Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
MODULE icedyn_rhg_vp
!!======================================================================
!! *** MODULE icedyn_rhg_vp ***
!! Sea-Ice dynamics : Viscous-plastic rheology with LSR technique
!!======================================================================
!!
!! History : - ! 1997-20 (J. Zhang, M. Losch) Original code, implementation into mitGCM
!! 4.0 ! 2020-09 (M. Vancoppenolle) Adaptation to SI3
!!
!!----------------------------------------------------------------------
#if defined key_si3
!!----------------------------------------------------------------------
!! 'key_si3' SI3 sea-ice model
!!----------------------------------------------------------------------
!! ice_dyn_rhg_vp : computes ice velocities from VP rheolog with LSR solvery
!!----------------------------------------------------------------------
USE phycst ! Physical constants
USE dom_oce ! Ocean domain
USE sbc_oce , ONLY : ln_ice_embd, nn_fsbc, ssh_m
USE sbc_ice , ONLY : utau_ice, vtau_ice, snwice_mass, snwice_mass_b
USE ice ! sea-ice: ice variables
USE icevar ! ice_var_sshdyn
USE icedyn_rdgrft ! sea-ice: ice strength
USE bdy_oce , ONLY : ln_bdy
USE bdyice
#if defined key_agrif
USE agrif_ice_interp
#endif
!
USE in_out_manager ! I/O manager
USE iom ! I/O manager library
USE lib_mpp ! MPP library
USE lib_fortran ! fortran utilities (glob_sum + no signed zero)
USE lbclnk ! lateral boundary conditions (or mpp links)
USE prtctl ! Print control
USE netcdf ! NetCDF library for convergence test
IMPLICIT NONE
PRIVATE
PUBLIC ice_dyn_rhg_vp ! called by icedyn_rhg.F90
INTEGER :: nn_nvp ! total number of VP iterations (n_out_vp*n_inn_vp)
LOGICAL :: lp_zebra_vp =.TRUE. ! activate zebra (solve the linear system problem every odd j-band, then one every even one)
REAL(wp) :: zrelaxu_vp=0.95 ! U-relaxation factor (MV: can probably be merged with V-factor once ok)
REAL(wp) :: zrelaxv_vp=0.95 ! V-relaxation factor
REAL(wp) :: zuerr_max_vp=0.80 ! maximum velocity error, above which a forcing error is considered and solver is stopped
REAL(wp) :: zuerr_min_vp=1.e-04 ! minimum velocity error, beyond which convergence is assumed
!! for convergence tests
INTEGER :: ncvgid ! netcdf file id
INTEGER :: nvarid_ures, nvarid_vres, nvarid_velres
INTEGER :: nvarid_uerr_max, nvarid_verr_max, nvarid_velerr_max
INTEGER :: nvarid_umad, nvarid_vmad, nvarid_velmad
INTEGER :: nvarid_umad_outer, nvarid_vmad_outer, nvarid_velmad_outer
INTEGER :: nvarid_mke
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: fimask ! mask at F points for the ice
!! * Substitutions
# include "do_loop_substitute.h90"
!!----------------------------------------------------------------------
!! NEMO/ICE 4.0 , NEMO Consortium (2018)
!! $Id: icedyn_rhg_vp.F90 13279 2020-07-09 10:39:43Z clem $
!! Software governed by the CeCILL license (see ./LICENSE)
!!----------------------------------------------------------------------
CONTAINS
SUBROUTINE ice_dyn_rhg_vp( kt, pshear_i, pdivu_i, pdelta_i )
!!-------------------------------------------------------------------
!!
!! *** SUBROUTINE ice_dyn_rhg_vp ***
!! VP-LSR-C-grid
!!
!! ** Purpose : determines sea ice drift from wind stress, ice-ocean
!! stress and sea-surface slope. Internal forces assume viscous-plastic rheology (Hibler, 1979)
!!
!! ** Method
!!
!! The resolution algorithm follows from Zhang and Hibler (1997) and Losch (2010)
!! with elements from Lemieux and Tremblay (2008) and Lemieux and Tremblay (2009)
!!
!! The components of the momentum equations are arranged following the ideas of Zhang and Hibler (1997)
!!
!! f1(u) = g1(v)
!! f2(v) = g2(u)
!!
!! The right-hand side (RHS) is explicit
!! The left-hand side (LHS) is implicit
!! Coriolis is part of explicit terms, whereas ice-ocean drag is implicit
!!
!! Two iteration levels (outer and inner loops) are used to solve the equations
!!
!! The outer loop (OL, typically 10 iterations) is there to deal with the (strong) non-linearities in the equation
!!
!! The inner loop (IL, typically 1500 iterations) is there to solve the linear problem with a line-successive-relaxation algorithm
!!
!! The velocity used in the non-linear terms uses a "modified euler time step" (not sure its the correct term),
!!! with uk = ( uk-1 + uk-2 ) / 2.
!!
!! * Spatial discretization
!!
!! Assumes a C-grid
!!
!! The points in the C-grid look like this, my darling
!!
!! (ji,jj)
!! |
!! |
!! (ji-1,jj) | (ji,jj)
!! ---------
!! | |
!! | (ji,jj) |------(ji,jj)
!! | |
!! ---------
!! (ji-1,jj-1) (ji,jj-1)
!!
!! ** Inputs : - wind forcing (stress), oceanic currents
!! ice total volume (vt_i) per unit area
!! snow total volume (vt_s) per unit area
!!
!! ** Action :
!!
!! ** Steps :
!!
!! ** Notes :
!!
!! References : Zhang and Hibler, JGR 1997; Losch et al., OM 2010., Lemieux et al., 2008, 2009, ...
!!
!!
!!-------------------------------------------------------------------
!!
INTEGER , INTENT(in ) :: kt ! time step
REAL(wp), DIMENSION(:,:), INTENT( out) :: pshear_i , pdivu_i , pdelta_i !
!!
LOGICAL :: ll_u_iterate, ll_v_iterate ! continue iteration or not
!
INTEGER :: ji, ji2, jj, jj2, jn ! dummy loop indices
INTEGER :: i_out, i_inn, i_inn_tot !
INTEGER :: ji_min, jj_min !
INTEGER :: nn_zebra_vp ! number of zebra steps
!
REAL(wp) :: zrhoco ! rho0 * rn_cio
REAL(wp) :: ecc2, z1_ecc2 ! square of yield ellipse eccenticity
REAL(wp) :: zglob_area ! global ice area for diagnostics
REAL(wp) :: zkt ! isotropic tensile strength for landfast ice
REAL(wp) :: zm1, zm2, zm3, zmassU, zmassV ! ice/snow mass and volume
REAL(wp) :: zds2, zdt, zdt2, zdiv, zdiv2 ! temporary scalars
REAL(wp) :: zp_delstar_f !
REAL(wp) :: zu_cV, zv_cU !
REAL(wp) :: zfac, zfac1, zfac2, zfac3
REAL(wp) :: zt12U, zt11U, zt22U, zt21U, zt122U, zt121U
REAL(wp) :: zt12V, zt11V, zt22V, zt21V, zt122V, zt121V
REAL(wp) :: zAA3, zw, ztau, zuerr_max, zverr_max
!
REAL(wp), DIMENSION(jpi,jpj) :: za_iU , za_iV ! ice fraction on U/V points
REAL(wp), DIMENSION(jpi,jpj) :: zmU_t, zmV_t ! Acceleration term contribution to RHS
REAL(wp), DIMENSION(jpi,jpj) :: zmassU_t, zmassV_t ! Mass per unit area divided by time step
!
REAL(wp), DIMENSION(jpi,jpj) :: zdeltat, zdelstar_t ! Delta & Delta* at T-points
REAL(wp), DIMENSION(jpi,jpj) :: ztens, zshear ! Tension, shear
REAL(wp), DIMENSION(jpi,jpj) :: zp_delstar_t ! P/delta* at T points
REAL(wp), DIMENSION(jpi,jpj) :: zzt, zet ! Viscosity pre-factors at T points
REAL(wp), DIMENSION(jpi,jpj) :: zef ! Viscosity pre-factor at F point
!
REAL(wp), DIMENSION(jpi,jpj) :: zmt ! Mass per unit area at t-point
REAL(wp), DIMENSION(jpi,jpj) :: zmf ! Coriolis factor (m*f) at t-point
REAL(wp), DIMENSION(jpi,jpj) :: v_oceU, u_oceV, v_iceU, u_iceV ! ocean/ice u/v component on V/U points
REAL(wp), DIMENSION(jpi,jpj) :: zu_c, zv_c ! "current" ice velocity (m/s), average of previous two OL iterates
REAL(wp), DIMENSION(jpi,jpj) :: zu_b, zv_b ! velocity at previous sub-iterate
REAL(wp), DIMENSION(jpi,jpj) :: zuerr, zverr ! absolute U/Vvelocity difference between current and previous sub-iterates
!
REAL(wp), DIMENSION(jpi,jpj) :: zds ! shear
REAL(wp), DIMENSION(jpi,jpj) :: zsshdyn ! array used for the calculation of ice surface slope:
! ! ocean surface (ssh_m) if ice is not embedded
! ! ice bottom surface if ice is embedded
REAL(wp), DIMENSION(jpi,jpj) :: zCwU, zCwV ! ice-ocean drag pre-factor (rho*c*module(u))
REAL(wp), DIMENSION(jpi,jpj) :: zspgU, zspgV ! surface pressure gradient at U/V points
REAL(wp), DIMENSION(jpi,jpj) :: zCorU, zCorV ! Coriolis stress array
REAL(wp), DIMENSION(jpi,jpj) :: ztaux_ai, ztauy_ai ! ice-atm. stress at U-V points
REAL(wp), DIMENSION(jpi,jpj) :: ztaux_oi_rhsu, ztauy_oi_rhsv ! ice-ocean stress RHS contribution at U-V points
REAL(wp), DIMENSION(jpi,jpj) :: zs1_rhsu, zs2_rhsu, zs12_rhsu ! internal stress contributions to RHSU
REAL(wp), DIMENSION(jpi,jpj) :: zs1_rhsv, zs2_rhsv, zs12_rhsv ! internal stress contributions to RHSV
REAL(wp), DIMENSION(jpi,jpj) :: zf_rhsu, zf_rhsv ! U- and V- components of internal force RHS contributions
REAL(wp), DIMENSION(jpi,jpj) :: zrhsu, zrhsv ! U and V RHS
REAL(wp), DIMENSION(jpi,jpj) :: zAU, zBU, zCU, zDU, zEU ! Linear system coefficients, U equation
REAL(wp), DIMENSION(jpi,jpj) :: zAV, zBV, zCV, zDV, zEV ! Linear system coefficients, V equation
REAL(wp), DIMENSION(jpi,jpj) :: zFU, zFU_prime, zBU_prime ! Rearranged linear system coefficients, U equation
REAL(wp), DIMENSION(jpi,jpj) :: zFV, zFV_prime, zBV_prime ! Rearranged linear system coefficients, V equation
!!! REAL(wp), DIMENSION(jpi,jpj) :: ztaux_bi, ztauy_bi ! ice-OceanBottom stress at U-V points (landfast)
!!! REAL(wp), DIMENSION(jpi,jpj) :: ztaux_base, ztauy_base ! ice-bottom stress at U-V points (landfast)
!
REAL(wp), DIMENSION(jpi,jpj) :: zmsk00
REAL(wp), DIMENSION(jpi,jpj) :: zmsk01x, zmsk01y ! mask for lots of ice (1), little ice (0)
REAL(wp), DIMENSION(jpi,jpj) :: zmsk00x, zmsk00y ! mask for ice presence (1), no ice (0)
!
REAL(wp), PARAMETER :: zepsi = 1.0e-20_wp ! tolerance parameter
REAL(wp), PARAMETER :: zmmin = 1._wp ! ice mass (kg/m2) below which ice velocity becomes very small
REAL(wp), PARAMETER :: zamin = 0.001_wp ! ice concentration below which ice velocity becomes very small
!! --- diags
REAL(wp) :: zsig1, zsig2, zsig12, zdelta, z1_strength, zfac_x, zfac_y
REAL(wp), DIMENSION(jpi,jpj) :: zs1, zs2, zs12, zs12f ! stress tensor components
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zsig_I, zsig_II, zsig1_p, zsig2_p
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: ztaux_oi, ztauy_oi
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zdiag_xmtrp_ice, zdiag_ymtrp_ice ! X/Y-component of ice mass transport (kg/s, SIMIP)
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zdiag_xmtrp_snw, zdiag_ymtrp_snw ! X/Y-component of snow mass transport (kg/s, SIMIP)
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zdiag_xatrp, zdiag_yatrp ! X/Y-component of area transport (m2/s, SIMIP)
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zvel_res ! Residual of the linear system at last iteration
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zvel_diff ! Absolute velocity difference @last outer iteration
!!----------------------------------------------------------------------------------------------------------------------
IF( kt == nit000 .AND. lwp ) WRITE(numout,*) '-- ice_dyn_rhg_vp: VP sea-ice rheology (LSR solver)'
IF( lwp ) WRITE(numout,*) '-- ice_dyn_rhg_vp: VP sea-ice rheology (LSR solver)'
!------------------------------------------------------------------------------!
!
! --- Initialization
!
!------------------------------------------------------------------------------!
! for diagnostics and convergence tests
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
zmsk00(ji,jj) = MAX( 0._wp , SIGN( 1._wp , at_i(ji,jj) - epsi06 ) ) ! 1 if ice , 0 if no ice
END_2D
IF ( lp_zebra_vp ) THEN; nn_zebra_vp = 2
ELSE; nn_zebra_vp = 1; ENDIF
nn_nvp = nn_vp_nout * nn_vp_ninn ! maximum number of iterations
IF( lwp ) WRITE(numout,*) ' lp_zebra_vp : ', lp_zebra_vp
IF( lwp ) WRITE(numout,*) ' nn_zebra_vp : ', nn_zebra_vp
IF( lwp ) WRITE(numout,*) ' nn_nvp : ', nn_nvp
zrhoco = rho0 * rn_cio
! ecc2: square of yield ellipse eccentricity
ecc2 = rn_ecc * rn_ecc
z1_ecc2 = 1._wp / ecc2
! Initialise convergence checks
IF( nn_rhg_chkcvg /= 0 ) THEN
! ice area for global mean kinetic energy (m2)
zglob_area = glob_sum( 'ice_rhg_vp', at_i(:,:) * e1e2t(:,:) * tmask(:,:,1) )
ENDIF
! Landfast param from Lemieux(2016): add isotropic tensile strength (following Konig Beatty and Holland, 2010)
! MV: Not working yet...
IF( ln_landfast_L16 ) THEN ; zkt = rn_lf_tensile
ELSE ; zkt = 0._wp
ENDIF
zs1_rhsu(:,:) = 0._wp; zs2_rhsu(:,:) = 0._wp; zs1_rhsv(:,:) = 0._wp; zs2_rhsv(:,:) = 0._wp
zrhsu (:,:) = 0._wp; zrhsv (:,:) = 0._wp; zf_rhsu(:,:) = 0._wp; zf_rhsv(:,:) = 0._wp
zAU(:,:) = 0._wp; zBU(:,:) = 0._wp; zCU(:,:) = 0._wp; zDU(:,:) = 0._wp; zEU(:,:) = 0._wp
zAV(:,:) = 0._wp; zBV(:,:) = 0._wp; zCV(:,:) = 0._wp; zDV(:,:) = 0._wp; zEV(:,:) = 0._wp
!------------------------------------------------------------------------------!
!
! --- Time-independent quantities
!
!------------------------------------------------------------------------------!
CALL ice_strength ! strength at T points
!---------------------------
! -- F-mask (code from EVP)
!---------------------------
IF( kt == nit000 ) THEN
! MartinV:
! In EVP routine, fimask is applied on shear at F-points, in order to enforce the lateral boundary condition (no-slip, ..., free-slip)
! I am not sure the same recipe applies here
! - ocean/land mask
ALLOCATE( fimask(jpi,jpj) )
IF( rn_ishlat == 0._wp ) THEN
DO_2D( 0, 0, 0, 0 )
fimask(ji,jj) = tmask(ji,jj,1) * tmask(ji+1,jj,1) * tmask(ji,jj+1,1) * tmask(ji+1,jj+1,1)
END_2D
ELSE
DO_2D( 0, 0, 0, 0 )
fimask(ji,jj) = tmask(ji,jj,1) * tmask(ji+1,jj,1) * tmask(ji,jj+1,1) * tmask(ji+1,jj+1,1)
! Lateral boundary conditions on velocity (modify fimask)
IF( fimask(ji,jj) == 0._wp ) THEN
fimask(ji,jj) = rn_ishlat * MIN( 1._wp , MAX( umask(ji,jj,1), umask(ji,jj+1,1), &
& vmask(ji,jj,1), vmask(ji+1,jj,1) ) )
ENDIF
END_2D
ENDIF
CALL lbc_lnk( 'icedyn_rhg_vp', fimask, 'F', 1._wp )
ENDIF
!----------------------------------------------------------------------------------------------------------
! -- Time-independent pre-factors for acceleration, ocean drag, coriolis, atmospheric drag, surface tilt
!----------------------------------------------------------------------------------------------------------
! Compute all terms & factors independent of velocities, or only depending on velocities at previous time step
! sea surface height
! embedded sea ice: compute representative ice top surface
! non-embedded sea ice: use ocean surface for slope calculation
zsshdyn(:,:) = ice_var_sshdyn( ssh_m, snwice_mass, snwice_mass_b)
DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
zmt(ji,jj) = rhos * vt_s(ji,jj) + rhoi * vt_i(ji,jj) ! Snow and ice mass at T-point
zmf(ji,jj) = zmt(ji,jj) * ff_t(ji,jj) ! Coriolis factor at T points (m*f)
END_2D
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) ! 2->jpj-1; 2->jpi-1
! Ice fraction at U-V points
za_iU(ji,jj) = 0.5_wp * ( at_i(ji,jj) * e1e2t(ji,jj) + at_i(ji+1,jj) * e1e2t(ji+1,jj) ) * r1_e1e2u(ji,jj) * umask(ji,jj,1)
za_iV(ji,jj) = 0.5_wp * ( at_i(ji,jj) * e1e2t(ji,jj) + at_i(ji,jj+1) * e1e2t(ji,jj+1) ) * r1_e1e2v(ji,jj) * vmask(ji,jj,1)
! Snow and ice mass at U-V points
zm1 = zmt(ji,jj)
zm2 = zmt(ji+1,jj)
zm3 = zmt(ji,jj+1)
zmassU = 0.5_wp * ( zm1 * e1e2t(ji,jj) + zm2 * e1e2t(ji+1,jj) ) * r1_e1e2u(ji,jj) * umask(ji,jj,1)
zmassV = 0.5_wp * ( zm1 * e1e2t(ji,jj) + zm3 * e1e2t(ji,jj+1) ) * r1_e1e2v(ji,jj) * vmask(ji,jj,1)
! Mass per unit area divided by time step
zmassU_t(ji,jj) = zmassU * r1_Dt_ice
zmassV_t(ji,jj) = zmassV * r1_Dt_ice
! Acceleration term contribution to RHS (depends on velocity at previous time step)
zmU_t(ji,jj) = zmassU_t(ji,jj) * u_ice(ji,jj)
zmV_t(ji,jj) = zmassV_t(ji,jj) * v_ice(ji,jj)
! Ocean currents at U-V points
v_oceU(ji,jj) = 0.25_wp * ( v_oce(ji,jj) + v_oce(ji,jj-1) + v_oce(ji+1,jj) + v_oce(ji+1,jj-1) ) * umask(ji,jj,1)
u_oceV(ji,jj) = 0.25_wp * ( u_oce(ji,jj) + u_oce(ji-1,jj) + u_oce(ji,jj+1) + u_oce(ji-1,jj+1) ) * vmask(ji,jj,1)
! Wind stress
ztaux_ai(ji,jj) = za_iU(ji,jj) * utau_ice(ji,jj)
ztauy_ai(ji,jj) = za_iV(ji,jj) * vtau_ice(ji,jj)
! Force due to sea surface tilt(- m*g*GRAD(ssh))
zspgU(ji,jj) = - zmassU * grav * ( zsshdyn(ji+1,jj) - zsshdyn(ji,jj) ) * r1_e1u(ji,jj)
zspgV(ji,jj) = - zmassV * grav * ( zsshdyn(ji,jj+1) - zsshdyn(ji,jj) ) * r1_e2v(ji,jj)
! Mask for ice presence (1) or absence (0)
zmsk00x(ji,jj) = 1._wp - MAX( 0._wp, SIGN( 1._wp, -zmassU ) ) ! 0 if no ice
zmsk00y(ji,jj) = 1._wp - MAX( 0._wp, SIGN( 1._wp, -zmassV ) ) ! 0 if no ice
! Mask for lots of ice (1) or little ice (0)
IF ( zmassU <= zmmin .AND. za_iU(ji,jj) <= zamin ) THEN ; zmsk01x(ji,jj) = 0._wp
ELSE ; zmsk01x(ji,jj) = 1._wp ; ENDIF
IF ( zmassV <= zmmin .AND. za_iV(ji,jj) <= zamin ) THEN ; zmsk01y(ji,jj) = 0._wp
ELSE ; zmsk01y(ji,jj) = 1._wp ; ENDIF
END_2D
!------------------------------------------------------------------------------!
!
! --- Start outer loop
!
!------------------------------------------------------------------------------!
zu_c(:,:) = u_ice(:,:)
zv_c(:,:) = v_ice(:,:)
i_inn_tot = 0
DO i_out = 1, nn_vp_nout
! Velocities used in the non linear terms are the average of the past two iterates
! u_it = 0.5 * ( u_{it-1} + u_{it-2} )
! Also used in Hibler and Ackley (1983); Zhang and Hibler (1997); Lemieux and Tremblay (2009)
zu_c(:,:) = 0.5_wp * ( u_ice(:,:) + zu_c(:,:) )
zv_c(:,:) = 0.5_wp * ( v_ice(:,:) + zv_c(:,:) )
!------------------------------------------------------------------------------!
!
! --- Right-hand side (RHS) of the linear problem
!
!------------------------------------------------------------------------------!
! In the outer loop, one needs to update all RHS terms
! with explicit velocity dependencies (viscosities, coriolis, ocean stress)
! as a function of "current" velocities (uc, vc)
!------------------------------------------
! -- Strain rates, viscosities and P/Delta
!------------------------------------------
! --- divergence, tension & shear (Appendix B of Hunke & Dukowicz, 2002) --- !
DO_2D( nn_hls, nn_hls-1, nn_hls, nn_hls-1 ) ! 1->jpi-1
! loops start at 1 since there is no boundary condition (lbc_lnk) at i=1 and j=1 for F points
! shear at F points
zds(ji,jj) = ( ( zu_c(ji,jj+1) * r1_e1u(ji,jj+1) - zu_c(ji,jj) * r1_e1u(ji,jj) ) * e1f(ji,jj) * e1f(ji,jj) &
& + ( zv_c(ji+1,jj) * r1_e2v(ji+1,jj) - zv_c(ji,jj) * r1_e2v(ji,jj) ) * e2f(ji,jj) * e2f(ji,jj) &
& ) * r1_e1e2f(ji,jj) * fimask(ji,jj)
END_2D
CALL lbc_lnk( 'icedyn_rhg_vp', zds, 'F', 1. ) ! necessary, zds2 uses jpi/jpj values for zds
DO_2D( nn_hls-1, nn_hls, nn_hls-1, nn_hls ) ! 2 -> jpj; 2,jpi !!! CHECK !!!
! loop to jpi,jpj to avoid making a communication for zs1,zs2,zs12
! shear**2 at T points (doc eq. A16)
zds2 = ( zds(ji,jj ) * zds(ji,jj ) * e1e2f(ji,jj ) + zds(ji-1,jj ) * zds(ji-1,jj ) * e1e2f(ji-1,jj ) &
& + zds(ji,jj-1) * zds(ji,jj-1) * e1e2f(ji,jj-1) + zds(ji-1,jj-1) * zds(ji-1,jj-1) * e1e2f(ji-1,jj-1) &
& ) * 0.25_wp * r1_e1e2t(ji,jj)
! divergence at T points
zdiv = ( e2u(ji,jj) * zu_c(ji,jj) - e2u(ji-1,jj) * zu_c(ji-1,jj) &
& + e1v(ji,jj) * zv_c(ji,jj) - e1v(ji,jj-1) * zv_c(ji,jj-1) &
& ) * r1_e1e2t(ji,jj)
zdiv2 = zdiv * zdiv
! tension at T points
zdt = ( ( zu_c(ji,jj) * r1_e2u(ji,jj) - zu_c(ji-1,jj) * r1_e2u(ji-1,jj) ) * e2t(ji,jj) * e2t(ji,jj) &
& - ( zv_c(ji,jj) * r1_e1v(ji,jj) - zv_c(ji,jj-1) * r1_e1v(ji,jj-1) ) * e1t(ji,jj) * e1t(ji,jj) &
& ) * r1_e1e2t(ji,jj)
zdt2 = zdt * zdt
! delta at T points
zdeltat(ji,jj) = SQRT( zdiv2 + ( zdt2 + zds2 ) * z1_ecc2 )
! delta* at T points (following Lemieux and Dupont, GMD 2020)
zdelstar_t(ji,jj) = zdeltat(ji,jj) + rn_creepl ! OPT zdelstar_t can be totally removed and put into next line directly. Could change results
! P/delta* at T-points
zp_delstar_t(ji,jj) = strength(ji,jj) / zdelstar_t(ji,jj)
! Temporary zzt and zet factors at T-points
zzt(ji,jj) = zp_delstar_t(ji,jj) * r1_e1e2t(ji,jj)
zet(ji,jj) = zzt(ji,jj) * z1_ecc2
END_2D
CALL lbc_lnk( 'icedyn_rhg_vp', zp_delstar_t , 'T', 1. ) ! necessary, used for ji = 1 and jj = 1
DO_2D( nn_hls, nn_hls-1, nn_hls, nn_hls-1 )! 1-> jpj-1; 1->jpi-1
! P/delta* at F points
zp_delstar_f = 0.25_wp * ( zp_delstar_t(ji,jj) + zp_delstar_t(ji+1,jj) + zp_delstar_t(ji,jj+1) + zp_delstar_t(ji+1,jj+1) )
! Temporary zef factor at F-point
zef(ji,jj) = zp_delstar_f * r1_e1e2f(ji,jj) * z1_ecc2 * fimask(ji,jj) * 0.5_wp
END_2D
!---------------------------------------------------
! -- Ocean-ice drag and Coriolis RHS contributions
!---------------------------------------------------
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) ! 2->jpj-1; 2->jpi-1
!--- ice u-velocity @V points, v-velocity @U points (for non-linear drag computation)
zu_cV = 0.25_wp * ( zu_c(ji,jj) + zu_c(ji-1,jj) + zu_c(ji,jj+1) + zu_c(ji-1,jj+1) ) * vmask(ji,jj,1)
zv_cU = 0.25_wp * ( zv_c(ji,jj) + zv_c(ji,jj-1) + zv_c(ji+1,jj) + zv_c(ji+1,jj-1) ) * umask(ji,jj,1)
!--- non-linear drag coefficients (need to be updated at each outer loop, see Lemieux and Tremblay JGR09, p.3, beginning of Section 3)
zCwU(ji,jj) = za_iU(ji,jj) * zrhoco * SQRT( ( zu_c (ji,jj) - u_oce (ji,jj) ) * ( zu_c (ji,jj) - u_oce (ji,jj) ) &
& + ( zv_cU - v_oceU(ji,jj) ) * ( zv_cU - v_oceU(ji,jj) ) )
zCwV(ji,jj) = za_iV(ji,jj) * zrhoco * SQRT( ( zv_c (ji,jj) - v_oce (ji,jj) ) * ( zv_c (ji,jj) - v_oce (ji,jj) ) &
& + ( zu_cV - u_oceV(ji,jj) ) * ( zu_cV - u_oceV(ji,jj) ) )
!--- Ocean-ice drag contributions to RHS
ztaux_oi_rhsu(ji,jj) = zCwU(ji,jj) * u_oce(ji,jj)
ztauy_oi_rhsv(ji,jj) = zCwV(ji,jj) * v_oce(ji,jj)
!--- U-component of Coriolis Force (energy conserving formulation)
zCorU(ji,jj) = 0.25_wp * r1_e1u(ji,jj) * &
& ( zmf(ji ,jj) * ( e1v(ji ,jj) * zv_c(ji ,jj) + e1v(ji ,jj-1) * zv_c(ji ,jj-1) ) &
& + zmf(ji+1,jj) * ( e1v(ji+1,jj) * zv_c(ji+1,jj) + e1v(ji+1,jj-1) * zv_c(ji+1,jj-1) ) )
!--- V-component of Coriolis Force (energy conserving formulation)
zCorV(ji,jj) = - 0.25_wp * r1_e2v(ji,jj) * &
& ( zmf(ji,jj ) * ( e2u(ji,jj ) * zu_c(ji,jj ) + e2u(ji-1,jj ) * zu_c(ji-1,jj ) ) &
& + zmf(ji,jj+1) * ( e2u(ji,jj+1) * zu_c(ji,jj+1) + e2u(ji-1,jj+1) * zu_c(ji-1,jj+1) ) )
END_2D
!-------------------------------------
! -- Internal stress RHS contribution
!-------------------------------------
! --- Stress contributions at T-points
DO_2D( nn_hls-1, nn_hls, nn_hls-1, nn_hls ) ! 2 -> jpj; 2,jpi !!! CHECK !!!
! loop to jpi,jpj to avoid making a communication for zs1 & zs2
! sig1 contribution to RHS of U-equation at T-points
zs1_rhsu(ji,jj) = zzt(ji,jj) * ( e1v(ji,jj) * zv_c(ji,jj) - e1v(ji,jj-1) * zv_c(ji,jj-1) ) &
& - zp_delstar_t(ji,jj) * zdeltat(ji,jj)
! sig2 contribution to RHS of U-equation at T-points
zs2_rhsu(ji,jj) = - zet(ji,jj) * ( r1_e1v(ji,jj) * zv_c(ji,jj) - r1_e1v(ji,jj-1) * zv_c(ji,jj-1) ) * e1t(ji,jj) * e1t(ji,jj)
! sig1 contribution to RHS of V-equation at T-points
zs1_rhsv(ji,jj) = zzt(ji,jj) * ( e2u(ji,jj) * zu_c(ji,jj) - e2u(ji-1,jj) * zu_c(ji-1,jj) ) &
& - zp_delstar_t(ji,jj) * zdeltat(ji,jj)
! sig2 contribution to RHS of V-equation at T-points
zs2_rhsv(ji,jj) = zet(ji,jj) * ( r1_e2u(ji,jj) * zu_c(ji,jj) - r1_e2u(ji-1,jj) * zu_c(ji-1,jj) ) * e2t(ji,jj) * e2t(ji,jj)
END_2D
! --- Stress contributions at F-points
! MV NOTE: I applied fimask on zds, by mimetism on EVP, but without deep understanding of what I was doing
! My guess is that this is the way to enforce boundary conditions on strain rate tensor
DO_2D( nn_hls, nn_hls-1, nn_hls, nn_hls-1 ) ! 1->jpi-1
! sig12 contribution to RHS of U equation at F-points
zs12_rhsu(ji,jj) = zef(ji,jj) * ( r1_e2v(ji+1,jj) * zv_c(ji+1,jj) + r1_e2v(ji,jj) * zv_c(ji,jj) ) * e2f(ji,jj) * e2f(ji,jj) * fimask(ji,jj)
! sig12 contribution to RHS of V equation at F-points
zs12_rhsv(ji,jj) = zef(ji,jj) * ( r1_e1u(ji,jj+1) * zu_c(ji,jj+1) + r1_e1u(ji,jj) * zu_c(ji,jj) ) * e1f(ji,jj) * e1f(ji,jj) * fimask(ji,jj)
END_2D
! --- Internal force contributions to RHS, taken as divergence of stresses (Appendix C of Hunke and Dukowicz, 2002)
! OPT: merge with next loop and use intermediate scalars for zf_rhsu
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) ! 2->jpj-1; 2->jpi-1
! --- U component of internal force contribution to RHS at U points
zf_rhsu(ji,jj) = 0.5_wp * r1_e1e2u(ji,jj) * &
( e2u(ji,jj) * ( zs1_rhsu(ji+1,jj) - zs1_rhsu(ji,jj) ) &
& + r1_e2u(ji,jj) * ( e2t(ji+1,jj) * e2t(ji+1,jj) * zs2_rhsu(ji+1,jj) - e2t(ji,jj) * e2t(ji,jj) * zs2_rhsu(ji,jj) ) &
& + 2._wp * r1_e1u(ji,jj) * ( e1f(ji,jj) * e1f(ji,jj) * zs12_rhsu(ji,jj) - e1f(ji,jj-1) * e1f(ji,jj-1) * zs12_rhsu(ji,jj-1) ) )
! --- V component of internal force contribution to RHS at V points
zf_rhsv(ji,jj) = 0.5_wp * r1_e1e2v(ji,jj) * &
& ( e1v(ji,jj) * ( zs1_rhsv(ji,jj+1) - zs1_rhsv(ji,jj) ) &
& - r1_e1v(ji,jj) * ( e1t(ji,jj+1) * e1t(ji,jj+1) * zs2_rhsv(ji,jj+1) - e1t(ji,jj) * e1t(ji,jj) * zs2_rhsv(ji,jj) ) &
& + 2._wp * r1_e2v(ji,jj) * ( e2f(ji,jj) * e2f(ji,jj) * zs12_rhsv(ji,jj) - e2f(ji-1,jj) * e2f(ji-1,jj) * zs12_rhsv(ji-1,jj) ) )
END_2D
!---------------------------
! -- Sum RHS contributions
!---------------------------
!
! OPT: could use intermediate scalars to reduce memory access
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) ! 2->jpj-1; 2->jpi-1
zrhsu(ji,jj) = zmU_t(ji,jj) + ztaux_ai(ji,jj) + ztaux_oi_rhsu(ji,jj) + zspgU(ji,jj) + zCorU(ji,jj) + zf_rhsu(ji,jj)
zrhsv(ji,jj) = zmV_t(ji,jj) + ztauy_ai(ji,jj) + ztauy_oi_rhsv(ji,jj) + zspgV(ji,jj) + zCorV(ji,jj) + zf_rhsv(ji,jj)
END_2D
!---------------------------------------------------------------------------------------!
!
! --- Linear system matrix
!
!---------------------------------------------------------------------------------------!
! Linear system matrix contains all implicit contributions
! 1) internal forces, 2) acceleration, 3) ice-ocean drag
! The linear system equation is written as follows
! AU * u_{i-1,j} + BU * u_{i,j} + CU * u_{i+1,j}
! = DU * u_{i,j-1} + EU * u_{i,j+1} + RHS (! my convention, not the same as ZH97 )
! MV Note 1: martin losch applies boundary condition to BU in mitGCM - check whether it is necessary here ?
! MV Note 2: "T" factor calculations can be optimized by putting things out of the loop
! only zzt and zet are iteration-dependent, other only depend on scale factors
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) ! 2->jpj-1; 2->jpi-1
!-------------------------------------
! -- Internal forces LHS contribution
!-------------------------------------
!
! --- U-component
!
! "T" factors (intermediate results)
!
zfac = 0.5_wp * r1_e1e2u(ji,jj)
zfac1 = zfac * e2u(ji,jj)
zfac2 = zfac * r1_e2u(ji,jj)
zfac3 = 2._wp * zfac * r1_e1u(ji,jj)
zt11U = zfac1 * zzt(ji,jj)
zt12U = zfac1 * zzt(ji+1,jj)
zt21U = zfac2 * zet(ji,jj) * e2t(ji,jj) * e2t(ji,jj) * e2t(ji,jj) * e2t(ji,jj)
zt22U = zfac2 * zet(ji+1,jj) * e2t(ji+1,jj) * e2t(ji+1,jj) * e2t(ji+1,jj) * e2t(ji+1,jj)
zt121U = zfac3 * zef(ji,jj-1) * e1f(ji,jj-1) * e1f(ji,jj-1) * e1f(ji,jj-1) * e1f(ji,jj-1)
zt122U = zfac3 * zef(ji,jj) * e1f(ji,jj) * e1f(ji,jj) * e1f(ji,jj) * e1f(ji,jj)
!
! Linear system coefficients
!
zAU(ji,jj) = - zt11U * e2u(ji-1,jj) - zt21U * r1_e2u(ji-1,jj)
zBU(ji,jj) = ( zt11U + zt12U ) * e2u(ji,jj) + ( zt21U + zt22U ) * r1_e2u(ji,jj) + ( zt121U + zt122U ) * r1_e1u(ji,jj)
zCU(ji,jj) = - zt12U * e2u(ji+1,jj) - zt22U * r1_e2u(ji+1,jj)
zDU(ji,jj) = zt121U * r1_e1u(ji,jj-1)
zEU(ji,jj) = zt122U * r1_e1u(ji,jj+1)
!
! --- V-component
!
! "T" factors (intermediate results)
!
zfac = 0.5_wp * r1_e1e2v(ji,jj)
zfac1 = zfac * e1v(ji,jj)
zfac2 = zfac * r1_e1v(ji,jj)
zfac3 = 2._wp * zfac * r1_e2v(ji,jj)
zt11V = zfac1 * zzt(ji,jj)
zt12V = zfac1 * zzt(ji,jj+1)
zt21V = zfac2 * zet(ji,jj) * e1t(ji,jj) * e1t(ji,jj) * e1t(ji,jj) * e1t(ji,jj)
zt22V = zfac2 * zet(ji,jj+1) * e1t(ji,jj+1) * e1t(ji,jj+1) * e1t(ji,jj+1) * e1t(ji,jj+1)
zt121V = zfac3 * zef(ji-1,jj) * e2f(ji-1,jj) * e2f(ji-1,jj) * e2f(ji-1,jj) * e2f(ji-1,jj)
zt122V = zfac3 * zef(ji,jj) * e2f(ji,jj) * e2f(ji,jj) * e2f(ji,jj) * e2f(ji,jj)
!
! Linear system coefficients
!
zAV(ji,jj) = - zt11V * e1v(ji,jj-1) - zt21V * r1_e1v(ji,jj-1)
zBV(ji,jj) = ( zt11V + zt12V ) * e1v(ji,jj) + ( zt21V + zt22V ) * r1_e1v(ji,jj) + ( zt122V + zt121V ) * r1_e2v(ji,jj)
zCV(ji,jj) = - zt12V * e1v(ji,jj+1) - zt22V * r1_e1v(ji,jj+1)
zDV(ji,jj) = zt121V * r1_e2v(ji-1,jj)
zEV(ji,jj) = zt122V * r1_e2v(ji+1,jj)
!-----------------------------------------------------
! -- Ocean-ice drag and acceleration LHS contribution
!-----------------------------------------------------
zBU(ji,jj) = zBU(ji,jj) + zCwU(ji,jj) + zmassU_t(ji,jj)
zBV(ji,jj) = zBV(ji,jj) + zCwV(ji,jj) + zmassV_t(ji,jj)
END_2D
!------------------------------------------------------------------------------!
!
! --- Inner loop: solve linear system, check convergence
!
!------------------------------------------------------------------------------!
! Inner loop solves the linear problem .. requires 1500 iterations
ll_u_iterate = .TRUE.
ll_v_iterate = .TRUE.
DO i_inn = 1, nn_vp_ninn ! inner loop iterations
!--- mitgcm computes initial value of residual here...
i_inn_tot = i_inn_tot + 1
! l_full_nf_update = i_inn_tot == nn_nvp ! false: disable full North fold update (performances) for iter = 1 to nn_nevp-1
zu_b(:,:) = u_ice(:,:) ! velocity at previous inner-iterate
zv_b(:,:) = v_ice(:,:)
IF ( ll_u_iterate .OR. ll_v_iterate ) THEN
! ---------------------------- !
IF ( ll_u_iterate ) THEN ! --- Solve for u-velocity --- !
! ---------------------------- !
! What follows could be subroutinized...
! Thomas Algorithm for tridiagonal solver
! A*u(i-1,j)+B*u(i,j)+C*u(i+1,j) = F
zFU(:,:) = 0._wp ; zFU_prime(:,:) = 0._wp ; zBU_prime(:,:) = 0._wp;
DO jn = 1, nn_zebra_vp ! "zebra" loop (! red-black-sor!!! )
! OPT: could be even better optimized with a true red-black SOR
IF ( jn == 1 ) THEN ; jj_min = 2
ELSE ; jj_min = 3
ENDIF
DO jj = jj_min, jpj - 1, nn_zebra_vp
!------------------------
! Independent term (zFU)
!------------------------
DO ji = 2, jpi - 1
! note: these are key lines linking information between processors
! u_ice/v_ice need to be lbc_linked
! sub-domain boundary condition substitution
! see Zhang and Hibler, 1997, Appendix B
zAA3 = 0._wp
IF ( ji == 2 ) zAA3 = zAA3 - zAU(ji,jj) * u_ice(ji-1,jj)
IF ( ji == jpi - 1 ) zAA3 = zAA3 - zCU(ji,jj) * u_ice(ji+1,jj)
! right hand side
zFU(ji,jj) = ( zrhsu(ji,jj) & ! right-hand side terms
& + zAA3 & ! boundary condition translation
& + zDU(ji,jj) * u_ice(ji,jj-1) & ! internal force, j-1
& + zEU(ji,jj) * u_ice(ji,jj+1) ) * umask(ji,jj,1) ! internal force, j+1
END DO
END DO
!---------------
! Forward sweep
!---------------
DO jj = jj_min, jpj - 1, nn_zebra_vp
zBU_prime(2,jj) = zBU(2,jj)
zFU_prime(2,jj) = zFU(2,jj)
DO ji = 3, jpi - 1
zfac = SIGN( 1._wp , zBU(ji-1,jj) ) * MAX( 0._wp , SIGN( 1._wp , ABS( zBU(ji-1,jj) ) - epsi20 ) )
zw = zfac * zAU(ji,jj) / MAX ( ABS( zBU(ji-1,jj) ) , epsi20 )
zBU_prime(ji,jj) = zBU(ji,jj) - zw * zCU(ji-1,jj)
zFU_prime(ji,jj) = zFU(ji,jj) - zw * zFU(ji-1,jj)
END DO
END DO
!-----------------------------
! Backward sweep & relaxation
!-----------------------------
DO jj = jj_min, jpj - 1, nn_zebra_vp
! --- Backward sweep
! last row
zfac = SIGN( 1._wp , zBU_prime(jpi-1,jj) ) * MAX( 0._wp , SIGN( 1._wp , ABS( zBU_prime(jpi-1,jj) ) - epsi20 ) )
u_ice(jpi-1,jj) = zfac * zFU_prime(jpi-1,jj) / MAX( ABS ( zBU_prime(jpi-1,jj) ) , epsi20 ) &
& * umask(jpi-1,jj,1)
DO ji = jpi - 2 , 2, -1 ! all other rows ! ---> original backward loop
zfac = SIGN( 1._wp , zBU_prime(ji,jj) ) * MAX( 0._wp , SIGN( 1._wp , ABS( zBU_prime(ji,jj) ) - epsi20 ) )
u_ice(ji,jj) = zfac * ( zFU_prime(ji,jj) - zCU(ji,jj) * u_ice(ji+1,jj) ) * umask(ji,jj,1) &
& / MAX ( ABS ( zBU_prime(ji,jj) ) , epsi20 )
END DO
!--- Relaxation and masking (for low-ice/no-ice cases)
DO ji = 2, jpi - 1
u_ice(ji,jj) = zu_b(ji,jj) + zrelaxu_vp * ( u_ice(ji,jj) - zu_b(ji,jj) ) ! relaxation
u_ice(ji,jj) = zmsk00x(ji,jj) & ! masking
& * ( zmsk01x(ji,jj) * u_ice(ji,jj) &
& + ( 1._wp - zmsk01x(ji,jj) ) * u_oce(ji,jj) * 0.01_wp ) * umask(ji,jj,1)
END DO
END DO ! jj
CALL lbc_lnk( 'icedyn_rhg_vp', u_ice, 'U', -1. )
END DO ! zebra loop
ENDIF ! ll_u_iterate
! ! ---------------------------- !
IF ( ll_v_iterate ) THEN ! --- Solve for V-velocity --- !
! ! ---------------------------- !
! MV OPT: what follows could be subroutinized...
! Thomas Algorithm for tridiagonal solver
! A*v(i,j-1)+B*v(i,j)+C*v(i,j+1) = F
! It is intentional to have a ji then jj loop for V-velocity
!!! ZH97 explain it is critical for convergence speed
zFV(:,:) = 0._wp ; zFV_prime(:,:) = 0._wp ; zBV_prime(:,:) = 0._wp;
DO jn = 1, nn_zebra_vp ! "zebra" loop
IF ( jn == 1 ) THEN ; ji_min = 2
ELSE ; ji_min = 3
ENDIF
DO ji = ji_min, jpi - 1, nn_zebra_vp
!------------------------
! Independent term (zFV)
!------------------------
DO jj = 2, jpj - 1
! subdomain boundary condition substitution (check it is correctly applied !!!)
! see Zhang and Hibler, 1997, Appendix B
zAA3 = 0._wp
IF ( jj == 2 ) zAA3 = zAA3 - zAV(ji,jj) * v_ice(ji,jj-1)
IF ( jj == jpj - 1 ) zAA3 = zAA3 - zCV(ji,jj) * v_ice(ji,jj+1)
! right hand side
zFV(ji,jj) = ( zrhsv(ji,jj) & ! right-hand side terms
& + zAA3 & ! boundary condition translation
& + zDV(ji,jj) * v_ice(ji-1,jj) & ! internal force, j-1
& + zEV(ji,jj) * v_ice(ji+1,jj) ) * vmask(ji,jj,1) ! internal force, j+1
END DO
END DO
!---------------
! Forward sweep
!---------------
DO ji = ji_min, jpi - 1, nn_zebra_vp
zBV_prime(ji,2) = zBV(ji,2)
zFV_prime(ji,2) = zFV(ji,2)
DO jj = 3, jpj - 1
zfac = SIGN( 1._wp , zBV(ji,jj-1) ) * MAX( 0._wp , SIGN( 1._wp , ABS( zBV(ji,jj-1) ) - epsi20 ) )
zw = zfac * zAV(ji,jj) / MAX ( ABS( zBV(ji,jj-1) ) , epsi20 )
zBV_prime(ji,jj) = zBV(ji,jj) - zw * zCV(ji,jj-1)
zFV_prime(ji,jj) = zFV(ji,jj) - zw * zFV(ji,jj-1)
END DO
END DO
!-----------------------------
! Backward sweep & relaxation
!-----------------------------
DO ji = ji_min, jpi - 1, nn_zebra_vp
! --- Backward sweep
! last row
zfac = SIGN( 1._wp , zBV_prime(ji,jpj-1) ) * MAX( 0._wp , SIGN( 1._wp , ABS( zBV_prime(ji,jpj-1) ) - epsi20 ) )
v_ice(ji,jpj-1) = zfac * zFV_prime(ji,jpj-1) / MAX ( ABS(zBV_prime(ji,jpj-1) ) , epsi20 ) &
& * vmask(ji,jpj-1,1) ! last row
! other rows
DO jj = jpj-2, 2, -1 ! original back loop
zfac = SIGN( 1._wp , zBV_prime(ji,jj) ) * MAX( 0._wp , SIGN( 1._wp , ABS( zBV_prime(ji,jj) ) - epsi20 ) )
v_ice(ji,jj) = zfac * ( zFV_prime(ji,jj) - zCV(ji,jj) * v_ice(ji,jj+1) ) * vmask(ji,jj,1) &
& / MAX ( ABS( zBV_prime(ji,jj) ) , epsi20 )
END DO
! --- Relaxation & masking
DO jj = 2, jpj - 1
v_ice(ji,jj) = zv_b(ji,jj) + zrelaxv_vp * ( v_ice(ji,jj) - zv_b(ji,jj) ) ! relaxation
v_ice(ji,jj) = zmsk00y(ji,jj) & ! masking
& * ( zmsk01y(ji,jj) * v_ice(ji,jj) &
& + ( 1._wp - zmsk01y(ji,jj) ) * v_oce(ji,jj) * 0.01_wp ) * vmask(ji,jj,1)
END DO ! jj
END DO ! ji
CALL lbc_lnk( 'icedyn_rhg_vp', v_ice, 'V', -1. )
END DO ! zebra loop
ENDIF ! ll_v_iterate
! I suspect the communication should go into the zebra loop if we want reproducibility
!--------------------------------------------------------------------------------------
! -- Check convergence based on maximum velocity difference, continue or stop the loop
!--------------------------------------------------------------------------------------
!------
! on U
!------
! MV OPT: if the number of iterations to convergence is really variable, and keep the convergence check
! then we must optimize the use of the mpp_max, which is prohibitive
zuerr_max = 0._wp
IF ( ll_u_iterate .AND. MOD ( i_inn, nn_vp_chkcvg ) == 0 ) THEN
! - Maximum U-velocity difference
zuerr(:,:) = 0._wp
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) ! 2->jpj-1; 2->jpi-1
zuerr(ji,jj) = ABS ( ( u_ice(ji,jj) - zu_b(ji,jj) ) ) * umask(ji,jj,1)
END_2D
zuerr_max = MAXVAL( zuerr )
CALL mpp_max( 'icedyn_rhg_evp', zuerr_max ) ! max over the global domain - damned!
! - Stop if max error is too large ("safeguard against bad forcing" of original Zhang routine)
IF ( i_inn > 1 .AND. zuerr_max > zuerr_max_vp ) THEN
IF ( lwp ) WRITE(numout,*) " VP rheology error was too large : ", zuerr_max, " in outer U-iteration ", i_out, " after ", i_inn, " iterations, we stopped "
ll_u_iterate = .FALSE.
ENDIF
! - Stop if error small enough
IF ( zuerr_max < zuerr_min_vp ) THEN
IF ( lwp ) WRITE(numout,*) " VP rheology nicely done in outer U-iteration ", i_out, " after ", i_inn, " iterations, finished! "
ll_u_iterate = .FALSE.
ENDIF
ENDIF ! ll_u_iterate
!------
! on V
!------
zverr_max = 0._wp
IF ( ll_v_iterate .AND. MOD ( i_inn, nn_vp_chkcvg ) == 0 ) THEN
! - Maximum V-velocity difference
zverr(:,:) = 0._wp
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) ! 2->jpj-1; 2->jpi-1
zverr(ji,jj) = ABS ( ( v_ice(ji,jj) - zv_b(ji,jj) ) ) * vmask(ji,jj,1)
END_2D
zverr_max = MAXVAL( zverr )
CALL mpp_max( 'icedyn_rhg_evp', zverr_max ) ! max over the global domain - damned!
! - Stop if error is too large ("safeguard against bad forcing" of original Zhang routine)
IF ( i_inn > 1 .AND. zverr_max > zuerr_max_vp ) THEN
IF ( lwp ) WRITE(numout,*) " VP rheology error was too large : ", zverr_max, " in outer V-iteration ", i_out, " after ", i_inn, " iterations, we stopped "
ll_v_iterate = .FALSE.
ENDIF
! - Stop if error small enough
IF ( zverr_max < zuerr_min_vp ) THEN
IF ( lwp ) WRITE(numout,*) " VP rheology nicely done in outer V-iteration ", i_out, " after ", i_inn, " iterations, finished! "
ll_v_iterate = .FALSE.
ENDIF
ENDIF ! ll_v_iterate
ENDIF ! --- end ll_u_iterate or ll_v_iterate
!---------------------------------------------------------------------------------------
!
! --- Calculate extra convergence diagnostics and save them
!
!---------------------------------------------------------------------------------------
IF( nn_rhg_chkcvg/=0 .AND. MOD ( i_inn - 1, nn_vp_chkcvg ) == 0 ) THEN
CALL rhg_cvg_vp( kt, i_out, i_inn, i_inn_tot, nn_vp_nout, nn_vp_ninn, nn_nvp, &
& u_ice, v_ice, zu_b, zv_b, zu_c, zv_c, &
& zmt, za_iU, za_iV, zuerr_max, zverr_max, zglob_area, &
& zrhsu, zAU, zBU, zCU, zDU, zEU, zFU, &
& zrhsv, zAV, zBV, zCV, zDV, zEV, zFV, &
zvel_res, zvel_diff )
ENDIF
END DO ! i_inn, end of inner loop
END DO ! End of outer loop (i_out) =============================================================================================
IF( nn_rhg_chkcvg/=0 ) THEN
IF( iom_use('velo_res') ) CALL iom_put( 'velo_res', zvel_res ) ! linear system residual @last inner&outer iteration
IF( iom_use('velo_ero') ) CALL iom_put( 'velo_ero', zvel_diff ) ! abs velocity difference @last outer iteration
IF( iom_use('uice_eri') ) CALL iom_put( 'uice_eri', zuerr ) ! abs velocity difference @last inner iteration
IF( iom_use('vice_eri') ) CALL iom_put( 'vice_eri', zverr ) ! abs velocity difference @last inner iteration
DEALLOCATE( zvel_res , zvel_diff )
ENDIF ! nn_rhg_chkcvg
!------------------------------------------------------------------------------!
!
! --- Recompute delta, shear and div (inputs for mechanical redistribution)
!
!------------------------------------------------------------------------------!
!
! MV OPT: subroutinize ?
DO_2D( nn_hls, nn_hls, nn_hls-1, nn_hls-1 ) ! 1->jpj-1; 1->jpi-1
! shear at F points
zds(ji,jj) = ( ( u_ice(ji,jj+1) * r1_e1u(ji,jj+1) - u_ice(ji,jj) * r1_e1u(ji,jj) ) * e1f(ji,jj) * e1f(ji,jj) &
& + ( v_ice(ji+1,jj) * r1_e2v(ji+1,jj) - v_ice(ji,jj) * r1_e2v(ji,jj) ) * e2f(ji,jj) * e2f(ji,jj) &
& ) * r1_e1e2f(ji,jj) * fimask(ji,jj)
END_2D
DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 ) ! 2->jpj-1; 2->jpi-1
! tension**2 at T points
zdt = ( ( u_ice(ji,jj) * r1_e2u(ji,jj) - u_ice(ji-1,jj) * r1_e2u(ji-1,jj) ) * e2t(ji,jj) * e2t(ji,jj) &
& - ( v_ice(ji,jj) * r1_e1v(ji,jj) - v_ice(ji,jj-1) * r1_e1v(ji,jj-1) ) * e1t(ji,jj) * e1t(ji,jj) &
& ) * r1_e1e2t(ji,jj)
zdt2 = zdt * zdt
ztens(ji,jj) = zdt
! shear**2 at T points (doc eq. A16)
zds2 = ( zds(ji,jj ) * zds(ji,jj ) * e1e2f(ji,jj ) + zds(ji-1,jj ) * zds(ji-1,jj ) * e1e2f(ji-1,jj ) &
& + zds(ji,jj-1) * zds(ji,jj-1) * e1e2f(ji,jj-1) + zds(ji-1,jj-1) * zds(ji-1,jj-1) * e1e2f(ji-1,jj-1) &
& ) * 0.25_wp * r1_e1e2t(ji,jj)
! maximum shear rate at T points (includees tension, output only)
pshear_i(ji,jj) = SQRT( zdt2 + zds2 ) ! i think this is maximum shear rate and not actual shear --- i'm not totally sure here