Skip to content
Snippets Groups Projects
icedyn_adv_umx.F90 91.2 KiB
Newer Older
Guillaume Samson's avatar
Guillaume Samson committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
MODULE icedyn_adv_umx
   !!==============================================================================
   !!                       ***  MODULE  icedyn_adv_umx  ***
   !! sea-ice : advection using the ULTIMATE-MACHO scheme
   !!==============================================================================
   !! History :  3.6  !  2014-11  (C. Rousset, G. Madec)  Original code
   !!            4.0  !  2018     (many people)           SI3 [aka Sea Ice cube]
   !!----------------------------------------------------------------------
#if defined key_si3
   !!----------------------------------------------------------------------
   !!   'key_si3'                                       SI3 sea-ice model
   !!----------------------------------------------------------------------
   !!   ice_dyn_adv_umx   : update the tracer fields
   !!   ultimate_x(_y)    : compute a tracer value at velocity points using ULTIMATE scheme at various orders
   !!   macho             : compute the fluxes
   !!   nonosc_ice        : limit the fluxes using a non-oscillatory algorithm
   !!----------------------------------------------------------------------
   USE phycst         ! physical constant
   USE dom_oce        ! ocean domain
   USE sbc_oce , ONLY : nn_fsbc   ! update frequency of surface boundary condition
   USE ice            ! sea-ice variables
   USE icevar         ! sea-ice: operations
   !
   USE in_out_manager ! I/O manager
   USE iom            ! I/O manager library
   USE lib_mpp        ! MPP library
   USE lib_fortran    ! fortran utilities (glob_sum + no signed zero)
   USE lbclnk         ! lateral boundary conditions (or mpp links)

   IMPLICIT NONE
   PRIVATE

   PUBLIC   ice_dyn_adv_umx   ! called by icedyn_adv.F90
   !
   INTEGER, PARAMETER ::   np_advS = 1         ! advection for S and T:    dVS/dt = -div(      uVS     ) => np_advS = 1
   !                                                                    or dVS/dt = -div( uA * uHS / u ) => np_advS = 2
   !                                                                    or dVS/dt = -div( uV * uS  / u ) => np_advS = 3
   INTEGER, PARAMETER ::   np_limiter = 1      ! limiter: 1 = nonosc
   !                                                      2 = superbee
   !                                                      3 = h3
   LOGICAL            ::   ll_upsxy  = .TRUE.   ! alternate directions for upstream
   LOGICAL            ::   ll_hoxy   = .TRUE.   ! alternate directions for high order
   LOGICAL            ::   ll_neg    = .TRUE.   ! if T interpolated at u/v points is negative or v_i < 1.e-6
   !                                                 then interpolate T at u/v points using the upstream scheme
   LOGICAL            ::   ll_prelim = .FALSE.  ! prelimiter from: Zalesak(1979) eq. 14 => not well defined in 2D
   !
   REAL(wp)           ::   z1_6   = 1._wp /   6._wp   ! =1/6
   REAL(wp)           ::   z1_120 = 1._wp / 120._wp   ! =1/120
   !
   INTEGER, ALLOCATABLE, DIMENSION(:,:,:) ::   imsk_small, jmsk_small
   !
   !! * Substitutions
#  include "do_loop_substitute.h90"
   !!----------------------------------------------------------------------
   !! NEMO/ICE 4.0 , NEMO Consortium (2018)
   !! $Id: icedyn_adv_umx.F90 15049 2021-06-23 16:17:30Z clem $
   !! Software governed by the CeCILL licence     (./LICENSE)
   !!----------------------------------------------------------------------
CONTAINS

   SUBROUTINE ice_dyn_adv_umx( kn_umx, kt, pu_ice, pv_ice, ph_i, ph_s, ph_ip,  &
      &                        pato_i, pv_i, pv_s, psv_i, poa_i, pa_i, pa_ip, pv_ip, pv_il, pe_s, pe_i )
      !!----------------------------------------------------------------------
      !!                  ***  ROUTINE ice_dyn_adv_umx  ***
      !!
      !! **  Purpose :   Compute the now trend due to total advection of
      !!                 tracers and add it to the general trend of tracer equations
      !!                 using an "Ultimate-Macho" scheme
      !!
      !! Reference : Leonard, B.P., 1991, Comput. Methods Appl. Mech. Eng., 88, 17-74.
      !!----------------------------------------------------------------------
      INTEGER                     , INTENT(in   ) ::   kn_umx     ! order of the scheme (1-5=UM or 20=CEN2)
      INTEGER                     , INTENT(in   ) ::   kt         ! time step
      REAL(wp), DIMENSION(:,:)    , INTENT(in   ) ::   pu_ice     ! ice i-velocity
      REAL(wp), DIMENSION(:,:)    , INTENT(in   ) ::   pv_ice     ! ice j-velocity
      REAL(wp), DIMENSION(:,:,:)  , INTENT(in   ) ::   ph_i       ! ice thickness
      REAL(wp), DIMENSION(:,:,:)  , INTENT(in   ) ::   ph_s       ! snw thickness
      REAL(wp), DIMENSION(:,:,:)  , INTENT(in   ) ::   ph_ip      ! ice pond thickness
      REAL(wp), DIMENSION(:,:)    , INTENT(inout) ::   pato_i     ! open water area
      REAL(wp), DIMENSION(:,:,:)  , INTENT(inout) ::   pv_i       ! ice volume
      REAL(wp), DIMENSION(:,:,:)  , INTENT(inout) ::   pv_s       ! snw volume
      REAL(wp), DIMENSION(:,:,:)  , INTENT(inout) ::   psv_i      ! salt content
      REAL(wp), DIMENSION(:,:,:)  , INTENT(inout) ::   poa_i      ! age content
      REAL(wp), DIMENSION(:,:,:)  , INTENT(inout) ::   pa_i       ! ice concentration
      REAL(wp), DIMENSION(:,:,:)  , INTENT(inout) ::   pa_ip      ! melt pond concentration
      REAL(wp), DIMENSION(:,:,:)  , INTENT(inout) ::   pv_ip      ! melt pond volume
      REAL(wp), DIMENSION(:,:,:)  , INTENT(inout) ::   pv_il      ! melt pond lid volume
      REAL(wp), DIMENSION(:,:,:,:), INTENT(inout) ::   pe_s       ! snw heat content
      REAL(wp), DIMENSION(:,:,:,:), INTENT(inout) ::   pe_i       ! ice heat content
      !
      INTEGER  ::   ji, jj, jk, jl, jt      ! dummy loop indices
      INTEGER  ::   icycle                  ! number of sub-timestep for the advection
      REAL(wp) ::   zamsk                   ! 1 if advection of concentration, 0 if advection of other tracers
      REAL(wp) ::   zdt, z1_dt, zvi_cen
      REAL(wp), DIMENSION(1)                  ::   zcflprv, zcflnow   ! for global communication
      REAL(wp), DIMENSION(jpi,jpj)            ::   zudy, zvdx, zcu_box, zcv_box
      REAL(wp), DIMENSION(jpi,jpj)            ::   zati1, zati2
      REAL(wp), DIMENSION(jpi,jpj,jpl)        ::   zu_cat, zv_cat
      REAL(wp), DIMENSION(jpi,jpj,jpl)        ::   zua_ho, zva_ho, zua_ups, zva_ups
      REAL(wp), DIMENSION(jpi,jpj,jpl)        ::   z1_ai , z1_aip, zhvar
      REAL(wp), DIMENSION(jpi,jpj,jpl)        ::   zhi_max, zhs_max, zhip_max, zs_i, zsi_max
      REAL(wp), DIMENSION(jpi,jpj,nlay_i,jpl) ::   ze_i, zei_max
      REAL(wp), DIMENSION(jpi,jpj,nlay_s,jpl) ::   ze_s, zes_max
      !
      REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) ::   zuv_ho, zvv_ho, zuv_ups, zvv_ups, z1_vi, z1_vs
      !! diagnostics
      REAL(wp), DIMENSION(jpi,jpj)            ::   zdiag_adv_mass, zdiag_adv_salt, zdiag_adv_heat
      !!----------------------------------------------------------------------
      !
      IF( kt == nit000 .AND. lwp )   WRITE(numout,*) '-- ice_dyn_adv_umx: Ultimate-Macho advection scheme'
      !
      ! --- Record max of the surrounding 9-pts (for call Hbig) --- !
      ! thickness and salinity
      WHERE( pv_i(:,:,:) >= epsi10 ) ; zs_i(:,:,:) = psv_i(:,:,:) / pv_i(:,:,:)
      ELSEWHERE                      ; zs_i(:,:,:) = 0._wp
      END WHERE
      CALL icemax3D( ph_i , zhi_max )
      CALL icemax3D( ph_s , zhs_max )
      CALL icemax3D( ph_ip, zhip_max)
      CALL icemax3D( zs_i , zsi_max )
      CALL lbc_lnk( 'icedyn_adv_umx', zhi_max, 'T', 1._wp, zhs_max, 'T', 1._wp, zhip_max, 'T', 1._wp, zsi_max, 'T', 1._wp )
      !
      ! enthalpies
      DO jk = 1, nlay_i
         WHERE( pv_i(:,:,:) >= epsi10 ) ; ze_i(:,:,jk,:) = pe_i(:,:,jk,:) / pv_i(:,:,:)
         ELSEWHERE                      ; ze_i(:,:,jk,:) = 0._wp
         END WHERE
      END DO
      DO jk = 1, nlay_s
         WHERE( pv_s(:,:,:) >= epsi10 ) ; ze_s(:,:,jk,:) = pe_s(:,:,jk,:) / pv_s(:,:,:)
         ELSEWHERE                      ; ze_s(:,:,jk,:) = 0._wp
         END WHERE
      END DO
      CALL icemax4D( ze_i , zei_max )
      CALL icemax4D( ze_s , zes_max )
      CALL lbc_lnk( 'icedyn_adv_umx', zei_max, 'T', 1._wp )
      CALL lbc_lnk( 'icedyn_adv_umx', zes_max, 'T', 1._wp )
      !
      !
      ! --- If ice drift is too fast, use  subtime steps for advection (CFL test for stability) --- !
      !        Note: the advection split is applied at the next time-step in order to avoid blocking global comm.
      !              this should not affect too much the stability
      zcflnow(1) =                  MAXVAL( ABS( pu_ice(:,:) ) * rDt_ice * r1_e1u(:,:) )
      zcflnow(1) = MAX( zcflnow(1), MAXVAL( ABS( pv_ice(:,:) ) * rDt_ice * r1_e2v(:,:) ) )

      ! non-blocking global communication send zcflnow and receive zcflprv
      CALL mpp_delay_max( 'icedyn_adv_umx', 'cflice', zcflnow(:), zcflprv(:), kt == nitend - nn_fsbc + 1 )

      IF( zcflprv(1) > .5 ) THEN   ;   icycle = 2
      ELSE                         ;   icycle = 1
      ENDIF
      zdt = rDt_ice / REAL(icycle)
      z1_dt = 1._wp / zdt

      ! --- transport --- !
      zudy(:,:) = pu_ice(:,:) * e2u(:,:)
      zvdx(:,:) = pv_ice(:,:) * e1v(:,:)
      !
      ! setup transport for each ice cat
      DO jl = 1, jpl
         zu_cat(:,:,jl) = zudy(:,:)
         zv_cat(:,:,jl) = zvdx(:,:)
      END DO
      !
      ! --- define velocity for advection: u*grad(H) --- !
      DO_2D( nn_hls-1, nn_hls, nn_hls, nn_hls )
         IF    ( pu_ice(ji,jj) * pu_ice(ji-1,jj) <= 0._wp ) THEN   ;   zcu_box(ji,jj) = 0._wp
         ELSEIF( pu_ice(ji,jj)                   >  0._wp ) THEN   ;   zcu_box(ji,jj) = pu_ice(ji-1,jj)
         ELSE                                                      ;   zcu_box(ji,jj) = pu_ice(ji  ,jj)
         ENDIF
      END_2D
      DO_2D( nn_hls, nn_hls, nn_hls-1, nn_hls )
         IF    ( pv_ice(ji,jj) * pv_ice(ji,jj-1) <= 0._wp ) THEN   ;   zcv_box(ji,jj) = 0._wp
         ELSEIF( pv_ice(ji,jj)                   >  0._wp ) THEN   ;   zcv_box(ji,jj) = pv_ice(ji,jj-1)
         ELSE                                                      ;   zcv_box(ji,jj) = pv_ice(ji,jj  )
         ENDIF
      END_2D

      !---------------!
      !== advection ==!
      !---------------!
      DO jt = 1, icycle

         ! diagnostics
         zdiag_adv_mass(:,:) =   SUM( pv_i (:,:,:) , dim=3 ) * rhoi + SUM( pv_s (:,:,:) , dim=3 ) * rhos &
            &                  + SUM( pv_ip(:,:,:) , dim=3 ) * rhow + SUM( pv_il(:,:,:) , dim=3 ) * rhow
         zdiag_adv_salt(:,:) =   SUM( psv_i(:,:,:) , dim=3 ) * rhoi
         zdiag_adv_heat(:,:) = - SUM(SUM( pe_i(:,:,1:nlay_i,:) , dim=4 ), dim=3 ) &
            &                  - SUM(SUM( pe_s(:,:,1:nlay_s,:) , dim=4 ), dim=3 )

         ! record at_i before advection (for open water)
         zati1(:,:) = SUM( pa_i(:,:,:), dim=3 )

         ! inverse of A and Ap
         WHERE( pa_i(:,:,:) >= epsi20 )   ;   z1_ai(:,:,:) = 1._wp / pa_i(:,:,:)
         ELSEWHERE                        ;   z1_ai(:,:,:) = 0.
         END WHERE
         WHERE( pa_ip(:,:,:) >= epsi20 )  ;   z1_aip(:,:,:) = 1._wp / pa_ip(:,:,:)
         ELSEWHERE                        ;   z1_aip(:,:,:) = 0.
         END WHERE
         !
         ! setup a mask where advection will be upstream
         IF( ll_neg ) THEN
            IF( .NOT. ALLOCATED(imsk_small) )   ALLOCATE( imsk_small(jpi,jpj,jpl) )
            IF( .NOT. ALLOCATED(jmsk_small) )   ALLOCATE( jmsk_small(jpi,jpj,jpl) )
            DO jl = 1, jpl
               DO_2D( 1, 0, nn_hls, nn_hls )
                  zvi_cen = 0.5_wp * ( pv_i(ji+1,jj,jl) + pv_i(ji,jj,jl) )
                  IF( zvi_cen < epsi06) THEN   ;   imsk_small(ji,jj,jl) = 0
                  ELSE                         ;   imsk_small(ji,jj,jl) = 1   ;   ENDIF
               END_2D
               DO_2D( nn_hls, nn_hls, 1, 0 )
                  zvi_cen = 0.5_wp * ( pv_i(ji,jj+1,jl) + pv_i(ji,jj,jl) )
                  IF( zvi_cen < epsi06) THEN   ;   jmsk_small(ji,jj,jl) = 0
                  ELSE                         ;   jmsk_small(ji,jj,jl) = 1   ;   ENDIF
               END_2D
            END DO
         ENDIF
         !
         ! ----------------------- !
         ! ==> start advection <== !
         ! ----------------------- !
         !
         !== Ice area ==!
         zamsk = 1._wp
         CALL adv_umx( zamsk, kn_umx, jt, kt, zdt, zudy, zvdx, zu_cat , zv_cat , zcu_box, zcv_box, &
            &                                      pa_i, pa_i, zua_ups, zva_ups, zua_ho , zva_ho )
         !
         !                             ! --------------------------------- !
         IF( np_advS == 1 ) THEN       ! -- advection form: -div( uVS ) -- !
            !                          ! --------------------------------- !
            zamsk = 0._wp
            !== Ice volume ==!
            zhvar(:,:,:) = pv_i(:,:,:) * z1_ai(:,:,:)
            CALL adv_umx( zamsk, kn_umx, jt, kt, zdt, zudy , zvdx, zua_ho , zva_ho , zcu_box, zcv_box, &
               &                                      zhvar, pv_i, zua_ups, zva_ups )
            !== Snw volume ==!
            zhvar(:,:,:) = pv_s(:,:,:) * z1_ai(:,:,:)
            CALL adv_umx( zamsk, kn_umx, jt, kt, zdt, zudy , zvdx, zua_ho , zva_ho , zcu_box, zcv_box, &
               &                                      zhvar, pv_s, zua_ups, zva_ups )
            !
            zamsk = 1._wp
            !== Salt content ==!
            CALL adv_umx( zamsk, kn_umx, jt, kt, zdt, zudy , zvdx , zu_cat, zv_cat, zcu_box, zcv_box, &
               &                                      psv_i, psv_i )
            !== Ice heat content ==!
            DO jk = 1, nlay_i
               CALL adv_umx( zamsk, kn_umx, jt, kt, zdt, zudy , zvdx , zu_cat, zv_cat, zcu_box, zcv_box, &
                  &                                      pe_i(:,:,jk,:), pe_i(:,:,jk,:) )
            END DO
            !== Snw heat content ==!
            DO jk = 1, nlay_s
               CALL adv_umx( zamsk, kn_umx, jt, kt, zdt, zudy , zvdx , zu_cat, zv_cat, zcu_box, zcv_box, &
                  &                                      pe_s(:,:,jk,:), pe_s(:,:,jk,:) )
            END DO
            !
            !                          ! ------------------------------------------ !
         ELSEIF( np_advS == 2 ) THEN   ! -- advection form: -div( uA * uHS / u ) -- !
            !                          ! ------------------------------------------ !
            zamsk = 0._wp
            !== Ice volume ==!
            zhvar(:,:,:) = pv_i(:,:,:) * z1_ai(:,:,:)
            CALL adv_umx( zamsk, kn_umx, jt, kt, zdt, zudy , zvdx, zua_ho , zva_ho , zcu_box, zcv_box, &
               &                                      zhvar, pv_i, zua_ups, zva_ups )
            !== Snw volume ==!
            zhvar(:,:,:) = pv_s(:,:,:) * z1_ai(:,:,:)
            CALL adv_umx( zamsk, kn_umx, jt, kt, zdt, zudy , zvdx, zua_ho , zva_ho , zcu_box, zcv_box, &
               &                                      zhvar, pv_s, zua_ups, zva_ups )
            !== Salt content ==!
            zhvar(:,:,:) = psv_i(:,:,:) * z1_ai(:,:,:)
            CALL adv_umx( zamsk, kn_umx, jt, kt, zdt, zudy , zvdx , zua_ho , zva_ho , zcu_box, zcv_box, &
               &                                      zhvar, psv_i, zua_ups, zva_ups )
            !== Ice heat content ==!
            DO jk = 1, nlay_i
               zhvar(:,:,:) = pe_i(:,:,jk,:) * z1_ai(:,:,:)
               CALL adv_umx( zamsk, kn_umx, jt, kt, zdt, zudy , zvdx, zua_ho, zva_ho, zcu_box, zcv_box, &
                  &                                      zhvar, pe_i(:,:,jk,:), zua_ups, zva_ups )
            END DO
            !== Snw heat content ==!
            DO jk = 1, nlay_s
               zhvar(:,:,:) = pe_s(:,:,jk,:) * z1_ai(:,:,:)
               CALL adv_umx( zamsk, kn_umx, jt, kt, zdt, zudy , zvdx, zua_ho, zva_ho, zcu_box, zcv_box, &
                  &                                      zhvar, pe_s(:,:,jk,:), zua_ups, zva_ups )
            END DO
            !
            !                          ! ----------------------------------------- !
         ELSEIF( np_advS == 3 ) THEN   ! -- advection form: -div( uV * uS / u ) -- !
            !                          ! ----------------------------------------- !
            zamsk = 0._wp
            !
            ALLOCATE( zuv_ho (jpi,jpj,jpl), zvv_ho (jpi,jpj,jpl),  &
               &      zuv_ups(jpi,jpj,jpl), zvv_ups(jpi,jpj,jpl), z1_vi(jpi,jpj,jpl), z1_vs(jpi,jpj,jpl) )
            !
            ! inverse of Vi
            WHERE( pv_i(:,:,:) >= epsi20 )   ;   z1_vi(:,:,:) = 1._wp / pv_i(:,:,:)
            ELSEWHERE                        ;   z1_vi(:,:,:) = 0.
            END WHERE
            ! inverse of Vs
            WHERE( pv_s(:,:,:) >= epsi20 )   ;   z1_vs(:,:,:) = 1._wp / pv_s(:,:,:)
            ELSEWHERE                        ;   z1_vs(:,:,:) = 0.
            END WHERE
            !
            ! It is important to first calculate the ice fields and then the snow fields (because we use the same arrays)
            !
            !== Ice volume ==!
            zuv_ups = zua_ups
            zvv_ups = zva_ups
            zhvar(:,:,:) = pv_i(:,:,:) * z1_ai(:,:,:)
            CALL adv_umx( zamsk, kn_umx, jt, kt, zdt, zudy , zvdx, zua_ho , zva_ho , zcu_box, zcv_box, &
               &                                      zhvar, pv_i, zuv_ups, zvv_ups, zuv_ho , zvv_ho )
            !== Salt content ==!
            zhvar(:,:,:) = psv_i(:,:,:) * z1_vi(:,:,:)
            CALL adv_umx( zamsk, kn_umx, jt, kt, zdt, zudy , zvdx , zuv_ho , zvv_ho , zcu_box, zcv_box, &
               &                                      zhvar, psv_i, zuv_ups, zvv_ups )
            !== Ice heat content ==!
            DO jk = 1, nlay_i
               zhvar(:,:,:) = pe_i(:,:,jk,:) * z1_vi(:,:,:)
               CALL adv_umx( zamsk, kn_umx, jt, kt, zdt, zudy , zvdx, zuv_ho, zvv_ho, zcu_box, zcv_box, &
                  &                                      zhvar, pe_i(:,:,jk,:), zuv_ups, zvv_ups )
            END DO
            !== Snow volume ==!
            zuv_ups = zua_ups
            zvv_ups = zva_ups
            zhvar(:,:,:) = pv_s(:,:,:) * z1_ai(:,:,:)
            CALL adv_umx( zamsk, kn_umx, jt, kt, zdt, zudy , zvdx, zua_ho , zva_ho , zcu_box, zcv_box, &
               &                                      zhvar, pv_s, zuv_ups, zvv_ups, zuv_ho , zvv_ho )
            !== Snw heat content ==!
            DO jk = 1, nlay_s
               zhvar(:,:,:) = pe_s(:,:,jk,:) * z1_vs(:,:,:)
               CALL adv_umx( zamsk, kn_umx, jt, kt, zdt, zudy , zvdx, zuv_ho, zvv_ho, zcu_box, zcv_box, &
                  &                                      zhvar, pe_s(:,:,jk,:), zuv_ups, zvv_ups )
            END DO
            !
            DEALLOCATE( zuv_ho, zvv_ho, zuv_ups, zvv_ups, z1_vi, z1_vs )
            !
         ENDIF
         !
         !== Ice age ==!
         zamsk = 1._wp
         CALL adv_umx( zamsk, kn_umx, jt, kt, zdt, zudy , zvdx , zu_cat, zv_cat, zcu_box, zcv_box, &
            &                                      poa_i, poa_i )
         !
         !== melt ponds ==!
         IF ( ln_pnd_LEV .OR. ln_pnd_TOPO ) THEN
            ! concentration
            zamsk = 1._wp
            CALL adv_umx( zamsk, kn_umx, jt, kt, zdt, zudy , zvdx , zu_cat , zv_cat , zcu_box, zcv_box, &
               &                                      pa_ip, pa_ip, zua_ups, zva_ups, zua_ho , zva_ho )
            ! volume
            zamsk = 0._wp
            zhvar(:,:,:) = pv_ip(:,:,:) * z1_aip(:,:,:)
            CALL adv_umx( zamsk, kn_umx, jt, kt, zdt, zudy , zvdx , zua_ho , zva_ho , zcu_box, zcv_box, &
               &                                      zhvar, pv_ip, zua_ups, zva_ups )
            ! lid
            IF ( ln_pnd_lids ) THEN
               zamsk = 0._wp
               zhvar(:,:,:) = pv_il(:,:,:) * z1_aip(:,:,:)
               CALL adv_umx( zamsk, kn_umx, jt, kt, zdt, zudy , zvdx , zua_ho , zva_ho , zcu_box, zcv_box, &
                  &                                      zhvar, pv_il, zua_ups, zva_ups )
            ENDIF
         ENDIF

         ! --- Lateral boundary conditions --- !
         IF    ( ( ln_pnd_LEV .OR. ln_pnd_TOPO ) .AND. ln_pnd_lids ) THEN
            CALL lbc_lnk( 'icedyn_adv_umx', pa_i,'T',1._wp, pv_i,'T',1._wp, pv_s,'T',1._wp, psv_i,'T',1._wp, poa_i,'T',1._wp &
               &                          , pa_ip,'T',1._wp, pv_ip,'T',1._wp, pv_il,'T',1._wp )
         ELSEIF( ( ln_pnd_LEV .OR. ln_pnd_TOPO ) .AND. .NOT.ln_pnd_lids ) THEN
            CALL lbc_lnk( 'icedyn_adv_umx', pa_i,'T',1._wp, pv_i,'T',1._wp, pv_s,'T',1._wp, psv_i,'T',1._wp, poa_i,'T',1._wp &
               &                          , pa_ip,'T',1._wp, pv_ip,'T',1._wp )
         ELSE
            CALL lbc_lnk( 'icedyn_adv_umx', pa_i,'T',1._wp, pv_i,'T',1._wp, pv_s,'T',1._wp, psv_i,'T',1._wp, poa_i,'T',1._wp )
         ENDIF
         CALL lbc_lnk( 'icedyn_adv_umx', pe_i, 'T', 1._wp )
         CALL lbc_lnk( 'icedyn_adv_umx', pe_s, 'T', 1._wp )
         !
         !== Open water area ==!
         zati2(:,:) = SUM( pa_i(:,:,:), dim=3 )
         DO_2D( 0, 0, 0, 0 )
            pato_i(ji,jj) = pato_i(ji,jj) - ( zati2(ji,jj) - zati1(ji,jj) ) &
               &                          - ( zudy(ji,jj) - zudy(ji-1,jj) + zvdx(ji,jj) - zvdx(ji,jj-1) ) * r1_e1e2t(ji,jj) * zdt
         END_2D
         CALL lbc_lnk( 'icedyn_adv_umx', pato_i, 'T',  1._wp )
         !
         ! --- diagnostics --- !
         diag_adv_mass(:,:) = diag_adv_mass(:,:) + (   SUM( pv_i (:,:,:) , dim=3 ) * rhoi + SUM( pv_s (:,:,:) , dim=3 ) * rhos &
            &                                        + SUM( pv_ip(:,:,:) , dim=3 ) * rhow + SUM( pv_il(:,:,:) , dim=3 ) * rhow &
            &                                        - zdiag_adv_mass(:,:) ) * z1_dt
         diag_adv_salt(:,:) = diag_adv_salt(:,:) + (   SUM( psv_i(:,:,:) , dim=3 ) * rhoi &
            &                                        - zdiag_adv_salt(:,:) ) * z1_dt
         diag_adv_heat(:,:) = diag_adv_heat(:,:) + ( - SUM(SUM( pe_i(:,:,1:nlay_i,:) , dim=4 ), dim=3 ) &
            &                                        - SUM(SUM( pe_s(:,:,1:nlay_s,:) , dim=4 ), dim=3 ) &
            &                                        - zdiag_adv_heat(:,:) ) * z1_dt
         !
         ! --- Ensure non-negative fields and in-bound thicknesses --- !
         ! Remove negative values (conservation is ensured)
         !    (because advected fields are not perfectly bounded and tiny negative values can occur, e.g. -1.e-20)
         CALL ice_var_zapneg( zdt, pato_i, pv_i, pv_s, psv_i, poa_i, pa_i, pa_ip, pv_ip, pv_il, pe_s, pe_i )
         !
         ! --- Make sure ice thickness is not too big --- !
         !     (because ice thickness can be too large where ice concentration is very small)
         CALL Hbig( zdt, zhi_max, zhs_max, zhip_max, zsi_max, zes_max, zei_max, &
            &            pv_i, pv_s, pa_i, pa_ip, pv_ip, psv_i, pe_s, pe_i )
         !
         ! --- Ensure snow load is not too big --- !
         CALL Hsnow( zdt, pv_i, pv_s, pa_i, pa_ip, pe_s )
         !
      END DO
      !
   END SUBROUTINE ice_dyn_adv_umx


   SUBROUTINE adv_umx( pamsk, kn_umx, jt, kt, pdt, pu, pv, puc, pvc, pubox, pvbox,  &
      &                                            pt, ptc, pua_ups, pva_ups, pua_ho, pva_ho )
      !!----------------------------------------------------------------------
      !!                  ***  ROUTINE adv_umx  ***
      !!
      !! **  Purpose :   Compute the now trend due to total advection of
      !!                 tracers and add it to the general trend of tracer equations
      !!
      !! **  Method  :   - calculate upstream fluxes and upstream solution for tracers V/A(=H) etc
      !!                 - calculate tracer H at u and v points (Ultimate)
      !!                 - calculate the high order fluxes using alterning directions (Macho)
      !!                 - apply a limiter on the fluxes (nonosc_ice)
      !!                 - convert this tracer flux to a "volume" flux (uH -> uV)
      !!                 - apply a limiter a second time on the volumes fluxes (nonosc_ice)
      !!                 - calculate the high order solution for V
      !!
      !! ** Action : solve 3 equations => a) dA/dt  = -div(uA)
      !!                                  b) dV/dt  = -div(uV)  using dH/dt = -u.grad(H)
      !!                                  c) dVS/dt = -div(uVS) using either dHS/dt = -u.grad(HS) or dS/dt = -u.grad(S)
      !!
      !!             in eq. b), - fluxes uH are evaluated (with UMx) and limited with nonosc_ice. This step is necessary to get a good H.
      !!                        - then we convert this flux to a "volume" flux this way => uH * uA / u
      !!                             where uA is the flux from eq. a)
      !!                             this "volume" flux is also limited with nonosc_ice (otherwise overshoots can occur)
      !!                        - at last we estimate dV/dt = -div(uH * uA / u)
      !!
      !!             in eq. c), one can solve the equation for  S (ln_advS=T), then dVS/dt = -div(uV * uS  / u)
      !!                                                or for HS (ln_advS=F), then dVS/dt = -div(uA * uHS / u)
      !!
      !! ** Note : - this method can lead to tiny negative V (-1.e-20) => set it to 0 while conserving mass etc.
      !!           - At the ice edge, Ultimate scheme can lead to:
      !!                              1) negative interpolated tracers at u-v points
      !!                              2) non-zero interpolated tracers at u-v points eventhough there is no ice and velocity is outward
      !!                              Solution for 1): apply an upstream scheme when it occurs. A better solution would be to degrade the order of
      !!                                               the scheme automatically by applying a mask of the ice cover inside Ultimate (not done).
      !!                              Solution for 2): we set it to 0 in this case
      !!           - Eventhough 1D tests give very good results (typically the one from Schar & Smolarkiewiecz), the 2D is less good.
      !!             Large values of H can appear for very small ice concentration, and when it does it messes the things up since we
      !!             work on H (and not V). It is partly related to the multi-category approach
      !!             Therefore, after advection we limit the thickness to the largest value of the 9-points around (only if ice
      !!             concentration is small). We also limit S and T.
      !!----------------------------------------------------------------------
      REAL(wp)                        , INTENT(in   )           ::   pamsk            ! advection of concentration (1) or other tracers (0)
      INTEGER                         , INTENT(in   )           ::   kn_umx           ! order of the scheme (1-5=UM or 20=CEN2)
      INTEGER                         , INTENT(in   )           ::   jt               ! number of sub-iteration
      INTEGER                         , INTENT(in   )           ::   kt               ! number of iteration
      REAL(wp)                        , INTENT(in   )           ::   pdt              ! tracer time-step
      REAL(wp), DIMENSION(:,:  )      , INTENT(in   )           ::   pu   , pv        ! 2 ice velocity components => u*e2
      REAL(wp), DIMENSION(:,:,:)      , INTENT(in   )           ::   puc  , pvc       ! 2 ice velocity components => u*e2 or u*a*e2u
      REAL(wp), DIMENSION(:,:  )      , INTENT(in   )           ::   pubox, pvbox     ! upstream velocity
      REAL(wp), DIMENSION(:,:,:)      , INTENT(inout)           ::   pt               ! tracer field
      REAL(wp), DIMENSION(:,:,:)      , INTENT(inout)           ::   ptc              ! tracer content field
      REAL(wp), DIMENSION(jpi,jpj,jpl), INTENT(inout), OPTIONAL ::   pua_ups, pva_ups ! upstream u*a fluxes
      REAL(wp), DIMENSION(jpi,jpj,jpl), INTENT(  out), OPTIONAL ::   pua_ho, pva_ho   ! high order u*a fluxes
      !
      INTEGER  ::   ji, jj, jl       ! dummy loop indices
      REAL(wp) ::   ztra             ! local scalar
      REAL(wp), DIMENSION(jpi,jpj,jpl) ::   zfu_ho , zfv_ho , zpt
      REAL(wp), DIMENSION(jpi,jpj,jpl) ::   zfu_ups, zfv_ups, zt_ups
      !!----------------------------------------------------------------------
      !
      ! Upstream (_ups) fluxes
      ! -----------------------
      CALL upstream( pamsk, jt, kt, pdt, pt, pu, pv, zt_ups, zfu_ups, zfv_ups )

      ! High order (_ho) fluxes
      ! -----------------------
      SELECT CASE( kn_umx )
         !
      CASE ( 20 )                          !== centered second order ==!
         !
         CALL cen2( pamsk, jt, kt, pdt, pt, pu, pv, zt_ups, zfu_ups, zfv_ups, zfu_ho, zfv_ho )
         !
      CASE ( 1:5 )                         !== 1st to 5th order ULTIMATE-MACHO scheme ==!
         !
         CALL macho( pamsk, kn_umx, jt, kt, pdt, pt, pu, pv, pubox, pvbox, zt_ups, zfu_ups, zfv_ups, zfu_ho, zfv_ho )
         !
      END SELECT
      !
      !              --ho    --ho
      ! new fluxes = u*H  *  u*a / u
      ! ----------------------------
      IF( pamsk == 0._wp ) THEN
         DO jl = 1, jpl
            DO_2D( 1, 0, 0, 0 )
               IF( ABS( pu(ji,jj) ) > epsi10 ) THEN
                  zfu_ho (ji,jj,jl) = zfu_ho (ji,jj,jl) * puc    (ji,jj,jl) / pu(ji,jj)
                  zfu_ups(ji,jj,jl) = zfu_ups(ji,jj,jl) * pua_ups(ji,jj,jl) / pu(ji,jj)
               ELSE
                  zfu_ho (ji,jj,jl) = 0._wp
                  zfu_ups(ji,jj,jl) = 0._wp
               ENDIF
               !
            END_2D
            DO_2D( 0, 0, 1, 0 )
               IF( ABS( pv(ji,jj) ) > epsi10 ) THEN
                  zfv_ho (ji,jj,jl) = zfv_ho (ji,jj,jl) * pvc    (ji,jj,jl) / pv(ji,jj)
                  zfv_ups(ji,jj,jl) = zfv_ups(ji,jj,jl) * pva_ups(ji,jj,jl) / pv(ji,jj)
               ELSE
                  zfv_ho (ji,jj,jl) = 0._wp
                  zfv_ups(ji,jj,jl) = 0._wp
               ENDIF
            END_2D
         END DO

         ! the new "volume" fluxes must also be "flux corrected"
         ! thus we calculate the upstream solution and apply a limiter again
         DO jl = 1, jpl
            DO_2D( 0, 0, 0, 0 )
               ztra = - ( zfu_ups(ji,jj,jl) - zfu_ups(ji-1,jj,jl) + zfv_ups(ji,jj,jl) - zfv_ups(ji,jj-1,jl) )
               !
               zt_ups(ji,jj,jl) = ( ptc(ji,jj,jl) + ztra * r1_e1e2t(ji,jj) * pdt ) * tmask(ji,jj,1)
            END_2D
         END DO
         CALL lbc_lnk( 'icedyn_adv_umx', zt_ups, 'T',  1.0_wp )
         !
         IF    ( np_limiter == 1 ) THEN
            CALL nonosc_ice( 1._wp, pdt, pu, pv, ptc, zt_ups, zfu_ups, zfv_ups, zfu_ho, zfv_ho )
         ELSEIF( np_limiter == 2 .OR. np_limiter == 3 ) THEN
            CALL limiter_x( pdt, pu, ptc, zfu_ups, zfu_ho )
            CALL limiter_y( pdt, pv, ptc, zfv_ups, zfv_ho )
         ENDIF
         !
      ENDIF
      !                                   --ho    --ups
      ! in case of advection of A: output u*a and u*a
      ! -----------------------------------------------
      IF( PRESENT( pua_ho ) ) THEN
         DO jl = 1, jpl
            DO_2D( 1, 0, 0, 0 )
               pua_ho (ji,jj,jl) = zfu_ho (ji,jj,jl)
               pua_ups(ji,jj,jl) = zfu_ups(ji,jj,jl)
            END_2D
            DO_2D( 0, 0, 1, 0 )
               pva_ho (ji,jj,jl) = zfv_ho (ji,jj,jl)
               pva_ups(ji,jj,jl) = zfv_ups(ji,jj,jl)
            END_2D
         END DO
      ENDIF
      !
      ! final trend with corrected fluxes
      ! ---------------------------------
      DO jl = 1, jpl
         DO_2D( 0, 0, 0, 0 )
            ztra = - ( zfu_ho(ji,jj,jl) - zfu_ho(ji-1,jj,jl) + zfv_ho(ji,jj,jl) - zfv_ho(ji,jj-1,jl) )
            !
            ptc(ji,jj,jl) = ( ptc(ji,jj,jl) + ztra * r1_e1e2t(ji,jj) * pdt ) * tmask(ji,jj,1)
         END_2D
      END DO
      !
   END SUBROUTINE adv_umx


   SUBROUTINE upstream( pamsk, jt, kt, pdt, pt, pu, pv, pt_ups, pfu_ups, pfv_ups )
      !!---------------------------------------------------------------------
      !!                    ***  ROUTINE upstream  ***
      !!
      !! **  Purpose :   compute the upstream fluxes and upstream guess of tracer
      !!----------------------------------------------------------------------
      REAL(wp)                        , INTENT(in   ) ::   pamsk            ! advection of concentration (1) or other tracers (0)
      INTEGER                         , INTENT(in   ) ::   jt               ! number of sub-iteration
      INTEGER                         , INTENT(in   ) ::   kt               ! number of iteration
      REAL(wp)                        , INTENT(in   ) ::   pdt              ! tracer time-step
      REAL(wp), DIMENSION(:,:,:)      , INTENT(in   ) ::   pt               ! tracer fields
      REAL(wp), DIMENSION(:,:  )      , INTENT(in   ) ::   pu, pv           ! 2 ice velocity components
      REAL(wp), DIMENSION(jpi,jpj,jpl), INTENT(  out) ::   pt_ups           ! upstream guess of tracer
      REAL(wp), DIMENSION(jpi,jpj,jpl), INTENT(  out) ::   pfu_ups, pfv_ups ! upstream fluxes
      !
      INTEGER  ::   ji, jj, jl    ! dummy loop indices
      REAL(wp) ::   ztra          ! local scalar
      REAL(wp), DIMENSION(jpi,jpj,jpl) ::   zpt
      !!----------------------------------------------------------------------

      IF( .NOT. ll_upsxy ) THEN         !** no alternate directions **!
         !
         DO jl = 1, jpl
            DO_2D( nn_hls, nn_hls-1, nn_hls, nn_hls-1 )
               pfu_ups(ji,jj,jl) = MAX( pu(ji,jj), 0._wp ) * pt(ji,jj,jl) + MIN( pu(ji,jj), 0._wp ) * pt(ji+1,jj,jl)
               pfv_ups(ji,jj,jl) = MAX( pv(ji,jj), 0._wp ) * pt(ji,jj,jl) + MIN( pv(ji,jj), 0._wp ) * pt(ji,jj+1,jl)
            END_2D
         END DO
         !
      ELSE                              !** alternate directions **!
         !
         IF( MOD( (kt - 1) / nn_fsbc , 2 ) ==  MOD( (jt - 1) , 2 ) ) THEN   !==  odd ice time step:  adv_x then adv_y  ==!
            !
            DO jl = 1, jpl              !-- flux in x-direction
               DO_2D( nn_hls, nn_hls-1, nn_hls, nn_hls )
                  pfu_ups(ji,jj,jl) = MAX( pu(ji,jj), 0._wp ) * pt(ji,jj,jl) + MIN( pu(ji,jj), 0._wp ) * pt(ji+1,jj,jl)
               END_2D
            END DO
            !
            DO jl = 1, jpl              !-- first guess of tracer from u-flux
               DO_2D( nn_hls-1, nn_hls-1, nn_hls, nn_hls )
                  ztra = - ( pfu_ups(ji,jj,jl) - pfu_ups(ji-1,jj,jl) )              &
                     &   + ( pu     (ji,jj   ) - pu     (ji-1,jj   ) ) * pt(ji,jj,jl) * (1.-pamsk)
                  !
                  zpt(ji,jj,jl) = ( pt(ji,jj,jl) + ztra * pdt * r1_e1e2t(ji,jj) ) * tmask(ji,jj,1)
               END_2D
            END DO
            !
            DO jl = 1, jpl              !-- flux in y-direction
               DO_2D( nn_hls-1, nn_hls-1, nn_hls, nn_hls-1 )
                  pfv_ups(ji,jj,jl) = MAX( pv(ji,jj), 0._wp ) * zpt(ji,jj,jl) + MIN( pv(ji,jj), 0._wp ) * zpt(ji,jj+1,jl)
               END_2D
            END DO
            !
         ELSE                                                               !==  even ice time step:  adv_y then adv_x  ==!
            !
            DO jl = 1, jpl              !-- flux in y-direction
               DO_2D( nn_hls, nn_hls, nn_hls, nn_hls-1 )
                  pfv_ups(ji,jj,jl) = MAX( pv(ji,jj), 0._wp ) * pt(ji,jj,jl) + MIN( pv(ji,jj), 0._wp ) * pt(ji,jj+1,jl)
               END_2D
            END DO
            !
            DO jl = 1, jpl              !-- first guess of tracer from v-flux
               DO_2D( nn_hls, nn_hls, nn_hls-1, nn_hls-1 )
                  ztra = - ( pfv_ups(ji,jj,jl) - pfv_ups(ji,jj-1,jl) )  &
                     &   + ( pv     (ji,jj   ) - pv     (ji,jj-1   ) ) * pt(ji,jj,jl) * (1.-pamsk)
                  !
                  zpt(ji,jj,jl) = ( pt(ji,jj,jl) + ztra * pdt * r1_e1e2t(ji,jj) ) * tmask(ji,jj,1)
               END_2D
            END DO
            !
            DO jl = 1, jpl              !-- flux in x-direction
               DO_2D( nn_hls, nn_hls-1, nn_hls-1, nn_hls-1 )
                  pfu_ups(ji,jj,jl) = MAX( pu(ji,jj), 0._wp ) * zpt(ji,jj,jl) + MIN( pu(ji,jj), 0._wp ) * zpt(ji+1,jj,jl)
               END_2D
            END DO
            !
         ENDIF

      ENDIF
      !
      DO jl = 1, jpl                    !-- after tracer with upstream scheme
         DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
            ztra = - (   pfu_ups(ji,jj,jl) - pfu_ups(ji-1,jj  ,jl)   &
               &       + pfv_ups(ji,jj,jl) - pfv_ups(ji  ,jj-1,jl) ) &
               &   + (   pu     (ji,jj   ) - pu     (ji-1,jj     )   &
               &       + pv     (ji,jj   ) - pv     (ji  ,jj-1   ) ) * pt(ji,jj,jl) * (1.-pamsk)
            !
            pt_ups(ji,jj,jl) = ( pt(ji,jj,jl) + ztra * pdt * r1_e1e2t(ji,jj) ) * tmask(ji,jj,1)
         END_2D
      END DO
      IF( nn_hls == 1 )   CALL lbc_lnk( 'icedyn_adv_umx', pt_ups, 'T', 1.0_wp )

   END SUBROUTINE upstream


   SUBROUTINE cen2( pamsk, jt, kt, pdt, pt, pu, pv, pt_ups, pfu_ups, pfv_ups, pfu_ho, pfv_ho )
      !!---------------------------------------------------------------------
      !!                    ***  ROUTINE cen2  ***
      !!
      !! **  Purpose :   compute the high order fluxes using a centered
      !!                 second order scheme
      !!----------------------------------------------------------------------
      REAL(wp)                        , INTENT(in   ) ::   pamsk            ! advection of concentration (1) or other tracers (0)
      INTEGER                         , INTENT(in   ) ::   jt               ! number of sub-iteration
      INTEGER                         , INTENT(in   ) ::   kt               ! number of iteration
      REAL(wp)                        , INTENT(in   ) ::   pdt              ! tracer time-step
      REAL(wp), DIMENSION(:,:,:)      , INTENT(in   ) ::   pt               ! tracer fields
      REAL(wp), DIMENSION(:,:  )      , INTENT(in   ) ::   pu, pv           ! 2 ice velocity components
      REAL(wp), DIMENSION(:,:,:)      , INTENT(in   ) ::   pt_ups           ! upstream guess of tracer
      REAL(wp), DIMENSION(:,:,:)      , INTENT(in   ) ::   pfu_ups, pfv_ups ! upstream fluxes
      REAL(wp), DIMENSION(jpi,jpj,jpl), INTENT(  out) ::   pfu_ho, pfv_ho   ! high order fluxes
      !
      INTEGER  ::   ji, jj, jl    ! dummy loop indices
      REAL(wp) ::   ztra          ! local scalar
      REAL(wp), DIMENSION(jpi,jpj,jpl) ::   zpt
      !!----------------------------------------------------------------------
      !
      IF( .NOT.ll_hoxy ) THEN           !** no alternate directions **!
         !
         DO jl = 1, jpl
            DO_2D( nn_hls, nn_hls-1, nn_hls, nn_hls )
               pfu_ho(ji,jj,jl) = 0.5_wp * pu(ji,jj) * ( pt(ji,jj,jl) + pt(ji+1,jj  ,jl) )
            END_2D
            DO_2D( nn_hls, nn_hls, nn_hls, nn_hls-1 )
               pfv_ho(ji,jj,jl) = 0.5_wp * pv(ji,jj) * ( pt(ji,jj,jl) + pt(ji  ,jj+1,jl) )
            END_2D
         END DO
         !
         IF    ( np_limiter == 1 ) THEN
            CALL nonosc_ice( pamsk, pdt, pu, pv, pt, pt_ups, pfu_ups, pfv_ups, pfu_ho, pfv_ho )
         ELSEIF( np_limiter == 2 .OR. np_limiter == 3 ) THEN
            CALL limiter_x( pdt, pu, pt, pfu_ups, pfu_ho )
            CALL limiter_y( pdt, pv, pt, pfv_ups, pfv_ho )
         ENDIF
         !
      ELSE                              !** alternate directions **!
         !
         IF( MOD( (kt - 1) / nn_fsbc , 2 ) ==  MOD( (jt - 1) , 2 ) ) THEN   !==  odd ice time step:  adv_x then adv_y  ==!
            !
            DO jl = 1, jpl              !-- flux in x-direction
               DO_2D( nn_hls, nn_hls-1, nn_hls, nn_hls )
                  pfu_ho(ji,jj,jl) = 0.5_wp * pu(ji,jj) * ( pt(ji,jj,jl) + pt(ji+1,jj,jl) )
               END_2D
            END DO
            IF( np_limiter == 2 .OR. np_limiter == 3 )   CALL limiter_x( pdt, pu, pt, pfu_ups, pfu_ho )

            DO jl = 1, jpl              !-- first guess of tracer from u-flux
               DO_2D( nn_hls-1, nn_hls-1, nn_hls, nn_hls )
                  ztra = - ( pfu_ho(ji,jj,jl) - pfu_ho(ji-1,jj,jl) )              &
                     &   + ( pu    (ji,jj   ) - pu    (ji-1,jj   ) ) * pt(ji,jj,jl) * (1.-pamsk)
                  !
                  zpt(ji,jj,jl) = ( pt(ji,jj,jl) + ztra * pdt * r1_e1e2t(ji,jj) ) * tmask(ji,jj,1)
               END_2D
            END DO

            DO jl = 1, jpl              !-- flux in y-direction
               DO_2D( nn_hls-1, nn_hls-1, nn_hls, nn_hls-1 )
                  pfv_ho(ji,jj,jl) = 0.5_wp * pv(ji,jj) * ( zpt(ji,jj,jl) + zpt(ji,jj+1,jl) )
               END_2D
            END DO
            IF( np_limiter == 2 .OR. np_limiter == 3 )   CALL limiter_y( pdt, pv, pt, pfv_ups, pfv_ho )

         ELSE                                                               !==  even ice time step:  adv_y then adv_x  ==!
            !
            DO jl = 1, jpl              !-- flux in y-direction
               DO_2D( nn_hls, nn_hls, nn_hls, nn_hls-1 )
                  pfv_ho(ji,jj,jl) = 0.5_wp * pv(ji,jj) * ( pt(ji,jj,jl) + pt(ji,jj+1,jl) )
               END_2D
            END DO
            IF( np_limiter == 2 .OR. np_limiter == 3 )   CALL limiter_y( pdt, pv, pt, pfv_ups, pfv_ho )
            !
            DO jl = 1, jpl              !-- first guess of tracer from v-flux
               DO_2D( nn_hls, nn_hls, nn_hls-1, nn_hls-1 )
                  ztra = - ( pfv_ho(ji,jj,jl) - pfv_ho(ji,jj-1,jl) )  &
                     &   + ( pv    (ji,jj   ) - pv    (ji,jj-1   ) ) * pt(ji,jj,jl) * (1.-pamsk)
                  !
                  zpt(ji,jj,jl) = ( pt(ji,jj,jl) + ztra * pdt * r1_e1e2t(ji,jj) ) * tmask(ji,jj,1)
               END_2D
            END DO
            !
            DO jl = 1, jpl              !-- flux in x-direction
               DO_2D( nn_hls, nn_hls-1, nn_hls-1, nn_hls-1 )
                  pfu_ho(ji,jj,jl) = 0.5_wp * pu(ji,jj) * ( zpt(ji,jj,jl) + zpt(ji+1,jj,jl) )
               END_2D
            END DO
            IF( np_limiter == 2 .OR. np_limiter == 3 )   CALL limiter_x( pdt, pu, pt, pfu_ups, pfu_ho )

         ENDIF
         IF( np_limiter == 1 )   CALL nonosc_ice( pamsk, pdt, pu, pv, pt, pt_ups, pfu_ups, pfv_ups, pfu_ho, pfv_ho )

      ENDIF

   END SUBROUTINE cen2


   SUBROUTINE macho( pamsk, kn_umx, jt, kt, pdt, pt, pu, pv, pubox, pvbox, pt_ups, pfu_ups, pfv_ups, pfu_ho, pfv_ho )
      !!---------------------------------------------------------------------
      !!                    ***  ROUTINE macho  ***
      !!
      !! **  Purpose :   compute the high order fluxes using Ultimate-Macho scheme
      !!
      !! **  Method  :   ...
      !!
      !! Reference : Leonard, B.P., 1991, Comput. Methods Appl. Mech. Eng., 88, 17-74.
      !!----------------------------------------------------------------------
      REAL(wp)                        , INTENT(in   ) ::   pamsk            ! advection of concentration (1) or other tracers (0)
      INTEGER                         , INTENT(in   ) ::   kn_umx           ! order of the scheme (1-5=UM or 20=CEN2)
      INTEGER                         , INTENT(in   ) ::   jt               ! number of sub-iteration
      INTEGER                         , INTENT(in   ) ::   kt               ! number of iteration
      REAL(wp)                        , INTENT(in   ) ::   pdt              ! tracer time-step
      REAL(wp), DIMENSION(:,:,:)      , INTENT(in   ) ::   pt               ! tracer fields
      REAL(wp), DIMENSION(:,:  )      , INTENT(in   ) ::   pu, pv           ! 2 ice velocity components
      REAL(wp), DIMENSION(:,:  )      , INTENT(in   ) ::   pubox, pvbox     ! upstream velocity
      REAL(wp), DIMENSION(:,:,:)      , INTENT(in   ) ::   pt_ups           ! upstream guess of tracer
      REAL(wp), DIMENSION(:,:,:)      , INTENT(in   ) ::   pfu_ups, pfv_ups ! upstream fluxes
      REAL(wp), DIMENSION(jpi,jpj,jpl), INTENT(  out) ::   pfu_ho, pfv_ho   ! high order fluxes
      !
      INTEGER  ::   ji, jj, jl    ! dummy loop indices
      REAL(wp), DIMENSION(jpi,jpj,jpl) ::   zt_u, zt_v, zpt
      !!----------------------------------------------------------------------
      !
      IF( MOD( (kt - 1) / nn_fsbc , 2 ) ==  MOD( (jt - 1) , 2 ) ) THEN   !==  odd ice time step:  adv_x then adv_y  ==!
         !
         !                                                        !--  ultimate interpolation of pt at u-point  --!
         CALL ultimate_x( nn_hls, pamsk, kn_umx, pdt, pt, pu, zt_u, pfu_ho )
         !                                                        !--  limiter in x --!
         IF( np_limiter == 2 .OR. np_limiter == 3 )   CALL limiter_x( pdt, pu, pt, pfu_ups, pfu_ho )
         !                                                        !--  advective form update in zpt  --!
         DO jl = 1, jpl
            DO_2D( 0, 0, nn_hls, nn_hls )
               zpt(ji,jj,jl) = ( pt(ji,jj,jl) - (  pubox(ji,jj   ) * ( zt_u(ji,jj,jl) - zt_u(ji-1,jj,jl) ) * r1_e1t  (ji,jj) &
                  &                              + pt   (ji,jj,jl) * ( pu  (ji,jj   ) - pu  (ji-1,jj   ) ) * r1_e1e2t(ji,jj) &
                  &                                                                                        * pamsk           &
                  &                             ) * pdt ) * tmask(ji,jj,1)
            END_2D
         END DO
         !
         !                                                        !--  ultimate interpolation of pt at v-point  --!
         IF( ll_hoxy ) THEN
            CALL ultimate_y( 0, pamsk, kn_umx, pdt, zpt, pv, zt_v, pfv_ho )
         ELSE
            CALL ultimate_y( 0, pamsk, kn_umx, pdt, pt , pv, zt_v, pfv_ho )
         ENDIF
         !                                                        !--  limiter in y --!
         IF( np_limiter == 2 .OR. np_limiter == 3 )   CALL limiter_y( pdt, pv, pt, pfv_ups, pfv_ho )
         !
         !
      ELSE                                                               !==  even ice time step:  adv_y then adv_x  ==!
         !
         !                                                        !--  ultimate interpolation of pt at v-point  --!
         CALL ultimate_y( nn_hls, pamsk, kn_umx, pdt, pt, pv, zt_v, pfv_ho )
         !                                                        !--  limiter in y --!
         IF( np_limiter == 2 .OR. np_limiter == 3 )   CALL limiter_y( pdt, pv, pt, pfv_ups, pfv_ho )
         !                                                        !--  advective form update in zpt  --!
         DO jl = 1, jpl
            DO_2D( nn_hls, nn_hls, 0, 0 )
               zpt(ji,jj,jl) = ( pt(ji,jj,jl) - (  pvbox(ji,jj   ) * ( zt_v(ji,jj,jl) - zt_v(ji,jj-1,jl) ) * r1_e2t  (ji,jj) &
                  &                              + pt   (ji,jj,jl) * ( pv  (ji,jj   ) - pv  (ji,jj-1   ) ) * r1_e1e2t(ji,jj) &
                  &                                                                                        * pamsk           &
                  &                             ) * pdt ) * tmask(ji,jj,1)
            END_2D
         END DO
         !
         !                                                        !--  ultimate interpolation of pt at u-point  --!
         IF( ll_hoxy ) THEN
            CALL ultimate_x( 0, pamsk, kn_umx, pdt, zpt, pu, zt_u, pfu_ho )
         ELSE
            CALL ultimate_x( 0, pamsk, kn_umx, pdt, pt , pu, zt_u, pfu_ho )
         ENDIF
         !                                                        !--  limiter in x --!
         IF( np_limiter == 2 .OR. np_limiter == 3 )   CALL limiter_x( pdt, pu, pt, pfu_ups, pfu_ho )
         !
      ENDIF

      IF( np_limiter == 1 )   CALL nonosc_ice( pamsk, pdt, pu, pv, pt, pt_ups, pfu_ups, pfv_ups, pfu_ho, pfv_ho )
      !
   END SUBROUTINE macho


   SUBROUTINE ultimate_x( kloop, pamsk, kn_umx, pdt, pt, pu, pt_u, pfu_ho )
      !!---------------------------------------------------------------------
      !!                    ***  ROUTINE ultimate_x  ***
      !!
      !! **  Purpose :   compute tracer at u-points
      !!
      !! **  Method  :   ...
      !!
      !! Reference : Leonard, B.P., 1991, Comput. Methods Appl. Mech. Eng., 88, 17-74.
      !!----------------------------------------------------------------------
      INTEGER                         , INTENT(in   ) ::   kloop     ! either 0 or nn_hls depending on the order of the call
      REAL(wp)                        , INTENT(in   ) ::   pamsk     ! advection of concentration (1) or other tracers (0)
      INTEGER                         , INTENT(in   ) ::   kn_umx    ! order of the scheme (1-5=UM or 20=CEN2)
      REAL(wp)                        , INTENT(in   ) ::   pdt       ! tracer time-step
      REAL(wp), DIMENSION(:,:  )      , INTENT(in   ) ::   pu        ! ice i-velocity component
      REAL(wp), DIMENSION(:,:,:)      , INTENT(in   ) ::   pt        ! tracer fields
      REAL(wp), DIMENSION(jpi,jpj,jpl), INTENT(  out) ::   pt_u      ! tracer at u-point
      REAL(wp), DIMENSION(jpi,jpj,jpl), INTENT(  out) ::   pfu_ho    ! high order flux
      !
      INTEGER  ::   ji, jj, jl             ! dummy loop indices
      REAL(wp) ::   zcu, zdx2, zdx4        !   -      -
      REAL(wp), DIMENSION(jpi,jpj,jpl) ::   ztu1, ztu2, ztu3, ztu4
      !!----------------------------------------------------------------------
      !
      !                                                     !--  Laplacian in i-direction  --!
      DO jl = 1, jpl
         DO_2D( nn_hls, nn_hls-1, kloop, kloop )      ! First derivative (gradient)
            ztu1(ji,jj,jl) = ( pt(ji+1,jj,jl) - pt(ji,jj,jl) ) * r1_e1u(ji,jj) * umask(ji,jj,1)
         END_2D
         DO_2D( nn_hls-1, nn_hls-1, kloop, kloop )    ! Second derivative (Laplacian)
            ztu2(ji,jj,jl) = ( ztu1(ji,jj,jl) - ztu1(ji-1,jj,jl) ) * r1_e1t(ji,jj)
         END_2D
!!$         DO jj = 2, jpjm1         ! First derivative (gradient)
!!$            DO ji = 1, jpim1
!!$               ztu1(ji,jj,jl) = ( pt(ji+1,jj,jl) - pt(ji,jj,jl) ) * r1_e1u(ji,jj) * umask(ji,jj,1)
!!$            END DO
!!$            !                     ! Second derivative (Laplacian)
!!$            DO ji = 2, jpim1
!!$               ztu2(ji,jj,jl) = ( ztu1(ji,jj,jl) - ztu1(ji-1,jj,jl) ) * r1_e1t(ji,jj)
!!$            END DO
!!$         END DO
      END DO
      IF( nn_hls == 1 )   CALL lbc_lnk( 'icedyn_adv_umx', ztu2, 'T', 1.0_wp )
      !
      !                                                     !--  BiLaplacian in i-direction  --!
      DO jl = 1, jpl
         DO_2D( 1, 0, kloop, kloop )                  ! Third derivative
            ztu3(ji,jj,jl) = ( ztu2(ji+1,jj,jl) - ztu2(ji,jj,jl) ) * r1_e1u(ji,jj) * umask(ji,jj,1)
         END_2D
         DO_2D( 0, 0, kloop, kloop )                  ! Fourth derivative
            ztu4(ji,jj,jl) = ( ztu3(ji,jj,jl) - ztu3(ji-1,jj,jl) ) * r1_e1t(ji,jj)
         END_2D
!!$         DO jj = 2, jpjm1         ! Third derivative
!!$            DO ji = 1, jpim1
!!$               ztu3(ji,jj,jl) = ( ztu2(ji+1,jj,jl) - ztu2(ji,jj,jl) ) * r1_e1u(ji,jj) * umask(ji,jj,1)
!!$            END DO
!!$            !                     ! Fourth derivative
!!$            DO ji = 2, jpim1
!!$               ztu4(ji,jj,jl) = ( ztu3(ji,jj,jl) - ztu3(ji-1,jj,jl) ) * r1_e1t(ji,jj)
!!$            END DO
!!$         END DO
      END DO
      !
      !
      SELECT CASE (kn_umx )
      !
      CASE( 1 )                                                   !==  1st order central TIM  ==! (Eq. 21)
         !
         DO jl = 1, jpl
            DO_2D( 1, 0, kloop, kloop )
               pt_u(ji,jj,jl) = 0.5_wp * umask(ji,jj,1) * (                                pt(ji+1,jj,jl) + pt(ji,jj,jl)   &
                  &                                         - SIGN( 1._wp, pu(ji,jj) ) * ( pt(ji+1,jj,jl) - pt(ji,jj,jl) ) )
            END_2D
         END DO
         !
      CASE( 2 )                                                   !==  2nd order central TIM  ==! (Eq. 23)
         !
         DO jl = 1, jpl
            DO_2D( 1, 0, kloop, kloop )
               zcu  = pu(ji,jj) * r1_e2u(ji,jj) * pdt * r1_e1u(ji,jj)
               pt_u(ji,jj,jl) = 0.5_wp * umask(ji,jj,1) * (                                pt(ji+1,jj,jl) + pt(ji,jj,jl)   &
                  &                                                            - zcu   * ( pt(ji+1,jj,jl) - pt(ji,jj,jl) ) )
            END_2D
         END DO
         !
      CASE( 3 )                                                   !==  3rd order central TIM  ==! (Eq. 24)
         !
         DO jl = 1, jpl
            DO_2D( 1, 0, kloop, kloop )
               zcu  = pu(ji,jj) * r1_e2u(ji,jj) * pdt * r1_e1u(ji,jj)
               zdx2 = e1u(ji,jj) * e1u(ji,jj)
!!rachid          zdx2 = e1u(ji,jj) * e1t(ji,jj)
               pt_u(ji,jj,jl) = 0.5_wp * umask(ji,jj,1) * (         (                      pt  (ji+1,jj,jl) + pt  (ji,jj,jl)     &
                  &                                                            - zcu   * ( pt  (ji+1,jj,jl) - pt  (ji,jj,jl) ) ) &
                  &        + z1_6 * zdx2 * ( zcu*zcu - 1._wp ) *    (                      ztu2(ji+1,jj,jl) + ztu2(ji,jj,jl)     &
                  &                                               - SIGN( 1._wp, zcu ) * ( ztu2(ji+1,jj,jl) - ztu2(ji,jj,jl) ) ) )
            END_2D
         END DO
         !
      CASE( 4 )                                                   !==  4th order central TIM  ==! (Eq. 27)
         !
         DO jl = 1, jpl
            DO_2D( 1, 0, kloop, kloop )
               zcu  = pu(ji,jj) * r1_e2u(ji,jj) * pdt * r1_e1u(ji,jj)
               zdx2 = e1u(ji,jj) * e1u(ji,jj)
!!rachid          zdx2 = e1u(ji,jj) * e1t(ji,jj)
               pt_u(ji,jj,jl) = 0.5_wp * umask(ji,jj,1) * (         (                      pt  (ji+1,jj,jl) + pt  (ji,jj,jl)     &
                  &                                                            - zcu   * ( pt  (ji+1,jj,jl) - pt  (ji,jj,jl) ) ) &
                  &        + z1_6 * zdx2 * ( zcu*zcu - 1._wp ) *    (                      ztu2(ji+1,jj,jl) + ztu2(ji,jj,jl)     &
                  &                                                   - 0.5_wp * zcu   * ( ztu2(ji+1,jj,jl) - ztu2(ji,jj,jl) ) ) )
            END_2D
         END DO
         !
      CASE( 5 )                                                   !==  5th order central TIM  ==! (Eq. 29)
         !
         CALL lbc_lnk( 'icedyn_adv_umx', ztu4, 'T', 1.0_wp )
         !
         DO jl = 1, jpl
            DO_2D( 1, 0, kloop, kloop )
               zcu  = pu(ji,jj) * r1_e2u(ji,jj) * pdt * r1_e1u(ji,jj)
               zdx2 = e1u(ji,jj) * e1u(ji,jj)
!!rachid          zdx2 = e1u(ji,jj) * e1t(ji,jj)
               zdx4 = zdx2 * zdx2
               pt_u(ji,jj,jl) = 0.5_wp * umask(ji,jj,1) * (        (                       pt  (ji+1,jj,jl) + pt  (ji,jj,jl)     &
                  &                                                            - zcu   * ( pt  (ji+1,jj,jl) - pt  (ji,jj,jl) ) ) &
                  &        + z1_6   * zdx2 * ( zcu*zcu - 1._wp ) * (                       ztu2(ji+1,jj,jl) + ztu2(ji,jj,jl)     &
                  &                                                   - 0.5_wp * zcu   * ( ztu2(ji+1,jj,jl) - ztu2(ji,jj,jl) ) ) &
                  &        + z1_120 * zdx4 * ( zcu*zcu - 1._wp ) * ( zcu*zcu - 4._wp ) * ( ztu4(ji+1,jj,jl) + ztu4(ji,jj,jl)     &
                  &                                               - SIGN( 1._wp, zcu ) * ( ztu4(ji+1,jj,jl) - ztu4(ji,jj,jl) ) ) )
            END_2D
         END DO
         !
      END SELECT
      !
      ! if pt at u-point is negative then use the upstream value
      !    this should not be necessary if a proper sea-ice mask is set in Ultimate
      !    to degrade the order of the scheme when necessary (for ex. at the ice edge)
      IF( ll_neg ) THEN
         DO jl = 1, jpl
            DO_2D( 1, 0, kloop, kloop )
               IF( pt_u(ji,jj,jl) < 0._wp .OR. ( imsk_small(ji,jj,jl) == 0 .AND. pamsk == 0. ) ) THEN
                  pt_u(ji,jj,jl) = 0.5_wp * umask(ji,jj,1) * (                                pt(ji+1,jj,jl) + pt(ji,jj,jl)   &
                     &                                         - SIGN( 1._wp, pu(ji,jj) ) * ( pt(ji+1,jj,jl) - pt(ji,jj,jl) ) )
               ENDIF
            END_2D
         END DO
      ENDIF
      !                                                     !-- High order flux in i-direction  --!
      DO jl = 1, jpl
         DO_2D( 1, 0, 0, 0 )
            pfu_ho(ji,jj,jl) = pu(ji,jj) * pt_u(ji,jj,jl)
         END_2D
      END DO
      !
   END SUBROUTINE ultimate_x