE
                  z_slope_s(ji,jj) = 0._wp
               ENDIF
               !
               zalpha(ji,jj) = MAX(  0._wp , MIN( ( zsi1 - s_i(ji,jj,jl) ) * z1_dS , 1._wp )  )
               !                             ! force a constant profile when SSS too low (Baltic Sea)
               IF( 2._wp * s_i(ji,jj,jl) >= sss_m(ji,jj) )   zalpha(ji,jj) = 0._wp
            END_2D
            !
            ! Computation of the profile
            DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, nlay_i )
               !                          ! linear profile with 0 surface value
               zs0 = z_slope_s(ji,jj) * ( REAL(jk,wp) - 0.5_wp ) * h_i(ji,jj,jl) * r1_nlay_i
               zs  = zalpha(ji,jj) * zs0 + ( 1._wp - zalpha(ji,jj) ) * s_i(ji,jj,jl)     ! weighting the profile
               sz_i(ji,jj,jk,jl) = MIN( rn_simax, MAX( zs, rn_simin ) )
            END_3D
         END DO
         !
         DEALLOCATE( z_slope_s , zalpha )
         !
         !            !-------------------------------------------!
      CASE( 3 )       ! constant salinity with a fix profile      ! (Schwarzacher (1959) multiyear salinity profile
         !            !-------------------------------------------!                                   (mean = 2.30)
         !
         s_i(:,:,:) = 2.30_wp
!!gm Remark: if we keep the case 3, then compute an store one for all time-step
!!           a array  S_prof(1:nlay_i) containing the calculation and just do:
!         DO jk = 1, nlay_i
!            sz_i(:,:,jk,:) = S_prof(jk)
!         END DO
!!gm end
         !
         DO jl = 1, jpl
            DO jk = 1, nlay_i
               ztmp1 = ( REAL(jk,wp) - 0.5_wp ) * r1_nlay_i
               ztmp2 = 1.6_wp * (  1._wp - COS( rpi * ztmp1**(0.407_wp/(0.573_wp+ztmp1)) ) )
               DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
                  sz_i(ji,jj,jk,jl) =  ztmp2
               END_2D
            END DO
         END DO
         !
      END SELECT
      !
   END SUBROUTINE ice_var_salprof


   SUBROUTINE ice_var_salprof1d
      !!-------------------------------------------------------------------
      !!                  ***  ROUTINE ice_var_salprof1d  ***
      !!
      !! ** Purpose :   1d computation of the sea ice salinity profile
      !!                Works with 1d vectors and is used by thermodynamic modules
      !!-------------------------------------------------------------------
      INTEGER  ::   ji, jk    ! dummy loop indices
      REAL(wp) ::   ztmp1, ztmp2, z1_dS   ! local scalars
      REAL(wp) ::   zs, zs0              !   -      -
      !
      REAL(wp), ALLOCATABLE, DIMENSION(:) ::   z_slope_s, zalpha   !
      REAL(wp), PARAMETER :: zsi0 = 3.5_wp
      REAL(wp), PARAMETER :: zsi1 = 4.5_wp
      !!-------------------------------------------------------------------
      !
      SELECT CASE ( nn_icesal )
      !
      !               !---------------------------------------!
      CASE( 1 )       !  constant salinity in time and space  !
         !            !---------------------------------------!
         sz_i_1d(1:npti,:) = rn_icesal
         !
         !            !---------------------------------------------!
      CASE( 2 )       !  time varying salinity with linear profile  !
         !            !---------------------------------------------!
         z1_dS = 1._wp / ( zsi1 - zsi0 )
         !
         ALLOCATE( z_slope_s(jpij), zalpha(jpij) )
         !
         DO ji = 1, npti
            !                                      ! Slope of the linear profile
            IF( h_i_1d(ji) > epsi20 ) THEN
               z_slope_s(ji) = 2._wp * s_i_1d(ji) / h_i_1d(ji)
            ELSE
               z_slope_s(ji) = 0._wp
            ENDIF
            !
            zalpha(ji) = MAX(  0._wp , MIN(  ( zsi1 - s_i_1d(ji) ) * z1_dS , 1._wp  )  )
            !                             ! force a constant profile when SSS too low (Baltic Sea)
            IF( 2._wp * s_i_1d(ji) >= sss_1d(ji) )   zalpha(ji) = 0._wp
            !
         END DO
         !
         ! Computation of the profile
         DO jk = 1, nlay_i
            DO ji = 1, npti
               !                          ! linear profile with 0 surface value
               zs0 = z_slope_s(ji) * ( REAL(jk,wp) - 0.5_wp ) * h_i_1d(ji) * r1_nlay_i
               zs  = zalpha(ji) * zs0 + ( 1._wp - zalpha(ji) ) * s_i_1d(ji)
               sz_i_1d(ji,jk) = MIN( rn_simax , MAX( zs , rn_simin ) )
            END DO
         END DO
         !
         DEALLOCATE( z_slope_s, zalpha )

         !            !-------------------------------------------!
      CASE( 3 )       ! constant salinity with a fix profile      ! (Schwarzacher (1959) multiyear salinity profile
         !            !-------------------------------------------!                                   (mean = 2.30)
         !
         s_i_1d(1:npti) = 2.30_wp
         !
!!gm cf remark in ice_var_salprof routine, CASE( 3 )
         DO jk = 1, nlay_i
            ztmp1  = ( REAL(jk,wp) - 0.5_wp ) * r1_nlay_i
            ztmp2 =  1.6_wp * ( 1._wp - COS( rpi * ztmp1**( 0.407_wp / ( 0.573_wp + ztmp1 ) ) ) )
            DO ji = 1, npti
               sz_i_1d(ji,jk) = ztmp2
            END DO
         END DO
         !
      END SELECT
      !
   END SUBROUTINE ice_var_salprof1d


   SUBROUTINE ice_var_zapsmall
      !!-------------------------------------------------------------------
      !!                   ***  ROUTINE ice_var_zapsmall ***
      !!
      !! ** Purpose :   Remove too small sea ice areas and correct fluxes
      !!-------------------------------------------------------------------
      INTEGER  ::   ji, jj, jl, jk   ! dummy loop indices
      REAL(wp), DIMENSION(jpi,jpj) ::   zswitch
      !!-------------------------------------------------------------------
      !
      DO jl = 1, jpl       !==  loop over the categories  ==!
         !
         WHERE( a_i(:,:,jl) > epsi10 )   ;   h_i(:,:,jl) = v_i(:,:,jl) / a_i(:,:,jl)
         ELSEWHERE                       ;   h_i(:,:,jl) = 0._wp
         END WHERE
         !
         WHERE( a_i(:,:,jl) < epsi10 .OR. v_i(:,:,jl) < epsi10 .OR. h_i(:,:,jl) < epsi10 )   ;   zswitch(:,:) = 0._wp
         ELSEWHERE                                                                           ;   zswitch(:,:) = 1._wp
         END WHERE
         !
         !-----------------------------------------------------------------
         ! Zap ice energy and use ocean heat to melt ice
         !-----------------------------------------------------------------
         DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, nlay_i )
            ! update exchanges with ocean
            hfx_res(ji,jj)   = hfx_res(ji,jj) - (1._wp - zswitch(ji,jj) ) * e_i(ji,jj,jk,jl) * r1_Dt_ice ! W.m-2 <0
            e_i(ji,jj,jk,jl) = e_i(ji,jj,jk,jl) * zswitch(ji,jj)
            t_i(ji,jj,jk,jl) = t_i(ji,jj,jk,jl) * zswitch(ji,jj) + rt0 * ( 1._wp - zswitch(ji,jj) )
         END_3D
         !
         DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, nlay_s )
            ! update exchanges with ocean
            hfx_res(ji,jj)   = hfx_res(ji,jj) - (1._wp - zswitch(ji,jj) ) * e_s(ji,jj,jk,jl) * r1_Dt_ice ! W.m-2 <0
            e_s(ji,jj,jk,jl) = e_s(ji,jj,jk,jl) * zswitch(ji,jj)
            t_s(ji,jj,jk,jl) = t_s(ji,jj,jk,jl) * zswitch(ji,jj) + rt0 * ( 1._wp - zswitch(ji,jj) )
         END_3D
         !
         !-----------------------------------------------------------------
         ! zap ice and snow volume, add water and salt to ocean
         !-----------------------------------------------------------------
         DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
            ! update exchanges with ocean
            sfx_res(ji,jj)  = sfx_res(ji,jj) + ( 1._wp - zswitch(ji,jj) ) * sv_i(ji,jj,jl)   * rhoi * r1_Dt_ice
            wfx_res(ji,jj)  = wfx_res(ji,jj) + ( 1._wp - zswitch(ji,jj) ) * v_i (ji,jj,jl)   * rhoi * r1_Dt_ice
            wfx_res(ji,jj)  = wfx_res(ji,jj) + ( 1._wp - zswitch(ji,jj) ) * v_s (ji,jj,jl)   * rhos * r1_Dt_ice
            wfx_pnd(ji,jj)  = wfx_pnd(ji,jj) + ( 1._wp - zswitch(ji,jj) ) * ( v_ip(ji,jj,jl)+v_il(ji,jj,jl) ) * rhow * r1_Dt_ice
            !
            a_i  (ji,jj,jl) = a_i (ji,jj,jl) * zswitch(ji,jj)
            v_i  (ji,jj,jl) = v_i (ji,jj,jl) * zswitch(ji,jj)
            v_s  (ji,jj,jl) = v_s (ji,jj,jl) * zswitch(ji,jj)
            t_su (ji,jj,jl) = t_su(ji,jj,jl) * zswitch(ji,jj) + t_bo(ji,jj) * ( 1._wp - zswitch(ji,jj) )
            oa_i (ji,jj,jl) = oa_i(ji,jj,jl) * zswitch(ji,jj)
            sv_i (ji,jj,jl) = sv_i(ji,jj,jl) * zswitch(ji,jj)
            !
            h_i (ji,jj,jl) = h_i (ji,jj,jl) * zswitch(ji,jj)
            h_s (ji,jj,jl) = h_s (ji,jj,jl) * zswitch(ji,jj)
            !
            a_ip (ji,jj,jl) = a_ip (ji,jj,jl) * zswitch(ji,jj)
            v_ip (ji,jj,jl) = v_ip (ji,jj,jl) * zswitch(ji,jj)
            v_il (ji,jj,jl) = v_il (ji,jj,jl) * zswitch(ji,jj)
            h_ip (ji,jj,jl) = h_ip (ji,jj,jl) * zswitch(ji,jj)
            h_il (ji,jj,jl) = h_il (ji,jj,jl) * zswitch(ji,jj)
            !
         END_2D
         !
      END DO

      ! to be sure that at_i is the sum of a_i(jl)
      at_i (:,:) = SUM( a_i (:,:,:), dim=3 )
      vt_i (:,:) = SUM( v_i (:,:,:), dim=3 )
!!clem add?
!      vt_s (:,:) = SUM( v_s (:,:,:), dim=3 )
!      st_i (:,:) = SUM( sv_i(:,:,:), dim=3 )
!      et_s(:,:)  = SUM( SUM( e_s (:,:,:,:), dim=4 ), dim=3 )
!      et_i(:,:)  = SUM( SUM( e_i (:,:,:,:), dim=4 ), dim=3 )
!!clem

      ! open water = 1 if at_i=0
      WHERE( at_i(:,:) == 0._wp )   ato_i(:,:) = 1._wp
      !
   END SUBROUTINE ice_var_zapsmall


   SUBROUTINE ice_var_zapneg( pdt, pato_i, pv_i, pv_s, psv_i, poa_i, pa_i, pa_ip, pv_ip, pv_il, pe_s, pe_i )
      !!-------------------------------------------------------------------
      !!                   ***  ROUTINE ice_var_zapneg ***
      !!
      !! ** Purpose :   Remove negative sea ice fields and correct fluxes
      !!-------------------------------------------------------------------
      REAL(wp)                    , INTENT(in   ) ::   pdt        ! tracer time-step
      REAL(wp), DIMENSION(:,:)    , INTENT(inout) ::   pato_i     ! open water area
      REAL(wp), DIMENSION(:,:,:)  , INTENT(inout) ::   pv_i       ! ice volume
      REAL(wp), DIMENSION(:,:,:)  , INTENT(inout) ::   pv_s       ! snw volume
      REAL(wp), DIMENSION(:,:,:)  , INTENT(inout) ::   psv_i      ! salt content
      REAL(wp), DIMENSION(:,:,:)  , INTENT(inout) ::   poa_i      ! age content
      REAL(wp), DIMENSION(:,:,:)  , INTENT(inout) ::   pa_i       ! ice concentration
      REAL(wp), DIMENSION(:,:,:)  , INTENT(inout) ::   pa_ip      ! melt pond fraction
      REAL(wp), DIMENSION(:,:,:)  , INTENT(inout) ::   pv_ip      ! melt pond volume
      REAL(wp), DIMENSION(:,:,:)  , INTENT(inout) ::   pv_il      ! melt pond lid volume
      REAL(wp), DIMENSION(:,:,:,:), INTENT(inout) ::   pe_s       ! snw heat content
      REAL(wp), DIMENSION(:,:,:,:), INTENT(inout) ::   pe_i       ! ice heat content
      !
      INTEGER  ::   ji, jj, jl, jk   ! dummy loop indices
      REAL(wp) ::   z1_dt
      !!-------------------------------------------------------------------
      !
      z1_dt = 1._wp / pdt
      !
      DO jl = 1, jpl       !==  loop over the categories  ==!
         !
         ! make sure a_i=0 where v_i<=0
         WHERE( pv_i(:,:,:) <= 0._wp )   pa_i(:,:,:) = 0._wp

         !----------------------------------------
         ! zap ice energy and send it to the ocean
         !----------------------------------------
         DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, nlay_i )
            IF( pe_i(ji,jj,jk,jl) < 0._wp .OR. pa_i(ji,jj,jl) <= 0._wp ) THEN
               hfx_res(ji,jj)   = hfx_res(ji,jj) - pe_i(ji,jj,jk,jl) * z1_dt ! W.m-2 >0
               pe_i(ji,jj,jk,jl) = 0._wp
            ENDIF
         END_3D
         !
         DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, nlay_s )
            IF( pe_s(ji,jj,jk,jl) < 0._wp .OR. pa_i(ji,jj,jl) <= 0._wp ) THEN
               hfx_res(ji,jj)   = hfx_res(ji,jj) - pe_s(ji,jj,jk,jl) * z1_dt ! W.m-2 <0
               pe_s(ji,jj,jk,jl) = 0._wp
            ENDIF
         END_3D
         !
         !-----------------------------------------------------
         ! zap ice and snow volume, add water and salt to ocean
         !-----------------------------------------------------
         DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
            IF( pv_i(ji,jj,jl) < 0._wp .OR. pa_i(ji,jj,jl) <= 0._wp ) THEN
               wfx_res(ji,jj)    = wfx_res(ji,jj) + pv_i (ji,jj,jl) * rhoi * z1_dt
               pv_i   (ji,jj,jl) = 0._wp
            ENDIF
            IF( pv_s(ji,jj,jl) < 0._wp .OR. pa_i(ji,jj,jl) <= 0._wp ) THEN
               wfx_res(ji,jj)    = wfx_res(ji,jj) + pv_s (ji,jj,jl) * rhos * z1_dt
               pv_s   (ji,jj,jl) = 0._wp
            ENDIF
            IF( psv_i(ji,jj,jl) < 0._wp .OR. pa_i(ji,jj,jl) <= 0._wp .OR. pv_i(ji,jj,jl) <= 0._wp ) THEN
               sfx_res(ji,jj)    = sfx_res(ji,jj) + psv_i(ji,jj,jl) * rhoi * z1_dt
               psv_i  (ji,jj,jl) = 0._wp
            ENDIF
            IF( pv_ip(ji,jj,jl) < 0._wp .OR. pv_il(ji,jj,jl) < 0._wp .OR. pa_ip(ji,jj,jl) <= 0._wp ) THEN
               wfx_pnd(ji,jj)    = wfx_pnd(ji,jj) + pv_il(ji,jj,jl) * rhow * z1_dt
               pv_il  (ji,jj,jl) = 0._wp
            ENDIF
            IF( pv_ip(ji,jj,jl) < 0._wp .OR. pa_ip(ji,jj,jl) <= 0._wp ) THEN
               wfx_pnd(ji,jj)    = wfx_pnd(ji,jj) + pv_ip(ji,jj,jl) * rhow * z1_dt
               pv_ip  (ji,jj,jl) = 0._wp
            ENDIF
         END_2D
         !
      END DO
      !
      WHERE( pato_i(:,:)   < 0._wp )   pato_i(:,:)   = 0._wp
      WHERE( poa_i (:,:,:) < 0._wp )   poa_i (:,:,:) = 0._wp
      WHERE( pa_i  (:,:,:) < 0._wp )   pa_i  (:,:,:) = 0._wp
      WHERE( pa_ip (:,:,:) < 0._wp )   pa_ip (:,:,:) = 0._wp
      !
   END SUBROUTINE ice_var_zapneg


   SUBROUTINE ice_var_roundoff( pa_i, pv_i, pv_s, psv_i, poa_i, pa_ip, pv_ip, pv_il, pe_s, pe_i )
      !!-------------------------------------------------------------------
      !!                   ***  ROUTINE ice_var_roundoff ***
      !!
      !! ** Purpose :   Remove negative sea ice values arising from roundoff errors
      !!-------------------------------------------------------------------
      REAL(wp), DIMENSION(:,:)  , INTENT(inout) ::   pa_i       ! ice concentration
      REAL(wp), DIMENSION(:,:)  , INTENT(inout) ::   pv_i       ! ice volume
      REAL(wp), DIMENSION(:,:)  , INTENT(inout) ::   pv_s       ! snw volume
      REAL(wp), DIMENSION(:,:)  , INTENT(inout) ::   psv_i      ! salt content
      REAL(wp), DIMENSION(:,:)  , INTENT(inout) ::   poa_i      ! age content
      REAL(wp), DIMENSION(:,:)  , INTENT(inout) ::   pa_ip      ! melt pond fraction
      REAL(wp), DIMENSION(:,:)  , INTENT(inout) ::   pv_ip      ! melt pond volume
      REAL(wp), DIMENSION(:,:)  , INTENT(inout) ::   pv_il      ! melt pond lid volume
      REAL(wp), DIMENSION(:,:,:), INTENT(inout) ::   pe_s       ! snw heat content
      REAL(wp), DIMENSION(:,:,:), INTENT(inout) ::   pe_i       ! ice heat content
      !!-------------------------------------------------------------------
      !

      WHERE( pa_i (1:npti,:)   < 0._wp )   pa_i (1:npti,:)   = 0._wp   !  a_i must be >= 0
      WHERE( pv_i (1:npti,:)   < 0._wp )   pv_i (1:npti,:)   = 0._wp   !  v_i must be >= 0
      WHERE( pv_s (1:npti,:)   < 0._wp )   pv_s (1:npti,:)   = 0._wp   !  v_s must be >= 0
      WHERE( psv_i(1:npti,:)   < 0._wp )   psv_i(1:npti,:)   = 0._wp   ! sv_i must be >= 0
      WHERE( poa_i(1:npti,:)   < 0._wp )   poa_i(1:npti,:)   = 0._wp   ! oa_i must be >= 0
      WHERE( pe_i (1:npti,:,:) < 0._wp )   pe_i (1:npti,:,:) = 0._wp   !  e_i must be >= 0
      WHERE( pe_s (1:npti,:,:) < 0._wp )   pe_s (1:npti,:,:) = 0._wp   !  e_s must be >= 0
      IF( ln_pnd_LEV .OR. ln_pnd_TOPO ) THEN
         WHERE( pa_ip(1:npti,:) < 0._wp )    pa_ip(1:npti,:)   = 0._wp   ! a_ip must be >= 0
         WHERE( pv_ip(1:npti,:) < 0._wp )    pv_ip(1:npti,:)   = 0._wp   ! v_ip must be >= 0
         IF( ln_pnd_lids ) THEN
            WHERE( pv_il(1:npti,:) < 0._wp .AND. pv_il(1:npti,:) > -epsi10 ) pv_il(1:npti,:)   = 0._wp   ! v_il must be >= 0
         ENDIF
      ENDIF
      !
   END SUBROUTINE ice_var_roundoff


   SUBROUTINE ice_var_bv
      !!-------------------------------------------------------------------
      !!                ***  ROUTINE ice_var_bv ***
      !!
      !! ** Purpose :   computes mean brine volume (%) in sea ice
      !!
      !! ** Method  : e = - 0.054 * S (ppt) / T (C)
      !!
      !! References : Vancoppenolle et al., JGR, 2007
      !!-------------------------------------------------------------------
      INTEGER  ::   ji, jj, jk, jl   ! dummy loop indices
      !!-------------------------------------------------------------------
      !
!!gm I prefere to use WHERE / ELSEWHERE  to set it to zero only where needed   <<<=== to be done
!!   instead of setting everything to zero as just below
      bv_i (:,:,:) = 0._wp
      DO jl = 1, jpl
         DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, nlay_i )
            IF( t_i(ji,jj,jk,jl) < rt0 - epsi10 ) THEN
               bv_i(ji,jj,jl) = bv_i(ji,jj,jl) - rTmlt * sz_i(ji,jj,jk,jl) * r1_nlay_i / ( t_i(ji,jj,jk,jl) - rt0 )
            ENDIF
         END_3D
      END DO
      WHERE( vt_i(:,:) > epsi20 )   ;   bvm_i(:,:) = SUM( bv_i(:,:,:) * v_i(:,:,:) , dim=3 ) / vt_i(:,:)
      ELSEWHERE                     ;   bvm_i(:,:) = 0._wp
      END WHERE
      !
   END SUBROUTINE ice_var_bv


   SUBROUTINE ice_var_enthalpy
      !!-------------------------------------------------------------------
      !!                   ***  ROUTINE ice_var_enthalpy ***
      !!
      !! ** Purpose :   Computes sea ice energy of melting q_i (J.m-3) from temperature
      !!
      !! ** Method  :   Formula (Bitz and Lipscomb, 1999)
      !!-------------------------------------------------------------------
      INTEGER  ::   ji, jk   ! dummy loop indices
      REAL(wp) ::   ztmelts  ! local scalar
      !!-------------------------------------------------------------------
      !
      DO jk = 1, nlay_i             ! Sea ice energy of melting
         DO ji = 1, npti
            ztmelts      = - rTmlt  * sz_i_1d(ji,jk)
            t_i_1d(ji,jk) = MIN( t_i_1d(ji,jk), ztmelts + rt0 ) ! Force t_i_1d to be lower than melting point => likely conservation issue
                                                                !   (sometimes zdf scheme produces abnormally high temperatures)
            e_i_1d(ji,jk) = rhoi * ( rcpi  * ( ztmelts - ( t_i_1d(ji,jk) - rt0 ) )           &
               &                   + rLfus * ( 1._wp - ztmelts / ( t_i_1d(ji,jk) - rt0 ) )   &
               &                   - rcp   * ztmelts )
         END DO
      END DO
      DO jk = 1, nlay_s             ! Snow energy of melting
         DO ji = 1, npti
            e_s_1d(ji,jk) = rhos * ( rcpi * ( rt0 - t_s_1d(ji,jk) ) + rLfus )
         END DO
      END DO
      !
   END SUBROUTINE ice_var_enthalpy


   FUNCTION ice_var_sshdyn(pssh, psnwice_mass, psnwice_mass_b)
      !!---------------------------------------------------------------------
      !!                   ***  ROUTINE ice_var_sshdyn  ***
      !!
      !! ** Purpose :  compute the equivalent ssh in lead when sea ice is embedded
      !!
      !! ** Method  :  ssh_lead = ssh + (Mice + Msnow) / rho0
      !!
      !! ** Reference : Jean-Michel Campin, John Marshall, David Ferreira,
      !!                Sea ice-ocean coupling using a rescaled vertical coordinate z*,
      !!                Ocean Modelling, Volume 24, Issues 1-2, 2008
      !!----------------------------------------------------------------------
      !
      ! input
      REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: pssh            !: ssh [m]
      REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: psnwice_mass    !: mass of snow and ice at current  ice time step [Kg/m2]
      REAL(wp), DIMENSION(jpi,jpj), INTENT(in) :: psnwice_mass_b  !: mass of snow and ice at previous ice time step [Kg/m2]
      !
      ! output
      REAL(wp), DIMENSION(jpi,jpj) :: ice_var_sshdyn  ! equivalent ssh in lead [m]
      !
      ! temporary
      REAL(wp) :: zintn, zintb                     ! time interpolation weights []
      !
      ! compute ice load used to define the equivalent ssh in lead
      IF( ln_ice_embd ) THEN
         !
         ! average interpolation coeff as used in dynspg = (1/nn_fsbc)   * {SUM[n/nn_fsbc], n=0,nn_fsbc-1}
         !                                               = (1/nn_fsbc)^2 * {SUM[n]        , n=0,nn_fsbc-1}
         zintn = REAL( nn_fsbc - 1 ) / REAL( nn_fsbc ) * 0.5_wp
         !
         ! average interpolation coeff as used in dynspg = (1/nn_fsbc)   *    {SUM[1-n/nn_fsbc], n=0,nn_fsbc-1}
         !                                               = (1/nn_fsbc)^2 * (nn_fsbc^2 - {SUM[n], n=0,nn_fsbc-1})
         zintb = REAL( nn_fsbc + 1 ) / REAL( nn_fsbc ) * 0.5_wp
         !
         ! compute equivalent ssh in lead
         ice_var_sshdyn(:,:) = pssh(:,:) + ( zintn * psnwice_mass(:,:) + zintb * psnwice_mass_b(:,:) ) * r1_rho0
         !
      ELSE
         ! compute equivalent ssh in lead
         ice_var_sshdyn(:,:) = pssh(:,:)
      ENDIF
      !
   END FUNCTION ice_var_sshdyn


   !!-------------------------------------------------------------------
   !!                ***  INTERFACE ice_var_itd   ***
   !!
   !! ** Purpose :  converting N-cat ice to jpl ice categories
   !!-------------------------------------------------------------------
   SUBROUTINE ice_var_itd_1c1c( phti, phts, pati ,                             ph_i, ph_s, pa_i, &
      &                         ptmi, ptms, ptmsu, psmi, patip, phtip, phtil,  pt_i, pt_s, pt_su, ps_i, pa_ip, ph_ip, ph_il )
      !!-------------------------------------------------------------------
      !! ** Purpose :  converting 1-cat ice to 1 ice category
      !!-------------------------------------------------------------------
      REAL(wp), DIMENSION(:), INTENT(in)    ::   phti, phts, pati    ! input  ice/snow variables
      REAL(wp), DIMENSION(:), INTENT(inout) ::   ph_i, ph_s, pa_i    ! output ice/snow variables
      REAL(wp), DIMENSION(:), INTENT(in)    ::   ptmi, ptms, ptmsu, psmi, patip, phtip, phtil    ! input  ice/snow temp & sal & ponds
      REAL(wp), DIMENSION(:), INTENT(inout) ::   pt_i, pt_s, pt_su, ps_i, pa_ip, ph_ip, ph_il    ! output ice/snow temp & sal & ponds
      !!-------------------------------------------------------------------
      ! == thickness and concentration == !
      ph_i(:) = phti(:)
      ph_s(:) = phts(:)
      pa_i(:) = pati(:)
      !
      ! == temperature and salinity and ponds == !
      pt_i (:) = ptmi (:)
      pt_s (:) = ptms (:)
      pt_su(:) = ptmsu(:)
      ps_i (:) = psmi (:)
      pa_ip(:) = patip(:)
      ph_ip(:) = phtip(:)
      ph_il(:) = phtil(:)

   END SUBROUTINE ice_var_itd_1c1c

   SUBROUTINE ice_var_itd_Nc1c( phti, phts, pati ,                             ph_i, ph_s, pa_i, &
      &                         ptmi, ptms, ptmsu, psmi, patip, phtip, phtil,  pt_i, pt_s, pt_su, ps_i, pa_ip, ph_ip, ph_il )
      !!-------------------------------------------------------------------
      !! ** Purpose :  converting N-cat ice to 1 ice category
      !!-------------------------------------------------------------------
      REAL(wp), DIMENSION(:,:), INTENT(in)    ::   phti, phts, pati    ! input  ice/snow variables
      REAL(wp), DIMENSION(:)  , INTENT(inout) ::   ph_i, ph_s, pa_i    ! output ice/snow variables
      REAL(wp), DIMENSION(:,:), INTENT(in)    ::   ptmi, ptms, ptmsu, psmi, patip, phtip, phtil    ! input  ice/snow temp & sal & ponds
      REAL(wp), DIMENSION(:)  , INTENT(inout) ::   pt_i, pt_s, pt_su, ps_i, pa_ip, ph_ip, ph_il    ! output ice/snow temp & sal & ponds
      !
      REAL(wp), ALLOCATABLE, DIMENSION(:) ::   z1_ai, z1_vi, z1_vs
      !
      INTEGER ::   idim
      !!-------------------------------------------------------------------
      !
      idim = SIZE( phti, 1 )
      !
      ! == thickness and concentration == !
      ALLOCATE( z1_ai(idim), z1_vi(idim), z1_vs(idim) )
      !
      pa_i(:) = SUM( pati(:,:), dim=2 )

      WHERE( ( pa_i(:) ) /= 0._wp )   ;   z1_ai(:) = 1._wp / pa_i(:)
      ELSEWHERE                       ;   z1_ai(:) = 0._wp
      END WHERE

      ph_i(:) = SUM( phti(:,:) * pati(:,:), dim=2 ) * z1_ai(:)
      ph_s(:) = SUM( phts(:,:) * pati(:,:), dim=2 ) * z1_ai(:)
      !
      ! == temperature and salinity == !
      WHERE( ( pa_i(:) * ph_i(:) ) /= 0._wp )   ;   z1_vi(:) = 1._wp / ( pa_i(:) * ph_i(:) )
      ELSEWHERE                                 ;   z1_vi(:) = 0._wp
      END WHERE
      WHERE( ( pa_i(:) * ph_s(:) ) /= 0._wp )   ;   z1_vs(:) = 1._wp / ( pa_i(:) * ph_s(:) )
      ELSEWHERE                                 ;   z1_vs(:) = 0._wp
      END WHERE
      pt_i (:) = SUM( ptmi (:,:) * pati(:,:) * phti(:,:), dim=2 ) * z1_vi(:)
      pt_s (:) = SUM( ptms (:,:) * pati(:,:) * phts(:,:), dim=2 ) * z1_vs(:)
      pt_su(:) = SUM( ptmsu(:,:) * pati(:,:)            , dim=2 ) * z1_ai(:)
      ps_i (:) = SUM( psmi (:,:) * pati(:,:) * phti(:,:), dim=2 ) * z1_vi(:)

      ! == ponds == !
      pa_ip(:) = SUM( patip(:,:), dim=2 )
      WHERE( pa_ip(:) /= 0._wp )
         ph_ip(:) = SUM( phtip(:,:) * patip(:,:), dim=2 ) / pa_ip(:)
         ph_il(:) = SUM( phtil(:,:) * patip(:,:), dim=2 ) / pa_ip(:)
      ELSEWHERE
         ph_ip(:) = 0._wp
         ph_il(:) = 0._wp
      END WHERE
      !
      DEALLOCATE( z1_ai, z1_vi, z1_vs )
      !
   END SUBROUTINE ice_var_itd_Nc1c

   SUBROUTINE ice_var_itd_1cMc( phti, phts, pati ,                             ph_i, ph_s, pa_i, &
      &                         ptmi, ptms, ptmsu, psmi, patip, phtip, phtil,  pt_i, pt_s, pt_su, ps_i, pa_ip, ph_ip, ph_il )
      !!-------------------------------------------------------------------
      !!
      !! ** Purpose :  converting 1-cat ice to jpl ice categories
      !!
      !!
      !! ** Method:   ice thickness distribution follows a gamma function from Abraham et al. (2015)
      !!              it has the property of conserving total concentration and volume
      !!
      !!
      !! ** Arguments : phti: 1-cat ice thickness
      !!                phts: 1-cat snow depth
      !!                pati: 1-cat ice concentration
      !!
      !! ** Output    : jpl-cat
      !!
      !!  Abraham, C., Steiner, N., Monahan, A. and Michel, C., 2015.
      !!               Effects of subgrid‐scale snow thickness variability on radiative transfer in sea ice.
      !!               Journal of Geophysical Research: Oceans, 120(8), pp.5597-5614
      !!-------------------------------------------------------------------
      REAL(wp), DIMENSION(:),   INTENT(in)    ::   phti, phts, pati    ! input  ice/snow variables
      REAL(wp), DIMENSION(:,:), INTENT(inout) ::   ph_i, ph_s, pa_i    ! output ice/snow variables
      REAL(wp), DIMENSION(:)  , INTENT(in)    ::   ptmi, ptms, ptmsu, psmi, patip, phtip, phtil    ! input  ice/snow temp & sal & ponds
      REAL(wp), DIMENSION(:,:), INTENT(inout) ::   pt_i, pt_s, pt_su, ps_i, pa_ip, ph_ip, ph_il    ! output ice/snow temp & sal & ponds
      !
      REAL(wp), ALLOCATABLE, DIMENSION(:) ::   zfra, z1_hti
      INTEGER  ::   ji, jk, jl
      INTEGER  ::   idim
      REAL(wp) ::   zv, zdh
      !!-------------------------------------------------------------------
      !
      idim = SIZE( phti , 1 )
      !
      ph_i(1:idim,1:jpl) = 0._wp
      ph_s(1:idim,1:jpl) = 0._wp
      pa_i(1:idim,1:jpl) = 0._wp
      !
      ALLOCATE( z1_hti(idim) )
      WHERE( phti(:) /= 0._wp )   ;   z1_hti(:) = 1._wp / phti(:)
      ELSEWHERE                   ;   z1_hti(:) = 0._wp
      END WHERE
      !
      ! == thickness and concentration == !
      ! for categories 1:jpl-1, integrate the gamma function from hi_max(jl-1) to hi_max(jl)
      DO jl = 1, jpl-1
         DO ji = 1, idim
            !
            IF( phti(ji) > 0._wp ) THEN
               ! concentration : integrate ((4A/H^2)xexp(-2x/H))dx from x=hi_max(jl-1) to hi_max(jl)
               pa_i(ji,jl) = pati(ji) * z1_hti(ji) * (  ( phti(ji) + 2.*hi_max(jl-1) ) * EXP( -2.*hi_max(jl-1)*z1_hti(ji) ) &
                  &                                   - ( phti(ji) + 2.*hi_max(jl  ) ) * EXP( -2.*hi_max(jl  )*z1_hti(ji) ) )
               !
               ! volume : integrate ((4A/H^2)x^2exp(-2x/H))dx from x=hi_max(jl-1) to hi_max(jl)
               zv = pati(ji) * z1_hti(ji) * (  ( phti(ji)*phti(ji) + 2.*phti(ji)*hi_max(jl-1) + 2.*hi_max(jl-1)*hi_max(jl-1) ) &
                  &                            * EXP( -2.*hi_max(jl-1)*z1_hti(ji) ) &
                  &                          - ( phti(ji)*phti(ji) + 2.*phti(ji)*hi_max(jl) + 2.*hi_max(jl)*hi_max(jl) ) &
                  &                            * EXP(-2.*hi_max(jl)*z1_hti(ji)) )
               ! thickness
               IF( pa_i(ji,jl) > epsi06 ) THEN
                  ph_i(ji,jl) = zv / pa_i(ji,jl)
               ELSE
                  ph_i(ji,jl) = 0.
                  pa_i(ji,jl) = 0.
               ENDIF
            ENDIF
            !
         ENDDO
      ENDDO
      !
      ! for the last category (jpl), integrate the gamma function from hi_max(jpl-1) to infinity
      DO ji = 1, idim
         !
         IF( phti(ji) > 0._wp ) THEN
            ! concentration : integrate ((4A/H^2)xexp(-2x/H))dx from x=hi_max(jpl-1) to infinity
            pa_i(ji,jpl) = pati(ji) * z1_hti(ji) * ( phti(ji) + 2.*hi_max(jpl-1) ) * EXP( -2.*hi_max(jpl-1)*z1_hti(ji) )

            ! volume : integrate ((4A/H^2)x^2exp(-2x/H))dx from x=hi_max(jpl-1) to infinity
            zv = pati(ji) * z1_hti(ji) * ( phti(ji)*phti(ji) + 2.*phti(ji)*hi_max(jpl-1) + 2.*hi_max(jpl-1)*hi_max(jpl-1) ) &
               &                         * EXP( -2.*hi_max(jpl-1)*z1_hti(ji) )
            ! thickness
            IF( pa_i(ji,jpl) > epsi06 ) THEN
               ph_i(ji,jpl) = zv / pa_i(ji,jpl)
            else
               ph_i(ji,jpl) = 0.
               pa_i(ji,jpl) = 0.
            ENDIF
         ENDIF
         !
      ENDDO
      !
      ! Add Snow in each category where pa_i is not 0
      DO jl = 1, jpl
         DO ji = 1, idim
            IF( pa_i(ji,jl) > 0._wp ) THEN
               ph_s(ji,jl) = ph_i(ji,jl) * phts(ji) * z1_hti(ji)
               ! In case snow load is in excess that would lead to transformation from snow to ice
               ! Then, transfer the snow excess into the ice (different from icethd_dh)
               zdh = MAX( 0._wp, ( rhos * ph_s(ji,jl) + ( rhoi - rho0 ) * ph_i(ji,jl) ) * r1_rho0 )
               ! recompute h_i, h_s avoiding out of bounds values
               ph_i(ji,jl) = MIN( hi_max(jl), ph_i(ji,jl) + zdh )
               ph_s(ji,jl) = MAX( 0._wp, ph_s(ji,jl) - zdh * rhoi * r1_rhos )
            ENDIF
         END DO
      END DO
      !
      DEALLOCATE( z1_hti )
      !
      ! == temperature and salinity == !