Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
MODULE traldf_iso
!!======================================================================
!! *** MODULE traldf_iso ***
!! Ocean tracers: horizontal component of the lateral tracer mixing trend
!!======================================================================
!! History : OPA ! 1994-08 (G. Madec, M. Imbard)
!! 8.0 ! 1997-05 (G. Madec) split into traldf and trazdf
!! NEMO ! 2002-08 (G. Madec) Free form, F90
!! 1.0 ! 2005-11 (G. Madec) merge traldf and trazdf :-)
!! 3.3 ! 2010-09 (C. Ethe, G. Madec) Merge TRA-TRC
!! 3.7 ! 2014-01 (G. Madec, S. Masson) restructuration/simplification of aht/aeiv specification
!! - ! 2014-02 (F. Lemarie, G. Madec) triad operator (Griffies) + Method of Stabilizing Correction
!!----------------------------------------------------------------------
!!----------------------------------------------------------------------
!! tra_ldf_iso : update the tracer trend with the horizontal component of a iso-neutral laplacian operator
!! and with the vertical part of the isopycnal or geopotential s-coord. operator
!!----------------------------------------------------------------------
USE oce ! ocean dynamics and active tracers
USE dom_oce ! ocean space and time domain
USE domutl, ONLY : is_tile
USE trc_oce ! share passive tracers/Ocean variables
USE zdf_oce ! ocean vertical physics
USE ldftra ! lateral diffusion: tracer eddy coefficients
USE ldfslp ! iso-neutral slopes
USE diaptr ! poleward transport diagnostics
USE diaar5 ! AR5 diagnostics
!
USE in_out_manager ! I/O manager
USE iom ! I/O library
USE phycst ! physical constants
USE lbclnk ! ocean lateral boundary conditions (or mpp link)
IMPLICIT NONE
PRIVATE
PUBLIC tra_ldf_iso ! routine called by step.F90
LOGICAL :: l_ptr ! flag to compute poleward transport
LOGICAL :: l_hst ! flag to compute heat transport
!! * Substitutions
# include "do_loop_substitute.h90"
# include "domzgr_substitute.h90"
!!----------------------------------------------------------------------
!! NEMO/OCE 4.0 , NEMO Consortium (2018)
!! $Id: traldf_iso.F90 14834 2021-05-11 09:24:44Z hadcv $
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
SUBROUTINE tra_ldf_iso( kt, Kmm, kit000, cdtype, pahu, pahv, &
& pgu , pgv , pgui, pgvi, &
& pt, pt2, pt_rhs, kjpt, kpass )
!!
INTEGER , INTENT(in ) :: kt ! ocean time-step index
INTEGER , INTENT(in ) :: kit000 ! first time step index
CHARACTER(len=3) , INTENT(in ) :: cdtype ! =TRA or TRC (tracer indicator)
INTEGER , INTENT(in ) :: kjpt ! number of tracers
INTEGER , INTENT(in ) :: kpass ! =1/2 first or second passage
INTEGER , INTENT(in ) :: Kmm ! ocean time level index
REAL(wp), DIMENSION(:,:,:) , INTENT(in ) :: pahu, pahv ! eddy diffusivity at u- and v-points [m2/s]
REAL(wp), DIMENSION(:,:,:) , INTENT(in ) :: pgu, pgv ! tracer gradient at pstep levels
REAL(wp), DIMENSION(:,:,:) , INTENT(in ) :: pgui, pgvi ! tracer gradient at top levels
REAL(wp), DIMENSION(:,:,:,:), INTENT(in ) :: pt ! tracer (kpass=1) or laplacian of tracer (kpass=2)
REAL(wp), DIMENSION(:,:,:,:), INTENT(in ) :: pt2 ! tracer (only used in kpass=2)
REAL(wp), DIMENSION(:,:,:,:), INTENT(inout) :: pt_rhs ! tracer trend
!!
CALL tra_ldf_iso_t( kt, Kmm, kit000, cdtype, pahu, pahv, is_tile(pahu), &
& pgu , pgv , is_tile(pgu) , pgui, pgvi, is_tile(pgui), &
& pt, is_tile(pt), pt2, is_tile(pt2), pt_rhs, is_tile(pt_rhs), kjpt, kpass )
END SUBROUTINE tra_ldf_iso
SUBROUTINE tra_ldf_iso_t( kt, Kmm, kit000, cdtype, pahu, pahv, ktah, &
& pgu , pgv , ktg , pgui, pgvi, ktgi, &
& pt, ktt, pt2, ktt2, pt_rhs, ktt_rhs, kjpt, kpass )
!!----------------------------------------------------------------------
!! *** ROUTINE tra_ldf_iso ***
!!
!! ** Purpose : Compute the before horizontal tracer (t & s) diffusive
!! trend for a laplacian tensor (ezxcept the dz[ dz[.] ] term) and
!! add it to the general trend of tracer equation.
!!
!! ** Method : The horizontal component of the lateral diffusive trends
!! is provided by a 2nd order operator rotated along neural or geopo-
!! tential surfaces to which an eddy induced advection can be added
!! It is computed using before fields (forward in time) and isopyc-
!! nal or geopotential slopes computed in routine ldfslp.
!!
!! 1st part : masked horizontal derivative of T ( di[ t ] )
!! ======== with partial cell update if ln_zps=T
!! with top cell update if ln_isfcav
!!
!! 2nd part : horizontal fluxes of the lateral mixing operator
!! ========
!! zftu = pahu e2u*e3u/e1u di[ tb ]
!! - pahu e2u*uslp dk[ mi(mk(tb)) ]
!! zftv = pahv e1v*e3v/e2v dj[ tb ]
!! - pahv e2u*vslp dk[ mj(mk(tb)) ]
!! take the horizontal divergence of the fluxes:
!! difft = 1/(e1e2t*e3t) { di-1[ zftu ] + dj-1[ zftv ] }
!! Add this trend to the general trend (ta,sa):
!! ta = ta + difft
!!
!! 3rd part: vertical trends of the lateral mixing operator
!! ======== (excluding the vertical flux proportional to dk[t] )
!! vertical fluxes associated with the rotated lateral mixing:
!! zftw = - { mi(mk(pahu)) * e2t*wslpi di[ mi(mk(tb)) ]
!! + mj(mk(pahv)) * e1t*wslpj dj[ mj(mk(tb)) ] }
!! take the horizontal divergence of the fluxes:
!! difft = 1/(e1e2t*e3t) dk[ zftw ]
!! Add this trend to the general trend (ta,sa):
!! pt_rhs = pt_rhs + difft
!!
!! ** Action : Update pt_rhs arrays with the before rotated diffusion
!!----------------------------------------------------------------------
INTEGER , INTENT(in ) :: kt ! ocean time-step index
INTEGER , INTENT(in ) :: kit000 ! first time step index
CHARACTER(len=3) , INTENT(in ) :: cdtype ! =TRA or TRC (tracer indicator)
INTEGER , INTENT(in ) :: kjpt ! number of tracers
INTEGER , INTENT(in ) :: kpass ! =1/2 first or second passage
INTEGER , INTENT(in ) :: Kmm ! ocean time level index
INTEGER , INTENT(in ) :: ktah, ktg, ktgi, ktt, ktt2, ktt_rhs
REAL(wp), DIMENSION(A2D_T(ktah) ,JPK) , INTENT(in ) :: pahu, pahv ! eddy diffusivity at u- and v-points [m2/s]
REAL(wp), DIMENSION(A2D_T(ktg) ,KJPT), INTENT(in ) :: pgu, pgv ! tracer gradient at pstep levels
REAL(wp), DIMENSION(A2D_T(ktgi) ,KJPT), INTENT(in ) :: pgui, pgvi ! tracer gradient at top levels
REAL(wp), DIMENSION(A2D_T(ktt) ,JPK,KJPT), INTENT(in ) :: pt ! tracer (kpass=1) or laplacian of tracer (kpass=2)
REAL(wp), DIMENSION(A2D_T(ktt2) ,JPK,KJPT), INTENT(in ) :: pt2 ! tracer (only used in kpass=2)
REAL(wp), DIMENSION(A2D_T(ktt_rhs),JPK,KJPT), INTENT(inout) :: pt_rhs ! tracer trend
!
INTEGER :: ji, jj, jk, jn ! dummy loop indices
INTEGER :: ikt
INTEGER :: ierr, iij ! local integer
REAL(wp) :: zmsku, zahu_w, zabe1, zcof1, zcoef3 ! local scalars
REAL(wp) :: zmskv, zahv_w, zabe2, zcof2, zcoef4 ! - -
REAL(wp) :: zcoef0, ze3w_2, zsign ! - -
REAL(wp), DIMENSION(A2D(nn_hls)) :: zdkt, zdk1t, z2d
REAL(wp), DIMENSION(A2D(nn_hls),jpk) :: zdit, zdjt, zftu, zftv, ztfw
!!----------------------------------------------------------------------
!
IF( kpass == 1 .AND. kt == kit000 ) THEN
IF( .NOT. l_istiled .OR. ntile == 1 ) THEN ! Do only on the first tile
IF(lwp) WRITE(numout,*)
IF(lwp) WRITE(numout,*) 'tra_ldf_iso : rotated laplacian diffusion operator on ', cdtype
IF(lwp) WRITE(numout,*) '~~~~~~~~~~~'
ENDIF
!
DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 1, jpk )
akz (ji,jj,jk) = 0._wp
ah_wslp2(ji,jj,jk) = 0._wp
END_3D
ENDIF
!
IF( .NOT. l_istiled .OR. ntile == 1 ) THEN ! Do only on the first tile
l_hst = .FALSE.
l_ptr = .FALSE.
IF( cdtype == 'TRA' .AND. ( iom_use( 'sophtldf' ) .OR. iom_use( 'sopstldf' ) ) ) l_ptr = .TRUE.
IF( cdtype == 'TRA' .AND. ( iom_use("uadv_heattr") .OR. iom_use("vadv_heattr") .OR. &
& iom_use("uadv_salttr") .OR. iom_use("vadv_salttr") ) ) l_hst = .TRUE.
ENDIF
!
! Define pt_rhs halo points for multi-point haloes in bilaplacian case
IF( nldf_tra == np_blp_i .AND. kpass == 1 ) THEN ; iij = nn_hls
ELSE ; iij = 1
ENDIF
!
IF( kpass == 1 ) THEN ; zsign = 1._wp ! bilaplacian operator require a minus sign (eddy diffusivity >0)
ELSE ; zsign = -1._wp
ENDIF
!!----------------------------------------------------------------------
!! 0 - calculate ah_wslp2 and akz
!!----------------------------------------------------------------------
!
IF( kpass == 1 ) THEN !== first pass only ==!
!
DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, jpkm1 )
!
zmsku = wmask(ji,jj,jk) / MAX( umask(ji ,jj,jk-1) + umask(ji-1,jj,jk) &
& + umask(ji-1,jj,jk-1) + umask(ji ,jj,jk) , 1._wp )
zmskv = wmask(ji,jj,jk) / MAX( vmask(ji,jj ,jk-1) + vmask(ji,jj-1,jk) &
& + vmask(ji,jj-1,jk-1) + vmask(ji,jj ,jk) , 1._wp )
!
! round brackets added to fix the order of floating point operations
! needed to ensure halo 1 - halo 2 compatibility
zahu_w = ( ( pahu(ji ,jj,jk-1) + pahu(ji-1,jj,jk) &
& ) & ! bracket for halo 1 - halo 2 compatibility
& + ( pahu(ji-1,jj,jk-1) + pahu(ji ,jj,jk) &
& ) & ! bracket for halo 1 - halo 2 compatibility
& ) * zmsku
zahv_w = ( ( pahv(ji,jj ,jk-1) + pahv(ji,jj-1,jk) &
& ) & ! bracket for halo 1 - halo 2 compatibility
& + ( pahv(ji,jj-1,jk-1) + pahv(ji,jj ,jk) &
& ) & ! bracket for halo 1 - halo 2 compatibility
& ) * zmskv
!
ah_wslp2(ji,jj,jk) = zahu_w * wslpi(ji,jj,jk) * wslpi(ji,jj,jk) &
& + zahv_w * wslpj(ji,jj,jk) * wslpj(ji,jj,jk)
END_3D
!
IF( ln_traldf_msc ) THEN ! stabilizing vertical diffusivity coefficient
DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, jpkm1 )
! round brackets added to fix the order of floating point operations
! needed to ensure halo 1 - halo 2 compatibility
akz(ji,jj,jk) = 0.25_wp * ( &
& ( ( pahu(ji ,jj,jk) + pahu(ji ,jj,jk-1) ) / ( e1u(ji ,jj) * e1u(ji ,jj) ) &
& + ( pahu(ji-1,jj,jk) + pahu(ji-1,jj,jk-1) ) / ( e1u(ji-1,jj) * e1u(ji-1,jj) ) &
& ) & ! bracket for halo 1 - halo 2 compatibility
& + ( ( pahv(ji,jj ,jk) + pahv(ji,jj ,jk-1) ) / ( e2v(ji,jj ) * e2v(ji,jj ) ) &
& + ( pahv(ji,jj-1,jk) + pahv(ji,jj-1,jk-1) ) / ( e2v(ji,jj-1) * e2v(ji,jj-1) ) &
& ) & ! bracket for halo 1 - halo 2 compatibility
& )
END_3D
!
IF( ln_traldf_blp ) THEN ! bilaplacian operator
DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, jpkm1 )
akz(ji,jj,jk) = 16._wp &
& * ah_wslp2 (ji,jj,jk) &
& * ( akz (ji,jj,jk) &
& + ah_wslp2(ji,jj,jk) &
& / ( e3w(ji,jj,jk,Kmm) * e3w(ji,jj,jk,Kmm) ) )
END_3D
ELSEIF( ln_traldf_lap ) THEN ! laplacian operator
DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 2, jpkm1 )
ze3w_2 = e3w(ji,jj,jk,Kmm) * e3w(ji,jj,jk,Kmm)
zcoef0 = rDt * ( akz(ji,jj,jk) + ah_wslp2(ji,jj,jk) / ze3w_2 )
akz(ji,jj,jk) = MAX( zcoef0 - 0.5_wp , 0._wp ) * ze3w_2 * r1_Dt
END_3D
ENDIF
!
ELSE ! 33 flux set to zero with akz=ah_wslp2 ==>> computed in full implicit
DO_3D_OVR( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1, 1, jpk )
akz(ji,jj,jk) = ah_wslp2(ji,jj,jk)
END_3D
ENDIF
ENDIF
!
! ! ===========
DO jn = 1, kjpt ! tracer loop
! ! ===========
!
!!----------------------------------------------------------------------
!! I - masked horizontal derivative
!!----------------------------------------------------------------------
zdit(:,:,:) = 0._wp
zdjt(:,:,:) = 0._wp
! Horizontal tracer gradient
DO_3D( iij, iij-1, iij, iij-1, 1, jpkm1 )
zdit(ji,jj,jk) = ( pt(ji+1,jj ,jk,jn) - pt(ji,jj,jk,jn) ) * umask(ji,jj,jk)
zdjt(ji,jj,jk) = ( pt(ji ,jj+1,jk,jn) - pt(ji,jj,jk,jn) ) * vmask(ji,jj,jk)
END_3D
IF( ln_zps ) THEN ! botton and surface ocean correction of the horizontal gradient
DO_2D( iij, iij-1, iij, iij-1 ) ! bottom correction (partial bottom cell)
zdit(ji,jj,mbku(ji,jj)) = pgu(ji,jj,jn)
zdjt(ji,jj,mbkv(ji,jj)) = pgv(ji,jj,jn)
END_2D
IF( ln_isfcav ) THEN ! first wet level beneath a cavity
DO_2D( iij, iij-1, iij, iij-1 )
IF( miku(ji,jj) > 1 ) zdit(ji,jj,miku(ji,jj)) = pgui(ji,jj,jn)
IF( mikv(ji,jj) > 1 ) zdjt(ji,jj,mikv(ji,jj)) = pgvi(ji,jj,jn)
END_2D
ENDIF
ENDIF
!
!!----------------------------------------------------------------------
!! II - horizontal trend (full)
!!----------------------------------------------------------------------
!
DO jk = 1, jpkm1 ! Horizontal slab
!
DO_2D( iij, iij, iij, iij )
! !== Vertical tracer gradient
zdk1t(ji,jj) = ( pt(ji,jj,jk,jn) - pt(ji,jj,jk+1,jn) ) * wmask(ji,jj,jk+1) ! level jk+1
!
IF( jk == 1 ) THEN ; zdkt(ji,jj) = zdk1t(ji,jj) ! surface: zdkt(jk=1)=zdkt(jk=2)
ELSE ; zdkt(ji,jj) = ( pt(ji,jj,jk-1,jn) - pt(ji,jj,jk,jn) ) * wmask(ji,jj,jk)
ENDIF
END_2D
!
DO_2D( iij, iij-1, iij, iij-1 ) !== Horizontal fluxes
zabe1 = pahu(ji,jj,jk) * e2_e1u(ji,jj) * e3u(ji,jj,jk,Kmm)
zabe2 = pahv(ji,jj,jk) * e1_e2v(ji,jj) * e3v(ji,jj,jk,Kmm)
!
zmsku = 1. / MAX( wmask(ji+1,jj,jk ) + wmask(ji,jj,jk+1) &
& + wmask(ji+1,jj,jk+1) + wmask(ji,jj,jk ), 1. )
!
zmskv = 1. / MAX( wmask(ji,jj+1,jk ) + wmask(ji,jj,jk+1) &
& + wmask(ji,jj+1,jk+1) + wmask(ji,jj,jk ), 1. )
!
zcof1 = - pahu(ji,jj,jk) * e2u(ji,jj) * uslp(ji,jj,jk) * zmsku
zcof2 = - pahv(ji,jj,jk) * e1v(ji,jj) * vslp(ji,jj,jk) * zmskv
!
! round brackets added to fix the order of floating point operations
! needed to ensure halo 1 - halo 2 compatibility
zftu(ji,jj,jk ) = ( zabe1 * zdit(ji,jj,jk) &
& + zcof1 * ( ( zdkt (ji+1,jj) + zdk1t(ji,jj) &
& ) & ! bracket for halo 1 - halo 2 compatibility
& + ( zdk1t(ji+1,jj) + zdkt (ji,jj) &
& ) & ! bracket for halo 1 - halo 2 compatibility
& ) ) * umask(ji,jj,jk)
zftv(ji,jj,jk) = ( zabe2 * zdjt(ji,jj,jk) &
& + zcof2 * ( ( zdkt (ji,jj+1) + zdk1t(ji,jj) &
& ) & ! bracket for halo 1 - halo 2 compatibility
& + ( zdk1t(ji,jj+1) + zdkt (ji,jj) &
& ) & ! bracket for halo 1 - halo 2 compatibility
& ) ) * vmask(ji,jj,jk)
END_2D
!
DO_2D( iij-1, iij-1, iij-1, iij-1 ) !== horizontal divergence and add to pta
! round brackets added to fix the order of floating point operations
! needed to ensure halo 1 - halo 2 compatibility
pt_rhs(ji,jj,jk,jn) = pt_rhs(ji,jj,jk,jn) &
& + zsign * ( ( zftu(ji,jj,jk) - zftu(ji-1,jj,jk) &
& ) & ! bracket for halo 1 - halo 2 compatibility
& + ( zftv(ji,jj,jk) - zftv(ji,jj-1,jk) &
& ) & ! bracket for halo 1 - halo 2 compatibility
& ) * r1_e1e2t(ji,jj) / e3t(ji,jj,jk,Kmm)
END_2D
END DO ! End of slab
!!----------------------------------------------------------------------
!! III - vertical trend (full)
!!----------------------------------------------------------------------
!
! Vertical fluxes
! ---------------
! ! Surface and bottom vertical fluxes set to zero
ztfw(:,:, 1 ) = 0._wp ; ztfw(:,:,jpk) = 0._wp
DO_3D( iij-1, iij-1, iij-1, iij-1, 2, jpkm1 ) ! interior (2=<jk=<jpk-1)
!
zmsku = wmask(ji,jj,jk) / MAX( umask(ji ,jj,jk-1) + umask(ji-1,jj,jk) &
& + umask(ji-1,jj,jk-1) + umask(ji ,jj,jk) , 1._wp )
zmskv = wmask(ji,jj,jk) / MAX( vmask(ji,jj ,jk-1) + vmask(ji,jj-1,jk) &
& + vmask(ji,jj-1,jk-1) + vmask(ji,jj ,jk) , 1._wp )
!
zahu_w = ( pahu(ji ,jj,jk-1) + pahu(ji-1,jj,jk) &
& + pahu(ji-1,jj,jk-1) + pahu(ji ,jj,jk) ) * zmsku
zahv_w = ( pahv(ji,jj ,jk-1) + pahv(ji,jj-1,jk) &
& + pahv(ji,jj-1,jk-1) + pahv(ji,jj ,jk) ) * zmskv
!
zcoef3 = - zahu_w * e2t(ji,jj) * zmsku * wslpi (ji,jj,jk) !wslpi & j are already w-masked
zcoef4 = - zahv_w * e1t(ji,jj) * zmskv * wslpj (ji,jj,jk)
!
! round brackets added to fix the order of floating point operations
! needed to ensure halo 1 - halo 2 compatibility
ztfw(ji,jj,jk) = zcoef3 * ( ( zdit(ji ,jj ,jk-1) + zdit(ji-1,jj ,jk) &
& ) & ! bracket for halo 1 - halo 2 compatibility
& + ( zdit(ji-1,jj ,jk-1) + zdit(ji ,jj ,jk) &
& ) & ! bracket for halo 1 - halo 2 compatibility
& ) &
& + zcoef4 * ( ( zdjt(ji ,jj ,jk-1) + zdjt(ji ,jj-1,jk) &
& ) & ! bracket for halo 1 - halo 2 compatibility
& + ( zdjt(ji ,jj-1,jk-1) + zdjt(ji ,jj ,jk) &
& ) & ! bracket for halo 1 - halo 2 compatibility
& )
END_3D
! !== add the vertical 33 flux ==!
IF( ln_traldf_lap ) THEN ! laplacian case: eddy coef = ah_wslp2 - akz
DO_3D( iij-1, iij-1, iij-1, iij-1, 2, jpkm1 )
ztfw(ji,jj,jk) = ztfw(ji,jj,jk) + e1e2t(ji,jj) / e3w(ji,jj,jk,Kmm) * wmask(ji,jj,jk) &
& * ( ah_wslp2(ji,jj,jk) - akz(ji,jj,jk) ) &
& * ( pt(ji,jj,jk-1,jn) - pt(ji,jj,jk,jn) )
END_3D
!
ELSE ! bilaplacian
SELECT CASE( kpass )
CASE( 1 ) ! 1st pass : eddy coef = ah_wslp2
DO_3D( iij-1, iij-1, iij-1, iij-1, 2, jpkm1 )
ztfw(ji,jj,jk) = &
& ztfw(ji,jj,jk) + ah_wslp2(ji,jj,jk) * e1e2t(ji,jj) &
& * ( pt(ji,jj,jk-1,jn) - pt(ji,jj,jk,jn) ) / e3w(ji,jj,jk,Kmm) * wmask(ji,jj,jk)
END_3D
CASE( 2 ) ! 2nd pass : eddy flux = ah_wslp2 and akz applied on pt and pt2 gradients, resp.
DO_3D( 0, 0, 0, 0, 2, jpkm1 )
ztfw(ji,jj,jk) = ztfw(ji,jj,jk) + e1e2t(ji,jj) / e3w(ji,jj,jk,Kmm) * wmask(ji,jj,jk) &
& * ( ah_wslp2(ji,jj,jk) * ( pt (ji,jj,jk-1,jn) - pt (ji,jj,jk,jn) ) &
& + akz(ji,jj,jk) * ( pt2(ji,jj,jk-1,jn) - pt2(ji,jj,jk,jn) ) )
END_3D
END SELECT
ENDIF
!
DO_3D( iij-1, iij-1, iij-1, iij-1, 1, jpkm1 ) !== Divergence of vertical fluxes added to pta ==!
pt_rhs(ji,jj,jk,jn) = pt_rhs(ji,jj,jk,jn) + zsign * ( ztfw (ji,jj,jk) - ztfw(ji,jj,jk+1) ) * r1_e1e2t(ji,jj) &
& / e3t(ji,jj,jk,Kmm)
END_3D
!
IF( ( kpass == 1 .AND. ln_traldf_lap ) .OR. & !== first pass only ( laplacian) ==!
( kpass == 2 .AND. ln_traldf_blp ) ) THEN !== 2nd pass (bilaplacian) ==!
!
! ! "Poleward" diffusive heat or salt transports (T-S case only)
! note sign is reversed to give down-gradient diffusive transports )
IF( l_ptr ) CALL dia_ptr_hst( jn, 'ldf', -zftv(:,:,:) )
! ! Diffusive heat transports
IF( l_hst ) CALL dia_ar5_hst( jn, 'ldf', -zftu(:,:,:), -zftv(:,:,:) )
!
ENDIF !== end pass selection ==!
!
! ! ===============
END DO ! end tracer loop
!
END SUBROUTINE tra_ldf_iso_t
!!==============================================================================
END MODULE traldf_iso