Skip to content
Snippets Groups Projects
traldf_iso.F90 25.3 KiB
Newer Older
Guillaume Samson's avatar
Guillaume Samson committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
MODULE traldf_iso
   !!======================================================================
   !!                   ***  MODULE  traldf_iso  ***
   !! Ocean  tracers:  horizontal component of the lateral tracer mixing trend
   !!======================================================================
   !! History :  OPA  ! 1994-08  (G. Madec, M. Imbard)
   !!            8.0  ! 1997-05  (G. Madec)  split into traldf and trazdf
   !!            NEMO ! 2002-08  (G. Madec)  Free form, F90
   !!            1.0  ! 2005-11  (G. Madec)  merge traldf and trazdf :-)
   !!            3.3  ! 2010-09  (C. Ethe, G. Madec) Merge TRA-TRC
   !!            3.7  ! 2014-01  (G. Madec, S. Masson)  restructuration/simplification of aht/aeiv specification
   !!             -   ! 2014-02  (F. Lemarie, G. Madec)  triad operator (Griffies) + Method of Stabilizing Correction
   !!----------------------------------------------------------------------

   !!----------------------------------------------------------------------
   !!   tra_ldf_iso   : update the tracer trend with the horizontal component of a iso-neutral laplacian operator
   !!                   and with the vertical part of the isopycnal or geopotential s-coord. operator
   !!----------------------------------------------------------------------
   USE oce            ! ocean dynamics and active tracers
   USE dom_oce        ! ocean space and time domain
   USE domutl, ONLY : is_tile
   USE trc_oce        ! share passive tracers/Ocean variables
   USE zdf_oce        ! ocean vertical physics
   USE ldftra         ! lateral diffusion: tracer eddy coefficients
   USE ldfslp         ! iso-neutral slopes
   USE diaptr         ! poleward transport diagnostics
   USE diaar5         ! AR5 diagnostics
   !
   USE in_out_manager ! I/O manager
   USE iom            ! I/O library
   USE phycst         ! physical constants
   USE lbclnk         ! ocean lateral boundary conditions (or mpp link)

   IMPLICIT NONE
   PRIVATE

   PUBLIC   tra_ldf_iso   ! routine called by step.F90

   LOGICAL  ::   l_ptr   ! flag to compute poleward transport
   LOGICAL  ::   l_hst   ! flag to compute heat transport

   !! * Substitutions
#  include "do_loop_substitute.h90"
#  include "domzgr_substitute.h90"
   !!----------------------------------------------------------------------
   !! NEMO/OCE 4.0 , NEMO Consortium (2018)
   !! $Id: traldf_iso.F90 14834 2021-05-11 09:24:44Z hadcv $
   !! Software governed by the CeCILL license (see ./LICENSE)
   !!----------------------------------------------------------------------
CONTAINS

   SUBROUTINE tra_ldf_iso( kt, Kmm, kit000, cdtype, pahu, pahv,             &
      &                                             pgu , pgv , pgui, pgvi, &
      &                                             pt, pt2, pt_rhs, kjpt, kpass )
      !!
      INTEGER                     , INTENT(in   ) ::   kt         ! ocean time-step index
      INTEGER                     , INTENT(in   ) ::   kit000     ! first time step index
      CHARACTER(len=3)            , INTENT(in   ) ::   cdtype     ! =TRA or TRC (tracer indicator)
      INTEGER                     , INTENT(in   ) ::   kjpt       ! number of tracers
      INTEGER                     , INTENT(in   ) ::   kpass      ! =1/2 first or second passage
      INTEGER                     , INTENT(in   ) ::   Kmm        ! ocean time level index
      REAL(wp), DIMENSION(:,:,:)  , INTENT(in   ) ::   pahu, pahv ! eddy diffusivity at u- and v-points  [m2/s]
      REAL(wp), DIMENSION(:,:,:)  , INTENT(in   ) ::   pgu, pgv   ! tracer gradient at pstep levels
      REAL(wp), DIMENSION(:,:,:)  , INTENT(in   ) ::   pgui, pgvi ! tracer gradient at top   levels
      REAL(wp), DIMENSION(:,:,:,:), INTENT(in   ) ::   pt         ! tracer (kpass=1) or laplacian of tracer (kpass=2)
      REAL(wp), DIMENSION(:,:,:,:), INTENT(in   ) ::   pt2        ! tracer (only used in kpass=2)
      REAL(wp), DIMENSION(:,:,:,:), INTENT(inout) ::   pt_rhs     ! tracer trend
      !!
      CALL tra_ldf_iso_t( kt, Kmm, kit000, cdtype, pahu, pahv, is_tile(pahu),                             &
         &                                         pgu , pgv , is_tile(pgu) , pgui, pgvi, is_tile(pgui),  &
         &                                         pt, is_tile(pt), pt2, is_tile(pt2), pt_rhs, is_tile(pt_rhs), kjpt, kpass )
   END SUBROUTINE tra_ldf_iso


  SUBROUTINE tra_ldf_iso_t( kt, Kmm, kit000, cdtype, pahu, pahv, ktah,                    &
      &                                              pgu , pgv , ktg , pgui, pgvi, ktgi,  &
      &                                              pt, ktt, pt2, ktt2, pt_rhs, ktt_rhs, kjpt, kpass )
      !!----------------------------------------------------------------------
      !!                  ***  ROUTINE tra_ldf_iso  ***
      !!
      !! ** Purpose :   Compute the before horizontal tracer (t & s) diffusive
      !!      trend for a laplacian tensor (ezxcept the dz[ dz[.] ] term) and
      !!      add it to the general trend of tracer equation.
      !!
      !! ** Method  :   The horizontal component of the lateral diffusive trends
      !!      is provided by a 2nd order operator rotated along neural or geopo-
      !!      tential surfaces to which an eddy induced advection can be added
      !!      It is computed using before fields (forward in time) and isopyc-
      !!      nal or geopotential slopes computed in routine ldfslp.
      !!
      !!      1st part :  masked horizontal derivative of T  ( di[ t ] )
      !!      ========    with partial cell update if ln_zps=T
      !!                  with top     cell update if ln_isfcav
      !!
      !!      2nd part :  horizontal fluxes of the lateral mixing operator
      !!      ========
      !!         zftu =  pahu e2u*e3u/e1u di[ tb ]
      !!               - pahu e2u*uslp    dk[ mi(mk(tb)) ]
      !!         zftv =  pahv e1v*e3v/e2v dj[ tb ]
      !!               - pahv e2u*vslp    dk[ mj(mk(tb)) ]
      !!      take the horizontal divergence of the fluxes:
      !!         difft = 1/(e1e2t*e3t) {  di-1[ zftu ] +  dj-1[ zftv ]  }
      !!      Add this trend to the general trend (ta,sa):
      !!         ta = ta + difft
      !!
      !!      3rd part: vertical trends of the lateral mixing operator
      !!      ========  (excluding the vertical flux proportional to dk[t] )
      !!      vertical fluxes associated with the rotated lateral mixing:
      !!         zftw = - {  mi(mk(pahu)) * e2t*wslpi di[ mi(mk(tb)) ]
      !!                   + mj(mk(pahv)) * e1t*wslpj dj[ mj(mk(tb)) ]  }
      !!      take the horizontal divergence of the fluxes:
      !!         difft = 1/(e1e2t*e3t) dk[ zftw ]
      !!      Add this trend to the general trend (ta,sa):
      !!         pt_rhs = pt_rhs + difft
      !!
      !! ** Action :   Update pt_rhs arrays with the before rotated diffusion
      !!----------------------------------------------------------------------
      INTEGER                                   , INTENT(in   ) ::   kt         ! ocean time-step index
      INTEGER                                   , INTENT(in   ) ::   kit000     ! first time step index
      CHARACTER(len=3)                          , INTENT(in   ) ::   cdtype     ! =TRA or TRC (tracer indicator)
      INTEGER                                   , INTENT(in   ) ::   kjpt       ! number of tracers
      INTEGER                                   , INTENT(in   ) ::   kpass      ! =1/2 first or second passage
      INTEGER                                   , INTENT(in   ) ::   Kmm        ! ocean time level index
      INTEGER                                   , INTENT(in   ) ::   ktah, ktg, ktgi, ktt, ktt2, ktt_rhs
      REAL(wp), DIMENSION(A2D_T(ktah)   ,JPK)     , INTENT(in   ) ::   pahu, pahv ! eddy diffusivity at u- and v-points  [m2/s]
      REAL(wp), DIMENSION(A2D_T(ktg)        ,KJPT), INTENT(in   ) ::   pgu, pgv   ! tracer gradient at pstep levels
      REAL(wp), DIMENSION(A2D_T(ktgi)       ,KJPT), INTENT(in   ) ::   pgui, pgvi ! tracer gradient at top   levels
      REAL(wp), DIMENSION(A2D_T(ktt)    ,JPK,KJPT), INTENT(in   ) ::   pt         ! tracer (kpass=1) or laplacian of tracer (kpass=2)
      REAL(wp), DIMENSION(A2D_T(ktt2)   ,JPK,KJPT), INTENT(in   ) ::   pt2        ! tracer (only used in kpass=2)
      REAL(wp), DIMENSION(A2D_T(ktt_rhs),JPK,KJPT), INTENT(inout) ::   pt_rhs     ! tracer trend
      !
      INTEGER  ::  ji, jj, jk, jn   ! dummy loop indices
      INTEGER  ::  ikt
      INTEGER  ::  ierr, iij        ! local integer
      REAL(wp) ::  zmsku, zahu_w, zabe1, zcof1, zcoef3   ! local scalars
      REAL(wp) ::  zmskv, zahv_w, zabe2, zcof2, zcoef4   !   -      -
      REAL(wp) ::  zcoef0, ze3w_2, zsign                 !   -      -
      REAL(wp), DIMENSION(A2D(nn_hls))     ::   zdkt, zdk1t, z2d
      REAL(wp), DIMENSION(A2D(nn_hls),jpk) ::   zdit, zdjt, zftu, zftv, ztfw
      !!----------------------------------------------------------------------
      !
      IF( kpass == 1 .AND. kt == kit000 )  THEN
         IF( .NOT. l_istiled .OR. ntile == 1 )  THEN                       ! Do only on the first tile
            IF(lwp) WRITE(numout,*)
            IF(lwp) WRITE(numout,*) 'tra_ldf_iso : rotated laplacian diffusion operator on ', cdtype
            IF(lwp) WRITE(numout,*) '~~~~~~~~~~~'
         ENDIF
         !
         DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 1, jpk )
            akz     (ji,jj,jk) = 0._wp
            ah_wslp2(ji,jj,jk) = 0._wp
         END_3D
      ENDIF
      !
      IF( .NOT. l_istiled .OR. ntile == 1 )  THEN                           ! Do only on the first tile
         l_hst = .FALSE.
         l_ptr = .FALSE.
         IF( cdtype == 'TRA' .AND. ( iom_use( 'sophtldf' ) .OR. iom_use( 'sopstldf' ) ) )     l_ptr = .TRUE.
         IF( cdtype == 'TRA' .AND. ( iom_use("uadv_heattr") .OR. iom_use("vadv_heattr") .OR. &
            &                        iom_use("uadv_salttr") .OR. iom_use("vadv_salttr")  ) )   l_hst = .TRUE.
      ENDIF
      !
      ! Define pt_rhs halo points for multi-point haloes in bilaplacian case
      IF( nldf_tra == np_blp_i .AND. kpass == 1 ) THEN ; iij = nn_hls
      ELSE                                             ; iij = 1
      ENDIF

      !
      IF( kpass == 1 ) THEN   ;   zsign =  1._wp      ! bilaplacian operator require a minus sign (eddy diffusivity >0)
      ELSE                    ;   zsign = -1._wp
      ENDIF

      !!----------------------------------------------------------------------
      !!   0 - calculate  ah_wslp2 and akz
      !!----------------------------------------------------------------------
      !
      IF( kpass == 1 ) THEN                  !==  first pass only  ==!
         !
         DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, jpkm1 )
            !
            zmsku = wmask(ji,jj,jk) / MAX(   umask(ji  ,jj,jk-1) + umask(ji-1,jj,jk)          &
               &                           + umask(ji-1,jj,jk-1) + umask(ji  ,jj,jk) , 1._wp  )
            zmskv = wmask(ji,jj,jk) / MAX(   vmask(ji,jj  ,jk-1) + vmask(ji,jj-1,jk)          &
               &                           + vmask(ji,jj-1,jk-1) + vmask(ji,jj  ,jk) , 1._wp  )
               !
            ! round brackets added to fix the order of floating point operations
            ! needed to ensure halo 1 - halo 2 compatibility
            zahu_w = ( (  pahu(ji  ,jj,jk-1) + pahu(ji-1,jj,jk)                    &
               &       )                                                           & ! bracket for halo 1 - halo 2 compatibility
               &       + ( pahu(ji-1,jj,jk-1) + pahu(ji  ,jj,jk)                   &
               &         )                                                         & ! bracket for halo 1 - halo 2 compatibility
               &     ) * zmsku
            zahv_w = ( (  pahv(ji,jj  ,jk-1) + pahv(ji,jj-1,jk)                    &
               &       )                                                           & ! bracket for halo 1 - halo 2 compatibility
               &       + ( pahv(ji,jj-1,jk-1) + pahv(ji,jj  ,jk)                   &
               &         )                                                         & ! bracket for halo 1 - halo 2 compatibility
               &     ) * zmskv
               !
            ah_wslp2(ji,jj,jk) = zahu_w * wslpi(ji,jj,jk) * wslpi(ji,jj,jk)   &
               &               + zahv_w * wslpj(ji,jj,jk) * wslpj(ji,jj,jk)
         END_3D
         !
         IF( ln_traldf_msc ) THEN                ! stabilizing vertical diffusivity coefficient
            DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, jpkm1 )
               ! round brackets added to fix the order of floating point operations
               ! needed to ensure halo 1 - halo 2 compatibility
               akz(ji,jj,jk) = 0.25_wp * (                                                                     &
                  &            ( ( pahu(ji  ,jj,jk) + pahu(ji  ,jj,jk-1) ) / ( e1u(ji  ,jj) * e1u(ji  ,jj) )   &
                  &            + ( pahu(ji-1,jj,jk) + pahu(ji-1,jj,jk-1) ) / ( e1u(ji-1,jj) * e1u(ji-1,jj) )   &
                  &            )                                                                               & ! bracket for halo 1 - halo 2 compatibility
                  &            + ( ( pahv(ji,jj  ,jk) + pahv(ji,jj  ,jk-1) ) / ( e2v(ji,jj  ) * e2v(ji,jj  ) ) &
                  &              + ( pahv(ji,jj-1,jk) + pahv(ji,jj-1,jk-1) ) / ( e2v(ji,jj-1) * e2v(ji,jj-1) ) &
                  &              )                                                                             & ! bracket for halo 1 - halo 2 compatibility
                  &                      )
            END_3D
            !
            IF( ln_traldf_blp ) THEN                ! bilaplacian operator
               DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, jpkm1 )
                  akz(ji,jj,jk) = 16._wp   &
                     &   * ah_wslp2   (ji,jj,jk)   &
                     &   * (  akz     (ji,jj,jk)   &
                     &      + ah_wslp2(ji,jj,jk)   &
                     &        / ( e3w(ji,jj,jk,Kmm) * e3w(ji,jj,jk,Kmm) )  )
               END_3D
            ELSEIF( ln_traldf_lap ) THEN              ! laplacian operator
               DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, jpkm1 )
                  ze3w_2 = e3w(ji,jj,jk,Kmm) * e3w(ji,jj,jk,Kmm)
                  zcoef0 = rDt * (  akz(ji,jj,jk) + ah_wslp2(ji,jj,jk) / ze3w_2  )
                  akz(ji,jj,jk) = MAX( zcoef0 - 0.5_wp , 0._wp ) * ze3w_2 * r1_Dt
               END_3D
           ENDIF
           !
         ELSE                                    ! 33 flux set to zero with akz=ah_wslp2 ==>> computed in full implicit
            DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 1, jpk )
               akz(ji,jj,jk) = ah_wslp2(ji,jj,jk)
            END_3D
         ENDIF
      ENDIF
      !
      !                                                          ! ===========
      DO jn = 1, kjpt                                            ! tracer loop
         !                                                       ! ===========
         !
         !!----------------------------------------------------------------------
         !!   I - masked horizontal derivative
         !!----------------------------------------------------------------------
         zdit(:,:,:) = 0._wp
         zdjt(:,:,:) = 0._wp

         ! Horizontal tracer gradient
         DO_3D( iij, iij-1, iij, iij-1, 1, jpkm1 )
            zdit(ji,jj,jk) = ( pt(ji+1,jj  ,jk,jn) - pt(ji,jj,jk,jn) ) * umask(ji,jj,jk)
            zdjt(ji,jj,jk) = ( pt(ji  ,jj+1,jk,jn) - pt(ji,jj,jk,jn) ) * vmask(ji,jj,jk)
         END_3D
         IF( ln_zps ) THEN      ! botton and surface ocean correction of the horizontal gradient
            DO_2D( iij, iij-1, iij, iij-1 )            ! bottom correction (partial bottom cell)
               zdit(ji,jj,mbku(ji,jj)) = pgu(ji,jj,jn)
               zdjt(ji,jj,mbkv(ji,jj)) = pgv(ji,jj,jn)
            END_2D
            IF( ln_isfcav ) THEN      ! first wet level beneath a cavity
               DO_2D( iij, iij-1, iij, iij-1 )
                  IF( miku(ji,jj) > 1 )   zdit(ji,jj,miku(ji,jj)) = pgui(ji,jj,jn)
                  IF( mikv(ji,jj) > 1 )   zdjt(ji,jj,mikv(ji,jj)) = pgvi(ji,jj,jn)
               END_2D
            ENDIF
         ENDIF
         !
         !!----------------------------------------------------------------------
         !!   II - horizontal trend  (full)
         !!----------------------------------------------------------------------
         !
         DO jk = 1, jpkm1                                 ! Horizontal slab
            !
            DO_2D( iij, iij, iij, iij )
               !                             !== Vertical tracer gradient
               zdk1t(ji,jj) = ( pt(ji,jj,jk,jn) - pt(ji,jj,jk+1,jn) ) * wmask(ji,jj,jk+1)     ! level jk+1
               !
               IF( jk == 1 ) THEN   ;   zdkt(ji,jj) = zdk1t(ji,jj)                            ! surface: zdkt(jk=1)=zdkt(jk=2)
               ELSE                 ;   zdkt(ji,jj) = ( pt(ji,jj,jk-1,jn) - pt(ji,jj,jk,jn) ) * wmask(ji,jj,jk)
               ENDIF
            END_2D
            !
            DO_2D( iij, iij-1, iij, iij-1 )           !==  Horizontal fluxes
               zabe1 = pahu(ji,jj,jk) * e2_e1u(ji,jj) * e3u(ji,jj,jk,Kmm)
               zabe2 = pahv(ji,jj,jk) * e1_e2v(ji,jj) * e3v(ji,jj,jk,Kmm)
               !
               zmsku = 1. / MAX(  wmask(ji+1,jj,jk  ) + wmask(ji,jj,jk+1)   &
                  &             + wmask(ji+1,jj,jk+1) + wmask(ji,jj,jk  ), 1. )
               !
               zmskv = 1. / MAX(  wmask(ji,jj+1,jk  ) + wmask(ji,jj,jk+1)   &
                  &             + wmask(ji,jj+1,jk+1) + wmask(ji,jj,jk  ), 1. )
               !
               zcof1 = - pahu(ji,jj,jk) * e2u(ji,jj) * uslp(ji,jj,jk) * zmsku
               zcof2 = - pahv(ji,jj,jk) * e1v(ji,jj) * vslp(ji,jj,jk) * zmskv
               !
               ! round brackets added to fix the order of floating point operations
               ! needed to ensure halo 1 - halo 2 compatibility
               zftu(ji,jj,jk ) = (  zabe1 * zdit(ji,jj,jk)                       &
                  &               + zcof1 * ( ( zdkt (ji+1,jj) + zdk1t(ji,jj)    &
                  &                           )                                  & ! bracket for halo 1 - halo 2 compatibility
                  &                         + ( zdk1t(ji+1,jj) + zdkt (ji,jj)    &
                  &                           )                                  & ! bracket for halo 1 - halo 2 compatibility
                  &                         ) ) * umask(ji,jj,jk)
               zftv(ji,jj,jk) = (  zabe2 * zdjt(ji,jj,jk)                        &
                  &              + zcof2 * ( ( zdkt (ji,jj+1) + zdk1t(ji,jj)     &
                  &                           )                                  & ! bracket for halo 1 - halo 2 compatibility
                  &                         + ( zdk1t(ji,jj+1) + zdkt (ji,jj)    &
                  &                           )                                  & ! bracket for halo 1 - halo 2 compatibility
                  &                         ) ) * vmask(ji,jj,jk)
            END_2D
            !
            DO_2D( iij-1, iij-1, iij-1, iij-1 )           !== horizontal divergence and add to pta
               ! round brackets added to fix the order of floating point operations
               ! needed to ensure halo 1 - halo 2 compatibility
               pt_rhs(ji,jj,jk,jn) = pt_rhs(ji,jj,jk,jn)                         &
                  &       + zsign * ( ( zftu(ji,jj,jk) - zftu(ji-1,jj,jk)        &
                  &                   )                                          & ! bracket for halo 1 - halo 2 compatibility
                  &                 + ( zftv(ji,jj,jk) - zftv(ji,jj-1,jk)        &
                  &                   )                                          & ! bracket for halo 1 - halo 2 compatibility
                  &                 ) * r1_e1e2t(ji,jj) / e3t(ji,jj,jk,Kmm)
            END_2D
         END DO                                        !   End of slab

         !!----------------------------------------------------------------------
         !!   III - vertical trend (full)
         !!----------------------------------------------------------------------
         !
         ! Vertical fluxes
         ! ---------------
         !                          ! Surface and bottom vertical fluxes set to zero
         ztfw(:,:, 1 ) = 0._wp      ;      ztfw(:,:,jpk) = 0._wp

         DO_3D( iij-1, iij-1, iij-1, iij-1, 2, jpkm1 )    ! interior (2=<jk=<jpk-1)
            !
            zmsku = wmask(ji,jj,jk) / MAX(   umask(ji  ,jj,jk-1) + umask(ji-1,jj,jk)          &
               &                           + umask(ji-1,jj,jk-1) + umask(ji  ,jj,jk) , 1._wp  )
            zmskv = wmask(ji,jj,jk) / MAX(   vmask(ji,jj  ,jk-1) + vmask(ji,jj-1,jk)          &
               &                           + vmask(ji,jj-1,jk-1) + vmask(ji,jj  ,jk) , 1._wp  )
               !
            zahu_w = (   pahu(ji  ,jj,jk-1) + pahu(ji-1,jj,jk)    &
               &       + pahu(ji-1,jj,jk-1) + pahu(ji  ,jj,jk)  ) * zmsku
            zahv_w = (   pahv(ji,jj  ,jk-1) + pahv(ji,jj-1,jk)    &
               &       + pahv(ji,jj-1,jk-1) + pahv(ji,jj  ,jk)  ) * zmskv
               !
            zcoef3 = - zahu_w * e2t(ji,jj) * zmsku * wslpi (ji,jj,jk)   !wslpi & j are already w-masked
            zcoef4 = - zahv_w * e1t(ji,jj) * zmskv * wslpj (ji,jj,jk)
            !
            ! round brackets added to fix the order of floating point operations
            ! needed to ensure halo 1 - halo 2 compatibility
            ztfw(ji,jj,jk) = zcoef3 * ( ( zdit(ji  ,jj  ,jk-1) + zdit(ji-1,jj  ,jk)    &
                  &                     )                                              & ! bracket for halo 1 - halo 2 compatibility
                  &                   + ( zdit(ji-1,jj  ,jk-1) + zdit(ji  ,jj  ,jk)    &
                  &                     )                                              & ! bracket for halo 1 - halo 2 compatibility
                  &                   )                                                &
                  &        + zcoef4 * ( ( zdjt(ji  ,jj  ,jk-1) + zdjt(ji  ,jj-1,jk)    &
                  &                     )                                              & ! bracket for halo 1 - halo 2 compatibility
                  &                   + ( zdjt(ji  ,jj-1,jk-1) + zdjt(ji  ,jj  ,jk)    &
                  &                     )                                              & ! bracket for halo 1 - halo 2 compatibility
                  &                   )
         END_3D
         !                                !==  add the vertical 33 flux  ==!
         IF( ln_traldf_lap ) THEN               ! laplacian case: eddy coef = ah_wslp2 - akz
            DO_3D( iij-1, iij-1, iij-1, iij-1, 2, jpkm1 )
               ztfw(ji,jj,jk) = ztfw(ji,jj,jk) + e1e2t(ji,jj) / e3w(ji,jj,jk,Kmm) * wmask(ji,jj,jk)   &
                  &                            * ( ah_wslp2(ji,jj,jk) - akz(ji,jj,jk) )               &
                  &                            * (  pt(ji,jj,jk-1,jn) -  pt(ji,jj,jk,jn) )
            END_3D
            !
         ELSE                                   ! bilaplacian
            SELECT CASE( kpass )
            CASE(  1  )                            ! 1st pass : eddy coef = ah_wslp2
               DO_3D( iij-1, iij-1, iij-1, iij-1, 2, jpkm1 )
                  ztfw(ji,jj,jk) =   &
                     &  ztfw(ji,jj,jk) + ah_wslp2(ji,jj,jk) * e1e2t(ji,jj)   &
                     &           * ( pt(ji,jj,jk-1,jn) - pt(ji,jj,jk,jn) ) / e3w(ji,jj,jk,Kmm) * wmask(ji,jj,jk)
               END_3D
            CASE(  2  )                         ! 2nd pass : eddy flux = ah_wslp2 and akz applied on pt  and pt2 gradients, resp.
               DO_3D( 0, 0, 0, 0, 2, jpkm1 )
                  ztfw(ji,jj,jk) = ztfw(ji,jj,jk) + e1e2t(ji,jj) / e3w(ji,jj,jk,Kmm) * wmask(ji,jj,jk)                  &
                     &                            * (  ah_wslp2(ji,jj,jk) * ( pt (ji,jj,jk-1,jn) - pt (ji,jj,jk,jn) )   &
                     &                            +         akz(ji,jj,jk) * ( pt2(ji,jj,jk-1,jn) - pt2(ji,jj,jk,jn) )   )
               END_3D
            END SELECT
         ENDIF
         !
         DO_3D( iij-1, iij-1, iij-1, iij-1, 1, jpkm1 )    !==  Divergence of vertical fluxes added to pta  ==!
            pt_rhs(ji,jj,jk,jn) = pt_rhs(ji,jj,jk,jn) + zsign * (  ztfw (ji,jj,jk) - ztfw(ji,jj,jk+1)  ) * r1_e1e2t(ji,jj)   &
               &                                             / e3t(ji,jj,jk,Kmm)
         END_3D
         !
         IF( ( kpass == 1 .AND. ln_traldf_lap ) .OR.  &     !==  first pass only (  laplacian)  ==!
             ( kpass == 2 .AND. ln_traldf_blp ) ) THEN      !==  2nd   pass      (bilaplacian)  ==!
            !
            !                             ! "Poleward" diffusive heat or salt transports (T-S case only)
               ! note sign is reversed to give down-gradient diffusive transports )
            IF( l_ptr )  CALL dia_ptr_hst( jn, 'ldf', -zftv(:,:,:)  )
            !                          ! Diffusive heat transports
            IF( l_hst )  CALL dia_ar5_hst( jn, 'ldf', -zftu(:,:,:), -zftv(:,:,:) )
            !
         ENDIF                                                    !== end pass selection  ==!
         !
         !                                                        ! ===============
      END DO                                                      ! end tracer loop
      !
   END SUBROUTINE tra_ldf_iso_t

   !!==============================================================================
END MODULE traldf_iso