Skip to content
Snippets Groups Projects
sshwzv.F90 22.2 KiB
Newer Older
Guillaume Samson's avatar
Guillaume Samson committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
MODULE sshwzv   
   !!==============================================================================
   !!                       ***  MODULE  sshwzv  ***
   !! Ocean dynamics : sea surface height and vertical velocity
   !!==============================================================================
   !! History :  3.1  !  2009-02  (G. Madec, M. Leclair)  Original code
   !!            3.3  !  2010-04  (M. Leclair, G. Madec)  modified LF-RA 
   !!             -   !  2010-05  (K. Mogensen, A. Weaver, M. Martin, D. Lea)  Assimilation interface
   !!             -   !  2010-09  (D.Storkey and E.O'Dea)  bug fixes for BDY module
   !!            3.3  !  2011-10  (M. Leclair)  split former ssh_wzv routine and remove all vvl related work
   !!            4.0  !  2018-12  (A. Coward)  add mixed implicit/explicit advection
   !!            4.1  !  2019-08  (A. Coward, D. Storkey)  Rename ssh_nxt -> ssh_atf. Now only does time filtering.
   !!             -   !  2020-08  (S. Techene, G. Madec)  add here ssh initiatlisation
   !!----------------------------------------------------------------------

   !!----------------------------------------------------------------------
   !!   ssh_nxt       : after ssh
   !!   ssh_atf       : time filter the ssh arrays
   !!   wzv           : compute now vertical velocity
   !!----------------------------------------------------------------------
   USE oce            ! ocean dynamics and tracers variables
   USE isf_oce        ! ice shelf
   USE dom_oce        ! ocean space and time domain variables 
   USE sbc_oce        ! surface boundary condition: ocean
   USE domvvl         ! Variable volume
   USE divhor         ! horizontal divergence
   USE phycst         ! physical constants
   USE bdy_oce , ONLY : ln_bdy, bdytmask   ! Open BounDarY
   USE bdydyn2d       ! bdy_ssh routine
   USE wet_dry        ! Wetting/Drying flux limiting
#if defined key_agrif
   USE agrif_oce
   USE agrif_oce_interp
#endif
   !
   USE iom 
   USE in_out_manager ! I/O manager
   USE restart        ! only for lrst_oce
   USE prtctl         ! Print control
   USE lbclnk         ! ocean lateral boundary condition (or mpp link)
   USE lib_mpp        ! MPP library
   USE timing         ! Timing
   
   IMPLICIT NONE
   PRIVATE

   PUBLIC   ssh_nxt        ! called by step.F90
   PUBLIC   wzv            ! called by step.F90
   PUBLIC   wAimp          ! called by step.F90
   PUBLIC   ssh_atf        ! called by step.F90

   !! * Substitutions
#  include "do_loop_substitute.h90"
#  include "domzgr_substitute.h90"
   !!----------------------------------------------------------------------
   !! NEMO/OCE 4.0 , NEMO Consortium (2018)
   !! $Id: sshwzv.F90 15150 2021-07-27 10:38:24Z smasson $
   !! Software governed by the CeCILL license (see ./LICENSE)
   !!----------------------------------------------------------------------
CONTAINS

   SUBROUTINE ssh_nxt( kt, Kbb, Kmm, pssh, Kaa )
      !!----------------------------------------------------------------------
      !!                ***  ROUTINE ssh_nxt  ***
      !!                   
      !! ** Purpose :   compute the after ssh (ssh(Kaa))
      !!
      !! ** Method  : - Using the incompressibility hypothesis, the ssh increment
      !!      is computed by integrating the horizontal divergence and multiply by
      !!      by the time step.
      !!
      !! ** action  :   ssh(:,:,Kaa), after sea surface height
      !!
      !! Reference  : Leclair, M., and G. Madec, 2009, Ocean Modelling.
      !!----------------------------------------------------------------------
      INTEGER                         , INTENT(in   ) ::   kt             ! time step
      INTEGER                         , INTENT(in   ) ::   Kbb, Kmm, Kaa  ! time level index
      REAL(wp), DIMENSION(jpi,jpj,jpt), INTENT(inout) ::   pssh           ! sea-surface height
      ! 
      INTEGER  ::   ji, jj, jk      ! dummy loop index
      REAL(wp) ::   zcoef   ! local scalar
      REAL(wp), DIMENSION(jpi,jpj) ::   zhdiv   ! 2D workspace
      !!----------------------------------------------------------------------
      !
      IF( ln_timing )   CALL timing_start('ssh_nxt')
      !
      IF( kt == nit000 ) THEN
         IF(lwp) WRITE(numout,*)
         IF(lwp) WRITE(numout,*) 'ssh_nxt : after sea surface height'
         IF(lwp) WRITE(numout,*) '~~~~~~~ '
      ENDIF
      !
      zcoef = 0.5_wp * r1_rho0

      !                                           !------------------------------!
      !                                           !   After Sea Surface Height   !
      !                                           !------------------------------!
      IF(ln_wd_il) THEN
         CALL wad_lmt(pssh(:,:,Kbb), zcoef * (emp_b(:,:) + emp(:,:)), rDt, Kmm, uu, vv )
      ENDIF

      CALL div_hor( kt, Kbb, Kmm )                     ! Horizontal divergence
      !
      zhdiv(:,:) = 0._wp
      DO_3D( 1, nn_hls, 1, nn_hls, 1, jpkm1 )                                 ! Horizontal divergence of barotropic transports
        zhdiv(ji,jj) = zhdiv(ji,jj) + e3t(ji,jj,jk,Kmm) * hdiv(ji,jj,jk)
      END_3D
      !                                                ! Sea surface elevation time stepping
      ! In time-split case we need a first guess of the ssh after (using the baroclinic timestep) in order to
      ! compute the vertical velocity which can be used to compute the non-linear terms of the momentum equations.
      ! 
      DO_2D_OVR( 1, nn_hls, 1, nn_hls )                ! Loop bounds limited by hdiv definition in div_hor
         pssh(ji,jj,Kaa) = (  pssh(ji,jj,Kbb) - rDt * ( zcoef * ( emp_b(ji,jj) + emp(ji,jj) ) + zhdiv(ji,jj) )  ) * ssmask(ji,jj)
      END_2D
      ! pssh must be defined everywhere (true for dyn_spg_ts, not for dyn_spg_exp)
      IF ( .NOT. ln_dynspg_ts .AND. nn_hls == 2 ) CALL lbc_lnk( 'sshwzv', pssh(:,:,Kaa), 'T', 1.0_wp )
      !
#if defined key_agrif
      Kbb_a = Kbb   ;   Kmm_a = Kmm   ;   Krhs_a = Kaa
      CALL agrif_ssh( kt )
#endif
      !
      IF ( .NOT.ln_dynspg_ts ) THEN
         IF( ln_bdy ) THEN
            IF (nn_hls==1) CALL lbc_lnk( 'sshwzv', pssh(:,:,Kaa), 'T', 1.0_wp )    ! Not sure that's necessary
            CALL bdy_ssh( pssh(:,:,Kaa) )             ! Duplicate sea level across open boundaries
         ENDIF
      ENDIF
      !                                           !------------------------------!
      !                                           !           outputs            !
      !                                           !------------------------------!
      !
      IF(sn_cfctl%l_prtctl)   CALL prt_ctl( tab2d_1=pssh(:,:,Kaa), clinfo1=' pssh(:,:,Kaa)  - : ', mask1=tmask )
      !
      IF( ln_timing )   CALL timing_stop('ssh_nxt')
      !
   END SUBROUTINE ssh_nxt

   
   SUBROUTINE wzv( kt, Kbb, Kmm, Kaa, pww )
      !!----------------------------------------------------------------------
      !!                ***  ROUTINE wzv  ***
      !!                   
      !! ** Purpose :   compute the now vertical velocity
      !!
      !! ** Method  : - Using the incompressibility hypothesis, the vertical 
      !!      velocity is computed by integrating the horizontal divergence  
      !!      from the bottom to the surface minus the scale factor evolution.
      !!        The boundary conditions are w=0 at the bottom (no flux) and.
      !!
      !! ** action  :   pww      : now vertical velocity
      !!
      !! Reference  : Leclair, M., and G. Madec, 2009, Ocean Modelling.
      !!----------------------------------------------------------------------
      INTEGER                         , INTENT(in)    ::   kt             ! time step
      INTEGER                         , INTENT(in)    ::   Kbb, Kmm, Kaa  ! time level indices
      REAL(wp), DIMENSION(jpi,jpj,jpk), INTENT(inout) ::   pww            ! vertical velocity at Kmm
      !
      INTEGER  ::   ji, jj, jk   ! dummy loop indices
      REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) ::   zhdiv
      !!----------------------------------------------------------------------
      !
      IF( ln_timing )   CALL timing_start('wzv')
      !
      IF( kt == nit000 ) THEN
         IF(lwp) WRITE(numout,*)
         IF(lwp) WRITE(numout,*) 'wzv : now vertical velocity '
         IF(lwp) WRITE(numout,*) '~~~~~ '
         !
         pww(:,:,jpk) = 0._wp                  ! bottom boundary condition: w=0 (set once for all)
      ENDIF
      !                                           !------------------------------!
      !                                           !     Now Vertical Velocity    !
      !                                           !------------------------------!
      !
      !                                               !===============================!
      IF( ln_vvl_ztilde .OR. ln_vvl_layer ) THEN      !==  z_tilde and layer cases  ==!
         !                                            !===============================!
         ALLOCATE( zhdiv(jpi,jpj,jpk) ) 
         !
         DO jk = 1, jpkm1
            ! horizontal divergence of thickness diffusion transport ( velocity multiplied by e3t)
            ! - ML - note: computation already done in dom_vvl_sf_nxt. Could be optimized (not critical and clearer this way)
            DO_2D( nn_hls-1, nn_hls, nn_hls-1, nn_hls )
               zhdiv(ji,jj,jk) = r1_e1e2t(ji,jj) * ( un_td(ji,jj,jk) - un_td(ji-1,jj,jk) + vn_td(ji,jj,jk) - vn_td(ji,jj-1,jk) )
            END_2D
         END DO
         IF( nn_hls == 1)   CALL lbc_lnk('sshwzv', zhdiv, 'T', 1.0_wp)  ! - ML - Perhaps not necessary: not used for horizontal "connexions"
         !                             ! Is it problematic to have a wrong vertical velocity in boundary cells?
         !                             ! Same question holds for hdiv. Perhaps just for security
         !                             ! clem: yes it is a problem because ww is used in many other places where we need the halos
         !
         DO_3DS( nn_hls-1, nn_hls, nn_hls-1, nn_hls, jpkm1, 1, -1 )     ! integrate from the bottom the hor. divergence
            ! computation of w
            pww(ji,jj,jk) = pww(ji,jj,jk+1) - (   e3t(ji,jj,jk,Kmm) * hdiv(ji,jj,jk)   &
               &                                  +                  zhdiv(ji,jj,jk)   &
               &                                  + r1_Dt * (  e3t(ji,jj,jk,Kaa)       &
               &                                             - e3t(ji,jj,jk,Kbb) )   ) * tmask(ji,jj,jk)
         END_3D
         !          IF( ln_vvl_layer ) pww(:,:,:) = 0.e0
         DEALLOCATE( zhdiv ) 
         !                                            !=================================!
      ELSEIF( ln_linssh )   THEN                      !==  linear free surface cases  ==!
         !                                            !=================================!
         DO_3DS( nn_hls-1, nn_hls, nn_hls-1, nn_hls, jpkm1, 1, -1 )     ! integrate from the bottom the hor. divergence
            pww(ji,jj,jk) = pww(ji,jj,jk+1) - (  e3t(ji,jj,jk,Kmm) * hdiv(ji,jj,jk)  ) * tmask(ji,jj,jk)
         END_3D
         !                                            !==========================================!
      ELSE                                            !==  Quasi-Eulerian vertical coordinate  ==!   ('key_qco')
         !                                            !==========================================!
         DO_3DS( nn_hls-1, nn_hls, nn_hls-1, nn_hls, jpkm1, 1, -1 )     ! integrate from the bottom the hor. divergence
            pww(ji,jj,jk) = pww(ji,jj,jk+1) - (  e3t(ji,jj,jk,Kmm) * hdiv(ji,jj,jk)    &
               &                                 + r1_Dt * (  e3t(ji,jj,jk,Kaa)        &
               &                                            - e3t(ji,jj,jk,Kbb)  )   ) * tmask(ji,jj,jk)
         END_3D
      ENDIF

      IF( ln_bdy ) THEN
         DO jk = 1, jpkm1
            DO_2D( nn_hls-1, nn_hls, nn_hls-1, nn_hls )
               pww(ji,jj,jk) = pww(ji,jj,jk) * bdytmask(ji,jj)
            END_2D
         END DO
      ENDIF
      !
#if defined key_agrif
      IF( .NOT. AGRIF_Root() ) THEN
         !
         ! Mask vertical velocity at first/last columns/row 
         ! inside computational domain (cosmetic) 
         DO jk = 1, jpkm1
            IF( lk_west ) THEN                             ! --- West --- !
               DO ji = mi0(2+nn_hls), mi1(2+nn_hls)
                  DO jj = 1, jpj
                     pww(ji,jj,jk) = 0._wp 
                  END DO
               END DO
            ENDIF
            IF( lk_east ) THEN                             ! --- East --- !
               DO ji = mi0(jpiglo-1-nn_hls), mi1(jpiglo-1-nn_hls)
                  DO jj = 1, jpj
                     pww(ji,jj,jk) = 0._wp
                  END DO
               END DO
            ENDIF
            IF( lk_south ) THEN                            ! --- South --- !
               DO jj = mj0(2+nn_hls), mj1(2+nn_hls)
                  DO ji = 1, jpi
                     pww(ji,jj,jk) = 0._wp
                  END DO
               END DO
            ENDIF
            IF( lk_north ) THEN                            ! --- North --- !
               DO jj = mj0(jpjglo-1-nn_hls), mj1(jpjglo-1-nn_hls)
                  DO ji = 1, jpi
                     pww(ji,jj,jk) = 0._wp
                  END DO
               END DO
            ENDIF
            !
         END DO
         !
      ENDIF 
#endif
      !
      IF( ln_timing )   CALL timing_stop('wzv')
      !
   END SUBROUTINE wzv


   SUBROUTINE ssh_atf( kt, Kbb, Kmm, Kaa, pssh )
      !!----------------------------------------------------------------------
      !!                    ***  ROUTINE ssh_atf  ***
      !!
      !! ** Purpose :   Apply Asselin time filter to now SSH.
      !!
      !! ** Method  : - apply Asselin time fiter to now ssh (excluding the forcing
      !!              from the filter, see Leclair and Madec 2010) and swap :
      !!                pssh(:,:,Kmm) = pssh(:,:,Kaa) + rn_atfp * ( pssh(:,:,Kbb) -2 pssh(:,:,Kmm) + pssh(:,:,Kaa) )
      !!                            - rn_atfp * rn_Dt * ( emp_b - emp ) / rho0
      !!
      !! ** action  : - pssh(:,:,Kmm) time filtered
      !!
      !! Reference  : Leclair, M., and G. Madec, 2009, Ocean Modelling.
      !!----------------------------------------------------------------------
      INTEGER                         , INTENT(in   ) ::   kt             ! ocean time-step index
      INTEGER                         , INTENT(in   ) ::   Kbb, Kmm, Kaa  ! ocean time level indices
      REAL(wp), DIMENSION(jpi,jpj,jpt), INTENT(inout) ::   pssh           ! SSH field
      !
      REAL(wp) ::   zcoef   ! local scalar
      !!----------------------------------------------------------------------
      !
      IF( ln_timing )   CALL timing_start('ssh_atf')
      !
      IF( kt == nit000 ) THEN
         IF(lwp) WRITE(numout,*)
         IF(lwp) WRITE(numout,*) 'ssh_atf : Asselin time filter of sea surface height'
         IF(lwp) WRITE(numout,*) '~~~~~~~ '
      ENDIF
      !
      IF( .NOT.l_1st_euler ) THEN   ! Apply Asselin time filter on Kmm field (not on euler 1st)
         !
         IF( ln_linssh ) THEN                ! filtered "now" field
            pssh(:,:,Kmm) = pssh(:,:,Kmm) + rn_atfp * ( pssh(:,:,Kbb) - 2 * pssh(:,:,Kmm) + pssh(:,:,Kaa) )
            !
         ELSE                                ! filtered "now" field with forcing removed
            zcoef = rn_atfp * rn_Dt * r1_rho0
            pssh(:,:,Kmm) = pssh(:,:,Kmm) + rn_atfp * ( pssh(:,:,Kbb) - 2 * pssh(:,:,Kmm) + pssh(:,:,Kaa) )   &
               &                          - zcoef   * (         emp_b(:,:) -        emp(:,:)   &
               &                                              - rnf_b(:,:) +        rnf(:,:)   &
               &                                       - fwfisf_cav_b(:,:) + fwfisf_cav(:,:)   &
               &                                       - fwfisf_par_b(:,:) + fwfisf_par(:,:)   ) * ssmask(:,:)

            ! ice sheet coupling
            IF( ln_isf .AND. ln_isfcpl .AND. kt == nit000+1 )   &
               &   pssh(:,:,Kbb) = pssh(:,:,Kbb) - rn_atfp * rn_Dt * ( risfcpl_ssh(:,:) - 0._wp ) * ssmask(:,:)

         ENDIF
      ENDIF
      !
      IF(sn_cfctl%l_prtctl)   CALL prt_ctl( tab2d_1=pssh(:,:,Kmm), clinfo1=' atf  - pssh(:,:,Kmm): ', mask1=tmask )
      !
      IF( ln_timing )   CALL timing_stop('ssh_atf')
      !
   END SUBROUTINE ssh_atf

   
   SUBROUTINE wAimp( kt, Kmm )
      !!----------------------------------------------------------------------
      !!                ***  ROUTINE wAimp  ***
      !!                   
      !! ** Purpose :   compute the Courant number and partition vertical velocity
      !!                if a proportion needs to be treated implicitly
      !!
      !! ** Method  : - 
      !!
      !! ** action  :   ww      : now vertical velocity (to be handled explicitly)
      !!            :   wi      : now vertical velocity (for implicit treatment)
      !!
      !! Reference  : Shchepetkin, A. F. (2015): An adaptive, Courant-number-dependent
      !!              implicit scheme for vertical advection in oceanic modeling. 
      !!              Ocean Modelling, 91, 38-69.
      !!----------------------------------------------------------------------
      INTEGER, INTENT(in) ::   kt   ! time step
      INTEGER, INTENT(in) ::   Kmm  ! time level index
      !
      INTEGER  ::   ji, jj, jk   ! dummy loop indices
      REAL(wp)             ::   zCu, zcff, z1_e3t, zdt                ! local scalars
      REAL(wp) , PARAMETER ::   Cu_min = 0.15_wp                      ! local parameters
      REAL(wp) , PARAMETER ::   Cu_max = 0.30_wp                      ! local parameters
      REAL(wp) , PARAMETER ::   Cu_cut = 2._wp*Cu_max - Cu_min        ! local parameters
      REAL(wp) , PARAMETER ::   Fcu    = 4._wp*Cu_max*(Cu_max-Cu_min) ! local parameters
      !!----------------------------------------------------------------------
      !
      IF( ln_timing )   CALL timing_start('wAimp')
      !
      IF( kt == nit000 ) THEN
         IF(lwp) WRITE(numout,*)
         IF(lwp) WRITE(numout,*) 'wAimp : Courant number-based partitioning of now vertical velocity '
         IF(lwp) WRITE(numout,*) '~~~~~ '
      ENDIF
      !
      ! Calculate Courant numbers
      zdt = 2._wp * rn_Dt                            ! 2*rn_Dt and not rDt (for restartability)
      IF( ln_vvl_ztilde .OR. ln_vvl_layer ) THEN
         DO_3D( nn_hls-1, nn_hls, nn_hls-1, nn_hls, 1, jpkm1 )
            z1_e3t = 1._wp / e3t(ji,jj,jk,Kmm)
            Cu_adv(ji,jj,jk) =   zdt *                                                         &
               &  ( ( MAX( ww(ji,jj,jk) , 0._wp ) - MIN( ww(ji,jj,jk+1) , 0._wp ) )            &
               &  + ( MAX( e2u(ji  ,jj) * e3u(ji  ,jj,jk,Kmm)                                  &
               &                        * uu (ji  ,jj,jk,Kmm) + un_td(ji  ,jj,jk), 0._wp ) -   &
               &      MIN( e2u(ji-1,jj) * e3u(ji-1,jj,jk,Kmm)                                  &
               &                        * uu (ji-1,jj,jk,Kmm) + un_td(ji-1,jj,jk), 0._wp ) )   &
               &                               * r1_e1e2t(ji,jj)                                                                     &
               &  + ( MAX( e1v(ji,jj  ) * e3v(ji,jj  ,jk,Kmm)                                  &
               &                        * vv (ji,jj  ,jk,Kmm) + vn_td(ji,jj  ,jk), 0._wp ) -   &
               &      MIN( e1v(ji,jj-1) * e3v(ji,jj-1,jk,Kmm)                                  &
               &                        * vv (ji,jj-1,jk,Kmm) + vn_td(ji,jj-1,jk), 0._wp ) )   &
               &                               * r1_e1e2t(ji,jj)                                                                     &
               &                             ) * z1_e3t
         END_3D
      ELSE
         DO_3D( nn_hls-1, nn_hls, nn_hls-1, nn_hls, 1, jpkm1 )
            z1_e3t = 1._wp / e3t(ji,jj,jk,Kmm)
            Cu_adv(ji,jj,jk) =   zdt *                                                      &
               &  ( ( MAX( ww(ji,jj,jk) , 0._wp ) - MIN( ww(ji,jj,jk+1) , 0._wp ) )         &
               &                             + ( MAX( e2u(ji  ,jj)*e3u(ji  ,jj,jk,Kmm)*uu(ji  ,jj,jk,Kmm), 0._wp ) -   &
               &                                 MIN( e2u(ji-1,jj)*e3u(ji-1,jj,jk,Kmm)*uu(ji-1,jj,jk,Kmm), 0._wp ) )   &
               &                               * r1_e1e2t(ji,jj)                                                 &
               &                             + ( MAX( e1v(ji,jj  )*e3v(ji,jj  ,jk,Kmm)*vv(ji,jj  ,jk,Kmm), 0._wp ) -   &
               &                                 MIN( e1v(ji,jj-1)*e3v(ji,jj-1,jk,Kmm)*vv(ji,jj-1,jk,Kmm), 0._wp ) )   &
               &                               * r1_e1e2t(ji,jj)                                                 &
               &                             ) * z1_e3t
         END_3D
      ENDIF
      CALL iom_put("Courant",Cu_adv)
      !
      IF( MAXVAL( Cu_adv(:,:,:) ) > Cu_min ) THEN       ! Quick check if any breaches anywhere
         DO_3DS( nn_hls-1, nn_hls, nn_hls-1, nn_hls, jpkm1, 2, -1 )    ! or scan Courant criterion and partition ! w where necessary
            !
            zCu = MAX( Cu_adv(ji,jj,jk) , Cu_adv(ji,jj,jk-1) )
! alt:
!                  IF ( ww(ji,jj,jk) > 0._wp ) THEN 
!                     zCu =  Cu_adv(ji,jj,jk) 
!                  ELSE
!                     zCu =  Cu_adv(ji,jj,jk-1)
!                  ENDIF 
            !
            IF( zCu <= Cu_min ) THEN              !<-- Fully explicit
               zcff = 0._wp
            ELSEIF( zCu < Cu_cut ) THEN           !<-- Mixed explicit
               zcff = ( zCu - Cu_min )**2
               zcff = zcff / ( Fcu + zcff )
            ELSE                                  !<-- Mostly implicit
               zcff = ( zCu - Cu_max )/ zCu
            ENDIF
            zcff = MIN(1._wp, zcff)
            !
            wi(ji,jj,jk) =           zcff   * ww(ji,jj,jk)
            ww(ji,jj,jk) = ( 1._wp - zcff ) * ww(ji,jj,jk)
            !
            Cu_adv(ji,jj,jk) = zcff               ! Reuse array to output coefficient below and in stp_ctl
         END_3D
         Cu_adv(:,:,1) = 0._wp 
      ELSE
         ! Fully explicit everywhere
         Cu_adv(:,:,:) = 0._wp                    ! Reuse array to output coefficient below and in stp_ctl
         wi    (:,:,:) = 0._wp
      ENDIF
      CALL iom_put("wimp",wi) 
      CALL iom_put("wi_cff",Cu_adv)
      CALL iom_put("wexp",ww)
      !
      IF( ln_timing )   CALL timing_stop('wAimp')
      !
   END SUBROUTINE wAimp
      
   !!======================================================================
END MODULE sshwzv