Skip to content
Snippets Groups Projects
icedyn_rhg_eap.F90 93.3 KiB
Newer Older
Guillaume Samson's avatar
Guillaume Samson committed
MODULE icedyn_rhg_eap
   !!======================================================================
   !!                     ***  MODULE  icedyn_rhg_eap  ***
   !!   Sea-Ice dynamics : rheology Elasto-Viscous-Plastic
   !!======================================================================
   !! History :   -   !  2007-03  (M.A. Morales Maqueda, S. Bouillon) Original code
   !!            3.0  !  2008-03  (M. Vancoppenolle) adaptation to new model
   !!             -   !  2008-11  (M. Vancoppenolle, S. Bouillon, Y. Aksenov) add surface tilt in ice rheolohy
   !!            3.3  !  2009-05  (G.Garric)    addition of the evp case
   !!            3.4  !  2011-01  (A. Porter)   dynamical allocation
   !!            3.5  !  2012-08  (R. Benshila) AGRIF
   !!            3.6  !  2016-06  (C. Rousset)  Rewriting + landfast ice + mEVP (Bouillon 2013)
   !!            3.7  !  2017     (C. Rousset)  add aEVP (Kimmritz 2016-2017)
   !!            4.0  !  2018     (many people) SI3 [aka Sea Ice cube]
   !!                 !  2019     (S. Rynders, Y. Aksenov, C. Rousset)  change into eap rheology from
   !!                                           CICE code (Tsamados, Heorton)
   !!----------------------------------------------------------------------
#if defined key_si3
   !!----------------------------------------------------------------------
   !!   'key_si3'                                       SI3 sea-ice model
   !!----------------------------------------------------------------------
   !!   ice_dyn_rhg_eap : computes ice velocities from EVP rheology
   !!   rhg_eap_rst     : read/write EVP fields in ice restart
   !!----------------------------------------------------------------------
   USE phycst         ! Physical constant
   USE dom_oce        ! Ocean domain
   USE sbc_oce , ONLY : ln_ice_embd, nn_fsbc, ssh_m
   USE sbc_ice , ONLY : utau_ice, vtau_ice, snwice_mass, snwice_mass_b
   USE ice            ! sea-ice: ice variables
   USE icevar         ! ice_var_sshdyn
   USE icedyn_rdgrft  ! sea-ice: ice strength
   USE bdy_oce , ONLY : ln_bdy
   USE bdyice
#if defined key_agrif
   USE agrif_ice_interp
#endif
   !
   USE in_out_manager ! I/O manager
   USE iom            ! I/O manager library
   USE lib_mpp        ! MPP library
   USE lib_fortran    ! fortran utilities (glob_sum + no signed zero)
   USE lbclnk         ! lateral boundary conditions (or mpp links)
   USE prtctl         ! Print control

   USE netcdf         ! NetCDF library for convergence test
   IMPLICIT NONE
   PRIVATE

   PUBLIC   ice_dyn_rhg_eap   ! called by icedyn_rhg.F90
   PUBLIC   rhg_eap_rst       ! called by icedyn_rhg.F90

   REAL(wp), PARAMETER ::   pphi = 3.141592653589793_wp/12._wp    ! diamond shaped floe smaller angle (default phi = 30 deg)

   ! look-up table for calculating structure tensor
   INTEGER, PARAMETER ::   nx_yield = 41
   INTEGER, PARAMETER ::   ny_yield = 41
   INTEGER, PARAMETER ::   na_yield = 21

   REAL(wp), DIMENSION(nx_yield, ny_yield, na_yield) ::   s11r, s12r, s22r, s11s, s12s, s22s
   REAL(wp), DIMENSION(:,:), ALLOCATABLE ::   fimask   ! mask at F points for the ice

   !! for convergence tests
   INTEGER ::   ncvgid   ! netcdf file id
   INTEGER ::   nvarid   ! netcdf variable id

   !! * Substitutions
#  include "do_loop_substitute.h90"
#  include "domzgr_substitute.h90"
   !!----------------------------------------------------------------------
   !! NEMO/ICE 4.0 , NEMO Consortium (2018)
   !! $Id: icedyn_rhg_eap.F90 11536 2019-09-11 13:54:18Z smasson $
   !! Software governed by the CeCILL license (see ./LICENSE)
   !!----------------------------------------------------------------------
CONTAINS

   SUBROUTINE ice_dyn_rhg_eap( kt, Kmm, pstress1_i, pstress2_i, pstress12_i, pshear_i, pdivu_i, pdelta_i, paniso_11, paniso_12, prdg_conv )
      !!-------------------------------------------------------------------
      !!                 ***  SUBROUTINE ice_dyn_rhg_eap  ***
      !!                             EAP-C-grid
      !!
      !! ** purpose : determines sea ice drift from wind stress, ice-ocean
      !!  stress and sea-surface slope. Ice-ice interaction is described by
      !!  a non-linear elasto-anisotropic-plastic (EAP) law including shear
      !!  strength and a bulk rheology .
      !!
      !!  The points in the C-grid look like this, dear reader
      !!
      !!                              (ji,jj)
      !!                                 |
      !!                                 |
      !!                      (ji-1,jj)  |  (ji,jj)
      !!                             ---------
      !!                            |         |
      !!                            | (ji,jj) |------(ji,jj)
      !!                            |         |
      !!                             ---------
      !!                     (ji-1,jj-1)     (ji,jj-1)
      !!
      !! ** Inputs  : - wind forcing (stress), oceanic currents
      !!                ice total volume (vt_i) per unit area
      !!                snow total volume (vt_s) per unit area
      !!
      !! ** Action  : - compute u_ice, v_ice : the components of the
      !!                sea-ice velocity vector
      !!              - compute delta_i, shear_i, divu_i, which are inputs
      !!                of the ice thickness distribution
      !!
      !! ** Steps   : 0) compute mask at F point
      !!              1) Compute ice snow mass, ice strength
      !!              2) Compute wind, oceanic stresses, mass terms and
      !!                 coriolis terms of the momentum equation
      !!              3) Solve the momentum equation (iterative procedure)
      !!              4) Recompute delta, shear and divergence
      !!                 (which are inputs of the ITD) & store stress
      !!                 for the next time step
      !!              5) Diagnostics including charge ellipse
      !!
      !! ** Notes   : There is the possibility to use aEVP from the nice work of Kimmritz et al. (2016 & 2017)
      !!              by setting up ln_aEVP=T (i.e. changing alpha and beta parameters).
      !!              This is an upgraded version of mEVP from Bouillon et al. 2013
      !!              (i.e. more stable and better convergence)
      !!
      !! References : Hunke and Dukowicz, JPO97
      !!              Bouillon et al., Ocean Modelling 2009
      !!              Bouillon et al., Ocean Modelling 2013
      !!              Kimmritz et al., Ocean Modelling 2016 & 2017
      !!-------------------------------------------------------------------
      INTEGER                 , INTENT(in   ) ::   kt                                    ! time step
      INTEGER                 , INTENT(in   ) ::   Kmm                                   ! ocean time level index
      REAL(wp), DIMENSION(:,:), INTENT(inout) ::   pstress1_i, pstress2_i, pstress12_i   !
      REAL(wp), DIMENSION(:,:), INTENT(  out) ::   pshear_i  , pdivu_i   , pdelta_i      !
      REAL(wp), DIMENSION(:,:), INTENT(inout) ::   paniso_11 , paniso_12                 ! structure tensor components
      REAL(wp), DIMENSION(:,:), INTENT(inout) ::   prdg_conv                             ! for ridging
      !!
      INTEGER ::   ji, jj       ! dummy loop indices
      INTEGER ::   jter         ! local integers
      !
      REAL(wp) ::   zrhoco                                              ! rau0 * rn_cio
      REAL(wp) ::   zdtevp, z1_dtevp                                    ! time step for subcycling
      REAL(wp) ::   ecc2, z1_ecc2                                       ! square of yield ellipse eccenticity
      REAL(wp) ::   zalph1, z1_alph1, zalph2, z1_alph2                  ! alpha coef from Bouillon 2009 or Kimmritz 2017
      REAl(wp) ::   zbetau, zbetav
      REAL(wp) ::   zm1, zm2, zm3, zmassU, zmassV, zvU, zvV             ! ice/snow mass and volume
      REAL(wp) ::   zds2, zdt, zdt2, zdiv, zdiv2, zdsT                  ! temporary scalars
      REAL(wp) ::   zTauO, zTauB, zRHS, zvel                            ! temporary scalars
      REAL(wp) ::   zkt                                                 ! isotropic tensile strength for landfast ice
      REAL(wp) ::   zvCr                                                ! critical ice volume above which ice is landfast
      !
      REAL(wp) ::   zintb, zintn                                        ! dummy argument
      REAL(wp) ::   zfac_x, zfac_y
      REAL(wp) ::   zshear, zdum1, zdum2
      REAL(wp) ::   zstressptmp, zstressmtmp, zstress12tmpF             ! anisotropic stress tensor components
      REAL(wp) ::   zalphar, zalphas                                    ! for mechanical redistribution
      REAL(wp) ::   zmresult11, zmresult12, z1dtevpkth, zp5kth, z1_dtevp_A  ! for structure tensor evolution
      !
      REAL(wp), DIMENSION(jpi,jpj) ::   zstress12tmp                    ! anisotropic stress tensor component for regridding
      REAL(wp), DIMENSION(jpi,jpj) ::   zyield11, zyield22, zyield12    ! yield surface tensor for history
      REAL(wp), DIMENSION(jpi,jpj) ::   zdelta, zp_delt                 ! delta and P/delta at T points
      REAL(wp), DIMENSION(jpi,jpj) ::   zten_i                          ! tension
      REAL(wp), DIMENSION(jpi,jpj) ::   zbeta                           ! beta coef from Kimmritz 2017
      !
      REAL(wp), DIMENSION(jpi,jpj) ::   zdt_m                           ! (dt / ice-snow_mass) on T points
      REAL(wp), DIMENSION(jpi,jpj) ::   zaU  , zaV                      ! ice fraction on U/V points
      REAL(wp), DIMENSION(jpi,jpj) ::   zmU_t, zmV_t                    ! (ice-snow_mass / dt) on U/V points
      REAL(wp), DIMENSION(jpi,jpj) ::   zmf                             ! coriolis parameter at T points
      REAL(wp), DIMENSION(jpi,jpj) ::   v_oceU, u_oceV, v_iceU, u_iceV  ! ocean/ice u/v component on V/U points
      !
      REAL(wp), DIMENSION(jpi,jpj) ::   zds                             ! shear
      REAL(wp), DIMENSION(jpi,jpj) ::   zs1, zs2, zs12                  ! stress tensor components
      REAL(wp), DIMENSION(jpi,jpj) ::   zsshdyn                         ! array used for the calculation of ice surface slope:
      !                                                                 !    ocean surface (ssh_m) if ice is not embedded
      !                                                                 !    ice bottom surface if ice is embedded
      REAL(wp), DIMENSION(jpi,jpj) ::   zfU  , zfV                      ! internal stresses
      REAL(wp), DIMENSION(jpi,jpj) ::   zspgU, zspgV                    ! surface pressure gradient at U/V points
      REAL(wp), DIMENSION(jpi,jpj) ::   zCorU, zCorV                    ! Coriolis stress array
      REAL(wp), DIMENSION(jpi,jpj) ::   ztaux_ai, ztauy_ai              ! ice-atm. stress at U-V points
      REAL(wp), DIMENSION(jpi,jpj) ::   ztaux_oi, ztauy_oi              ! ice-ocean stress at U-V points
      REAL(wp), DIMENSION(jpi,jpj) ::   ztaux_bi, ztauy_bi              ! ice-OceanBottom stress at U-V points (landfast)
      REAL(wp), DIMENSION(jpi,jpj) ::   ztaux_base, ztauy_base          ! ice-bottom stress at U-V points (landfast)
      !
      REAL(wp), DIMENSION(jpi,jpj) ::   zmsk00, zmsk15
      REAL(wp), DIMENSION(jpi,jpj) ::   zmsk01x, zmsk01y                ! dummy arrays
      REAL(wp), DIMENSION(jpi,jpj) ::   zmsk00x, zmsk00y                ! mask for ice presence

      REAL(wp), PARAMETER          ::   zepsi  = 1.0e-20_wp             ! tolerance parameter
      REAL(wp), PARAMETER          ::   zmmin  = 1._wp                  ! ice mass (kg/m2)  below which ice velocity becomes very small
      REAL(wp), PARAMETER          ::   zamin  = 0.001_wp               ! ice concentration below which ice velocity becomes very small
      !! --- check convergence
      REAL(wp), DIMENSION(jpi,jpj) ::   zu_ice, zv_ice
      !! --- diags
      REAL(wp) ::   zsig1, zsig2, zsig12, zfac, z1_strength
      REAL(wp), ALLOCATABLE, DIMENSION(:,:) ::   zsig_I, zsig_II, zsig1_p, zsig2_p
      !! --- SIMIP diags
      REAL(wp), ALLOCATABLE, DIMENSION(:,:) ::   zdiag_xmtrp_ice ! X-component of ice mass transport (kg/s)
      REAL(wp), ALLOCATABLE, DIMENSION(:,:) ::   zdiag_ymtrp_ice ! Y-component of ice mass transport (kg/s)
      REAL(wp), ALLOCATABLE, DIMENSION(:,:) ::   zdiag_xmtrp_snw ! X-component of snow mass transport (kg/s)
      REAL(wp), ALLOCATABLE, DIMENSION(:,:) ::   zdiag_ymtrp_snw ! Y-component of snow mass transport (kg/s)
      REAL(wp), ALLOCATABLE, DIMENSION(:,:) ::   zdiag_xatrp     ! X-component of area transport (m2/s)
      REAL(wp), ALLOCATABLE, DIMENSION(:,:) ::   zdiag_yatrp     ! Y-component of area transport (m2/s)
      !!-------------------------------------------------------------------
Guillaume Samson's avatar
Guillaume Samson committed
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717

      IF( kt == nit000 .AND. lwp )   WRITE(numout,*) '-- ice_dyn_rhg_eap: EAP sea-ice rheology'
      !
      ! for diagnostics and convergence tests
      DO_2D( 1, 1, 1, 1 )
         zmsk00(ji,jj) = MAX( 0._wp , SIGN( 1._wp , at_i(ji,jj) - epsi06  ) ) ! 1 if ice    , 0 if no ice
      END_2D
      IF( nn_rhg_chkcvg > 0 ) THEN
         DO_2D( 1, 1, 1, 1 )
            zmsk15(ji,jj) = MAX( 0._wp , SIGN( 1._wp , at_i(ji,jj) - 0.15_wp ) ) ! 1 if 15% ice, 0 if less
         END_2D
      ENDIF
      !
      !------------------------------------------------------------------------------!
      ! 0) mask at F points for the ice
      !------------------------------------------------------------------------------!
      IF( kt == nit000 ) THEN
         ! ocean/land mask
         ALLOCATE( fimask(jpi,jpj) )
         IF( rn_ishlat == 0._wp ) THEN
            DO_2D( 0, 0, 0, 0 )
               fimask(ji,jj) = tmask(ji,jj,1) * tmask(ji+1,jj,1) * tmask(ji,jj+1,1) * tmask(ji+1,jj+1,1)
            END_2D
         ELSE
            DO_2D( 0, 0, 0, 0 )
               fimask(ji,jj) = tmask(ji,jj,1) * tmask(ji+1,jj,1) * tmask(ji,jj+1,1) * tmask(ji+1,jj+1,1)
               ! Lateral boundary conditions on velocity (modify fimask)
               IF( fimask(ji,jj) == 0._wp ) THEN
                  fimask(ji,jj) = rn_ishlat * MIN( 1._wp , MAX( umask(ji,jj,1), umask(ji,jj+1,1), &
                     &                                          vmask(ji,jj,1), vmask(ji+1,jj,1) ) )
               ENDIF
            END_2D
         ENDIF
         CALL lbc_lnk( 'icedyn_rhg_eap', fimask, 'F', 1.0_wp )
      ENDIF

      !------------------------------------------------------------------------------!
      ! 1) define some variables and initialize arrays
      !------------------------------------------------------------------------------!
      zrhoco = rho0 * rn_cio

      ! ecc2: square of yield ellipse eccenticrity
      ecc2    = rn_ecc * rn_ecc
      z1_ecc2 = 1._wp / ecc2

      ! alpha parameters (Bouillon 2009)
      IF( .NOT. ln_aEVP ) THEN
         zdtevp   = rDt_ice / REAL( nn_nevp )
         zalph1 =   2._wp * rn_relast * REAL( nn_nevp )
         zalph2 = zalph1 * z1_ecc2

         z1_alph1 = 1._wp / ( zalph1 + 1._wp )
         z1_alph2 = 1._wp / ( zalph2 + 1._wp )
      ELSE
         zdtevp   = rdt_ice
         ! zalpha parameters set later on adaptatively
      ENDIF
      z1_dtevp = 1._wp / zdtevp

      ! Initialise stress tensor
      zs1 (:,:) = pstress1_i (:,:)
      zs2 (:,:) = pstress2_i (:,:)
      zs12(:,:) = pstress12_i(:,:)

      ! constants for structure tensor
      z1_dtevp_A = z1_dtevp/10.0_wp
      z1dtevpkth = 1._wp / (z1_dtevp_A + 0.00002_wp)
      zp5kth = 0.5_wp * 0.00002_wp

      ! Ice strength
      CALL ice_strength

      ! landfast param from Lemieux(2016): add isotropic tensile strength (following Konig Beatty and Holland, 2010)
      IF( ln_landfast_L16 ) THEN   ;   zkt = rn_lf_tensile
      ELSE                         ;   zkt = 0._wp
      ENDIF
      !
      !------------------------------------------------------------------------------!
      ! 2) Wind / ocean stress, mass terms, coriolis terms
      !------------------------------------------------------------------------------!
      ! sea surface height
      !    embedded sea ice: compute representative ice top surface
      !    non-embedded sea ice: use ocean surface for slope calculation
      zsshdyn(:,:) = ice_var_sshdyn( ssh_m, snwice_mass, snwice_mass_b)

      DO_2D( 0, 0, 0, 0 )

         ! ice fraction at U-V points
         zaU(ji,jj) = 0.5_wp * ( at_i(ji,jj) * e1e2t(ji,jj) + at_i(ji+1,jj) * e1e2t(ji+1,jj) ) * r1_e1e2u(ji,jj) * umask(ji,jj,1)
         zaV(ji,jj) = 0.5_wp * ( at_i(ji,jj) * e1e2t(ji,jj) + at_i(ji,jj+1) * e1e2t(ji,jj+1) ) * r1_e1e2v(ji,jj) * vmask(ji,jj,1)

         ! Ice/snow mass at U-V points
         zm1 = ( rhos * vt_s(ji  ,jj  ) + rhoi * vt_i(ji  ,jj  ) )
         zm2 = ( rhos * vt_s(ji+1,jj  ) + rhoi * vt_i(ji+1,jj  ) )
         zm3 = ( rhos * vt_s(ji  ,jj+1) + rhoi * vt_i(ji  ,jj+1) )
         zmassU = 0.5_wp * ( zm1 * e1e2t(ji,jj) + zm2 * e1e2t(ji+1,jj) ) * r1_e1e2u(ji,jj) * umask(ji,jj,1)
         zmassV = 0.5_wp * ( zm1 * e1e2t(ji,jj) + zm3 * e1e2t(ji,jj+1) ) * r1_e1e2v(ji,jj) * vmask(ji,jj,1)

         ! Ocean currents at U-V points
         v_oceU(ji,jj)   = 0.25_wp * ( v_oce(ji,jj) + v_oce(ji,jj-1) + v_oce(ji+1,jj) + v_oce(ji+1,jj-1) ) * umask(ji,jj,1)
         u_oceV(ji,jj)   = 0.25_wp * ( u_oce(ji,jj) + u_oce(ji-1,jj) + u_oce(ji,jj+1) + u_oce(ji-1,jj+1) ) * vmask(ji,jj,1)

         ! Coriolis at T points (m*f)
         zmf(ji,jj)      = zm1 * ff_t(ji,jj)

         ! dt/m at T points (for alpha and beta coefficients)
         zdt_m(ji,jj)    = zdtevp / MAX( zm1, zmmin )

         ! m/dt
         zmU_t(ji,jj)    = zmassU * z1_dtevp
         zmV_t(ji,jj)    = zmassV * z1_dtevp

         ! Drag ice-atm.
         ztaux_ai(ji,jj) = zaU(ji,jj) * utau_ice(ji,jj)
         ztauy_ai(ji,jj) = zaV(ji,jj) * vtau_ice(ji,jj)

         ! Surface pressure gradient (- m*g*GRAD(ssh)) at U-V points
         zspgU(ji,jj)    = - zmassU * grav * ( zsshdyn(ji+1,jj) - zsshdyn(ji,jj) ) * r1_e1u(ji,jj)
         zspgV(ji,jj)    = - zmassV * grav * ( zsshdyn(ji,jj+1) - zsshdyn(ji,jj) ) * r1_e2v(ji,jj)

         ! masks
         zmsk00x(ji,jj) = 1._wp - MAX( 0._wp, SIGN( 1._wp, -zmassU ) )  ! 0 if no ice
         zmsk00y(ji,jj) = 1._wp - MAX( 0._wp, SIGN( 1._wp, -zmassV ) )  ! 0 if no ice

         ! switches
         IF( zmassU <= zmmin .AND. zaU(ji,jj) <= zamin ) THEN   ;   zmsk01x(ji,jj) = 0._wp
         ELSE                                                   ;   zmsk01x(ji,jj) = 1._wp   ;   ENDIF
         IF( zmassV <= zmmin .AND. zaV(ji,jj) <= zamin ) THEN   ;   zmsk01y(ji,jj) = 0._wp
         ELSE                                                   ;   zmsk01y(ji,jj) = 1._wp   ;   ENDIF

      END_2D
      CALL lbc_lnk( 'icedyn_rhg_eap', zmf, 'T', 1.0_wp, zdt_m, 'T', 1.0_wp )
      !
      !                                  !== Landfast ice parameterization ==!
      !
      IF( ln_landfast_L16 ) THEN         !-- Lemieux 2016
         DO_2D( 0, 0, 0, 0 )
            ! ice thickness at U-V points
            zvU = 0.5_wp * ( vt_i(ji,jj) * e1e2t(ji,jj) + vt_i(ji+1,jj) * e1e2t(ji+1,jj) ) * r1_e1e2u(ji,jj) * umask(ji,jj,1)
            zvV = 0.5_wp * ( vt_i(ji,jj) * e1e2t(ji,jj) + vt_i(ji,jj+1) * e1e2t(ji,jj+1) ) * r1_e1e2v(ji,jj) * vmask(ji,jj,1)
            ! ice-bottom stress at U points
            zvCr = zaU(ji,jj) * rn_lf_depfra * hu(ji,jj,Kmm) * ( 1._wp - icb_mask(ji,jj) ) ! if grounded icebergs are read: ocean depth = 0
            ztaux_base(ji,jj) = - rn_lf_bfr * MAX( 0._wp, zvU - zvCr ) * EXP( -rn_crhg * ( 1._wp - zaU(ji,jj) ) )
            ! ice-bottom stress at V points
            zvCr = zaV(ji,jj) * rn_lf_depfra * hv(ji,jj,Kmm) * ( 1._wp - icb_mask(ji,jj) ) ! if grounded icebergs are read: ocean depth = 0
            ztauy_base(ji,jj) = - rn_lf_bfr * MAX( 0._wp, zvV - zvCr ) * EXP( -rn_crhg * ( 1._wp - zaV(ji,jj) ) )
            ! ice_bottom stress at T points
            zvCr = at_i(ji,jj) * rn_lf_depfra * ht(ji,jj) * ( 1._wp - icb_mask(ji,jj) )    ! if grounded icebergs are read: ocean depth = 0
            tau_icebfr(ji,jj) = - rn_lf_bfr * MAX( 0._wp, vt_i(ji,jj) - zvCr ) * EXP( -rn_crhg * ( 1._wp - at_i(ji,jj) ) )
         END_2D
         CALL lbc_lnk( 'icedyn_rhg_eap', tau_icebfr(:,:), 'T', 1.0_wp )
         !
      ELSE                               !-- no landfast
         DO_2D( 0, 0, 0, 0 )
            ztaux_base(ji,jj) = 0._wp
            ztauy_base(ji,jj) = 0._wp
         END_2D
      ENDIF

      !------------------------------------------------------------------------------!
      ! 3) Solution of the momentum equation, iterative procedure
      !------------------------------------------------------------------------------!
      !
      !                                               ! ==================== !
      DO jter = 1 , nn_nevp                           !    loop over jter    !
         !                                            ! ==================== !
         l_full_nf_update = jter == nn_nevp   ! false: disable full North fold update (performances) for iter = 1 to nn_nevp-1
         !
         ! convergence test
         IF( nn_rhg_chkcvg == 1 .OR. nn_rhg_chkcvg == 2  ) THEN
            DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
               zu_ice(ji,jj) = u_ice(ji,jj) * umask(ji,jj,1) ! velocity at previous time step
               zv_ice(ji,jj) = v_ice(ji,jj) * vmask(ji,jj,1)
            END_2D
         ENDIF

         ! --- divergence, tension & shear (Appendix B of Hunke & Dukowicz, 2002) --- !
         DO_2D( 1, 0, 1, 0 )

            ! shear at F points
            zds(ji,jj) = ( ( u_ice(ji,jj+1) * r1_e1u(ji,jj+1) - u_ice(ji,jj) * r1_e1u(ji,jj) ) * e1f(ji,jj) * e1f(ji,jj)   &
               &         + ( v_ice(ji+1,jj) * r1_e2v(ji+1,jj) - v_ice(ji,jj) * r1_e2v(ji,jj) ) * e2f(ji,jj) * e2f(ji,jj)   &
               &         ) * r1_e1e2f(ji,jj) * fimask(ji,jj)

         END_2D

         DO_2D( 0, 0, 0, 0 )

            ! shear**2 at T points (doc eq. A16)
            zds2 = ( zds(ji,jj  ) * zds(ji,jj  ) * e1e2f(ji,jj  ) + zds(ji-1,jj  ) * zds(ji-1,jj  ) * e1e2f(ji-1,jj  )  &
               &   + zds(ji,jj-1) * zds(ji,jj-1) * e1e2f(ji,jj-1) + zds(ji-1,jj-1) * zds(ji-1,jj-1) * e1e2f(ji-1,jj-1)  &
               &   ) * 0.25_wp * r1_e1e2t(ji,jj)

            ! divergence at T points
            zdiv  = ( e2u(ji,jj) * u_ice(ji,jj) - e2u(ji-1,jj) * u_ice(ji-1,jj)   &
               &    + e1v(ji,jj) * v_ice(ji,jj) - e1v(ji,jj-1) * v_ice(ji,jj-1)   &
               &    ) * r1_e1e2t(ji,jj)
            zdiv2 = zdiv * zdiv

            ! tension at T points
            zdt  = ( ( u_ice(ji,jj) * r1_e2u(ji,jj) - u_ice(ji-1,jj) * r1_e2u(ji-1,jj) ) * e2t(ji,jj) * e2t(ji,jj)   &
               &   - ( v_ice(ji,jj) * r1_e1v(ji,jj) - v_ice(ji,jj-1) * r1_e1v(ji,jj-1) ) * e1t(ji,jj) * e1t(ji,jj)   &
               &   ) * r1_e1e2t(ji,jj)
            zdt2 = zdt * zdt

            ! delta at T points
            zdelta(ji,jj) = SQRT( zdiv2 + ( zdt2 + zds2 ) * z1_ecc2 )

         END_2D
         CALL lbc_lnk( 'icedyn_rhg_eap', zdelta, 'T', 1.0_wp )

         ! P/delta at T points
         DO_2D( 1, 1, 1, 1 )
            zp_delt(ji,jj) = strength(ji,jj) / ( zdelta(ji,jj) + rn_creepl )
         END_2D

         DO_2D( 0, 1, 0, 1 )   ! loop ends at jpi,jpj so that no lbc_lnk are needed for zs1 and zs2

             ! shear at T points
            zdsT = ( zds(ji,jj  ) * e1e2f(ji,jj  ) + zds(ji-1,jj  ) * e1e2f(ji-1,jj  )  &
               &   + zds(ji,jj-1) * e1e2f(ji,jj-1) + zds(ji-1,jj-1) * e1e2f(ji-1,jj-1)  &
               &   ) * 0.25_wp * r1_e1e2t(ji,jj)

           ! divergence at T points (duplication to avoid communications)
            zdiv  = ( e2u(ji,jj) * u_ice(ji,jj) - e2u(ji-1,jj) * u_ice(ji-1,jj)   &
               &    + e1v(ji,jj) * v_ice(ji,jj) - e1v(ji,jj-1) * v_ice(ji,jj-1)   &
               &    ) * r1_e1e2t(ji,jj)

            ! tension at T points (duplication to avoid communications)
            zdt  = ( ( u_ice(ji,jj) * r1_e2u(ji,jj) - u_ice(ji-1,jj) * r1_e2u(ji-1,jj) ) * e2t(ji,jj) * e2t(ji,jj)   &
               &   - ( v_ice(ji,jj) * r1_e1v(ji,jj) - v_ice(ji,jj-1) * r1_e1v(ji,jj-1) ) * e1t(ji,jj) * e1t(ji,jj)   &
               &   ) * r1_e1e2t(ji,jj)

            ! --- anisotropic stress calculation --- !
            CALL update_stress_rdg (jter, nn_nevp, zdiv, zdt, zdsT, paniso_11(ji,jj), paniso_12(ji,jj), &
                                    zstressptmp, zstressmtmp, zstress12tmp(ji,jj), strength(ji,jj), zalphar, zalphas)

            ! structure tensor update
               CALL calc_ffrac(zstressptmp, zstressmtmp, zstress12tmp(ji,jj), paniso_11(ji,jj), paniso_12(ji,jj), zmresult11,  zmresult12)

               paniso_11(ji,jj) = (paniso_11(ji,jj)  + 0.5*2.e-5*zdtevp + zmresult11*zdtevp) / (1. + 2.e-5*zdtevp) ! implicit
               paniso_12(ji,jj) = (paniso_12(ji,jj)                     + zmresult12*zdtevp) / (1. + 2.e-5*zdtevp) ! implicit

            IF (jter == nn_nevp) THEN
               zyield11(ji,jj) = 0.5_wp * (zstressptmp + zstressmtmp)
               zyield22(ji,jj) = 0.5_wp * (zstressptmp - zstressmtmp)
               zyield12(ji,jj) = zstress12tmp(ji,jj)
               prdg_conv(ji,jj) = -min( zalphar, 0._wp)
            ENDIF

            ! alpha for aEVP
            !   gamma = 0.5*P/(delta+creepl) * (c*pi)**2/Area * dt/m
            !   alpha = beta = sqrt(4*gamma)
            IF( ln_aEVP ) THEN
               zalph1   = MAX( 50._wp, rpi * SQRT( 0.5_wp * zp_delt(ji,jj) * r1_e1e2t(ji,jj) * zdt_m(ji,jj) ) )
               z1_alph1 = 1._wp / ( zalph1 + 1._wp )
               zalph2   = zalph1
               z1_alph2 = z1_alph1
               ! explicit:
               ! z1_alph1 = 1._wp / zalph1
               ! z1_alph2 = 1._wp / zalph1
               ! zalph1 = zalph1 - 1._wp
               ! zalph2 = zalph1
            ENDIF

            ! stress at T points (zkt/=0 if landfast)
            zs1(ji,jj) = ( zs1(ji,jj) * zalph1 + zstressptmp ) * z1_alph1
            zs2(ji,jj) = ( zs2(ji,jj) * zalph1 + zstressmtmp ) * z1_alph1
         END_2D
         CALL lbc_lnk( 'icedyn_rhg_eap', zstress12tmp, 'T', 1.0_wp , paniso_11, 'T', 1.0_wp , paniso_12, 'T', 1.0_wp)

        ! Save beta at T-points for further computations
         IF( ln_aEVP ) THEN
            DO_2D( 1, 1, 1, 1 )
               zbeta(ji,jj) = MAX( 50._wp, rpi * SQRT( 0.5_wp * zp_delt(ji,jj) * r1_e1e2t(ji,jj) * zdt_m(ji,jj) ) )
            END_2D
         ENDIF

         DO_2D( 1, 0, 1, 0 )
            ! stress12tmp at F points
            zstress12tmpF = ( zstress12tmp(ji,jj+1) * e1e2t(ji,jj+1) + zstress12tmp(ji+1,jj+1) * e1e2t(ji+1,jj+1)  &
               &            + zstress12tmp(ji,jj  ) * e1e2t(ji,jj  ) + zstress12tmp(ji+1,jj  ) * e1e2t(ji+1,jj  )  &
               &            ) * 0.25_wp * r1_e1e2f(ji,jj)

            ! alpha for aEVP
            IF( ln_aEVP ) THEN
               zalph2   = MAX( zbeta(ji,jj), zbeta(ji+1,jj), zbeta(ji,jj+1), zbeta(ji+1,jj+1) )
               z1_alph2 = 1._wp / ( zalph2 + 1._wp )
               ! explicit:
               ! z1_alph2 = 1._wp / zalph2
               ! zalph2 = zalph2 - 1._wp
            ENDIF

            ! stress at F points (zkt/=0 if landfast)
            zs12(ji,jj) = ( zs12(ji,jj) * zalph1 + zstress12tmpF ) * z1_alph1

         END_2D
         CALL lbc_lnk( 'icedyn_rhg_eap', zs1, 'T', 1.0_wp, zs2, 'T', 1.0_wp, zs12, 'F', 1.0_wp )

         ! --- Ice internal stresses (Appendix C of Hunke and Dukowicz, 2002) --- !
         DO_2D( 0, 0, 0, 0 )
            !                   !--- U points
            zfU(ji,jj) = 0.5_wp * ( ( zs1(ji+1,jj) - zs1(ji,jj) ) * e2u(ji,jj)                                             &
               &                  + ( zs2(ji+1,jj) * e2t(ji+1,jj) * e2t(ji+1,jj) - zs2(ji,jj) * e2t(ji,jj) * e2t(ji,jj)    &
               &                    ) * r1_e2u(ji,jj)                                                                      &
               &                  + ( zs12(ji,jj) * e1f(ji,jj) * e1f(ji,jj) - zs12(ji,jj-1) * e1f(ji,jj-1) * e1f(ji,jj-1)  &
               &                    ) * 2._wp * r1_e1u(ji,jj)                                                              &
               &                  ) * r1_e1e2u(ji,jj)
            !
            !                !--- V points
            zfV(ji,jj) = 0.5_wp * ( ( zs1(ji,jj+1) - zs1(ji,jj) ) * e1v(ji,jj)                                             &
               &                  - ( zs2(ji,jj+1) * e1t(ji,jj+1) * e1t(ji,jj+1) - zs2(ji,jj) * e1t(ji,jj) * e1t(ji,jj)    &
               &                    ) * r1_e1v(ji,jj)                                                                      &
               &                  + ( zs12(ji,jj) * e2f(ji,jj) * e2f(ji,jj) - zs12(ji-1,jj) * e2f(ji-1,jj) * e2f(ji-1,jj)  &
               &                    ) * 2._wp * r1_e2v(ji,jj)                                                              &
               &                  ) * r1_e1e2v(ji,jj)
            !
            !                !--- ice currents at U-V point
            v_iceU(ji,jj) = 0.25_wp * ( v_ice(ji,jj) + v_ice(ji,jj-1) + v_ice(ji+1,jj) + v_ice(ji+1,jj-1) ) * umask(ji,jj,1)
            u_iceV(ji,jj) = 0.25_wp * ( u_ice(ji,jj) + u_ice(ji-1,jj) + u_ice(ji,jj+1) + u_ice(ji-1,jj+1) ) * vmask(ji,jj,1)
            !
         END_2D
         !
         ! --- Computation of ice velocity --- !
         !  Bouillon et al. 2013 (eq 47-48) => unstable unless alpha, beta vary as in Kimmritz 2016 & 2017
         !  Bouillon et al. 2009 (eq 34-35) => stable
         IF( MOD(jter,2) == 0 ) THEN ! even iterations
            !
            DO_2D( 0, 0, 0, 0 )
               !                 !--- tau_io/(v_oce - v_ice)
               zTauO = zaV(ji,jj) * zrhoco * SQRT( ( v_ice (ji,jj) - v_oce (ji,jj) ) * ( v_ice (ji,jj) - v_oce (ji,jj) )  &
                  &                              + ( u_iceV(ji,jj) - u_oceV(ji,jj) ) * ( u_iceV(ji,jj) - u_oceV(ji,jj) ) )
               !                 !--- Ocean-to-Ice stress
               ztauy_oi(ji,jj) = zTauO * ( v_oce(ji,jj) - v_ice(ji,jj) )
               !
               !                 !--- tau_bottom/v_ice
               zvel  = 5.e-05_wp + SQRT( v_ice(ji,jj) * v_ice(ji,jj) + u_iceV(ji,jj) * u_iceV(ji,jj) )
               zTauB = ztauy_base(ji,jj) / zvel
               !                 !--- OceanBottom-to-Ice stress
               ztauy_bi(ji,jj) = zTauB * v_ice(ji,jj)
               !
               !                 !--- Coriolis at V-points (energy conserving formulation)
               zCorV(ji,jj)  = - 0.25_wp * r1_e2v(ji,jj) *  &
                  &    ( zmf(ji,jj  ) * ( e2u(ji,jj  ) * u_ice(ji,jj  ) + e2u(ji-1,jj  ) * u_ice(ji-1,jj  ) )  &
                  &    + zmf(ji,jj+1) * ( e2u(ji,jj+1) * u_ice(ji,jj+1) + e2u(ji-1,jj+1) * u_ice(ji-1,jj+1) ) )
               !
               !                 !--- Sum of external forces (explicit solution) = F + tau_ia + Coriolis + spg + tau_io
               zRHS = zfV(ji,jj) + ztauy_ai(ji,jj) + zCorV(ji,jj) + zspgV(ji,jj) + ztauy_oi(ji,jj)
               !
               !                 !--- landfast switch => 0 = static  friction : TauB > RHS & sign(TauB) /= sign(RHS)
               !                                         1 = sliding friction : TauB < RHS
               rswitch = 1._wp - MIN( 1._wp, ABS( SIGN( 1._wp, zRHS + ztauy_base(ji,jj) ) - SIGN( 1._wp, zRHS ) ) )
               !
               IF( ln_aEVP ) THEN !--- ice velocity using aEVP (Kimmritz et al 2016 & 2017)
                  zbetav = MAX( zbeta(ji,jj), zbeta(ji,jj+1) )
                  v_ice(ji,jj) = ( (          rswitch   * ( zmV_t(ji,jj) * ( zbetav * v_ice(ji,jj) + v_ice_b(ji,jj) )         & ! previous velocity
                     &                                    + zRHS + zTauO * v_ice(ji,jj)                                       & ! F + tau_ia + Coriolis + spg + tau_io(only ocean part)
                     &                                    ) / MAX( zepsi, zmV_t(ji,jj) * ( zbetav + 1._wp ) + zTauO - zTauB ) & ! m/dt + tau_io(only ice part) + landfast
                     &            + ( 1._wp - rswitch ) * (  v_ice_b(ji,jj)                                                   &
                     &                                     + v_ice  (ji,jj) * MAX( 0._wp, zbetav - zdtevp * rn_lf_relax )     & ! static friction => slow decrease to v=0
                     &                                    ) / ( zbetav + 1._wp )                                              &
                     &             ) * zmsk01y(ji,jj) + v_oce(ji,jj) * 0.01_wp * ( 1._wp - zmsk01y(ji,jj) )                   & ! v_ice = v_oce/100 if mass < zmmin & conc < zamin
                     &           )   * zmsk00y(ji,jj)
               ELSE               !--- ice velocity using EVP implicit formulation (cf Madec doc & Bouillon 2009)
                  v_ice(ji,jj) = ( (         rswitch   * ( zmV_t(ji,jj)  * v_ice(ji,jj)                                       & ! previous velocity
                     &                                    + zRHS + zTauO * v_ice(ji,jj)                                       & ! F + tau_ia + Coriolis + spg + tau_io(only ocean part)
                     &                                    ) / MAX( zepsi, zmV_t(ji,jj) + zTauO - zTauB )                      & ! m/dt + tau_io(only ice part) + landfast
                     &            + ( 1._wp - rswitch ) *   v_ice(ji,jj) * MAX( 0._wp, 1._wp - zdtevp * rn_lf_relax )         & ! static friction => slow decrease to v=0
                     &              ) * zmsk01y(ji,jj) + v_oce(ji,jj) * 0.01_wp * ( 1._wp - zmsk01y(ji,jj) )                  & ! v_ice = v_oce/100 if mass < zmmin & conc < zamin
                     &            )   * zmsk00y(ji,jj)
               ENDIF
            END_2D
            CALL lbc_lnk( 'icedyn_rhg_eap', v_ice, 'V', -1.0_wp )
            !
#if defined key_agrif
!!          CALL agrif_interp_ice( 'V', jter, nn_nevp )
            CALL agrif_interp_ice( 'V' )
#endif
            IF( ln_bdy )   CALL bdy_ice_dyn( 'V' )
            !
            DO_2D( 0, 0, 0, 0 )
               !                 !--- tau_io/(u_oce - u_ice)
               zTauO = zaU(ji,jj) * zrhoco * SQRT( ( u_ice (ji,jj) - u_oce (ji,jj) ) * ( u_ice (ji,jj) - u_oce (ji,jj) )  &
                  &                              + ( v_iceU(ji,jj) - v_oceU(ji,jj) ) * ( v_iceU(ji,jj) - v_oceU(ji,jj) ) )
               !                 !--- Ocean-to-Ice stress
               ztaux_oi(ji,jj) = zTauO * ( u_oce(ji,jj) - u_ice(ji,jj) )
               !
               !                 !--- tau_bottom/u_ice
               zvel  = 5.e-05_wp + SQRT( v_iceU(ji,jj) * v_iceU(ji,jj) + u_ice(ji,jj) * u_ice(ji,jj) )
               zTauB = ztaux_base(ji,jj) / zvel
               !                 !--- OceanBottom-to-Ice stress
               ztaux_bi(ji,jj) = zTauB * u_ice(ji,jj)
               !
               !                 !--- Coriolis at U-points (energy conserving formulation)
               zCorU(ji,jj)  =   0.25_wp * r1_e1u(ji,jj) *  &
                  &    ( zmf(ji  ,jj) * ( e1v(ji  ,jj) * v_ice(ji  ,jj) + e1v(ji  ,jj-1) * v_ice(ji  ,jj-1) )  &
                  &    + zmf(ji+1,jj) * ( e1v(ji+1,jj) * v_ice(ji+1,jj) + e1v(ji+1,jj-1) * v_ice(ji+1,jj-1) ) )
               !
               !                 !--- Sum of external forces (explicit solution) = F + tau_ia + Coriolis + spg + tau_io
               zRHS = zfU(ji,jj) + ztaux_ai(ji,jj) + zCorU(ji,jj) + zspgU(ji,jj) + ztaux_oi(ji,jj)
               !
               !                 !--- landfast switch => 0 = static  friction : TauB > RHS & sign(TauB) /= sign(RHS)
               !                                         1 = sliding friction : TauB < RHS
               rswitch = 1._wp - MIN( 1._wp, ABS( SIGN( 1._wp, zRHS + ztaux_base(ji,jj) ) - SIGN( 1._wp, zRHS ) ) )
               !
               IF( ln_aEVP ) THEN !--- ice velocity using aEVP (Kimmritz et al 2016 & 2017)
                  zbetau = MAX( zbeta(ji,jj), zbeta(ji+1,jj) )
                  u_ice(ji,jj) = ( (          rswitch   * ( zmU_t(ji,jj) * ( zbetau * u_ice(ji,jj) + u_ice_b(ji,jj) )         & ! previous velocity
                     &                                    + zRHS + zTauO * u_ice(ji,jj)                                       & ! F + tau_ia + Coriolis + spg + tau_io(only ocean part)
                     &                                    ) / MAX( zepsi, zmU_t(ji,jj) * ( zbetau + 1._wp ) + zTauO - zTauB ) & ! m/dt + tau_io(only ice part) + landfast
                     &            + ( 1._wp - rswitch ) * (  u_ice_b(ji,jj)                                                   &
                     &                                     + u_ice  (ji,jj) * MAX( 0._wp, zbetau - zdtevp * rn_lf_relax )     & ! static friction => slow decrease to v=0
                     &                                    ) / ( zbetau + 1._wp )                                              &
                     &             ) * zmsk01x(ji,jj) + u_oce(ji,jj) * 0.01_wp * ( 1._wp - zmsk01x(ji,jj) )                   & ! v_ice = v_oce/100 if mass < zmmin & conc < zamin
                     &           )   * zmsk00x(ji,jj)
               ELSE               !--- ice velocity using EVP implicit formulation (cf Madec doc & Bouillon 2009)
                  u_ice(ji,jj) = ( (         rswitch   * ( zmU_t(ji,jj)  * u_ice(ji,jj)                                       & ! previous velocity
                     &                                    + zRHS + zTauO * u_ice(ji,jj)                                       & ! F + tau_ia + Coriolis + spg + tau_io(only ocean part)
                     &                                    ) / MAX( zepsi, zmU_t(ji,jj) + zTauO - zTauB )                      & ! m/dt + tau_io(only ice part) + landfast
                     &            + ( 1._wp - rswitch ) *   u_ice(ji,jj) * MAX( 0._wp, 1._wp - zdtevp * rn_lf_relax )         & ! static friction => slow decrease to v=0
                     &              ) * zmsk01x(ji,jj) + u_oce(ji,jj) * 0.01_wp * ( 1._wp - zmsk01x(ji,jj) )                  & ! v_ice = v_oce/100 if mass < zmmin & conc < zamin
                     &            )   * zmsk00x(ji,jj)
               ENDIF
            END_2D
            CALL lbc_lnk( 'icedyn_rhg_eap', u_ice, 'U', -1.0_wp )
            !
#if defined key_agrif
!!          CALL agrif_interp_ice( 'U', jter, nn_nevp )
            CALL agrif_interp_ice( 'U' )
#endif
            IF( ln_bdy )   CALL bdy_ice_dyn( 'U' )
            !
         ELSE ! odd iterations
            !
            DO_2D( 0, 0, 0, 0 )
               !                 !--- tau_io/(u_oce - u_ice)
               zTauO = zaU(ji,jj) * zrhoco * SQRT( ( u_ice (ji,jj) - u_oce (ji,jj) ) * ( u_ice (ji,jj) - u_oce (ji,jj) )  &
                  &                              + ( v_iceU(ji,jj) - v_oceU(ji,jj) ) * ( v_iceU(ji,jj) - v_oceU(ji,jj) ) )
               !                 !--- Ocean-to-Ice stress
               ztaux_oi(ji,jj) = zTauO * ( u_oce(ji,jj) - u_ice(ji,jj) )
               !
               !                 !--- tau_bottom/u_ice
               zvel  = 5.e-05_wp + SQRT( v_iceU(ji,jj) * v_iceU(ji,jj) + u_ice(ji,jj) * u_ice(ji,jj) )
               zTauB = ztaux_base(ji,jj) / zvel
               !                 !--- OceanBottom-to-Ice stress
               ztaux_bi(ji,jj) = zTauB * u_ice(ji,jj)
               !
               !                 !--- Coriolis at U-points (energy conserving formulation)
               zCorU(ji,jj)  =   0.25_wp * r1_e1u(ji,jj) *  &
                  &    ( zmf(ji  ,jj) * ( e1v(ji  ,jj) * v_ice(ji  ,jj) + e1v(ji  ,jj-1) * v_ice(ji  ,jj-1) )  &
                  &    + zmf(ji+1,jj) * ( e1v(ji+1,jj) * v_ice(ji+1,jj) + e1v(ji+1,jj-1) * v_ice(ji+1,jj-1) ) )
               !
               !                 !--- Sum of external forces (explicit solution) = F + tau_ia + Coriolis + spg + tau_io
               zRHS = zfU(ji,jj) + ztaux_ai(ji,jj) + zCorU(ji,jj) + zspgU(ji,jj) + ztaux_oi(ji,jj)
               !
               !                 !--- landfast switch => 0 = static  friction : TauB > RHS & sign(TauB) /= sign(RHS)
               !                                         1 = sliding friction : TauB < RHS
               rswitch = 1._wp - MIN( 1._wp, ABS( SIGN( 1._wp, zRHS + ztaux_base(ji,jj) ) - SIGN( 1._wp, zRHS ) ) )
               !
               IF( ln_aEVP ) THEN !--- ice velocity using aEVP (Kimmritz et al 2016 & 2017)
                  zbetau = MAX( zbeta(ji,jj), zbeta(ji+1,jj) )
                  u_ice(ji,jj) = ( (          rswitch   * ( zmU_t(ji,jj) * ( zbetau * u_ice(ji,jj) + u_ice_b(ji,jj) )         & ! previous velocity
                     &                                    + zRHS + zTauO * u_ice(ji,jj)                                       & ! F + tau_ia + Coriolis + spg + tau_io(only ocean part)
                     &                                    ) / MAX( zepsi, zmU_t(ji,jj) * ( zbetau + 1._wp ) + zTauO - zTauB ) & ! m/dt + tau_io(only ice part) + landfast
                     &            + ( 1._wp - rswitch ) * (  u_ice_b(ji,jj)                                                   &
                     &                                     + u_ice  (ji,jj) * MAX( 0._wp, zbetau - zdtevp * rn_lf_relax )     & ! static friction => slow decrease to v=0
                     &                                    ) / ( zbetau + 1._wp )                                              &
                     &             ) * zmsk01x(ji,jj) + u_oce(ji,jj) * 0.01_wp * ( 1._wp - zmsk01x(ji,jj) )                   & ! v_ice = v_oce/100 if mass < zmmin & conc < zamin
                     &           )   * zmsk00x(ji,jj)
               ELSE               !--- ice velocity using EVP implicit formulation (cf Madec doc & Bouillon 2009)
                  u_ice(ji,jj) = ( (         rswitch   * ( zmU_t(ji,jj)  * u_ice(ji,jj)                                       & ! previous velocity
                     &                                    + zRHS + zTauO * u_ice(ji,jj)                                       & ! F + tau_ia + Coriolis + spg + tau_io(only ocean part)
                     &                                    ) / MAX( zepsi, zmU_t(ji,jj) + zTauO - zTauB )                      & ! m/dt + tau_io(only ice part) + landfast
                     &            + ( 1._wp - rswitch ) *   u_ice(ji,jj) * MAX( 0._wp, 1._wp - zdtevp * rn_lf_relax )         & ! static friction => slow decrease to v=0
                     &              ) * zmsk01x(ji,jj) + u_oce(ji,jj) * 0.01_wp * ( 1._wp - zmsk01x(ji,jj) )                  & ! v_ice = v_oce/100 if mass < zmmin & conc < zamin
                     &            )   * zmsk00x(ji,jj)
               ENDIF
            END_2D
            CALL lbc_lnk( 'icedyn_rhg_eap', u_ice, 'U', -1.0_wp )
            !
#if defined key_agrif
!!          CALL agrif_interp_ice( 'U', jter, nn_nevp )
            CALL agrif_interp_ice( 'U' )
#endif
            IF( ln_bdy )   CALL bdy_ice_dyn( 'U' )
            !
            DO_2D( 0, 0, 0, 0 )
               !                 !--- tau_io/(v_oce - v_ice)
               zTauO = zaV(ji,jj) * zrhoco * SQRT( ( v_ice (ji,jj) - v_oce (ji,jj) ) * ( v_ice (ji,jj) - v_oce (ji,jj) )  &
                  &                              + ( u_iceV(ji,jj) - u_oceV(ji,jj) ) * ( u_iceV(ji,jj) - u_oceV(ji,jj) ) )
               !                 !--- Ocean-to-Ice stress
               ztauy_oi(ji,jj) = zTauO * ( v_oce(ji,jj) - v_ice(ji,jj) )
               !
               !                 !--- tau_bottom/v_ice
               zvel  = 5.e-05_wp + SQRT( v_ice(ji,jj) * v_ice(ji,jj) + u_iceV(ji,jj) * u_iceV(ji,jj) )
               zTauB = ztauy_base(ji,jj) / zvel
               !                 !--- OceanBottom-to-Ice stress
               ztauy_bi(ji,jj) = zTauB * v_ice(ji,jj)
               !
               !                 !--- Coriolis at v-points (energy conserving formulation)
               zCorV(ji,jj)  = - 0.25_wp * r1_e2v(ji,jj) *  &
                  &    ( zmf(ji,jj  ) * ( e2u(ji,jj  ) * u_ice(ji,jj  ) + e2u(ji-1,jj  ) * u_ice(ji-1,jj  ) )  &
                  &    + zmf(ji,jj+1) * ( e2u(ji,jj+1) * u_ice(ji,jj+1) + e2u(ji-1,jj+1) * u_ice(ji-1,jj+1) ) )
               !
               !                 !--- Sum of external forces (explicit solution) = F + tau_ia + Coriolis + spg + tau_io
               zRHS = zfV(ji,jj) + ztauy_ai(ji,jj) + zCorV(ji,jj) + zspgV(ji,jj) + ztauy_oi(ji,jj)
               !
               !                 !--- landfast switch => 0 = static  friction : TauB > RHS & sign(TauB) /= sign(RHS)
               !                                         1 = sliding friction : TauB < RHS
               rswitch = 1._wp - MIN( 1._wp, ABS( SIGN( 1._wp, zRHS + ztauy_base(ji,jj) ) - SIGN( 1._wp, zRHS ) ) )
               !
               IF( ln_aEVP ) THEN !--- ice velocity using aEVP (Kimmritz et al 2016 & 2017)
                  zbetav = MAX( zbeta(ji,jj), zbeta(ji,jj+1) )
                  v_ice(ji,jj) = ( (          rswitch   * ( zmV_t(ji,jj) * ( zbetav * v_ice(ji,jj) + v_ice_b(ji,jj) )         & ! previous velocity
                     &                                    + zRHS + zTauO * v_ice(ji,jj)                                       & ! F + tau_ia + Coriolis + spg + tau_io(only ocean part)
                     &                                    ) / MAX( zepsi, zmV_t(ji,jj) * ( zbetav + 1._wp ) + zTauO - zTauB ) & ! m/dt + tau_io(only ice part) + landfast
                     &            + ( 1._wp - rswitch ) * (  v_ice_b(ji,jj)                                                   &
                     &                                     + v_ice  (ji,jj) * MAX( 0._wp, zbetav - zdtevp * rn_lf_relax )     & ! static friction => slow decrease to v=0
                     &                                    ) / ( zbetav + 1._wp )                                              &
                     &             ) * zmsk01y(ji,jj) + v_oce(ji,jj) * 0.01_wp * ( 1._wp - zmsk01y(ji,jj) )                   & ! v_ice = v_oce/100 if mass < zmmin & conc < zamin
                     &           )   * zmsk00y(ji,jj)
               ELSE               !--- ice velocity using EVP implicit formulation (cf Madec doc & Bouillon 2009)
                  v_ice(ji,jj) = ( (         rswitch   * ( zmV_t(ji,jj)  * v_ice(ji,jj)                                       & ! previous velocity
                     &                                    + zRHS + zTauO * v_ice(ji,jj)                                       & ! F + tau_ia + Coriolis + spg + tau_io(only ocean part)
                     &                                    ) / MAX( zepsi, zmV_t(ji,jj) + zTauO - zTauB )                      & ! m/dt + tau_io(only ice part) + landfast
                     &            + ( 1._wp - rswitch ) *   v_ice(ji,jj) * MAX( 0._wp, 1._wp - zdtevp * rn_lf_relax )         & ! static friction => slow decrease to v=0
                     &              ) * zmsk01y(ji,jj) + v_oce(ji,jj) * 0.01_wp * ( 1._wp - zmsk01y(ji,jj) )                  & ! v_ice = v_oce/100 if mass < zmmin & conc < zamin
                     &            )   * zmsk00y(ji,jj)
               ENDIF
            END_2D
            CALL lbc_lnk( 'icedyn_rhg_eap', v_ice, 'V', -1.0_wp )
            !
#if defined key_agrif
!!          CALL agrif_interp_ice( 'V', jter, nn_nevp )
            CALL agrif_interp_ice( 'V' )
#endif
            IF( ln_bdy )   CALL bdy_ice_dyn( 'V' )
            !
         ENDIF

         ! convergence test
         IF( nn_rhg_chkcvg == 2 )   CALL rhg_cvg_eap( kt, jter, nn_nevp, u_ice, v_ice, zu_ice, zv_ice, zmsk15 )
         !
         !                                                ! ==================== !
      END DO                                              !  end loop over jter  !
      !                                                   ! ==================== !
      IF( ln_aEVP )   CALL iom_put( 'beta_evp' , zbeta )
      !
      CALL lbc_lnk( 'icedyn_rhg_eap', prdg_conv, 'T', 1.0_wp )  ! only need this in ridging module after rheology completed
      !
      !------------------------------------------------------------------------------!
      ! 4) Recompute delta, shear and div (inputs for mechanical redistribution)
      !------------------------------------------------------------------------------!
      DO_2D( 1, 0, 1, 0 )

         ! shear at F points
         zds(ji,jj) = ( ( u_ice(ji,jj+1) * r1_e1u(ji,jj+1) - u_ice(ji,jj) * r1_e1u(ji,jj) ) * e1f(ji,jj) * e1f(ji,jj)   &
            &         + ( v_ice(ji+1,jj) * r1_e2v(ji+1,jj) - v_ice(ji,jj) * r1_e2v(ji,jj) ) * e2f(ji,jj) * e2f(ji,jj)   &
            &         ) * r1_e1e2f(ji,jj) * fimask(ji,jj)

      END_2D

      DO_2D( 0, 0, 0, 0 )

         ! tension**2 at T points
         zdt  = ( ( u_ice(ji,jj) * r1_e2u(ji,jj) - u_ice(ji-1,jj) * r1_e2u(ji-1,jj) ) * e2t(ji,jj) * e2t(ji,jj)   &
            &   - ( v_ice(ji,jj) * r1_e1v(ji,jj) - v_ice(ji,jj-1) * r1_e1v(ji,jj-1) ) * e1t(ji,jj) * e1t(ji,jj)   &
            &   ) * r1_e1e2t(ji,jj)
         zdt2 = zdt * zdt

         zten_i(ji,jj) = zdt

         ! shear**2 at T points (doc eq. A16)
         zds2 = ( zds(ji,jj  ) * zds(ji,jj  ) * e1e2f(ji,jj  ) + zds(ji-1,jj  ) * zds(ji-1,jj  ) * e1e2f(ji-1,jj  )  &
            &   + zds(ji,jj-1) * zds(ji,jj-1) * e1e2f(ji,jj-1) + zds(ji-1,jj-1) * zds(ji-1,jj-1) * e1e2f(ji-1,jj-1)  &
            &   ) * 0.25_wp * r1_e1e2t(ji,jj)

         ! shear at T points
         pshear_i(ji,jj) = SQRT( zdt2 + zds2 )

         ! divergence at T points
         pdivu_i(ji,jj) = ( e2u(ji,jj) * u_ice(ji,jj) - e2u(ji-1,jj) * u_ice(ji-1,jj)   &
            &             + e1v(ji,jj) * v_ice(ji,jj) - e1v(ji,jj-1) * v_ice(ji,jj-1)   &
            &             ) * r1_e1e2t(ji,jj)

         ! delta at T points
         zfac            = SQRT( pdivu_i(ji,jj) * pdivu_i(ji,jj) + ( zdt2 + zds2 ) * z1_ecc2 ) ! delta
         rswitch         = 1._wp - MAX( 0._wp, SIGN( 1._wp, -zfac ) ) ! 0 if delta=0
         pdelta_i(ji,jj) = zfac + rn_creepl * rswitch ! delta+creepl

      END_2D
      CALL lbc_lnk( 'icedyn_rhg_eap', pshear_i, 'T', 1.0_wp, pdivu_i, 'T', 1.0_wp, pdelta_i, 'T', 1.0_wp, &
         &                              zten_i, 'T', 1.0_wp, zs1    , 'T', 1.0_wp, zs2     , 'T', 1.0_wp, &
         &                                zs12, 'F', 1.0_wp )

      ! --- Store the stress tensor for the next time step --- !
      pstress1_i (:,:) = zs1 (:,:)
      pstress2_i (:,:) = zs2 (:,:)
      pstress12_i(:,:) = zs12(:,:)
      !

      !------------------------------------------------------------------------------!
      ! 5) diagnostics
      !------------------------------------------------------------------------------!
      ! --- ice-ocean, ice-atm. & ice-oceanbottom(landfast) stresses --- !
      IF(  iom_use('utau_oi') .OR. iom_use('vtau_oi') .OR. iom_use('utau_ai') .OR. iom_use('vtau_ai') .OR. &
         & iom_use('utau_bi') .OR. iom_use('vtau_bi') ) THEN
         !
         CALL lbc_lnk( 'icedyn_rhg_eap', ztaux_oi, 'U', -1.0_wp, ztauy_oi, 'V', -1.0_wp, ztaux_ai, 'U', -1.0_wp, &
            &                            ztauy_ai, 'V', -1.0_wp, ztaux_bi, 'U', -1.0_wp, ztauy_bi, 'V', -1.0_wp )
         !
         CALL iom_put( 'utau_oi' , ztaux_oi * zmsk00 )
         CALL iom_put( 'vtau_oi' , ztauy_oi * zmsk00 )
         CALL iom_put( 'utau_ai' , ztaux_ai * zmsk00 )
         CALL iom_put( 'vtau_ai' , ztauy_ai * zmsk00 )
         CALL iom_put( 'utau_bi' , ztaux_bi * zmsk00 )
         CALL iom_put( 'vtau_bi' , ztauy_bi * zmsk00 )
      ENDIF

      ! --- divergence, shear and strength --- !
      IF( iom_use('icediv') )   CALL iom_put( 'icediv' , pdivu_i  * zmsk00 )   ! divergence
      IF( iom_use('iceshe') )   CALL iom_put( 'iceshe' , pshear_i * zmsk00 )   ! shear
      IF( iom_use('icedlt') )   CALL iom_put( 'icedlt' , pdelta_i * zmsk00 )   ! delta
      IF( iom_use('icestr') )   CALL iom_put( 'icestr' , strength * zmsk00 )   ! strength

      ! --- Stress tensor invariants (SIMIP diags) --- !
      IF( iom_use('normstr') .OR. iom_use('sheastr') ) THEN
         !
         ALLOCATE( zsig_I(jpi,jpj) , zsig_II(jpi,jpj) )
         !
         DO_2D( 1, 1, 1, 1 )

            ! Ice stresses
            ! sigma1, sigma2, sigma12 are some useful recombination of the stresses (Hunke and Dukowicz MWR 2002, Bouillon et al., OM2013)
            ! These are NOT stress tensor components, neither stress invariants, neither stress principal components
            ! I know, this can be confusing...
            zfac             =   strength(ji,jj) / ( pdelta_i(ji,jj) + rn_creepl )
            zsig1            =   zfac * ( pdivu_i(ji,jj) - pdelta_i(ji,jj) )
            zsig2            =   zfac * z1_ecc2 * zten_i(ji,jj)
            zsig12           =   zfac * z1_ecc2 * pshear_i(ji,jj)

            ! Stress invariants (sigma_I, sigma_II, Coon 1974, Feltham 2008)
            zsig_I (ji,jj)   =   zsig1 * 0.5_wp                                      ! 1st stress invariant, aka average normal stress, aka negative pressure
            zsig_II(ji,jj)   =   SQRT ( zsig2 * zsig2 * 0.25_wp + zsig12 * zsig12 )  ! 2nd  ''       ''    , aka maximum shear stress

         END_2D
         !
         ! Stress tensor invariants (normal and shear stress N/m) - SIMIP diags - definitions following Coon (1974) and Feltham (2008)
         IF( iom_use('normstr') )   CALL iom_put( 'normstr', zsig_I (:,:) * zmsk00(:,:) ) ! Normal stress
         IF( iom_use('sheastr') )   CALL iom_put( 'sheastr', zsig_II(:,:) * zmsk00(:,:) ) ! Maximum shear stress

         DEALLOCATE ( zsig_I, zsig_II )

      ENDIF

      ! --- Normalized stress tensor principal components --- !
      ! This are used to plot the normalized yield curve, see Lemieux & Dupont, 2020
      ! Recommendation 1 : we use ice strength, not replacement pressure
      ! Recommendation 2 : need to use deformations at PREVIOUS iterate for viscosities
      IF( iom_use('sig1_pnorm') .OR. iom_use('sig2_pnorm') ) THEN
         !
         ALLOCATE( zsig1_p(jpi,jpj) , zsig2_p(jpi,jpj) , zsig_I(jpi,jpj) , zsig_II(jpi,jpj) )
         !
         DO_2D( 1, 1, 1, 1 )

            ! Ice stresses computed with **viscosities** (delta, p/delta) at **previous** iterates
            !                        and **deformations** at current iterates
            !                        following Lemieux & Dupont (2020)
            zfac             =   zp_delt(ji,jj)
            zsig1            =   zfac * ( pdivu_i(ji,jj) - ( zdelta(ji,jj) + rn_creepl ) )
            zsig2            =   zfac * z1_ecc2 * zten_i(ji,jj)
            zsig12           =   zfac * z1_ecc2 * pshear_i(ji,jj)

            ! Stress invariants (sigma_I, sigma_II, Coon 1974, Feltham 2008), T-point
            zsig_I(ji,jj)    =   zsig1 * 0.5_wp                                      ! 1st stress invariant, aka average normal stress, aka negative pressure
            zsig_II(ji,jj)   =   SQRT ( zsig2 * zsig2 * 0.25_wp + zsig12 * zsig12 )  ! 2nd  ''       ''    , aka maximum shear stress

            ! Normalized  principal stresses (used to display the ellipse)
            z1_strength      =   1._wp / MAX( 1._wp, strength(ji,jj) )
            zsig1_p(ji,jj)   =   ( zsig_I(ji,jj) + zsig_II(ji,jj) ) * z1_strength
            zsig2_p(ji,jj)   =   ( zsig_I(ji,jj) - zsig_II(ji,jj) ) * z1_strength
         END_2D
         !
         CALL iom_put( 'sig1_pnorm' , zsig1_p )
         CALL iom_put( 'sig2_pnorm' , zsig2_p )

         DEALLOCATE( zsig1_p , zsig2_p , zsig_I, zsig_II )

      ENDIF

      ! --- yieldcurve --- !
      IF( iom_use('yield11') .OR. iom_use('yield12') .OR. iom_use('yield22')) THEN

         CALL lbc_lnk( 'icedyn_rhg_eap', zyield11, 'T', 1.0_wp, zyield22, 'T', 1.0_wp, zyield12, 'T', 1.0_wp )

         CALL iom_put( 'yield11', zyield11 * zmsk00 )
         CALL iom_put( 'yield22', zyield22 * zmsk00 )
         CALL iom_put( 'yield12', zyield12 * zmsk00 )
      ENDIF

      ! --- anisotropy tensor --- !
      IF( iom_use('aniso') ) THEN
         CALL lbc_lnk( 'icedyn_rhg_eap', paniso_11, 'T', 1.0_wp )
         CALL iom_put( 'aniso' , paniso_11 * zmsk00 )
      ENDIF

      ! --- SIMIP --- !
      IF(  iom_use('dssh_dx') .OR. iom_use('dssh_dy') .OR. &
         & iom_use('corstrx') .OR. iom_use('corstry') .OR. iom_use('intstrx') .OR. iom_use('intstry') ) THEN
         !
         CALL lbc_lnk( 'icedyn_rhg_eap', zspgU, 'U', -1.0_wp, zspgV, 'V', -1.0_wp, &
            &                            zCorU, 'U', -1.0_wp, zCorV, 'V', -1.0_wp, &
            &                              zfU, 'U', -1.0_wp,   zfV, 'V', -1.0_wp )

         CALL iom_put( 'dssh_dx' , zspgU * zmsk00 )   ! Sea-surface tilt term in force balance (x)
         CALL iom_put( 'dssh_dy' , zspgV * zmsk00 )   ! Sea-surface tilt term in force balance (y)
         CALL iom_put( 'corstrx' , zCorU * zmsk00 )   ! Coriolis force term in force balance (x)
         CALL iom_put( 'corstry' , zCorV * zmsk00 )   ! Coriolis force term in force balance (y)
         CALL iom_put( 'intstrx' , zfU   * zmsk00 )   ! Internal force term in force balance (x)
         CALL iom_put( 'intstry' , zfV   * zmsk00 )   ! Internal force term in force balance (y)
      ENDIF

      IF(  iom_use('xmtrpice') .OR. iom_use('ymtrpice') .OR. &
         & iom_use('xmtrpsnw') .OR. iom_use('ymtrpsnw') .OR. iom_use('xatrp') .OR. iom_use('yatrp') ) THEN
         !
         ALLOCATE( zdiag_xmtrp_ice(jpi,jpj) , zdiag_ymtrp_ice(jpi,jpj) , &
            &      zdiag_xmtrp_snw(jpi,jpj) , zdiag_ymtrp_snw(jpi,jpj) , zdiag_xatrp(jpi,jpj) , zdiag_yatrp(jpi,jpj) )
         !
         DO_2D( 0, 0, 0, 0 )
            ! 2D ice mass, snow mass, area transport arrays (X, Y)
            zfac_x = 0.5 * u_ice(ji,jj) * e2u(ji,jj) * zmsk00(ji,jj)
            zfac_y = 0.5 * v_ice(ji,jj) * e1v(ji,jj) * zmsk00(ji,jj)

            zdiag_xmtrp_ice(ji,jj) = rhoi * zfac_x * ( vt_i(ji+1,jj) + vt_i(ji,jj) ) ! ice mass transport, X-component
            zdiag_ymtrp_ice(ji,jj) = rhoi * zfac_y * ( vt_i(ji,jj+1) + vt_i(ji,jj) ) !        ''           Y-   ''

            zdiag_xmtrp_snw(ji,jj) = rhos * zfac_x * ( vt_s(ji+1,jj) + vt_s(ji,jj) ) ! snow mass transport, X-component
            zdiag_ymtrp_snw(ji,jj) = rhos * zfac_y * ( vt_s(ji,jj+1) + vt_s(ji,jj) ) !          ''          Y-   ''

            zdiag_xatrp(ji,jj)     = zfac_x * ( at_i(ji+1,jj) + at_i(ji,jj) )        ! area transport,      X-component
            zdiag_yatrp(ji,jj)     = zfac_y * ( at_i(ji,jj+1) + at_i(ji,jj) )        !        ''            Y-   ''

         END_2D

         CALL lbc_lnk( 'icedyn_rhg_eap', zdiag_xmtrp_ice, 'U', -1.0_wp, zdiag_ymtrp_ice, 'V', -1.0_wp, &
            &                            zdiag_xmtrp_snw, 'U', -1.0_wp, zdiag_ymtrp_snw, 'V', -1.0_wp, &
            &                            zdiag_xatrp    , 'U', -1.0_wp, zdiag_yatrp    , 'V', -1.0_wp )

         CALL iom_put( 'xmtrpice' , zdiag_xmtrp_ice )   ! X-component of sea-ice mass transport (kg/s)
         CALL iom_put( 'ymtrpice' , zdiag_ymtrp_ice )   ! Y-component of sea-ice mass transport
         CALL iom_put( 'xmtrpsnw' , zdiag_xmtrp_snw )   ! X-component of snow mass transport (kg/s)
         CALL iom_put( 'ymtrpsnw' , zdiag_ymtrp_snw )   ! Y-component of snow mass transport
         CALL iom_put( 'xatrp'    , zdiag_xatrp     )   ! X-component of ice area transport
         CALL iom_put( 'yatrp'    , zdiag_yatrp     )   ! Y-component of ice area transport

         DEALLOCATE( zdiag_xmtrp_ice , zdiag_ymtrp_ice , &
            &        zdiag_xmtrp_snw , zdiag_ymtrp_snw , zdiag_xatrp , zdiag_yatrp )

      ENDIF
      !
      ! --- convergence tests --- !
      IF( nn_rhg_chkcvg == 1 .OR. nn_rhg_chkcvg == 2 ) THEN
         IF( iom_use('uice_cvg') ) THEN
            IF( ln_aEVP ) THEN   ! output: beta * ( u(t=nn_nevp) - u(t=nn_nevp-1) )
               CALL iom_put( 'uice_cvg', MAX( ABS( u_ice(:,:) - zu_ice(:,:) ) * zbeta(:,:) * umask(:,:,1) , &
                  &                           ABS( v_ice(:,:) - zv_ice(:,:) ) * zbeta(:,:) * vmask(:,:,1) ) * zmsk15(:,:) )
            ELSE                 ! output: nn_nevp * ( u(t=nn_nevp) - u(t=nn_nevp-1) )
               CALL iom_put( 'uice_cvg', REAL( nn_nevp ) * MAX( ABS( u_ice(:,:) - zu_ice(:,:) ) * umask(:,:,1) , &
                  &                                             ABS( v_ice(:,:) - zv_ice(:,:) ) * vmask(:,:,1) ) * zmsk15(:,:) )
            ENDIF
         ENDIF
      ENDIF
      !
   END SUBROUTINE ice_dyn_rhg_eap


   SUBROUTINE rhg_cvg_eap( kt, kiter, kitermax, pu, pv, pub, pvb, pmsk15 )
      !!----------------------------------------------------------------------
      !!                    ***  ROUTINE rhg_cvg_eap  ***
      !!
      !! ** Purpose :   check convergence of oce rheology
      !!
      !! ** Method  :   create a file ice_cvg.nc containing the convergence of ice velocity
      !!                during the sub timestepping of rheology so as:
      !!                  uice_cvg = MAX( u(t+1) - u(t) , v(t+1) - v(t) )
      !!                This routine is called every sub-iteration, so it is cpu expensive
      !!
      !! ** Note    :   for the first sub-iteration, uice_cvg is set to 0 (too large otherwise)
      !!----------------------------------------------------------------------
      INTEGER ,                 INTENT(in) ::   kt, kiter, kitermax       ! ocean time-step index
      REAL(wp), DIMENSION(:,:), INTENT(in) ::   pu, pv, pub, pvb          ! now and before velocities
      REAL(wp), DIMENSION(:,:), INTENT(in) ::   pmsk15
      !!
      INTEGER           ::   it, idtime, istatus
      INTEGER           ::   ji, jj          ! dummy loop indices
      REAL(wp)          ::   zresm           ! local real
      CHARACTER(len=20) ::   clname
      !!----------------------------------------------------------------------

      ! create file
      IF( kt == nit000 .AND. kiter == 1 ) THEN
         !
         IF( lwp ) THEN
            WRITE(numout,*)
            WRITE(numout,*) 'rhg_cvg_eap : ice rheology convergence control'
            WRITE(numout,*) '~~~~~~~'
         ENDIF
         !
         IF( lwm ) THEN
            clname = 'ice_cvg.nc'
            IF( .NOT. Agrif_Root() )   clname = TRIM(Agrif_CFixed())//"_"//TRIM(clname)
            istatus = NF90_CREATE( TRIM(clname), NF90_CLOBBER, ncvgid )
            istatus = NF90_DEF_DIM( ncvgid, 'time'  , NF90_UNLIMITED, idtime )
            istatus = NF90_DEF_VAR( ncvgid, 'uice_cvg', NF90_DOUBLE   , (/ idtime /), nvarid )
            istatus = NF90_ENDDEF(ncvgid)
         ENDIF
         !
      ENDIF

      ! time
      it = ( kt - nit000 ) * kitermax + kiter

      ! convergence
      IF( kiter == 1 ) THEN ! remove the first iteration for calculations of convergence (always very large)
         zresm = 0._wp
      ELSE
         zresm = 0._wp
         DO_2D( 0, 0, 0, 0 )
            zresm = MAX( zresm, MAX( ABS( pu(ji,jj) - pub(ji,jj) ) * umask(ji,jj,1), &
               &                     ABS( pv(ji,jj) - pvb(ji,jj) ) * vmask(ji,jj,1) ) * pmsk15(ji,jj) )
         END_2D
         CALL mpp_max( 'icedyn_rhg_evp', zresm )   ! max over the global domain
      ENDIF

      IF( lwm ) THEN
         ! write variables
         istatus = NF90_PUT_VAR( ncvgid, nvarid, (/zresm/), (/it/), (/1/) )
         ! close file
         IF( kt == nitend - nn_fsbc + 1 .AND. kiter == kitermax )   istatus = NF90_CLOSE(ncvgid)
      ENDIF

   END SUBROUTINE rhg_cvg_eap


   SUBROUTINE update_stress_rdg( ksub, kndte, pdivu, ptension, pshear, pa11, pa12, &
      &                          pstressp,  pstressm, pstress12, pstrength, palphar, palphas )
      !!---------------------------------------------------------------------
      !!                   ***  SUBROUTINE update_stress_rdg  ***
      !!
      !! ** Purpose :   Updates the stress depending on values of strain rate and structure
      !!                tensor and for the last subcycle step it computes closing and sliding rate
      !!---------------------------------------------------------------------
      INTEGER,  INTENT(in   ) ::   ksub, kndte
      REAL(wp), INTENT(in   ) ::   pstrength
      REAL(wp), INTENT(in   ) ::   pdivu, ptension, pshear
      REAL(wp), INTENT(in   ) ::   pa11, pa12
      REAL(wp), INTENT(  out) ::   pstressp, pstressm, pstress12
      REAL(wp), INTENT(  out) ::   palphar, palphas

      INTEGER  ::   kx ,ky, ka

      REAL(wp) ::   zstemp11r, zstemp12r, zstemp22r
      REAL(wp) ::   zstemp11s, zstemp12s, zstemp22s
      REAL(wp) ::   za22, zQd11Qd11, zQd11Qd12, zQd12Qd12
      REAL(wp) ::   zQ11Q11, zQ11Q12, zQ12Q12
      REAL(wp) ::   zdtemp11, zdtemp12, zdtemp22
      REAL(wp) ::   zrotstemp11r, zrotstemp12r, zrotstemp22r
      REAL(wp) ::   zrotstemp11s, zrotstemp12s, zrotstemp22s
      REAL(wp) ::   zsig11, zsig12, zsig22
      REAL(wp) ::   zsgprm11, zsgprm12, zsgprm22
      REAL(wp) ::   zAngle_denom_gamma,  zAngle_denom_alpha
      REAL(wp) ::   zTany_1, zTany_2
      REAL(wp) ::   zx, zy, zkxw, kyw, kaw
      REAL(wp) ::   zinvdx, zinvdy, zinvda
      REAL(wp) ::   zdtemp1, zdtemp2, zatempprime

      REAL(wp), PARAMETER ::   ppkfriction = 0.45_wp
      ! Factor to maintain the same stress as in EVP (see Section 3)
      ! Can be set to 1 otherwise
!     REAL(wp), PARAMETER ::   ppinvstressconviso = 1._wp/(1._wp+ppkfriction*ppkfriction)
      REAL(wp), PARAMETER ::   ppinvstressconviso = 1._wp

      ! next statement uses pphi set in main module (icedyn_rhg_eap)
      REAL(wp), PARAMETER ::   ppinvsin = 1._wp/sin(2._wp*pphi) * ppinvstressconviso

      ! compute eigenvalues, eigenvectors and angles for structure tensor, strain
      ! rates

      ! 1) structure tensor
      za22 = 1._wp-pa11
      zQ11Q11 = 1._wp
      zQ12Q12 = rsmall
      zQ11Q12 = rsmall

      ! gamma: angle between general coordiantes and principal axis of A
      ! here Tan2gamma = 2 a12 / (a11 - a22)
      IF((ABS(pa11 - za22) > rsmall).OR.(ABS(pa12) > rsmall)) THEN
         zAngle_denom_gamma = 1._wp/sqrt( ( pa11 - za22 )*( pa11 - za22) + &
                              4._wp*pa12*pa12 )

         zQ11Q11 = 0.5_wp + ( pa11 - za22 )*0.5_wp*zAngle_denom_gamma   !Cos^2
         zQ12Q12 = 0.5_wp - ( pa11 - za22 )*0.5_wp*zAngle_denom_gamma   !Sin^2
         zQ11Q12 = pa12*zAngle_denom_gamma                     !CosSin
      ENDIF

      ! rotation Q*atemp*Q^T
      zatempprime = zQ11Q11*pa11 + 2.0_wp*zQ11Q12*pa12 + zQ12Q12*za22

      ! make first principal value the largest
      zatempprime = max(zatempprime, 1.0_wp - zatempprime)

      ! 2) strain rate
      zdtemp11 = 0.5_wp*(pdivu + ptension)
      zdtemp12 = pshear*0.5_wp
      zdtemp22 = 0.5_wp*(pdivu - ptension)

      ! here Tan2alpha = 2 dtemp12 / (dtemp11 - dtemp22)

      zQd11Qd11 = 1.0_wp
      zQd12Qd12 = rsmall
      zQd11Qd12 = rsmall

      IF((ABS( zdtemp11 - zdtemp22) > rsmall).OR. (ABS(zdtemp12) > rsmall)) THEN

         zAngle_denom_alpha = 1.0_wp/sqrt( ( zdtemp11 - zdtemp22 )* &
                             ( zdtemp11 - zdtemp22 ) + 4.0_wp*zdtemp12*zdtemp12)

         zQd11Qd11 = 0.5_wp + ( zdtemp11 - zdtemp22 )*0.5_wp*zAngle_denom_alpha !Cos^2
         zQd12Qd12 = 0.5_wp - ( zdtemp11 - zdtemp22 )*0.5_wp*zAngle_denom_alpha !Sin^2
         zQd11Qd12 = zdtemp12*zAngle_denom_alpha !CosSin
      ENDIF

      zdtemp1 = zQd11Qd11*zdtemp11 + 2.0_wp*zQd11Qd12*zdtemp12 + zQd12Qd12*zdtemp22
      zdtemp2 = zQd12Qd12*zdtemp11 - 2.0_wp*zQd11Qd12*zdtemp12 + zQd11Qd11*zdtemp22
      ! In cos and sin values
      zx = 0._wp
      IF ((ABS(zdtemp1) > rsmall).OR.(ABS(zdtemp2) > rsmall)) THEN
         zx = atan2(zdtemp2,zdtemp1)
      ENDIF

      ! to ensure the angle lies between pi/4 and 9 pi/4
      IF (zx < rpi*0.25_wp) zx = zx + rpi*2.0_wp

      ! y: angle between major principal axis of strain rate and structure
      ! tensor
      ! y = gamma - alpha
      ! Expressesed componently with
      ! Tany = (Singamma*Cosgamma - Sinalpha*Cosgamma)/(Cos^2gamma - Sin^alpha)

      zTany_1 = zQ11Q12 - zQd11Qd12
      zTany_2 = zQ11Q11 - zQd12Qd12

      zy = 0._wp

      IF ((ABS(zTany_1) > rsmall).OR.(ABS(zTany_2) > rsmall)) THEN
         zy = atan2(zTany_1,zTany_2)
      ENDIF

      ! to make sure y is between 0 and pi
      IF (zy > rpi) zy = zy - rpi
      IF (zy < 0)  zy = zy + rpi

      ! 3) update anisotropic stress tensor
      zinvdx = real(nx_yield-1,kind=wp)/rpi
      zinvdy = real(ny_yield-1,kind=wp)/rpi
      zinvda = 2._wp*real(na_yield-1,kind=wp)

      ! % need 8 coords and 8 weights
      ! % range in kx
      kx  = int((zx-rpi*0.25_wp-rpi)*zinvdx) + 1
      !!clem kx  = MAX( 1, MIN( nx_yield-1, INT((zx-rpi*0.25_wp-rpi)*zinvdx) + 1  ) )
      zkxw = kx - (zx-rpi*0.25_wp-rpi)*zinvdx

      ky  = int(zy*zinvdy) + 1
      !!clem ky  = MAX( 1, MIN( ny_yield-1, INT(zy*zinvdy) + 1 ) )
      kyw = ky - zy*zinvdy

      ka  = int((zatempprime-0.5_wp)*zinvda) + 1
      !!clem ka  = MAX( 1, MIN( na_yield-1, INT((zatempprime-0.5_wp)*zinvda) + 1 ) )
      kaw = ka - (zatempprime-0.5_wp)*zinvda

      ! % Determine sigma_r(A1,Zeta,y) and sigma_s (see Section A1 of Tsamados 2013)
!!$      zstemp11r =  zkxw  * kyw         * kaw         * s11r(kx  ,ky  ,ka  ) &
!!$        & + (1._wp-zkxw) * kyw         * kaw         * s11r(kx+1,ky  ,ka  ) &
!!$        & + zkxw         * (1._wp-kyw) * kaw         * s11r(kx  ,ky+1,ka  ) &
!!$        & + zkxw         * kyw         * (1._wp-kaw) * s11r(kx  ,ky  ,ka+1) &
!!$        & + (1._wp-zkxw) * (1._wp-kyw) * kaw         * s11r(kx+1,ky+1,ka  ) &
!!$        & + (1._wp-zkxw) * kyw         * (1._wp-kaw) * s11r(kx+1,ky  ,ka+1) &
!!$        & + zkxw         * (1._wp-kyw) * (1._wp-kaw) * s11r(kx  ,ky+1,ka+1) &
!!$        & + (1._wp-zkxw) * (1._wp-kyw) * (1._wp-kaw) * s11r(kx+1,ky+1,ka+1)
!!$      zstemp12r =  zkxw  * kyw         * kaw         * s12r(kx  ,ky  ,ka  ) &
!!$        & + (1._wp-zkxw) * kyw         * kaw         * s12r(kx+1,ky  ,ka  ) &
!!$        & + zkxw         * (1._wp-kyw) * kaw         * s12r(kx  ,ky+1,ka  ) &
!!$        & + zkxw         * kyw         * (1._wp-kaw) * s12r(kx  ,ky  ,ka+1) &
!!$        & + (1._wp-zkxw) * (1._wp-kyw) * kaw         * s12r(kx+1,ky+1,ka  ) &
!!$        & + (1._wp-zkxw) * kyw         * (1._wp-kaw) * s12r(kx+1,ky  ,ka+1) &
!!$        & + zkxw         * (1._wp-kyw) * (1._wp-kaw) * s12r(kx  ,ky+1,ka+1) &
!!$        & + (1._wp-zkxw) * (1._wp-kyw) * (1._wp-kaw) * s12r(kx+1,ky+1,ka+1)
!!$      zstemp22r =  zkxw  * kyw         * kaw         * s22r(kx  ,ky  ,ka  ) &
!!$        & + (1._wp-zkxw) * kyw         * kaw         * s22r(kx+1,ky  ,ka  ) &
!!$        & + zkxw         * (1._wp-kyw) * kaw         * s22r(kx  ,ky+1,ka  ) &
!!$        & + zkxw         * kyw         * (1._wp-kaw) * s22r(kx  ,ky  ,ka+1) &
!!$        & + (1._wp-zkxw) * (1._wp-kyw) * kaw         * s22r(kx+1,ky+1,ka  ) &
!!$        & + (1._wp-zkxw) * kyw         * (1._wp-kaw) * s22r(kx+1,ky  ,ka+1) &
!!$        & + zkxw         * (1._wp-kyw) * (1._wp-kaw) * s22r(kx  ,ky+1,ka+1) &
!!$        & + (1._wp-zkxw) * (1._wp-kyw) * (1._wp-kaw) * s22r(kx+1,ky+1,ka+1)
!!$
!!$      zstemp11s =  zkxw  * kyw         * kaw         * s11s(kx  ,ky  ,ka  ) &
!!$        & + (1._wp-zkxw) * kyw         * kaw         * s11s(kx+1,ky  ,ka  ) &
!!$        & + zkxw         * (1._wp-kyw) * kaw         * s11s(kx  ,ky+1,ka  ) &
!!$        & + zkxw         * kyw         * (1._wp-kaw) * s11s(kx  ,ky  ,ka+1) &
!!$        & + (1._wp-zkxw) * (1._wp-kyw) * kaw         * s11s(kx+1,ky+1,ka  ) &
!!$        & + (1._wp-zkxw) * kyw         * (1._wp-kaw) * s11s(kx+1,ky  ,ka+1) &
!!$        & + zkxw         * (1._wp-kyw) * (1._wp-kaw) * s11s(kx  ,ky+1,ka+1) &
!!$        & + (1._wp-zkxw) * (1._wp-kyw) * (1._wp-kaw) * s11s(kx+1,ky+1,ka+1)
!!$      zstemp12s =  zkxw  * kyw         * kaw         * s12s(kx  ,ky  ,ka  ) &
!!$        & + (1._wp-zkxw) * kyw         * kaw         * s12s(kx+1,ky  ,ka  ) &
!!$        & + zkxw         * (1._wp-kyw) * kaw         * s12s(kx  ,ky+1,ka  ) &
!!$        & + zkxw         * kyw         * (1._wp-kaw) * s12s(kx  ,ky  ,ka+1) &
!!$        & + (1._wp-zkxw) * (1._wp-kyw) * kaw         * s12s(kx+1,ky+1,ka  ) &
!!$        & + (1._wp-zkxw) * kyw         * (1._wp-kaw) * s12s(kx+1,ky  ,ka+1) &
!!$        & + zkxw         * (1._wp-kyw) * (1._wp-kaw) * s12s(kx  ,ky+1,ka+1) &
!!$        & + (1._wp-zkxw) * (1._wp-kyw) * (1._wp-kaw) * s12s(kx+1,ky+1,ka+1)
!!$      zstemp22s =  zkxw  * kyw         * kaw         * s22s(kx  ,ky  ,ka  ) &
!!$        & + (1._wp-zkxw) * kyw         * kaw         * s22s(kx+1,ky  ,ka  ) &
!!$        & + zkxw         * (1._wp-kyw) * kaw         * s22s(kx  ,ky+1,ka  ) &
!!$        & + zkxw         * kyw         * (1._wp-kaw) * s22s(kx  ,ky  ,ka+1) &
!!$        & + (1._wp-zkxw) * (1._wp-kyw) * kaw         * s22s(kx+1,ky+1,ka  ) &
!!$        & + (1._wp-zkxw) * kyw         * (1._wp-kaw) * s22s(kx+1,ky  ,ka+1) &
!!$        & + zkxw         * (1._wp-kyw) * (1._wp-kaw) * s22s(kx  ,ky+1,ka+1) &
!!$        & + (1._wp-zkxw) * (1._wp-kyw) * (1._wp-kaw) * s22s(kx+1,ky+1,ka+1)

      zstemp11r = s11r(kx,ky,ka)
      zstemp12r = s12r(kx,ky,ka)
      zstemp22r = s22r(kx,ky,ka)
      zstemp11s = s11s(kx,ky,ka)
      zstemp12s = s12s(kx,ky,ka)
      zstemp22s = s22s(kx,ky,ka)


      ! Calculate mean ice stress over a collection of floes (Equation 3 in
      ! Tsamados 2013)

      zsig11  = pstrength*(zstemp11r + ppkfriction*zstemp11s) * ppinvsin
      zsig12  = pstrength*(zstemp12r + ppkfriction*zstemp12s) * ppinvsin
      zsig22  = pstrength*(zstemp22r + ppkfriction*zstemp22s) * ppinvsin

      ! Back - rotation of the stress from principal axes into general coordinates

      ! Update stress
      zsgprm11 = zQ11Q11*zsig11 + zQ12Q12*zsig22 -      2._wp*zQ11Q12 *zsig12
      zsgprm12 = zQ11Q12*zsig11 - zQ11Q12*zsig22 + (zQ11Q11 - zQ12Q12)*zsig12
      zsgprm22 = zQ12Q12*zsig11 + zQ11Q11*zsig22 +      2._wp*zQ11Q12 *zsig12

      pstressp  = zsgprm11 + zsgprm22
      pstress12 = zsgprm12
      pstressm  = zsgprm11 - zsgprm22

      ! Compute ridging and sliding functions in general coordinates
      ! (Equation 11 in Tsamados 2013)
      IF (ksub == kndte) THEN
         zrotstemp11r = zQ11Q11*zstemp11r - 2._wp*zQ11Q12* zstemp12r &
                      + zQ12Q12*zstemp22r
         zrotstemp12r = zQ11Q11*zstemp12r +       zQ11Q12*(zstemp11r-zstemp22r) &
                      - zQ12Q12*zstemp12r
         zrotstemp22r = zQ12Q12*zstemp11r + 2._wp*zQ11Q12* zstemp12r &
                      + zQ11Q11*zstemp22r

         zrotstemp11s = zQ11Q11*zstemp11s - 2._wp*zQ11Q12* zstemp12s &
                      + zQ12Q12*zstemp22s
         zrotstemp12s = zQ11Q11*zstemp12s +       zQ11Q12*(zstemp11s-zstemp22s) &
                      - zQ12Q12*zstemp12s
         zrotstemp22s = zQ12Q12*zstemp11s + 2._wp*zQ11Q12* zstemp12s &
                      + zQ11Q11*zstemp22s

         palphar =  zrotstemp11r*zdtemp11 + 2._wp*zrotstemp12r*zdtemp12 &
                  + zrotstemp22r*zdtemp22
         palphas =  zrotstemp11s*zdtemp11 + 2._wp*zrotstemp12s*zdtemp12 &
                  + zrotstemp22s*zdtemp22
      ENDIF
   END SUBROUTINE update_stress_rdg

!=======================================================================


   SUBROUTINE calc_ffrac( pstressp, pstressm, pstress12, pa11, pa12, &
      &                   pmresult11, pmresult12 )
      !!---------------------------------------------------------------------
      !!                   ***  ROUTINE calc_ffrac  ***
      !!
      !! ** Purpose :   Computes term in evolution equation for structure tensor
      !!                which determines the ice floe re-orientation due to fracture
      !! ** Method :    Eq. 7: Ffrac = -kf(A-S) or = 0 depending on sigma_1 and sigma_2
      !!---------------------------------------------------------------------
      REAL (wp), INTENT(in)  ::   pstressp, pstressm, pstress12, pa11, pa12
      REAL (wp), INTENT(out) ::   pmresult11, pmresult12

      ! local variables

      REAL (wp) ::   zsigma11, zsigma12, zsigma22  ! stress tensor elements
      REAL (wp) ::   zAngle_denom        ! angle with principal component axis
      REAL (wp) ::   zsigma_1, zsigma_2   ! principal components of stress
      REAL (wp) ::   zQ11, zQ12, zQ11Q11, zQ11Q12, zQ12Q12

!!$   REAL (wp), PARAMETER ::   ppkfrac = 0.0001_wp   ! rate of fracture formation
      REAL (wp), PARAMETER ::   ppkfrac = 1.e-3_wp    ! rate of fracture formation
      REAL (wp), PARAMETER ::   ppthreshold = 0.3_wp  ! critical confinement ratio
      !!---------------------------------------------------------------
      !
      zsigma11 = 0.5_wp*(pstressp+pstressm)
      zsigma12 = pstress12
      zsigma22 = 0.5_wp*(pstressp-pstressm)

      ! Here's the change - no longer calculate gamma,
      ! use trig formulation, angle signs are kept correct, don't worry

      ! rotate tensor to get into sigma principal axis

      ! here Tan2gamma = 2 sig12 / (sig11 - sig12)
      ! add rsmall to the denominator to stop 1/0 errors, makes very little
      ! error to the calculated angles < rsmall

      zQ11Q11 = 0.1_wp
      zQ12Q12 = rsmall
      zQ11Q12 = rsmall

      IF((ABS( zsigma11 - zsigma22) > rsmall).OR.(ABS(zsigma12) > rsmall)) THEN

         zAngle_denom = 1.0_wp/sqrt( ( zsigma11 - zsigma22 )*( zsigma11 - &
                       zsigma22 ) + 4.0_wp*zsigma12*zsigma12)

         zQ11Q11 = 0.5_wp + ( zsigma11 - zsigma22 )*0.5_wp*zAngle_denom   !Cos^2
         zQ12Q12 = 0.5_wp - ( zsigma11 - zsigma22 )*0.5_wp*zAngle_denom   !Sin^2
         zQ11Q12 = zsigma12*zAngle_denom                      !CosSin
      ENDIF

      zsigma_1 = zQ11Q11*zsigma11 + 2.0_wp*zQ11Q12*zsigma12 + zQ12Q12*zsigma22 ! S(1,1)
      zsigma_2 = zQ12Q12*zsigma11 - 2.0_wp*zQ11Q12*zsigma12 + zQ11Q11*zsigma22 ! S(2,2)

      ! Pure divergence
      IF ((zsigma_1 >= 0.0_wp).AND.(zsigma_2 >= 0.0_wp))  THEN
         pmresult11 = 0.0_wp
         pmresult12 = 0.0_wp

      ! Unconfined compression: cracking of blocks not along the axial splitting
      ! direction
      ! which leads to the loss of their shape, so we again model it through diffusion
      ELSEIF ((zsigma_1 >= 0.0_wp).AND.(zsigma_2 < 0.0_wp))  THEN
         pmresult11 = - ppkfrac * (pa11 - zQ12Q12)
         pmresult12 = - ppkfrac * (pa12 + zQ11Q12)

      ! Shear faulting
      ELSEIF (zsigma_2 == 0.0_wp) THEN
         pmresult11 = 0.0_wp
         pmresult12 = 0.0_wp
      ELSEIF ((zsigma_1 <= 0.0_wp).AND.(zsigma_1/zsigma_2 <= ppthreshold)) THEN
         pmresult11 = - ppkfrac * (pa11 - zQ12Q12)
         pmresult12 = - ppkfrac * (pa12 + zQ11Q12)

      ! Horizontal spalling
      ELSE
         pmresult11 = 0.0_wp
         pmresult12 = 0.0_wp
      ENDIF

   END SUBROUTINE calc_ffrac


   SUBROUTINE rhg_eap_rst( cdrw, kt )
      !!---------------------------------------------------------------------
      !!                   ***  ROUTINE rhg_eap_rst  ***
      !!
      !! ** Purpose :   Read or write RHG file in restart file
      !!
      !! ** Method  :   use of IOM library
      !!----------------------------------------------------------------------
      CHARACTER(len=*) , INTENT(in) ::   cdrw   ! "READ"/"WRITE" flag
      INTEGER, OPTIONAL, INTENT(in) ::   kt     ! ice time-step
      !
      INTEGER  ::   iter                      ! local integer
      INTEGER  ::   id1, id2, id3, id4, id5   ! local integers
      INTEGER  ::   ix, iy, ip, iz, n, ia     ! local integers

      INTEGER, PARAMETER            ::    nz = 100

      REAL(wp) ::   ainit, xinit, yinit, pinit, zinit
      REAL(wp) ::   da, dx, dy, dp, dz, a1

      !!clem
      REAL(wp) ::   zw1, zw2, zfac, ztemp
      REAL(wp) ::   zidx, zidy, zidz
      REAL(wp) ::   zsaak(6)                  ! temporary array

      REAL(wp), PARAMETER           ::   eps6 = 1.0e-6_wp
      !!----------------------------------------------------------------------
      !
      IF( TRIM(cdrw) == 'READ' ) THEN        ! Read/initialize
         !                                   ! ---------------
         IF( ln_rstart ) THEN                   !* Read the restart file
            !
            id1 = iom_varid( numrir, 'stress1_i' , ldstop = .FALSE. )
            id2 = iom_varid( numrir, 'stress2_i' , ldstop = .FALSE. )
            id3 = iom_varid( numrir, 'stress12_i', ldstop = .FALSE. )
            id4 = iom_varid( numrir, 'aniso_11'  , ldstop = .FALSE. )
            id5 = iom_varid( numrir, 'aniso_12'  , ldstop = .FALSE. )
            !
            IF( MIN( id1, id2, id3, id4, id5 ) > 0 ) THEN      ! fields exist
               CALL iom_get( numrir, jpdom_auto, 'stress1_i' , stress1_i , cd_type = 'T' )
               CALL iom_get( numrir, jpdom_auto, 'stress2_i' , stress2_i , cd_type = 'T' )
               CALL iom_get( numrir, jpdom_auto, 'stress12_i', stress12_i, cd_type = 'F' )
               CALL iom_get( numrir, jpdom_auto, 'aniso_11'  , aniso_11  , cd_type = 'T' )
               CALL iom_get( numrir, jpdom_auto, 'aniso_12'  , aniso_12  , cd_type = 'T' )
            ELSE                                     ! start rheology from rest
               IF(lwp) WRITE(numout,*)
               IF(lwp) WRITE(numout,*) '   ==>>>   previous run without rheology, set stresses to 0'
               stress1_i (:,:) = 0._wp
               stress2_i (:,:) = 0._wp
               stress12_i(:,:) = 0._wp
               aniso_11  (:,:) = 0.5_wp
               aniso_12  (:,:) = 0._wp
            ENDIF
         ELSE                                   !* Start from rest
            IF(lwp) WRITE(numout,*)
            IF(lwp) WRITE(numout,*) '   ==>>>   start from rest: set stresses to 0'
            stress1_i (:,:) = 0._wp
            stress2_i (:,:) = 0._wp
            stress12_i(:,:) = 0._wp
            aniso_11  (:,:) = 0.5_wp
            aniso_12  (:,:) = 0._wp
         ENDIF
         !

         da = 0.5_wp/real(na_yield-1,kind=wp)
         ainit = 0.5_wp - da
         dx = rpi/real(nx_yield-1,kind=wp)
         xinit = rpi + 0.25_wp*rpi - dx
         dz = rpi/real(nz,kind=wp)
         zinit = -rpi*0.5_wp
         dy = rpi/real(ny_yield-1,kind=wp)
         yinit = -dy

         s11r(:,:,:) = 0._wp
         s12r(:,:,:) = 0._wp
         s22r(:,:,:) = 0._wp
         s11s(:,:,:) = 0._wp
         s12s(:,:,:) = 0._wp
         s22s(:,:,:) = 0._wp

!!$         DO ia=1,na_yield
!!$            DO ix=1,nx_yield
!!$               DO iy=1,ny_yield
!!$                  s11r(ix,iy,ia) = 0._wp
!!$                  s12r(ix,iy,ia) = 0._wp
!!$                  s22r(ix,iy,ia) = 0._wp
!!$                  s11s(ix,iy,ia) = 0._wp
!!$                  s12s(ix,iy,ia) = 0._wp
!!$                  s22s(ix,iy,ia) = 0._wp
!!$                  IF (ia <= na_yield-1) THEN
!!$                     DO iz=1,nz
!!$                        s11r(ix,iy,ia) = s11r(ix,iy,ia) + 1*w1(ainit+ia*da)* &
!!$                           exp(-w2(ainit+ia*da)*(zinit+iz*dz)*(zinit+iz*dz))* &
!!$                           s11kr(xinit+ix*dx,yinit+iy*dy,zinit+iz*dz)*dz/sin(2._wp*pphi)
!!$                        s12r(ix,iy,ia) = s12r(ix,iy,ia) + 1*w1(ainit+ia*da)* &
!!$                           exp(-w2(ainit+ia*da)*(zinit+iz*dz)*(zinit+iz*dz))* &
!!$                           s12kr(xinit+ix*dx,yinit+iy*dy,zinit+iz*dz)*dz/sin(2._wp*pphi)
!!$                        s22r(ix,iy,ia) = s22r(ix,iy,ia) + 1*w1(ainit+ia*da)* &
!!$                           exp(-w2(ainit+ia*da)*(zinit+iz*dz)*(zinit+iz*dz))* &
!!$                           s22kr(xinit+ix*dx,yinit+iy*dy,zinit+iz*dz)*dz/sin(2._wp*pphi)
!!$                        s11s(ix,iy,ia) = s11s(ix,iy,ia) + 1*w1(ainit+ia*da)* &
!!$                           exp(-w2(ainit+ia*da)*(zinit+iz*dz)*(zinit+iz*dz))* &
!!$                           s11ks(xinit+ix*dx,yinit+iy*dy,zinit+iz*dz)*dz/sin(2._wp*pphi)
!!$                        s12s(ix,iy,ia) = s12s(ix,iy,ia) + 1*w1(ainit+ia*da)* &
!!$                           exp(-w2(ainit+ia*da)*(zinit+iz*dz)*(zinit+iz*dz))* &
!!$                           s12ks(xinit+ix*dx,yinit+iy*dy,zinit+iz*dz)*dz/sin(2._wp*pphi)
!!$                        s22s(ix,iy,ia) = s22s(ix,iy,ia) + 1*w1(ainit+ia*da)* &
!!$                           exp(-w2(ainit+ia*da)*(zinit+iz*dz)*(zinit+iz*dz))* &
!!$                           s22ks(xinit+ix*dx,yinit+iy*dy,zinit+iz*dz)*dz/sin(2._wp*pphi)
!!$                     ENDDO
!!$                     IF (abs(s11r(ix,iy,ia)) < eps6) s11r(ix,iy,ia) = 0._wp
!!$                     IF (abs(s12r(ix,iy,ia)) < eps6) s12r(ix,iy,ia) = 0._wp
!!$                     IF (abs(s22r(ix,iy,ia)) < eps6) s22r(ix,iy,ia) = 0._wp
!!$                     IF (abs(s11s(ix,iy,ia)) < eps6) s11s(ix,iy,ia) = 0._wp
!!$                     IF (abs(s12s(ix,iy,ia)) < eps6) s12s(ix,iy,ia) = 0._wp
!!$                     IF (abs(s22s(ix,iy,ia)) < eps6) s22s(ix,iy,ia) = 0._wp
!!$                  ELSE
!!$                     s11r(ix,iy,ia) = 0.5_wp*s11kr(xinit+ix*dx,yinit+iy*dy,0._wp)/sin(2._wp*pphi)
!!$                     s12r(ix,iy,ia) = 0.5_wp*s12kr(xinit+ix*dx,yinit+iy*dy,0._wp)/sin(2._wp*pphi)
!!$                     s22r(ix,iy,ia) = 0.5_wp*s22kr(xinit+ix*dx,yinit+iy*dy,0._wp)/sin(2._wp*pphi)
!!$                     s11s(ix,iy,ia) = 0.5_wp*s11ks(xinit+ix*dx,yinit+iy*dy,0._wp)/sin(2._wp*pphi)
!!$                     s12s(ix,iy,ia) = 0.5_wp*s12ks(xinit+ix*dx,yinit+iy*dy,0._wp)/sin(2._wp*pphi)
!!$                     s22s(ix,iy,ia) = 0.5_wp*s22ks(xinit+ix*dx,yinit+iy*dy,0._wp)/sin(2._wp*pphi)
!!$                     IF (abs(s11r(ix,iy,ia)) < eps6) s11r(ix,iy,ia) = 0._wp
!!$                     IF (abs(s12r(ix,iy,ia)) < eps6) s12r(ix,iy,ia) = 0._wp
!!$                     IF (abs(s22r(ix,iy,ia)) < eps6) s22r(ix,iy,ia) = 0._wp
!!$                     IF (abs(s11s(ix,iy,ia)) < eps6) s11s(ix,iy,ia) = 0._wp
!!$                     IF (abs(s12s(ix,iy,ia)) < eps6) s12s(ix,iy,ia) = 0._wp
!!$                     IF (abs(s22s(ix,iy,ia)) < eps6) s22s(ix,iy,ia) = 0._wp
!!$                  ENDIF
!!$               ENDDO
!!$            ENDDO
!!$         ENDDO

         !! faster but still very slow => to be improved
         zfac = dz/sin(2._wp*pphi)
         DO ia = 1, na_yield-1
            zw1 = w1(ainit+ia*da)
            zw2 = w2(ainit+ia*da)
            DO iz = 1, nz
               zidz = zinit+iz*dz
               ztemp = zw1 * EXP(-zw2*(zinit+iz*dz)*(zinit+iz*dz))
               DO iy = 1, ny_yield
                  zidy = yinit+iy*dy
                  DO ix = 1, nx_yield
                     zidx = xinit+ix*dx
                     call all_skr_sks(zidx,zidy,zidz,zsaak)
                     zsaak = ztemp*zsaak*zfac
                     s11r(ix,iy,ia) = s11r(ix,iy,ia) + zsaak(1)
                     s12r(ix,iy,ia) = s12r(ix,iy,ia) + zsaak(2)
                     s22r(ix,iy,ia) = s22r(ix,iy,ia) + zsaak(3)
                     s11s(ix,iy,ia) = s11s(ix,iy,ia) + zsaak(4)
                     s12s(ix,iy,ia) = s12s(ix,iy,ia) + zsaak(5)
                     s22s(ix,iy,ia) = s22s(ix,iy,ia) + zsaak(6)
                  END DO
               END DO
            END DO
         END DO
         zfac = 1._wp/sin(2._wp*pphi)
         ia = na_yield
         DO iy = 1, ny_yield
            zidy = yinit+iy*dy
            DO ix = 1, nx_yield
               zidx = xinit+ix*dx
               call all_skr_sks(zidx,zidy,0._wp,zsaak)
               zsaak = 0.5_wp*zsaak*zfac
               s11r(ix,iy,ia) = zsaak(1)
               s12r(ix,iy,ia) = zsaak(2)
               s22r(ix,iy,ia) = zsaak(3)
               s11s(ix,iy,ia) = zsaak(4)
               s12s(ix,iy,ia) = zsaak(5)
               s22s(ix,iy,ia) = zsaak(6)
            ENDDO
         ENDDO
         WHERE (ABS(s11r(:,:,:)) < eps6) s11r(:,:,:) = 0._wp
         WHERE (ABS(s12r(:,:,:)) < eps6) s12r(:,:,:) = 0._wp
         WHERE (ABS(s22r(:,:,:)) < eps6) s22r(:,:,:) = 0._wp
         WHERE (ABS(s11s(:,:,:)) < eps6) s11s(:,:,:) = 0._wp
         WHERE (ABS(s12s(:,:,:)) < eps6) s12s(:,:,:) = 0._wp
         WHERE (ABS(s22s(:,:,:)) < eps6) s22s(:,:,:) = 0._wp


      ELSEIF( TRIM(cdrw) == 'WRITE' ) THEN   ! Create restart file
         !                                   ! -------------------
         IF(lwp) WRITE(numout,*) '---- rhg-rst ----'
         iter = kt + nn_fsbc - 1             ! ice restarts are written at kt == nitrst - nn_fsbc + 1
         !
         CALL iom_rstput( iter, nitrst, numriw, 'stress1_i' , stress1_i  )
         CALL iom_rstput( iter, nitrst, numriw, 'stress2_i' , stress2_i  )
         CALL iom_rstput( iter, nitrst, numriw, 'stress12_i', stress12_i )
         CALL iom_rstput( iter, nitrst, numriw, 'aniso_11'  , aniso_11   )
         CALL iom_rstput( iter, nitrst, numriw, 'aniso_12'  , aniso_12   )
         !
      ENDIF
      !
   END SUBROUTINE rhg_eap_rst


   FUNCTION w1(pa)
      !!-------------------------------------------------------------------
      !! Function : w1 (see Gaussian function psi in Tsamados et al 2013)
      !!-------------------------------------------------------------------
      REAL(wp), INTENT(in   ) ::   pa
      REAL(wp) ::   w1
      !!-------------------------------------------------------------------

      w1 = -   223.87569446_wp &
       &   +  2361.21986630_wp*pa &
       &   - 10606.56079975_wp*pa*pa &
       &   + 26315.50025642_wp*pa*pa*pa &
       &   - 38948.30444297_wp*pa*pa*pa*pa &
       &   + 34397.72407466_wp*pa*pa*pa*pa*pa &
       &   - 16789.98003081_wp*pa*pa*pa*pa*pa*pa &
       &   +  3495.82839237_wp*pa*pa*pa*pa*pa*pa*pa

   END FUNCTION w1


   FUNCTION w2(pa)
      !!-------------------------------------------------------------------
      !! Function : w2 (see Gaussian function psi in Tsamados et al 2013)
      !!-------------------------------------------------------------------
      REAL(wp), INTENT(in   ) ::   pa
      REAL(wp) ::   w2
      !!-------------------------------------------------------------------

      w2 = -    6670.68911883_wp &
       &   +   70222.33061536_wp*pa &
       &   -  314871.71525448_wp*pa*pa &
       &   +  779570.02793492_wp*pa*pa*pa &
       &   - 1151098.82436864_wp*pa*pa*pa*pa &
       &   + 1013896.59464498_wp*pa*pa*pa*pa*pa &
       &   -  493379.44906738_wp*pa*pa*pa*pa*pa*pa &
       &   +  102356.55151800_wp*pa*pa*pa*pa*pa*pa*pa

   END FUNCTION w2

   SUBROUTINE all_skr_sks( px, py, pz, allsk )
      REAL(wp), INTENT(in   ) ::   px,py,pz
      REAL(wp), INTENT(out  ) ::   allsk(6)

      REAL(wp) ::   zs12r0, zs21r0
      REAL(wp) ::   zs12s0, zs21s0

      REAL(wp) ::   zpih
      REAL(wp) ::   zn1t2i11, zn1t2i12, zn1t2i21, zn1t2i22
      REAL(wp) ::   zn2t1i11, zn2t1i12, zn2t1i21, zn2t1i22
      REAL(wp) ::   zt1t2i11, zt1t2i12, zt1t2i21, zt1t2i22
      REAL(wp) ::   zt2t1i11, zt2t1i12, zt2t1i21, zt2t1i22
      REAL(wp) ::   zd11, zd12, zd22
      REAL(wp) ::   zIIn1t2, zIIn2t1, zIIt1t2
      REAL(wp) ::   zHen1t2, zHen2t1
      !!-------------------------------------------------------------------

      zpih = 0.5_wp*rpi

      zn1t2i11 = cos(pz+zpih-pphi) * cos(pz+pphi)
      zn1t2i12 = cos(pz+zpih-pphi) * sin(pz+pphi)
      zn1t2i21 = sin(pz+zpih-pphi) * cos(pz+pphi)
      zn1t2i22 = sin(pz+zpih-pphi) * sin(pz+pphi)
      zn2t1i11 = cos(pz-zpih+pphi) * cos(pz-pphi)
      zn2t1i12 = cos(pz-zpih+pphi) * sin(pz-pphi)
      zn2t1i21 = sin(pz-zpih+pphi) * cos(pz-pphi)
      zn2t1i22 = sin(pz-zpih+pphi) * sin(pz-pphi)
      zt1t2i11 = cos(pz-pphi) * cos(pz+pphi)
      zt1t2i12 = cos(pz-pphi) * sin(pz+pphi)
      zt1t2i21 = sin(pz-pphi) * cos(pz+pphi)
      zt1t2i22 = sin(pz-pphi) * sin(pz+pphi)
      zt2t1i11 = cos(pz+pphi) * cos(pz-pphi)
      zt2t1i12 = cos(pz+pphi) * sin(pz-pphi)
      zt2t1i21 = sin(pz+pphi) * cos(pz-pphi)
      zt2t1i22 = sin(pz+pphi) * sin(pz-pphi)
   ! In expression of tensor d, with this formulatin d(x)=-d(x+pi)
   ! Solution, when diagonalizing always check sgn(a11-a22) if > then keep x else
   ! x=x-pi/2
      zd11 = cos(py)*cos(py)*(cos(px)+sin(px)*tan(py)*tan(py))
      zd12 = cos(py)*cos(py)*tan(py)*(-cos(px)+sin(px))
      zd22 = cos(py)*cos(py)*(sin(px)+cos(px)*tan(py)*tan(py))
      zIIn1t2 = zn1t2i11 * zd11 + (zn1t2i12 + zn1t2i21) * zd12 + zn1t2i22 * zd22
      zIIn2t1 = zn2t1i11 * zd11 + (zn2t1i12 + zn2t1i21) * zd12 + zn2t1i22 * zd22
      zIIt1t2 = zt1t2i11 * zd11 + (zt1t2i12 + zt1t2i21) * zd12 + zt1t2i22 * zd22

      IF (-zIIn1t2>=rsmall) THEN
      zHen1t2 = 1._wp
      ELSE
      zHen1t2 = 0._wp
      ENDIF

      IF (-zIIn2t1>=rsmall) THEN
      zHen2t1 = 1._wp
      ELSE
      zHen2t1 = 0._wp
      ENDIF

      !!-------------------------------------------------------------------
      !! Function : s11kr
      !!-------------------------------------------------------------------
      allsk(1) = (- zHen1t2 * zn1t2i11 - zHen2t1 * zn2t1i11)
      !!-------------------------------------------------------------------
      !! Function : s12kr
      !!-------------------------------------------------------------------
      zs12r0 = (- zHen1t2 * zn1t2i12 - zHen2t1 * zn2t1i12)
      zs21r0 = (- zHen1t2 * zn1t2i21 - zHen2t1 * zn2t1i21)
      allsk(2)=0.5_wp*(zs12r0+zs21r0)
      !!-------------------------------------------------------------------
      !! Function : s22kr
      !!-------------------------------------------------------------------
      allsk(3) = (- zHen1t2 * zn1t2i22 - zHen2t1 * zn2t1i22)
      !!-------------------------------------------------------------------
      !! Function : s11ks
      !!-------------------------------------------------------------------

      allsk(4) = sign(1._wp,zIIt1t2+rsmall)*(zHen1t2 * zt1t2i11 + zHen2t1 * zt2t1i11)
      !!-------------------------------------------------------------------
      !! Function : s12ks
      !!-------------------------------------------------------------------
      zs12s0 = sign(1._wp,zIIt1t2+rsmall)*(zHen1t2 * zt1t2i12 + zHen2t1 * zt2t1i12)
      zs21s0 = sign(1._wp,zIIt1t2+rsmall)*(zHen1t2 * zt1t2i21 + zHen2t1 * zt2t1i21)
      allsk(5)=0.5_wp*(zs12s0+zs21s0)
      !!-------------------------------------------------------------------
      !! Function : s22ks
      !!-------------------------------------------------------------------
      allsk(6) = sign(1._wp,zIIt1t2+rsmall)*(zHen1t2 * zt1t2i22 + zHen2t1 * zt2t1i22)
   END SUBROUTINE all_skr_sks

#else
   !!----------------------------------------------------------------------
   !!   Default option         Empty module           NO SI3 sea-ice model
   !!----------------------------------------------------------------------
   USE par_kind
   USE lib_mpp
   CONTAINS
   SUBROUTINE ice_dyn_rhg_eap( kt, Kmm, pstress1_i, pstress2_i, pstress12_i, pshear_i, pdivu_i, pdelta_i, paniso_11, paniso_12, prdg_conv )
      INTEGER                 , INTENT(in   ) ::   kt                                    ! time step
      INTEGER                 , INTENT(in   ) ::   Kmm                                   ! ocean time level index
      REAL(wp), DIMENSION(:,:), INTENT(in   ) ::   pstress1_i, pstress2_i, pstress12_i   !
      REAL(wp), DIMENSION(:,:), INTENT(in   ) ::   pshear_i  , pdivu_i   , pdelta_i      !
      REAL(wp), DIMENSION(:,:), INTENT(in   ) ::   paniso_11 , paniso_12                 ! structure tensor components
      REAL(wp), DIMENSION(:,:), INTENT(in   ) ::   prdg_conv                             ! for ridging
      CALL ctl_stop('EAP rheology is currently dsabled due to issues with AGRIF preprocessing')
   END SUBROUTINE ice_dyn_rhg_eap
   SUBROUTINE rhg_eap_rst( cdrw, kt )
      CHARACTER(len=*) , INTENT(in) ::   cdrw   ! "READ"/"WRITE" flag
      INTEGER, OPTIONAL, INTENT(in) ::   kt     ! ice time-step
   END SUBROUTINE rhg_eap_rst
#endif

   !!==============================================================================
END MODULE icedyn_rhg_eap