Skip to content
Snippets Groups Projects
icedyn_adv_umx.F90 91.2 KiB
Newer Older
Guillaume Samson's avatar
Guillaume Samson committed
MODULE icedyn_adv_umx
   !!==============================================================================
   !!                       ***  MODULE  icedyn_adv_umx  ***
   !! sea-ice : advection using the ULTIMATE-MACHO scheme
   !!==============================================================================
   !! History :  3.6  !  2014-11  (C. Rousset, G. Madec)  Original code
   !!            4.0  !  2018     (many people)           SI3 [aka Sea Ice cube]
   !!----------------------------------------------------------------------
#if defined key_si3
   !!----------------------------------------------------------------------
   !!   'key_si3'                                       SI3 sea-ice model
   !!----------------------------------------------------------------------
   !!   ice_dyn_adv_umx   : update the tracer fields
   !!   ultimate_x(_y)    : compute a tracer value at velocity points using ULTIMATE scheme at various orders
   !!   macho             : compute the fluxes
   !!   nonosc_ice        : limit the fluxes using a non-oscillatory algorithm
   !!----------------------------------------------------------------------
   USE phycst         ! physical constant
   USE dom_oce        ! ocean domain
   USE sbc_oce , ONLY : nn_fsbc   ! update frequency of surface boundary condition
   USE ice            ! sea-ice variables
   USE icevar         ! sea-ice: operations
   !
   USE in_out_manager ! I/O manager
   USE iom            ! I/O manager library
   USE lib_mpp        ! MPP library
   USE lib_fortran    ! fortran utilities (glob_sum + no signed zero)
   USE lbclnk         ! lateral boundary conditions (or mpp links)

   IMPLICIT NONE
   PRIVATE

   PUBLIC   ice_dyn_adv_umx   ! called by icedyn_adv.F90
   !
   INTEGER, PARAMETER ::   np_advS = 1         ! advection for S and T:    dVS/dt = -div(      uVS     ) => np_advS = 1
   !                                                                    or dVS/dt = -div( uA * uHS / u ) => np_advS = 2
   !                                                                    or dVS/dt = -div( uV * uS  / u ) => np_advS = 3
   INTEGER, PARAMETER ::   np_limiter = 1      ! limiter: 1 = nonosc
   !                                                      2 = superbee
   !                                                      3 = h3
   LOGICAL            ::   ll_upsxy  = .TRUE.   ! alternate directions for upstream
   LOGICAL            ::   ll_hoxy   = .TRUE.   ! alternate directions for high order
   LOGICAL            ::   ll_neg    = .TRUE.   ! if T interpolated at u/v points is negative or v_i < 1.e-6
   !                                                 then interpolate T at u/v points using the upstream scheme
   LOGICAL            ::   ll_prelim = .FALSE.  ! prelimiter from: Zalesak(1979) eq. 14 => not well defined in 2D
   !
   REAL(wp)           ::   r1_6   = 1._wp /   6._wp   ! =1/6
   REAL(wp)           ::   r1_120 = 1._wp / 120._wp   ! =1/120
Guillaume Samson's avatar
Guillaume Samson committed
   !
   INTEGER, ALLOCATABLE, DIMENSION(:,:,:) ::   imsk_small, jmsk_small
   !
   !! * Substitutions
#  include "do_loop_substitute.h90"
   !!----------------------------------------------------------------------
   !! NEMO/ICE 4.0 , NEMO Consortium (2018)
   !! $Id: icedyn_adv_umx.F90 15049 2021-06-23 16:17:30Z clem $
   !! Software governed by the CeCILL licence     (./LICENSE)
   !!----------------------------------------------------------------------
CONTAINS

   SUBROUTINE ice_dyn_adv_umx( kn_umx, kt, pu_ice, pv_ice, ph_i, ph_s, ph_ip,  &
      &                        pato_i, pv_i, pv_s, psv_i, poa_i, pa_i, pa_ip, pv_ip, pv_il, pe_s, pe_i )
      !!----------------------------------------------------------------------
      !!                  ***  ROUTINE ice_dyn_adv_umx  ***
      !!
      !! **  Purpose :   Compute the now trend due to total advection of
      !!                 tracers and add it to the general trend of tracer equations
      !!                 using an "Ultimate-Macho" scheme
      !!
      !! Reference : Leonard, B.P., 1991, Comput. Methods Appl. Mech. Eng., 88, 17-74.
      !!----------------------------------------------------------------------
      INTEGER                     , INTENT(in   ) ::   kn_umx     ! order of the scheme (1-5=UM or 20=CEN2)
      INTEGER                     , INTENT(in   ) ::   kt         ! time step
      REAL(wp), DIMENSION(:,:)    , INTENT(in   ) ::   pu_ice     ! ice i-velocity
      REAL(wp), DIMENSION(:,:)    , INTENT(in   ) ::   pv_ice     ! ice j-velocity
      REAL(wp), DIMENSION(:,:,:)  , INTENT(in   ) ::   ph_i       ! ice thickness
      REAL(wp), DIMENSION(:,:,:)  , INTENT(in   ) ::   ph_s       ! snw thickness
      REAL(wp), DIMENSION(:,:,:)  , INTENT(in   ) ::   ph_ip      ! ice pond thickness
      REAL(wp), DIMENSION(:,:)    , INTENT(inout) ::   pato_i     ! open water area
      REAL(wp), DIMENSION(:,:,:)  , INTENT(inout) ::   pv_i       ! ice volume
      REAL(wp), DIMENSION(:,:,:)  , INTENT(inout) ::   pv_s       ! snw volume
      REAL(wp), DIMENSION(:,:,:)  , INTENT(inout) ::   psv_i      ! salt content
      REAL(wp), DIMENSION(:,:,:)  , INTENT(inout) ::   poa_i      ! age content
      REAL(wp), DIMENSION(:,:,:)  , INTENT(inout) ::   pa_i       ! ice concentration
      REAL(wp), DIMENSION(:,:,:)  , INTENT(inout) ::   pa_ip      ! melt pond concentration
      REAL(wp), DIMENSION(:,:,:)  , INTENT(inout) ::   pv_ip      ! melt pond volume
      REAL(wp), DIMENSION(:,:,:)  , INTENT(inout) ::   pv_il      ! melt pond lid volume
      REAL(wp), DIMENSION(:,:,:,:), INTENT(inout) ::   pe_s       ! snw heat content
      REAL(wp), DIMENSION(:,:,:,:), INTENT(inout) ::   pe_i       ! ice heat content
      !
      INTEGER  ::   ji, jj, jk, jl, jt      ! dummy loop indices
      INTEGER  ::   icycle                  ! number of sub-timestep for the advection
      REAL(wp) ::   zamsk                   ! 1 if advection of concentration, 0 if advection of other tracers
      REAL(wp) ::   zdt, z1_dt, zvi_cen
      REAL(wp), DIMENSION(1)                  ::   zcflprv, zcflnow   ! for global communication
      REAL(wp), DIMENSION(jpi,jpj)            ::   zudy, zvdx, zcu_box, zcv_box
      REAL(wp), DIMENSION(jpi,jpj)            ::   zati1, zati2
      REAL(wp), DIMENSION(jpi,jpj,jpl)        ::   zu_cat, zv_cat
      REAL(wp), DIMENSION(jpi,jpj,jpl)        ::   zua_ho, zva_ho, zua_ups, zva_ups
      REAL(wp), DIMENSION(jpi,jpj,jpl)        ::   z1_ai , z1_aip, zhvar
      REAL(wp), DIMENSION(jpi,jpj,jpl)        ::   zhi_max, zhs_max, zhip_max, zs_i, zsi_max
      REAL(wp), DIMENSION(jpi,jpj,nlay_i,jpl) ::   ze_i, zei_max
      REAL(wp), DIMENSION(jpi,jpj,nlay_s,jpl) ::   ze_s, zes_max
      !
      REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) ::   zuv_ho, zvv_ho, zuv_ups, zvv_ups, z1_vi, z1_vs
      !! diagnostics
      REAL(wp), DIMENSION(jpi,jpj)            ::   zdiag_adv_mass, zdiag_adv_salt, zdiag_adv_heat
      !!----------------------------------------------------------------------
      !
      IF( kt == nit000 .AND. lwp )   WRITE(numout,*) '-- ice_dyn_adv_umx: Ultimate-Macho advection scheme'
      !
      ! --- Record max of the surrounding 9-pts (for call Hbig) --- !
      ! thickness and salinity
      WHERE( pv_i(:,:,:) >= epsi10 ) ; zs_i(:,:,:) = psv_i(:,:,:) / pv_i(:,:,:)
      ELSEWHERE                      ; zs_i(:,:,:) = 0._wp
      END WHERE
      CALL icemax3D( ph_i , zhi_max )
      CALL icemax3D( ph_s , zhs_max )
      CALL icemax3D( ph_ip, zhip_max)
      CALL icemax3D( zs_i , zsi_max )
      CALL lbc_lnk( 'icedyn_adv_umx', zhi_max, 'T', 1._wp, zhs_max, 'T', 1._wp, zhip_max, 'T', 1._wp, zsi_max, 'T', 1._wp )
      !
      ! enthalpies
      DO jk = 1, nlay_i
         WHERE( pv_i(:,:,:) >= epsi10 ) ; ze_i(:,:,jk,:) = pe_i(:,:,jk,:) / pv_i(:,:,:)
         ELSEWHERE                      ; ze_i(:,:,jk,:) = 0._wp
         END WHERE
      END DO
      DO jk = 1, nlay_s
         WHERE( pv_s(:,:,:) >= epsi10 ) ; ze_s(:,:,jk,:) = pe_s(:,:,jk,:) / pv_s(:,:,:)
         ELSEWHERE                      ; ze_s(:,:,jk,:) = 0._wp
         END WHERE
      END DO
      CALL icemax4D( ze_i , zei_max )
      CALL icemax4D( ze_s , zes_max )
      CALL lbc_lnk( 'icedyn_adv_umx', zei_max, 'T', 1._wp )
      CALL lbc_lnk( 'icedyn_adv_umx', zes_max, 'T', 1._wp )
      !
      !
      ! --- If ice drift is too fast, use  subtime steps for advection (CFL test for stability) --- !
      !        Note: the advection split is applied at the next time-step in order to avoid blocking global comm.
      !              this should not affect too much the stability
      zcflnow(1) =                  MAXVAL( ABS( pu_ice(:,:) ) * rDt_ice * r1_e1u(:,:) )
      zcflnow(1) = MAX( zcflnow(1), MAXVAL( ABS( pv_ice(:,:) ) * rDt_ice * r1_e2v(:,:) ) )

      ! non-blocking global communication send zcflnow and receive zcflprv
      CALL mpp_delay_max( 'icedyn_adv_umx', 'cflice', zcflnow(:), zcflprv(:), kt == nitend - nn_fsbc + 1 )

      IF( zcflprv(1) > .5 ) THEN   ;   icycle = 2
      ELSE                         ;   icycle = 1
      ENDIF
      zdt = rDt_ice / REAL(icycle)
      z1_dt = 1._wp / zdt

      ! --- transport --- !
      zudy(:,:) = pu_ice(:,:) * e2u(:,:)
      zvdx(:,:) = pv_ice(:,:) * e1v(:,:)
      !
      ! setup transport for each ice cat
      DO jl = 1, jpl
         zu_cat(:,:,jl) = zudy(:,:)
         zv_cat(:,:,jl) = zvdx(:,:)
      END DO
      !
      ! --- define velocity for advection: u*grad(H) --- !
      DO_2D( nn_hls-1, nn_hls, nn_hls, nn_hls )
         IF    ( pu_ice(ji,jj) * pu_ice(ji-1,jj) <= 0._wp ) THEN   ;   zcu_box(ji,jj) = 0._wp
         ELSEIF( pu_ice(ji,jj)                   >  0._wp ) THEN   ;   zcu_box(ji,jj) = pu_ice(ji-1,jj)
         ELSE                                                      ;   zcu_box(ji,jj) = pu_ice(ji  ,jj)
         ENDIF
      END_2D
      DO_2D( nn_hls, nn_hls, nn_hls-1, nn_hls )
         IF    ( pv_ice(ji,jj) * pv_ice(ji,jj-1) <= 0._wp ) THEN   ;   zcv_box(ji,jj) = 0._wp
         ELSEIF( pv_ice(ji,jj)                   >  0._wp ) THEN   ;   zcv_box(ji,jj) = pv_ice(ji,jj-1)
         ELSE                                                      ;   zcv_box(ji,jj) = pv_ice(ji,jj  )
         ENDIF
      END_2D

      !---------------!
      !== advection ==!
      !---------------!
      DO jt = 1, icycle

         ! diagnostics
         zdiag_adv_mass(:,:) =   SUM( pv_i (:,:,:) , dim=3 ) * rhoi + SUM( pv_s (:,:,:) , dim=3 ) * rhos &
            &                  + SUM( pv_ip(:,:,:) , dim=3 ) * rhow + SUM( pv_il(:,:,:) , dim=3 ) * rhow
         zdiag_adv_salt(:,:) =   SUM( psv_i(:,:,:) , dim=3 ) * rhoi
         zdiag_adv_heat(:,:) = - SUM(SUM( pe_i(:,:,1:nlay_i,:) , dim=4 ), dim=3 ) &
            &                  - SUM(SUM( pe_s(:,:,1:nlay_s,:) , dim=4 ), dim=3 )

         ! record at_i before advection (for open water)
         zati1(:,:) = SUM( pa_i(:,:,:), dim=3 )

         ! inverse of A and Ap
         WHERE( pa_i(:,:,:) >= epsi20 )   ;   z1_ai(:,:,:) = 1._wp / pa_i(:,:,:)
         ELSEWHERE                        ;   z1_ai(:,:,:) = 0.
         END WHERE
         WHERE( pa_ip(:,:,:) >= epsi20 )  ;   z1_aip(:,:,:) = 1._wp / pa_ip(:,:,:)
         ELSEWHERE                        ;   z1_aip(:,:,:) = 0.
         END WHERE
Guillaume Samson's avatar
Guillaume Samson committed
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
         !
         ! setup a mask where advection will be upstream
         IF( ll_neg ) THEN
            IF( .NOT. ALLOCATED(imsk_small) )   ALLOCATE( imsk_small(jpi,jpj,jpl) )
            IF( .NOT. ALLOCATED(jmsk_small) )   ALLOCATE( jmsk_small(jpi,jpj,jpl) )
            DO jl = 1, jpl
               DO_2D( 1, 0, nn_hls, nn_hls )
                  zvi_cen = 0.5_wp * ( pv_i(ji+1,jj,jl) + pv_i(ji,jj,jl) )
                  IF( zvi_cen < epsi06) THEN   ;   imsk_small(ji,jj,jl) = 0
                  ELSE                         ;   imsk_small(ji,jj,jl) = 1   ;   ENDIF
               END_2D
               DO_2D( nn_hls, nn_hls, 1, 0 )
                  zvi_cen = 0.5_wp * ( pv_i(ji,jj+1,jl) + pv_i(ji,jj,jl) )
                  IF( zvi_cen < epsi06) THEN   ;   jmsk_small(ji,jj,jl) = 0
                  ELSE                         ;   jmsk_small(ji,jj,jl) = 1   ;   ENDIF
               END_2D
            END DO
         ENDIF
         !
         ! ----------------------- !
         ! ==> start advection <== !
         ! ----------------------- !
         !
         !== Ice area ==!
         zamsk = 1._wp
         CALL adv_umx( zamsk, kn_umx, jt, kt, zdt, zudy, zvdx, zu_cat , zv_cat , zcu_box, zcv_box, &
            &                                      pa_i, pa_i, zua_ups, zva_ups, zua_ho , zva_ho )
         !
         !                             ! --------------------------------- !
         IF( np_advS == 1 ) THEN       ! -- advection form: -div( uVS ) -- !
            !                          ! --------------------------------- !
            zamsk = 0._wp
            !== Ice volume ==!
            zhvar(:,:,:) = pv_i(:,:,:) * z1_ai(:,:,:)
            CALL adv_umx( zamsk, kn_umx, jt, kt, zdt, zudy , zvdx, zua_ho , zva_ho , zcu_box, zcv_box, &
               &                                      zhvar, pv_i, zua_ups, zva_ups )
            !== Snw volume ==!
            zhvar(:,:,:) = pv_s(:,:,:) * z1_ai(:,:,:)
            CALL adv_umx( zamsk, kn_umx, jt, kt, zdt, zudy , zvdx, zua_ho , zva_ho , zcu_box, zcv_box, &
               &                                      zhvar, pv_s, zua_ups, zva_ups )
            !
            zamsk = 1._wp
            !== Salt content ==!
            CALL adv_umx( zamsk, kn_umx, jt, kt, zdt, zudy , zvdx , zu_cat, zv_cat, zcu_box, zcv_box, &
               &                                      psv_i, psv_i )
            !== Ice heat content ==!
            DO jk = 1, nlay_i
               CALL adv_umx( zamsk, kn_umx, jt, kt, zdt, zudy , zvdx , zu_cat, zv_cat, zcu_box, zcv_box, &
                  &                                      pe_i(:,:,jk,:), pe_i(:,:,jk,:) )
            END DO
            !== Snw heat content ==!
            DO jk = 1, nlay_s
               CALL adv_umx( zamsk, kn_umx, jt, kt, zdt, zudy , zvdx , zu_cat, zv_cat, zcu_box, zcv_box, &
                  &                                      pe_s(:,:,jk,:), pe_s(:,:,jk,:) )
            END DO
            !
            !                          ! ------------------------------------------ !
         ELSEIF( np_advS == 2 ) THEN   ! -- advection form: -div( uA * uHS / u ) -- !
            !                          ! ------------------------------------------ !
            zamsk = 0._wp
            !== Ice volume ==!
            zhvar(:,:,:) = pv_i(:,:,:) * z1_ai(:,:,:)
            CALL adv_umx( zamsk, kn_umx, jt, kt, zdt, zudy , zvdx, zua_ho , zva_ho , zcu_box, zcv_box, &
               &                                      zhvar, pv_i, zua_ups, zva_ups )
            !== Snw volume ==!
            zhvar(:,:,:) = pv_s(:,:,:) * z1_ai(:,:,:)
            CALL adv_umx( zamsk, kn_umx, jt, kt, zdt, zudy , zvdx, zua_ho , zva_ho , zcu_box, zcv_box, &
               &                                      zhvar, pv_s, zua_ups, zva_ups )
            !== Salt content ==!
            zhvar(:,:,:) = psv_i(:,:,:) * z1_ai(:,:,:)
            CALL adv_umx( zamsk, kn_umx, jt, kt, zdt, zudy , zvdx , zua_ho , zva_ho , zcu_box, zcv_box, &
               &                                      zhvar, psv_i, zua_ups, zva_ups )
            !== Ice heat content ==!
            DO jk = 1, nlay_i
               zhvar(:,:,:) = pe_i(:,:,jk,:) * z1_ai(:,:,:)
               CALL adv_umx( zamsk, kn_umx, jt, kt, zdt, zudy , zvdx, zua_ho, zva_ho, zcu_box, zcv_box, &
                  &                                      zhvar, pe_i(:,:,jk,:), zua_ups, zva_ups )
            END DO
            !== Snw heat content ==!
            DO jk = 1, nlay_s
               zhvar(:,:,:) = pe_s(:,:,jk,:) * z1_ai(:,:,:)
               CALL adv_umx( zamsk, kn_umx, jt, kt, zdt, zudy , zvdx, zua_ho, zva_ho, zcu_box, zcv_box, &
                  &                                      zhvar, pe_s(:,:,jk,:), zua_ups, zva_ups )
            END DO
            !
            !                          ! ----------------------------------------- !
         ELSEIF( np_advS == 3 ) THEN   ! -- advection form: -div( uV * uS / u ) -- !
            !                          ! ----------------------------------------- !
            zamsk = 0._wp
            !
            ALLOCATE( zuv_ho (jpi,jpj,jpl), zvv_ho (jpi,jpj,jpl),  &
               &      zuv_ups(jpi,jpj,jpl), zvv_ups(jpi,jpj,jpl), z1_vi(jpi,jpj,jpl), z1_vs(jpi,jpj,jpl) )
            !
            ! inverse of Vi
            WHERE( pv_i(:,:,:) >= epsi20 )   ;   z1_vi(:,:,:) = 1._wp / pv_i(:,:,:)
            ELSEWHERE                        ;   z1_vi(:,:,:) = 0.
            END WHERE
            ! inverse of Vs
            WHERE( pv_s(:,:,:) >= epsi20 )   ;   z1_vs(:,:,:) = 1._wp / pv_s(:,:,:)
            ELSEWHERE                        ;   z1_vs(:,:,:) = 0.
            END WHERE
            !
            ! It is important to first calculate the ice fields and then the snow fields (because we use the same arrays)
            !
            !== Ice volume ==!
            zuv_ups = zua_ups
            zvv_ups = zva_ups
            zhvar(:,:,:) = pv_i(:,:,:) * z1_ai(:,:,:)
            CALL adv_umx( zamsk, kn_umx, jt, kt, zdt, zudy , zvdx, zua_ho , zva_ho , zcu_box, zcv_box, &
               &                                      zhvar, pv_i, zuv_ups, zvv_ups, zuv_ho , zvv_ho )
            !== Salt content ==!
            zhvar(:,:,:) = psv_i(:,:,:) * z1_vi(:,:,:)
            CALL adv_umx( zamsk, kn_umx, jt, kt, zdt, zudy , zvdx , zuv_ho , zvv_ho , zcu_box, zcv_box, &
               &                                      zhvar, psv_i, zuv_ups, zvv_ups )
            !== Ice heat content ==!
            DO jk = 1, nlay_i
               zhvar(:,:,:) = pe_i(:,:,jk,:) * z1_vi(:,:,:)
               CALL adv_umx( zamsk, kn_umx, jt, kt, zdt, zudy , zvdx, zuv_ho, zvv_ho, zcu_box, zcv_box, &
                  &                                      zhvar, pe_i(:,:,jk,:), zuv_ups, zvv_ups )
            END DO
            !== Snow volume ==!
            zuv_ups = zua_ups
            zvv_ups = zva_ups
            zhvar(:,:,:) = pv_s(:,:,:) * z1_ai(:,:,:)
            CALL adv_umx( zamsk, kn_umx, jt, kt, zdt, zudy , zvdx, zua_ho , zva_ho , zcu_box, zcv_box, &
               &                                      zhvar, pv_s, zuv_ups, zvv_ups, zuv_ho , zvv_ho )
            !== Snw heat content ==!
            DO jk = 1, nlay_s
               zhvar(:,:,:) = pe_s(:,:,jk,:) * z1_vs(:,:,:)
               CALL adv_umx( zamsk, kn_umx, jt, kt, zdt, zudy , zvdx, zuv_ho, zvv_ho, zcu_box, zcv_box, &
                  &                                      zhvar, pe_s(:,:,jk,:), zuv_ups, zvv_ups )
            END DO
            !
            DEALLOCATE( zuv_ho, zvv_ho, zuv_ups, zvv_ups, z1_vi, z1_vs )
            !
         ENDIF
         !
         !== Ice age ==!
         zamsk = 1._wp
         CALL adv_umx( zamsk, kn_umx, jt, kt, zdt, zudy , zvdx , zu_cat, zv_cat, zcu_box, zcv_box, &
            &                                      poa_i, poa_i )
         !
         !== melt ponds ==!
         IF ( ln_pnd_LEV .OR. ln_pnd_TOPO ) THEN
            ! concentration
            zamsk = 1._wp
            CALL adv_umx( zamsk, kn_umx, jt, kt, zdt, zudy , zvdx , zu_cat , zv_cat , zcu_box, zcv_box, &
               &                                      pa_ip, pa_ip, zua_ups, zva_ups, zua_ho , zva_ho )
            ! volume
            zamsk = 0._wp
            zhvar(:,:,:) = pv_ip(:,:,:) * z1_aip(:,:,:)
            CALL adv_umx( zamsk, kn_umx, jt, kt, zdt, zudy , zvdx , zua_ho , zva_ho , zcu_box, zcv_box, &
               &                                      zhvar, pv_ip, zua_ups, zva_ups )
            ! lid
            IF ( ln_pnd_lids ) THEN
               zamsk = 0._wp
               zhvar(:,:,:) = pv_il(:,:,:) * z1_aip(:,:,:)
               CALL adv_umx( zamsk, kn_umx, jt, kt, zdt, zudy , zvdx , zua_ho , zva_ho , zcu_box, zcv_box, &
                  &                                      zhvar, pv_il, zua_ups, zva_ups )
            ENDIF
         ENDIF

         ! --- Lateral boundary conditions --- !
         IF    ( ( ln_pnd_LEV .OR. ln_pnd_TOPO ) .AND. ln_pnd_lids ) THEN
            CALL lbc_lnk( 'icedyn_adv_umx', pa_i,'T',1._wp, pv_i,'T',1._wp, pv_s,'T',1._wp, psv_i,'T',1._wp, poa_i,'T',1._wp &
               &                          , pa_ip,'T',1._wp, pv_ip,'T',1._wp, pv_il,'T',1._wp )
         ELSEIF( ( ln_pnd_LEV .OR. ln_pnd_TOPO ) .AND. .NOT.ln_pnd_lids ) THEN
            CALL lbc_lnk( 'icedyn_adv_umx', pa_i,'T',1._wp, pv_i,'T',1._wp, pv_s,'T',1._wp, psv_i,'T',1._wp, poa_i,'T',1._wp &
               &                          , pa_ip,'T',1._wp, pv_ip,'T',1._wp )
         ELSE
            CALL lbc_lnk( 'icedyn_adv_umx', pa_i,'T',1._wp, pv_i,'T',1._wp, pv_s,'T',1._wp, psv_i,'T',1._wp, poa_i,'T',1._wp )
         ENDIF
         CALL lbc_lnk( 'icedyn_adv_umx', pe_i, 'T', 1._wp )
         CALL lbc_lnk( 'icedyn_adv_umx', pe_s, 'T', 1._wp )
         !
         !== Open water area ==!
         zati2(:,:) = SUM( pa_i(:,:,:), dim=3 )
         DO_2D( 0, 0, 0, 0 )
            pato_i(ji,jj) = pato_i(ji,jj) - ( zati2(ji,jj) - zati1(ji,jj) ) &
               &                          - ( zudy(ji,jj) - zudy(ji-1,jj) + zvdx(ji,jj) - zvdx(ji,jj-1) ) * r1_e1e2t(ji,jj) * zdt
         END_2D
         CALL lbc_lnk( 'icedyn_adv_umx', pato_i, 'T',  1._wp )
         !
         ! --- diagnostics --- !
         diag_adv_mass(:,:) = diag_adv_mass(:,:) + (   SUM( pv_i (:,:,:) , dim=3 ) * rhoi + SUM( pv_s (:,:,:) , dim=3 ) * rhos &
            &                                        + SUM( pv_ip(:,:,:) , dim=3 ) * rhow + SUM( pv_il(:,:,:) , dim=3 ) * rhow &
            &                                        - zdiag_adv_mass(:,:) ) * z1_dt
         diag_adv_salt(:,:) = diag_adv_salt(:,:) + (   SUM( psv_i(:,:,:) , dim=3 ) * rhoi &
            &                                        - zdiag_adv_salt(:,:) ) * z1_dt
         diag_adv_heat(:,:) = diag_adv_heat(:,:) + ( - SUM(SUM( pe_i(:,:,1:nlay_i,:) , dim=4 ), dim=3 ) &
            &                                        - SUM(SUM( pe_s(:,:,1:nlay_s,:) , dim=4 ), dim=3 ) &
            &                                        - zdiag_adv_heat(:,:) ) * z1_dt
         !
         ! --- Ensure non-negative fields and in-bound thicknesses --- !
         ! Remove negative values (conservation is ensured)
         !    (because advected fields are not perfectly bounded and tiny negative values can occur, e.g. -1.e-20)
         CALL ice_var_zapneg( zdt, pato_i, pv_i, pv_s, psv_i, poa_i, pa_i, pa_ip, pv_ip, pv_il, pe_s, pe_i )
         !
         ! --- Make sure ice thickness is not too big --- !
         !     (because ice thickness can be too large where ice concentration is very small)
         CALL Hbig( zdt, zhi_max, zhs_max, zhip_max, zsi_max, zes_max, zei_max, &
            &            pv_i, pv_s, pa_i, pa_ip, pv_ip, psv_i, pe_s, pe_i )
         !
         ! --- Ensure snow load is not too big --- !
         CALL Hsnow( zdt, pv_i, pv_s, pa_i, pa_ip, pe_s )
         !
      END DO
      !
   END SUBROUTINE ice_dyn_adv_umx


   SUBROUTINE adv_umx( pamsk, kn_umx, jt, kt, pdt, pu, pv, puc, pvc, pubox, pvbox,  &
      &                                            pt, ptc, pua_ups, pva_ups, pua_ho, pva_ho )
      !!----------------------------------------------------------------------
      !!                  ***  ROUTINE adv_umx  ***
      !!
      !! **  Purpose :   Compute the now trend due to total advection of
      !!                 tracers and add it to the general trend of tracer equations
      !!
      !! **  Method  :   - calculate upstream fluxes and upstream solution for tracers V/A(=H) etc
      !!                 - calculate tracer H at u and v points (Ultimate)
      !!                 - calculate the high order fluxes using alterning directions (Macho)
      !!                 - apply a limiter on the fluxes (nonosc_ice)
      !!                 - convert this tracer flux to a "volume" flux (uH -> uV)
      !!                 - apply a limiter a second time on the volumes fluxes (nonosc_ice)
      !!                 - calculate the high order solution for V
      !!
      !! ** Action : solve 3 equations => a) dA/dt  = -div(uA)
      !!                                  b) dV/dt  = -div(uV)  using dH/dt = -u.grad(H)
      !!                                  c) dVS/dt = -div(uVS) using either dHS/dt = -u.grad(HS) or dS/dt = -u.grad(S)
      !!
      !!             in eq. b), - fluxes uH are evaluated (with UMx) and limited with nonosc_ice. This step is necessary to get a good H.
      !!                        - then we convert this flux to a "volume" flux this way => uH * uA / u
      !!                             where uA is the flux from eq. a)
      !!                             this "volume" flux is also limited with nonosc_ice (otherwise overshoots can occur)
      !!                        - at last we estimate dV/dt = -div(uH * uA / u)
      !!
      !!             in eq. c), one can solve the equation for  S (ln_advS=T), then dVS/dt = -div(uV * uS  / u)
      !!                                                or for HS (ln_advS=F), then dVS/dt = -div(uA * uHS / u)
      !!
      !! ** Note : - this method can lead to tiny negative V (-1.e-20) => set it to 0 while conserving mass etc.
      !!           - At the ice edge, Ultimate scheme can lead to:
      !!                              1) negative interpolated tracers at u-v points
      !!                              2) non-zero interpolated tracers at u-v points eventhough there is no ice and velocity is outward
      !!                              Solution for 1): apply an upstream scheme when it occurs. A better solution would be to degrade the order of
      !!                                               the scheme automatically by applying a mask of the ice cover inside Ultimate (not done).
      !!                              Solution for 2): we set it to 0 in this case
      !!           - Eventhough 1D tests give very good results (typically the one from Schar & Smolarkiewiecz), the 2D is less good.
      !!             Large values of H can appear for very small ice concentration, and when it does it messes the things up since we
      !!             work on H (and not V). It is partly related to the multi-category approach
      !!             Therefore, after advection we limit the thickness to the largest value of the 9-points around (only if ice
      !!             concentration is small). We also limit S and T.
      !!----------------------------------------------------------------------
      REAL(wp)                        , INTENT(in   )           ::   pamsk            ! advection of concentration (1) or other tracers (0)
      INTEGER                         , INTENT(in   )           ::   kn_umx           ! order of the scheme (1-5=UM or 20=CEN2)
      INTEGER                         , INTENT(in   )           ::   jt               ! number of sub-iteration
      INTEGER                         , INTENT(in   )           ::   kt               ! number of iteration
      REAL(wp)                        , INTENT(in   )           ::   pdt              ! tracer time-step
      REAL(wp), DIMENSION(:,:  )      , INTENT(in   )           ::   pu   , pv        ! 2 ice velocity components => u*e2
      REAL(wp), DIMENSION(:,:,:)      , INTENT(in   )           ::   puc  , pvc       ! 2 ice velocity components => u*e2 or u*a*e2u
      REAL(wp), DIMENSION(:,:  )      , INTENT(in   )           ::   pubox, pvbox     ! upstream velocity
      REAL(wp), DIMENSION(:,:,:)      , INTENT(inout)           ::   pt               ! tracer field
      REAL(wp), DIMENSION(:,:,:)      , INTENT(inout)           ::   ptc              ! tracer content field
      REAL(wp), DIMENSION(jpi,jpj,jpl), INTENT(inout), OPTIONAL ::   pua_ups, pva_ups ! upstream u*a fluxes
      REAL(wp), DIMENSION(jpi,jpj,jpl), INTENT(  out), OPTIONAL ::   pua_ho, pva_ho   ! high order u*a fluxes
      !
      INTEGER  ::   ji, jj, jl       ! dummy loop indices
      REAL(wp) ::   ztra             ! local scalar
      REAL(wp), DIMENSION(jpi,jpj,jpl) ::   zfu_ho , zfv_ho , zpt
      REAL(wp), DIMENSION(jpi,jpj,jpl) ::   zfu_ups, zfv_ups, zt_ups
      !!----------------------------------------------------------------------
      !
      ! Upstream (_ups) fluxes
      ! -----------------------
      CALL upstream( pamsk, jt, kt, pdt, pt, pu, pv, zt_ups, zfu_ups, zfv_ups )

      ! High order (_ho) fluxes
      ! -----------------------
      SELECT CASE( kn_umx )
         !
      CASE ( 20 )                          !== centered second order ==!
         !
         CALL cen2( pamsk, jt, kt, pdt, pt, pu, pv, zt_ups, zfu_ups, zfv_ups, zfu_ho, zfv_ho )
         !
      CASE ( 1:5 )                         !== 1st to 5th order ULTIMATE-MACHO scheme ==!
         !
         CALL macho( pamsk, kn_umx, jt, kt, pdt, pt, pu, pv, pubox, pvbox, zt_ups, zfu_ups, zfv_ups, zfu_ho, zfv_ho )
         !
      END SELECT
      !
      !              --ho    --ho
      ! new fluxes = u*H  *  u*a / u
      ! ----------------------------
      IF( pamsk == 0._wp ) THEN
         DO jl = 1, jpl
            DO_2D( 1, 0, 0, 0 )
               IF( ABS( pu(ji,jj) ) > epsi10 ) THEN
                  zfu_ho (ji,jj,jl) = zfu_ho (ji,jj,jl) * puc    (ji,jj,jl) / pu(ji,jj)
                  zfu_ups(ji,jj,jl) = zfu_ups(ji,jj,jl) * pua_ups(ji,jj,jl) / pu(ji,jj)
               ELSE
                  zfu_ho (ji,jj,jl) = 0._wp
                  zfu_ups(ji,jj,jl) = 0._wp
               ENDIF
               !
            END_2D
            DO_2D( 0, 0, 1, 0 )
               IF( ABS( pv(ji,jj) ) > epsi10 ) THEN
                  zfv_ho (ji,jj,jl) = zfv_ho (ji,jj,jl) * pvc    (ji,jj,jl) / pv(ji,jj)
                  zfv_ups(ji,jj,jl) = zfv_ups(ji,jj,jl) * pva_ups(ji,jj,jl) / pv(ji,jj)
               ELSE
                  zfv_ho (ji,jj,jl) = 0._wp
                  zfv_ups(ji,jj,jl) = 0._wp
               ENDIF
            END_2D
         END DO

         ! the new "volume" fluxes must also be "flux corrected"
         ! thus we calculate the upstream solution and apply a limiter again
         DO jl = 1, jpl
            DO_2D( 0, 0, 0, 0 )
               ztra = - ( zfu_ups(ji,jj,jl) - zfu_ups(ji-1,jj,jl) + zfv_ups(ji,jj,jl) - zfv_ups(ji,jj-1,jl) )
               !
               zt_ups(ji,jj,jl) = ( ptc(ji,jj,jl) + ztra * r1_e1e2t(ji,jj) * pdt ) * tmask(ji,jj,1)
            END_2D
         END DO
         CALL lbc_lnk( 'icedyn_adv_umx', zt_ups, 'T',  1.0_wp )
         !
         IF    ( np_limiter == 1 ) THEN
            CALL nonosc_ice( 1._wp, pdt, pu, pv, ptc, zt_ups, zfu_ups, zfv_ups, zfu_ho, zfv_ho )
         ELSEIF( np_limiter == 2 .OR. np_limiter == 3 ) THEN
            CALL limiter_x( pdt, pu, ptc, zfu_ups, zfu_ho )
            CALL limiter_y( pdt, pv, ptc, zfv_ups, zfv_ho )
         ENDIF
         !
      ENDIF
      !                                   --ho    --ups
      ! in case of advection of A: output u*a and u*a
      ! -----------------------------------------------
      IF( PRESENT( pua_ho ) ) THEN
         DO jl = 1, jpl
            DO_2D( 1, 0, 0, 0 )
               pua_ho (ji,jj,jl) = zfu_ho (ji,jj,jl)
               pua_ups(ji,jj,jl) = zfu_ups(ji,jj,jl)
            END_2D
            DO_2D( 0, 0, 1, 0 )
               pva_ho (ji,jj,jl) = zfv_ho (ji,jj,jl)
               pva_ups(ji,jj,jl) = zfv_ups(ji,jj,jl)
            END_2D
         END DO
      ENDIF
      !
      ! final trend with corrected fluxes
      ! ---------------------------------
      DO jl = 1, jpl
         DO_2D( 0, 0, 0, 0 )
            ztra = - ( zfu_ho(ji,jj,jl) - zfu_ho(ji-1,jj,jl) + zfv_ho(ji,jj,jl) - zfv_ho(ji,jj-1,jl) )
            !
            ptc(ji,jj,jl) = ( ptc(ji,jj,jl) + ztra * r1_e1e2t(ji,jj) * pdt ) * tmask(ji,jj,1)
         END_2D
      END DO
      !
   END SUBROUTINE adv_umx


   SUBROUTINE upstream( pamsk, jt, kt, pdt, pt, pu, pv, pt_ups, pfu_ups, pfv_ups )
      !!---------------------------------------------------------------------
      !!                    ***  ROUTINE upstream  ***
      !!
      !! **  Purpose :   compute the upstream fluxes and upstream guess of tracer
      !!----------------------------------------------------------------------
      REAL(wp)                        , INTENT(in   ) ::   pamsk            ! advection of concentration (1) or other tracers (0)
      INTEGER                         , INTENT(in   ) ::   jt               ! number of sub-iteration
      INTEGER                         , INTENT(in   ) ::   kt               ! number of iteration
      REAL(wp)                        , INTENT(in   ) ::   pdt              ! tracer time-step
      REAL(wp), DIMENSION(:,:,:)      , INTENT(in   ) ::   pt               ! tracer fields
      REAL(wp), DIMENSION(:,:  )      , INTENT(in   ) ::   pu, pv           ! 2 ice velocity components
      REAL(wp), DIMENSION(jpi,jpj,jpl), INTENT(  out) ::   pt_ups           ! upstream guess of tracer
      REAL(wp), DIMENSION(jpi,jpj,jpl), INTENT(  out) ::   pfu_ups, pfv_ups ! upstream fluxes
      !
      INTEGER  ::   ji, jj, jl    ! dummy loop indices
      REAL(wp) ::   ztra          ! local scalar
      REAL(wp), DIMENSION(jpi,jpj,jpl) ::   zpt
      !!----------------------------------------------------------------------

      IF( .NOT. ll_upsxy ) THEN         !** no alternate directions **!
         !
         DO jl = 1, jpl
            DO_2D( nn_hls, nn_hls-1, nn_hls, nn_hls-1 )
               pfu_ups(ji,jj,jl) = MAX( pu(ji,jj), 0._wp ) * pt(ji,jj,jl) + MIN( pu(ji,jj), 0._wp ) * pt(ji+1,jj,jl)
               pfv_ups(ji,jj,jl) = MAX( pv(ji,jj), 0._wp ) * pt(ji,jj,jl) + MIN( pv(ji,jj), 0._wp ) * pt(ji,jj+1,jl)
            END_2D
         END DO
         !
      ELSE                              !** alternate directions **!
         !
         IF( MOD( (kt - 1) / nn_fsbc , 2 ) ==  MOD( (jt - 1) , 2 ) ) THEN   !==  odd ice time step:  adv_x then adv_y  ==!
            !
            DO jl = 1, jpl              !-- flux in x-direction
               DO_2D( nn_hls, nn_hls-1, nn_hls, nn_hls )
                  pfu_ups(ji,jj,jl) = MAX( pu(ji,jj), 0._wp ) * pt(ji,jj,jl) + MIN( pu(ji,jj), 0._wp ) * pt(ji+1,jj,jl)
               END_2D
            END DO
            !
            DO jl = 1, jpl              !-- first guess of tracer from u-flux
               DO_2D( nn_hls-1, nn_hls-1, nn_hls, nn_hls )
                  ztra = - ( pfu_ups(ji,jj,jl) - pfu_ups(ji-1,jj,jl) )              &
                     &   + ( pu     (ji,jj   ) - pu     (ji-1,jj   ) ) * pt(ji,jj,jl) * (1.-pamsk)
                  !
                  zpt(ji,jj,jl) = ( pt(ji,jj,jl) + ztra * pdt * r1_e1e2t(ji,jj) ) * tmask(ji,jj,1)
               END_2D
            END DO
            !
            DO jl = 1, jpl              !-- flux in y-direction
               DO_2D( nn_hls-1, nn_hls-1, nn_hls, nn_hls-1 )
                  pfv_ups(ji,jj,jl) = MAX( pv(ji,jj), 0._wp ) * zpt(ji,jj,jl) + MIN( pv(ji,jj), 0._wp ) * zpt(ji,jj+1,jl)
               END_2D
            END DO
            !
         ELSE                                                               !==  even ice time step:  adv_y then adv_x  ==!
            !
            DO jl = 1, jpl              !-- flux in y-direction
               DO_2D( nn_hls, nn_hls, nn_hls, nn_hls-1 )
                  pfv_ups(ji,jj,jl) = MAX( pv(ji,jj), 0._wp ) * pt(ji,jj,jl) + MIN( pv(ji,jj), 0._wp ) * pt(ji,jj+1,jl)
               END_2D
            END DO
            !
            DO jl = 1, jpl              !-- first guess of tracer from v-flux
               DO_2D( nn_hls, nn_hls, nn_hls-1, nn_hls-1 )
                  ztra = - ( pfv_ups(ji,jj,jl) - pfv_ups(ji,jj-1,jl) )  &
                     &   + ( pv     (ji,jj   ) - pv     (ji,jj-1   ) ) * pt(ji,jj,jl) * (1.-pamsk)
                  !
                  zpt(ji,jj,jl) = ( pt(ji,jj,jl) + ztra * pdt * r1_e1e2t(ji,jj) ) * tmask(ji,jj,1)
               END_2D
            END DO
            !
            DO jl = 1, jpl              !-- flux in x-direction
               DO_2D( nn_hls, nn_hls-1, nn_hls-1, nn_hls-1 )
                  pfu_ups(ji,jj,jl) = MAX( pu(ji,jj), 0._wp ) * zpt(ji,jj,jl) + MIN( pu(ji,jj), 0._wp ) * zpt(ji+1,jj,jl)
               END_2D
            END DO
            !
         ENDIF

      ENDIF
      !
      DO jl = 1, jpl                    !-- after tracer with upstream scheme
         DO_2D( nn_hls-1, nn_hls-1, nn_hls-1, nn_hls-1 )
            ztra = - (   pfu_ups(ji,jj,jl) - pfu_ups(ji-1,jj  ,jl)   &
               &       + pfv_ups(ji,jj,jl) - pfv_ups(ji  ,jj-1,jl) ) &
               &   + (   pu     (ji,jj   ) - pu     (ji-1,jj     )   &
               &       + pv     (ji,jj   ) - pv     (ji  ,jj-1   ) ) * pt(ji,jj,jl) * (1.-pamsk)
            !
            pt_ups(ji,jj,jl) = ( pt(ji,jj,jl) + ztra * pdt * r1_e1e2t(ji,jj) ) * tmask(ji,jj,1)
         END_2D
      END DO
      IF( nn_hls == 1 )   CALL lbc_lnk( 'icedyn_adv_umx', pt_ups, 'T', 1.0_wp )

   END SUBROUTINE upstream


   SUBROUTINE cen2( pamsk, jt, kt, pdt, pt, pu, pv, pt_ups, pfu_ups, pfv_ups, pfu_ho, pfv_ho )
      !!---------------------------------------------------------------------
      !!                    ***  ROUTINE cen2  ***
      !!
      !! **  Purpose :   compute the high order fluxes using a centered
      !!                 second order scheme
      !!----------------------------------------------------------------------
      REAL(wp)                        , INTENT(in   ) ::   pamsk            ! advection of concentration (1) or other tracers (0)
      INTEGER                         , INTENT(in   ) ::   jt               ! number of sub-iteration
      INTEGER                         , INTENT(in   ) ::   kt               ! number of iteration
      REAL(wp)                        , INTENT(in   ) ::   pdt              ! tracer time-step
      REAL(wp), DIMENSION(:,:,:)      , INTENT(in   ) ::   pt               ! tracer fields
      REAL(wp), DIMENSION(:,:  )      , INTENT(in   ) ::   pu, pv           ! 2 ice velocity components
      REAL(wp), DIMENSION(:,:,:)      , INTENT(in   ) ::   pt_ups           ! upstream guess of tracer
      REAL(wp), DIMENSION(:,:,:)      , INTENT(in   ) ::   pfu_ups, pfv_ups ! upstream fluxes
      REAL(wp), DIMENSION(jpi,jpj,jpl), INTENT(  out) ::   pfu_ho, pfv_ho   ! high order fluxes
      !
      INTEGER  ::   ji, jj, jl    ! dummy loop indices
      REAL(wp) ::   ztra          ! local scalar
      REAL(wp), DIMENSION(jpi,jpj,jpl) ::   zpt
      !!----------------------------------------------------------------------
      !
      IF( .NOT.ll_hoxy ) THEN           !** no alternate directions **!
         !
         DO jl = 1, jpl
            DO_2D( nn_hls, nn_hls-1, nn_hls, nn_hls )
               pfu_ho(ji,jj,jl) = 0.5_wp * pu(ji,jj) * ( pt(ji,jj,jl) + pt(ji+1,jj  ,jl) )
            END_2D
            DO_2D( nn_hls, nn_hls, nn_hls, nn_hls-1 )
               pfv_ho(ji,jj,jl) = 0.5_wp * pv(ji,jj) * ( pt(ji,jj,jl) + pt(ji  ,jj+1,jl) )
            END_2D
         END DO
         !
         IF    ( np_limiter == 1 ) THEN
            CALL nonosc_ice( pamsk, pdt, pu, pv, pt, pt_ups, pfu_ups, pfv_ups, pfu_ho, pfv_ho )
         ELSEIF( np_limiter == 2 .OR. np_limiter == 3 ) THEN
            CALL limiter_x( pdt, pu, pt, pfu_ups, pfu_ho )
            CALL limiter_y( pdt, pv, pt, pfv_ups, pfv_ho )
         ENDIF
         !
      ELSE                              !** alternate directions **!
         !
         IF( MOD( (kt - 1) / nn_fsbc , 2 ) ==  MOD( (jt - 1) , 2 ) ) THEN   !==  odd ice time step:  adv_x then adv_y  ==!
            !
            DO jl = 1, jpl              !-- flux in x-direction
               DO_2D( nn_hls, nn_hls-1, nn_hls, nn_hls )
                  pfu_ho(ji,jj,jl) = 0.5_wp * pu(ji,jj) * ( pt(ji,jj,jl) + pt(ji+1,jj,jl) )
               END_2D
            END DO
            IF( np_limiter == 2 .OR. np_limiter == 3 )   CALL limiter_x( pdt, pu, pt, pfu_ups, pfu_ho )

            DO jl = 1, jpl              !-- first guess of tracer from u-flux
               DO_2D( nn_hls-1, nn_hls-1, nn_hls, nn_hls )
                  ztra = - ( pfu_ho(ji,jj,jl) - pfu_ho(ji-1,jj,jl) )              &
                     &   + ( pu    (ji,jj   ) - pu    (ji-1,jj   ) ) * pt(ji,jj,jl) * (1.-pamsk)
                  !
                  zpt(ji,jj,jl) = ( pt(ji,jj,jl) + ztra * pdt * r1_e1e2t(ji,jj) ) * tmask(ji,jj,1)
               END_2D
            END DO

            DO jl = 1, jpl              !-- flux in y-direction
               DO_2D( nn_hls-1, nn_hls-1, nn_hls, nn_hls-1 )
                  pfv_ho(ji,jj,jl) = 0.5_wp * pv(ji,jj) * ( zpt(ji,jj,jl) + zpt(ji,jj+1,jl) )
               END_2D
            END DO
            IF( np_limiter == 2 .OR. np_limiter == 3 )   CALL limiter_y( pdt, pv, pt, pfv_ups, pfv_ho )

         ELSE                                                               !==  even ice time step:  adv_y then adv_x  ==!
            !
            DO jl = 1, jpl              !-- flux in y-direction
               DO_2D( nn_hls, nn_hls, nn_hls, nn_hls-1 )
                  pfv_ho(ji,jj,jl) = 0.5_wp * pv(ji,jj) * ( pt(ji,jj,jl) + pt(ji,jj+1,jl) )
               END_2D
            END DO
            IF( np_limiter == 2 .OR. np_limiter == 3 )   CALL limiter_y( pdt, pv, pt, pfv_ups, pfv_ho )
            !
            DO jl = 1, jpl              !-- first guess of tracer from v-flux
               DO_2D( nn_hls, nn_hls, nn_hls-1, nn_hls-1 )
                  ztra = - ( pfv_ho(ji,jj,jl) - pfv_ho(ji,jj-1,jl) )  &
                     &   + ( pv    (ji,jj   ) - pv    (ji,jj-1   ) ) * pt(ji,jj,jl) * (1.-pamsk)
                  !
                  zpt(ji,jj,jl) = ( pt(ji,jj,jl) + ztra * pdt * r1_e1e2t(ji,jj) ) * tmask(ji,jj,1)
               END_2D
            END DO
            !
            DO jl = 1, jpl              !-- flux in x-direction
               DO_2D( nn_hls, nn_hls-1, nn_hls-1, nn_hls-1 )
                  pfu_ho(ji,jj,jl) = 0.5_wp * pu(ji,jj) * ( zpt(ji,jj,jl) + zpt(ji+1,jj,jl) )
               END_2D
            END DO
            IF( np_limiter == 2 .OR. np_limiter == 3 )   CALL limiter_x( pdt, pu, pt, pfu_ups, pfu_ho )

         ENDIF
         IF( np_limiter == 1 )   CALL nonosc_ice( pamsk, pdt, pu, pv, pt, pt_ups, pfu_ups, pfv_ups, pfu_ho, pfv_ho )

      ENDIF

   END SUBROUTINE cen2


   SUBROUTINE macho( pamsk, kn_umx, jt, kt, pdt, pt, pu, pv, pubox, pvbox, pt_ups, pfu_ups, pfv_ups, pfu_ho, pfv_ho )
      !!---------------------------------------------------------------------
      !!                    ***  ROUTINE macho  ***
      !!
      !! **  Purpose :   compute the high order fluxes using Ultimate-Macho scheme
      !!
      !! **  Method  :   ...
      !!
      !! Reference : Leonard, B.P., 1991, Comput. Methods Appl. Mech. Eng., 88, 17-74.
      !!----------------------------------------------------------------------
      REAL(wp)                        , INTENT(in   ) ::   pamsk            ! advection of concentration (1) or other tracers (0)
      INTEGER                         , INTENT(in   ) ::   kn_umx           ! order of the scheme (1-5=UM or 20=CEN2)
      INTEGER                         , INTENT(in   ) ::   jt               ! number of sub-iteration
      INTEGER                         , INTENT(in   ) ::   kt               ! number of iteration
      REAL(wp)                        , INTENT(in   ) ::   pdt              ! tracer time-step
      REAL(wp), DIMENSION(:,:,:)      , INTENT(in   ) ::   pt               ! tracer fields
      REAL(wp), DIMENSION(:,:  )      , INTENT(in   ) ::   pu, pv           ! 2 ice velocity components
      REAL(wp), DIMENSION(:,:  )      , INTENT(in   ) ::   pubox, pvbox     ! upstream velocity
      REAL(wp), DIMENSION(:,:,:)      , INTENT(in   ) ::   pt_ups           ! upstream guess of tracer
      REAL(wp), DIMENSION(:,:,:)      , INTENT(in   ) ::   pfu_ups, pfv_ups ! upstream fluxes
      REAL(wp), DIMENSION(jpi,jpj,jpl), INTENT(  out) ::   pfu_ho, pfv_ho   ! high order fluxes
      !
      INTEGER  ::   ji, jj, jl    ! dummy loop indices
      REAL(wp), DIMENSION(jpi,jpj,jpl) ::   zt_u, zt_v, zpt
      !!----------------------------------------------------------------------
      !
      IF( MOD( (kt - 1) / nn_fsbc , 2 ) ==  MOD( (jt - 1) , 2 ) ) THEN   !==  odd ice time step:  adv_x then adv_y  ==!
         !
         !                                                        !--  ultimate interpolation of pt at u-point  --!
         CALL ultimate_x( nn_hls, pamsk, kn_umx, pdt, pt, pu, zt_u, pfu_ho )
         !                                                        !--  limiter in x --!
         IF( np_limiter == 2 .OR. np_limiter == 3 )   CALL limiter_x( pdt, pu, pt, pfu_ups, pfu_ho )
         !                                                        !--  advective form update in zpt  --!
         DO jl = 1, jpl
            DO_2D( 0, 0, nn_hls, nn_hls )
               zpt(ji,jj,jl) = ( pt(ji,jj,jl) - (  pubox(ji,jj   ) * ( zt_u(ji,jj,jl) - zt_u(ji-1,jj,jl) ) * r1_e1t  (ji,jj) &
                  &                              + pt   (ji,jj,jl) * ( pu  (ji,jj   ) - pu  (ji-1,jj   ) ) * r1_e1e2t(ji,jj) &
                  &                                                                                        * pamsk           &
                  &                             ) * pdt ) * tmask(ji,jj,1)
            END_2D
         END DO
         !
         !                                                        !--  ultimate interpolation of pt at v-point  --!
         IF( ll_hoxy ) THEN
            CALL ultimate_y( 0, pamsk, kn_umx, pdt, zpt, pv, zt_v, pfv_ho )
         ELSE
            CALL ultimate_y( 0, pamsk, kn_umx, pdt, pt , pv, zt_v, pfv_ho )
         ENDIF
         !                                                        !--  limiter in y --!
         IF( np_limiter == 2 .OR. np_limiter == 3 )   CALL limiter_y( pdt, pv, pt, pfv_ups, pfv_ho )
         !
         !
      ELSE                                                               !==  even ice time step:  adv_y then adv_x  ==!
         !
         !                                                        !--  ultimate interpolation of pt at v-point  --!
         CALL ultimate_y( nn_hls, pamsk, kn_umx, pdt, pt, pv, zt_v, pfv_ho )
         !                                                        !--  limiter in y --!
         IF( np_limiter == 2 .OR. np_limiter == 3 )   CALL limiter_y( pdt, pv, pt, pfv_ups, pfv_ho )
         !                                                        !--  advective form update in zpt  --!
         DO jl = 1, jpl
            DO_2D( nn_hls, nn_hls, 0, 0 )
               zpt(ji,jj,jl) = ( pt(ji,jj,jl) - (  pvbox(ji,jj   ) * ( zt_v(ji,jj,jl) - zt_v(ji,jj-1,jl) ) * r1_e2t  (ji,jj) &
                  &                              + pt   (ji,jj,jl) * ( pv  (ji,jj   ) - pv  (ji,jj-1   ) ) * r1_e1e2t(ji,jj) &
                  &                                                                                        * pamsk           &
                  &                             ) * pdt ) * tmask(ji,jj,1)
            END_2D
         END DO
         !
         !                                                        !--  ultimate interpolation of pt at u-point  --!
         IF( ll_hoxy ) THEN
            CALL ultimate_x( 0, pamsk, kn_umx, pdt, zpt, pu, zt_u, pfu_ho )
         ELSE
            CALL ultimate_x( 0, pamsk, kn_umx, pdt, pt , pu, zt_u, pfu_ho )
         ENDIF
         !                                                        !--  limiter in x --!
         IF( np_limiter == 2 .OR. np_limiter == 3 )   CALL limiter_x( pdt, pu, pt, pfu_ups, pfu_ho )
         !
      ENDIF

      IF( np_limiter == 1 )   CALL nonosc_ice( pamsk, pdt, pu, pv, pt, pt_ups, pfu_ups, pfv_ups, pfu_ho, pfv_ho )
      !
   END SUBROUTINE macho


   SUBROUTINE ultimate_x( kloop, pamsk, kn_umx, pdt, pt, pu, pt_u, pfu_ho )
      !!---------------------------------------------------------------------
      !!                    ***  ROUTINE ultimate_x  ***
      !!
      !! **  Purpose :   compute tracer at u-points
      !!
      !! **  Method  :   ...
      !!
      !! Reference : Leonard, B.P., 1991, Comput. Methods Appl. Mech. Eng., 88, 17-74.
      !!----------------------------------------------------------------------
      INTEGER                         , INTENT(in   ) ::   kloop     ! either 0 or nn_hls depending on the order of the call
      REAL(wp)                        , INTENT(in   ) ::   pamsk     ! advection of concentration (1) or other tracers (0)
      INTEGER                         , INTENT(in   ) ::   kn_umx    ! order of the scheme (1-5=UM or 20=CEN2)
      REAL(wp)                        , INTENT(in   ) ::   pdt       ! tracer time-step
      REAL(wp), DIMENSION(:,:  )      , INTENT(in   ) ::   pu        ! ice i-velocity component
      REAL(wp), DIMENSION(:,:,:)      , INTENT(in   ) ::   pt        ! tracer fields
      REAL(wp), DIMENSION(jpi,jpj,jpl), INTENT(  out) ::   pt_u      ! tracer at u-point
      REAL(wp), DIMENSION(jpi,jpj,jpl), INTENT(  out) ::   pfu_ho    ! high order flux
      !
      INTEGER  ::   ji, jj, jl             ! dummy loop indices
      REAL(wp) ::   zcu, zdx2, zdx4        !   -      -
      REAL(wp), DIMENSION(jpi,jpj,jpl) ::   ztu1, ztu2, ztu3, ztu4
      !!----------------------------------------------------------------------
      !
      !                                                     !--  Laplacian in i-direction  --!
      DO jl = 1, jpl
         DO_2D( nn_hls, nn_hls-1, kloop, kloop )      ! First derivative (gradient)
            ztu1(ji,jj,jl) = ( pt(ji+1,jj,jl) - pt(ji,jj,jl) ) * r1_e1u(ji,jj) * umask(ji,jj,1)
         END_2D
         DO_2D( nn_hls-1, nn_hls-1, kloop, kloop )    ! Second derivative (Laplacian)
            ztu2(ji,jj,jl) = ( ztu1(ji,jj,jl) - ztu1(ji-1,jj,jl) ) * r1_e1t(ji,jj)
         END_2D
!!$         DO jj = 2, jpjm1         ! First derivative (gradient)
!!$            DO ji = 1, jpim1
!!$               ztu1(ji,jj,jl) = ( pt(ji+1,jj,jl) - pt(ji,jj,jl) ) * r1_e1u(ji,jj) * umask(ji,jj,1)
!!$            END DO
!!$            !                     ! Second derivative (Laplacian)
!!$            DO ji = 2, jpim1
!!$               ztu2(ji,jj,jl) = ( ztu1(ji,jj,jl) - ztu1(ji-1,jj,jl) ) * r1_e1t(ji,jj)
!!$            END DO
!!$         END DO
      END DO
      IF( nn_hls == 1 )   CALL lbc_lnk( 'icedyn_adv_umx', ztu2, 'T', 1.0_wp )
      !
      !                                                     !--  BiLaplacian in i-direction  --!
      DO jl = 1, jpl
         DO_2D( 1, 0, kloop, kloop )                  ! Third derivative
            ztu3(ji,jj,jl) = ( ztu2(ji+1,jj,jl) - ztu2(ji,jj,jl) ) * r1_e1u(ji,jj) * umask(ji,jj,1)
         END_2D
         DO_2D( 0, 0, kloop, kloop )                  ! Fourth derivative
            ztu4(ji,jj,jl) = ( ztu3(ji,jj,jl) - ztu3(ji-1,jj,jl) ) * r1_e1t(ji,jj)
         END_2D
!!$         DO jj = 2, jpjm1         ! Third derivative
!!$            DO ji = 1, jpim1
!!$               ztu3(ji,jj,jl) = ( ztu2(ji+1,jj,jl) - ztu2(ji,jj,jl) ) * r1_e1u(ji,jj) * umask(ji,jj,1)
!!$            END DO
!!$            !                     ! Fourth derivative
!!$            DO ji = 2, jpim1
!!$               ztu4(ji,jj,jl) = ( ztu3(ji,jj,jl) - ztu3(ji-1,jj,jl) ) * r1_e1t(ji,jj)
!!$            END DO
!!$         END DO
      END DO
      !
      !
      SELECT CASE (kn_umx )
      !
      CASE( 1 )                                                   !==  1st order central TIM  ==! (Eq. 21)
         !
         DO jl = 1, jpl
            DO_2D( 1, 0, kloop, kloop )
               pt_u(ji,jj,jl) = 0.5_wp * umask(ji,jj,1) * (                                pt(ji+1,jj,jl) + pt(ji,jj,jl)   &
                  &                                         - SIGN( 1._wp, pu(ji,jj) ) * ( pt(ji+1,jj,jl) - pt(ji,jj,jl) ) )
            END_2D
         END DO
         !
      CASE( 2 )                                                   !==  2nd order central TIM  ==! (Eq. 23)
         !
         DO jl = 1, jpl
            DO_2D( 1, 0, kloop, kloop )
               zcu  = pu(ji,jj) * r1_e2u(ji,jj) * pdt * r1_e1u(ji,jj)
               pt_u(ji,jj,jl) = 0.5_wp * umask(ji,jj,1) * (                                pt(ji+1,jj,jl) + pt(ji,jj,jl)   &
                  &                                                            - zcu   * ( pt(ji+1,jj,jl) - pt(ji,jj,jl) ) )
            END_2D
         END DO
         !
      CASE( 3 )                                                   !==  3rd order central TIM  ==! (Eq. 24)
         !
         DO jl = 1, jpl
            DO_2D( 1, 0, kloop, kloop )
               zcu  = pu(ji,jj) * r1_e2u(ji,jj) * pdt * r1_e1u(ji,jj)
               zdx2 = e1u(ji,jj) * e1u(ji,jj)
!!rachid          zdx2 = e1u(ji,jj) * e1t(ji,jj)
               pt_u(ji,jj,jl) = 0.5_wp * umask(ji,jj,1) * (         (                      pt  (ji+1,jj,jl) + pt  (ji,jj,jl)     &
                  &                                                            - zcu   * ( pt  (ji+1,jj,jl) - pt  (ji,jj,jl) ) ) &
                  &        + r1_6 * zdx2 * ( zcu*zcu - 1._wp ) *    (                      ztu2(ji+1,jj,jl) + ztu2(ji,jj,jl)     &
Guillaume Samson's avatar
Guillaume Samson committed
                  &                                               - SIGN( 1._wp, zcu ) * ( ztu2(ji+1,jj,jl) - ztu2(ji,jj,jl) ) ) )
            END_2D
         END DO
         !
      CASE( 4 )                                                   !==  4th order central TIM  ==! (Eq. 27)
         !
         DO jl = 1, jpl
            DO_2D( 1, 0, kloop, kloop )
               zcu  = pu(ji,jj) * r1_e2u(ji,jj) * pdt * r1_e1u(ji,jj)
               zdx2 = e1u(ji,jj) * e1u(ji,jj)
!!rachid          zdx2 = e1u(ji,jj) * e1t(ji,jj)
               pt_u(ji,jj,jl) = 0.5_wp * umask(ji,jj,1) * (         (                      pt  (ji+1,jj,jl) + pt  (ji,jj,jl)     &
                  &                                                            - zcu   * ( pt  (ji+1,jj,jl) - pt  (ji,jj,jl) ) ) &
                  &        + r1_6 * zdx2 * ( zcu*zcu - 1._wp ) *    (                      ztu2(ji+1,jj,jl) + ztu2(ji,jj,jl)     &
Guillaume Samson's avatar
Guillaume Samson committed
                  &                                                   - 0.5_wp * zcu   * ( ztu2(ji+1,jj,jl) - ztu2(ji,jj,jl) ) ) )
            END_2D
         END DO
         !
      CASE( 5 )                                                   !==  5th order central TIM  ==! (Eq. 29)
         !
         CALL lbc_lnk( 'icedyn_adv_umx', ztu4, 'T', 1.0_wp )
         !
         DO jl = 1, jpl
            DO_2D( 1, 0, kloop, kloop )
               zcu  = pu(ji,jj) * r1_e2u(ji,jj) * pdt * r1_e1u(ji,jj)
               zdx2 = e1u(ji,jj) * e1u(ji,jj)
!!rachid          zdx2 = e1u(ji,jj) * e1t(ji,jj)
               zdx4 = zdx2 * zdx2
               pt_u(ji,jj,jl) = 0.5_wp * umask(ji,jj,1) * (        (                       pt  (ji+1,jj,jl) + pt  (ji,jj,jl)     &
                  &                                                            - zcu   * ( pt  (ji+1,jj,jl) - pt  (ji,jj,jl) ) ) &
                  &        + r1_6   * zdx2 * ( zcu*zcu - 1._wp ) * (                       ztu2(ji+1,jj,jl) + ztu2(ji,jj,jl)     &
Guillaume Samson's avatar
Guillaume Samson committed
                  &                                                   - 0.5_wp * zcu   * ( ztu2(ji+1,jj,jl) - ztu2(ji,jj,jl) ) ) &
                  &        + r1_120 * zdx4 * ( zcu*zcu - 1._wp ) * ( zcu*zcu - 4._wp ) * ( ztu4(ji+1,jj,jl) + ztu4(ji,jj,jl)     &
Guillaume Samson's avatar
Guillaume Samson committed
                  &                                               - SIGN( 1._wp, zcu ) * ( ztu4(ji+1,jj,jl) - ztu4(ji,jj,jl) ) ) )
            END_2D
         END DO
         !
      END SELECT
      !
      ! if pt at u-point is negative then use the upstream value
      !    this should not be necessary if a proper sea-ice mask is set in Ultimate
      !    to degrade the order of the scheme when necessary (for ex. at the ice edge)
      IF( ll_neg ) THEN
         DO jl = 1, jpl
            DO_2D( 1, 0, kloop, kloop )
               IF( pt_u(ji,jj,jl) < 0._wp .OR. ( imsk_small(ji,jj,jl) == 0 .AND. pamsk == 0. ) ) THEN
                  pt_u(ji,jj,jl) = 0.5_wp * umask(ji,jj,1) * (                                pt(ji+1,jj,jl) + pt(ji,jj,jl)   &
                     &                                         - SIGN( 1._wp, pu(ji,jj) ) * ( pt(ji+1,jj,jl) - pt(ji,jj,jl) ) )
               ENDIF
            END_2D
         END DO
      ENDIF
      !                                                     !-- High order flux in i-direction  --!
      DO jl = 1, jpl
         DO_2D( 1, 0, 0, 0 )
            pfu_ho(ji,jj,jl) = pu(ji,jj) * pt_u(ji,jj,jl)
         END_2D
      END DO
      !
   END SUBROUTINE ultimate_x


   SUBROUTINE ultimate_y( kloop, pamsk, kn_umx, pdt, pt, pv, pt_v, pfv_ho )
      !!---------------------------------------------------------------------
      !!                    ***  ROUTINE ultimate_y  ***
      !!
      !! **  Purpose :   compute tracer at v-points
      !!
      !! **  Method  :   ...
      !!
      !! Reference : Leonard, B.P., 1991, Comput. Methods Appl. Mech. Eng., 88, 17-74.
      !!----------------------------------------------------------------------
      INTEGER                         , INTENT(in   ) ::   kloop     ! either 0 or nn_hls depending on the order of the call
      REAL(wp)                        , INTENT(in   ) ::   pamsk     ! advection of concentration (1) or other tracers (0)
      INTEGER                         , INTENT(in   ) ::   kn_umx    ! order of the scheme (1-5=UM or 20=CEN2)
      REAL(wp)                        , INTENT(in   ) ::   pdt       ! tracer time-step
      REAL(wp), DIMENSION(:,:  )      , INTENT(in   ) ::   pv        ! ice j-velocity component
      REAL(wp), DIMENSION(:,:,:)      , INTENT(in   ) ::   pt        ! tracer fields
      REAL(wp), DIMENSION(jpi,jpj,jpl), INTENT(  out) ::   pt_v      ! tracer at v-point
      REAL(wp), DIMENSION(jpi,jpj,jpl), INTENT(  out) ::   pfv_ho    ! high order flux
      !
      INTEGER  ::   ji, jj, jl         ! dummy loop indices
      REAL(wp) ::   zcv, zdy2, zdy4    !   -      -
      REAL(wp), DIMENSION(jpi,jpj,jpl) ::   ztv1, ztv2, ztv3, ztv4
      !!----------------------------------------------------------------------
      !
      !                                                     !--  Laplacian in j-direction  --!
      DO jl = 1, jpl
         DO_2D( kloop, kloop, nn_hls, nn_hls-1 )      ! First derivative (gradient)
            ztv1(ji,jj,jl) = ( pt(ji,jj+1,jl) - pt(ji,jj,jl) ) * r1_e2v(ji,jj) * vmask(ji,jj,1)
         END_2D
         DO_2D( kloop, kloop, nn_hls-1, nn_hls-1 )    ! Second derivative (Laplacian)
            ztv2(ji,jj,jl) = ( ztv1(ji,jj,jl) - ztv1(ji,jj-1,jl) ) * r1_e2t(ji,jj)
         END_2D
      END DO
      IF( nn_hls == 1 )   CALL lbc_lnk( 'icedyn_adv_umx', ztv2, 'T', 1.0_wp )
      !
      !                                                     !--  BiLaplacian in j-direction  --!
      DO jl = 1, jpl
         DO_2D( kloop, kloop, 1, 0 )                  ! Third derivative
            ztv3(ji,jj,jl) = ( ztv2(ji,jj+1,jl) - ztv2(ji,jj,jl) ) * r1_e2v(ji,jj) * vmask(ji,jj,1)
         END_2D
         DO_2D( kloop, kloop, 0, 0 )                  ! Fourth derivative
            ztv4(ji,jj,jl) = ( ztv3(ji,jj,jl) - ztv3(ji,jj-1,jl) ) * r1_e2t(ji,jj)
         END_2D
      END DO
      !
      !
      SELECT CASE (kn_umx )
         !
      CASE( 1 )                                                !==  1st order central TIM  ==! (Eq. 21)
         DO jl = 1, jpl
            DO_2D( kloop, kloop, 1, 0 )
               pt_v(ji,jj,jl) = 0.5_wp * vmask(ji,jj,1) * (                                pt(ji,jj+1,jl) + pt(ji,jj,jl)   &
                  &                                         - SIGN( 1._wp, pv(ji,jj) ) * ( pt(ji,jj+1,jl) - pt(ji,jj,jl) ) )
            END_2D
         END DO
         !
      CASE( 2 )                                                !==  2nd order central TIM  ==! (Eq. 23)
         DO jl = 1, jpl
            DO_2D( kloop, kloop, 1, 0 )
               zcv  = pv(ji,jj) * r1_e1v(ji,jj) * pdt * r1_e2v(ji,jj)
               pt_v(ji,jj,jl) = 0.5_wp * vmask(ji,jj,1) * (                                pt(ji,jj+1,jl) + pt(ji,jj,jl)   &
                  &                                                            - zcv *   ( pt(ji,jj+1,jl) - pt(ji,jj,jl) ) )
            END_2D
         END DO
         !
      CASE( 3 )                                                !==  3rd order central TIM  ==! (Eq. 24)
         DO jl = 1, jpl
            DO_2D( kloop, kloop, 1, 0 )
               zcv  = pv(ji,jj) * r1_e1v(ji,jj) * pdt * r1_e2v(ji,jj)
               zdy2 = e2v(ji,jj) * e2v(ji,jj)
!!rachid          zdy2 = e2v(ji,jj) * e2t(ji,jj)
               pt_v(ji,jj,jl) = 0.5_wp * vmask(ji,jj,1) * (      (                         pt  (ji,jj+1,jl) + pt  (ji,jj,jl)     &
                  &                                                            - zcv   * ( pt  (ji,jj+1,jl) - pt  (ji,jj,jl) ) ) &
                  &        + r1_6 * zdy2 * ( zcv*zcv - 1._wp ) * (                         ztv2(ji,jj+1,jl) + ztv2(ji,jj,jl)     &
Guillaume Samson's avatar
Guillaume Samson committed
                  &                                               - SIGN( 1._wp, zcv ) * ( ztv2(ji,jj+1,jl) - ztv2(ji,jj,jl) ) ) )
            END_2D
         END DO
         !
      CASE( 4 )                                                !==  4th order central TIM  ==! (Eq. 27)
         DO jl = 1, jpl
            DO_2D( kloop, kloop, 1, 0 )
               zcv  = pv(ji,jj) * r1_e1v(ji,jj) * pdt * r1_e2v(ji,jj)
               zdy2 = e2v(ji,jj) * e2v(ji,jj)
!!rachid          zdy2 = e2v(ji,jj) * e2t(ji,jj)
               pt_v(ji,jj,jl) = 0.5_wp * vmask(ji,jj,1) * (      (                         pt  (ji,jj+1,jl) + pt  (ji,jj,jl)     &
                  &                                                            - zcv   * ( pt  (ji,jj+1,jl) - pt  (ji,jj,jl) ) ) &
                  &        + r1_6 * zdy2 * ( zcv*zcv - 1._wp ) * (                         ztv2(ji,jj+1,jl) + ztv2(ji,jj,jl)     &
Guillaume Samson's avatar
Guillaume Samson committed
                  &                                                   - 0.5_wp * zcv   * ( ztv2(ji,jj+1,jl) - ztv2(ji,jj,jl) ) ) )
            END_2D
         END DO
         !
      CASE( 5 )                                                !==  5th order central TIM  ==! (Eq. 29)
         !
         CALL lbc_lnk( 'icedyn_adv_umx', ztv4, 'T', 1.0_wp )
         !
         DO jl = 1, jpl
            DO_2D( kloop, kloop, 1, 0 )
               zcv  = pv(ji,jj) * r1_e1v(ji,jj) * pdt * r1_e2v(ji,jj)
               zdy2 = e2v(ji,jj) * e2v(ji,jj)
!!rachid          zdy2 = e2v(ji,jj) * e2t(ji,jj)
               zdy4 = zdy2 * zdy2
               pt_v(ji,jj,jl) = 0.5_wp * vmask(ji,jj,1) * (                              ( pt  (ji,jj+1,jl) + pt  (ji,jj,jl)     &
                  &                                                            - zcv   * ( pt  (ji,jj+1,jl) - pt  (ji,jj,jl) ) ) &
                  &        + r1_6   * zdy2 * ( zcv*zcv - 1._wp ) * (                       ztv2(ji,jj+1,jl) + ztv2(ji,jj,jl)     &
Guillaume Samson's avatar
Guillaume Samson committed
                  &                                                   - 0.5_wp * zcv   * ( ztv2(ji,jj+1,jl) - ztv2(ji,jj,jl) ) ) &
                  &        + r1_120 * zdy4 * ( zcv*zcv - 1._wp ) * ( zcv*zcv - 4._wp ) * ( ztv4(ji,jj+1,jl) + ztv4(ji,jj,jl)     &
Guillaume Samson's avatar
Guillaume Samson committed
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
                  &                                               - SIGN( 1._wp, zcv ) * ( ztv4(ji,jj+1,jl) - ztv4(ji,jj,jl) ) ) )
            END_2D
         END DO
         !
      END SELECT
      !
      ! if pt at v-point is negative then use the upstream value
      !    this should not be necessary if a proper sea-ice mask is set in Ultimate
      !    to degrade the order of the scheme when necessary (for ex. at the ice edge)
      IF( ll_neg ) THEN
         DO jl = 1, jpl
            DO_2D( kloop, kloop, 1, 0 )
               IF( pt_v(ji,jj,jl) < 0._wp .OR. ( jmsk_small(ji,jj,jl) == 0 .AND. pamsk == 0. ) ) THEN
                  pt_v(ji,jj,jl) = 0.5_wp * vmask(ji,jj,1) * (                              ( pt(ji,jj+1,jl) + pt(ji,jj,jl) )  &
                     &                                         - SIGN( 1._wp, pv(ji,jj) ) * ( pt(ji,jj+1,jl) - pt(ji,jj,jl) ) )
               ENDIF
            END_2D
         END DO
      ENDIF
      !                                                     !-- High order flux in j-direction  --!
      DO jl = 1, jpl
         DO_2D( 0, 0, 1, 0 )
            pfv_ho(ji,jj,jl) = pv(ji,jj) * pt_v(ji,jj,jl)
         END_2D
      END DO
      !
   END SUBROUTINE ultimate_y


   SUBROUTINE nonosc_ice( pamsk, pdt, pu, pv, pt, pt_ups, pfu_ups, pfv_ups, pfu_ho, pfv_ho )
      !!---------------------------------------------------------------------
      !!                    ***  ROUTINE nonosc_ice  ***
      !!
      !! **  Purpose :   compute monotonic tracer fluxes from the upstream
      !!       scheme and the before field by a non-oscillatory algorithm
      !!
      !! **  Method  :   ...
      !!----------------------------------------------------------------------
      REAL(wp)                   , INTENT(in   ) ::   pamsk            ! advection of concentration (1) or other tracers (0)
      REAL(wp)                   , INTENT(in   ) ::   pdt              ! tracer time-step
      REAL(wp), DIMENSION (:,:  ), INTENT(in   ) ::   pu               ! ice i-velocity => u*e2
      REAL(wp), DIMENSION (:,:  ), INTENT(in   ) ::   pv               ! ice j-velocity => v*e1
      REAL(wp), DIMENSION (:,:,:), INTENT(in   ) ::   pt, pt_ups       ! before field & upstream guess of after field
      REAL(wp), DIMENSION (:,:,:), INTENT(in   ) ::   pfv_ups, pfu_ups ! upstream flux
      REAL(wp), DIMENSION (:,:,:), INTENT(inout) ::   pfv_ho, pfu_ho   ! monotonic flux
      !
      INTEGER  ::   ji, jj, jl    ! dummy loop indices
      REAL(wp) ::   zpos, zneg, zbig, zup, zdo, z1_dt              ! local scalars
      REAL(wp) ::   zau, zbu, zcu, zav, zbv, zcv, zcoef, zzt       !   -      -
      REAL(wp), DIMENSION(jpi,jpj    ) :: zbup, zbdo
      REAL(wp), DIMENSION(jpi,jpj,jpl) :: zbetup, zbetdo, zti_ups, ztj_ups
      !!----------------------------------------------------------------------
      zbig = 1.e+40_wp

      ! antidiffusive flux : high order minus low order
      ! --------------------------------------------------
      DO jl = 1, jpl
         DO_2D( 1, 0, 0, 0 )
            pfu_ho(ji,jj,jl) = pfu_ho(ji,jj,jl) - pfu_ups(ji,jj,jl)
         END_2D
         DO_2D( 0, 0, 1, 0 )
            pfv_ho(ji,jj,jl) = pfv_ho(ji,jj,jl) - pfv_ups(ji,jj,jl)
         END_2D
      END DO

      ! extreme case where pfu_ho has to be zero
      ! ----------------------------------------
      !                                    pfu_ho
      !                           *         --->
      !                        |      |  *   |        |
      !                        |      |      |    *   |
      !                        |      |      |        |    *
      !            t_ups :       i-1     i       i+1       i+2
      IF( ll_prelim ) THEN

         DO jl = 1, jpl
            DO_2D( 0, 0, 0, 0 )
               zti_ups(ji,jj,jl)= pt_ups(ji+1,jj  ,jl)
               ztj_ups(ji,jj,jl)= pt_ups(ji  ,jj+1,jl)
            END_2D
         END DO
         CALL lbc_lnk( 'icedyn_adv_umx', zti_ups, 'T', 1.0_wp, ztj_ups, 'T', 1.0_wp )

         DO jl = 1, jpl
            DO_2D( 0, 0, 0, 0 )
               IF ( pfu_ho(ji,jj,jl) * ( pt_ups(ji+1,jj  ,jl) - pt_ups(ji,jj,jl) ) <= 0._wp .AND.  &
                  & pfv_ho(ji,jj,jl) * ( pt_ups(ji  ,jj+1,jl) - pt_ups(ji,jj,jl) ) <= 0._wp ) THEN
                  !
                  IF(  pfu_ho(ji,jj,jl) * ( zti_ups(ji+1,jj  ,jl) - zti_ups(ji,jj,jl) ) <= 0._wp .AND.  &
                     & pfv_ho(ji,jj,jl) * ( ztj_ups(ji  ,jj+1,jl) - ztj_ups(ji,jj,jl) ) <= 0._wp ) THEN
                     pfu_ho(ji,jj,jl)=0._wp
                     pfv_ho(ji,jj,jl)=0._wp
                  ENDIF
                  !
                  IF(  pfu_ho(ji,jj,jl) * ( pt_ups(ji,jj,jl) - pt_ups(ji-1,jj  ,jl) ) <= 0._wp .AND.  &
                     & pfv_ho(ji,jj,jl) * ( pt_ups(ji,jj,jl) - pt_ups(ji  ,jj-1,jl) ) <= 0._wp ) THEN
                     pfu_ho(ji,jj,jl)=0._wp
                     pfv_ho(ji,jj,jl)=0._wp
                  ENDIF
                  !
               ENDIF
            END_2D
         END DO
         CALL lbc_lnk( 'icedyn_adv_umx', pfu_ho, 'U', -1.0_wp, pfv_ho, 'V', -1.0_wp )   ! lateral boundary cond.

      ENDIF

      ! Search local extrema
      ! --------------------
      ! max/min of pt & pt_ups with large negative/positive value (-/+zbig) outside ice cover
      z1_dt = 1._wp / pdt
      DO jl = 1, jpl

         DO_2D( 1, 1, 1, 1 )
            IF    ( pt(ji,jj,jl) <= 0._wp .AND. pt_ups(ji,jj,jl) <= 0._wp ) THEN
               zbup(ji,jj) = -zbig
               zbdo(ji,jj) =  zbig
            ELSEIF( pt(ji,jj,jl) <= 0._wp .AND. pt_ups(ji,jj,jl) > 0._wp ) THEN
               zbup(ji,jj) = pt_ups(ji,jj,jl)
               zbdo(ji,jj) = pt_ups(ji,jj,jl)
            ELSEIF( pt(ji,jj,jl) > 0._wp .AND. pt_ups(ji,jj,jl) <= 0._wp ) THEN
               zbup(ji,jj) = pt(ji,jj,jl)
               zbdo(ji,jj) = pt(ji,jj,jl)
            ELSE
               zbup(ji,jj) = MAX( pt(ji,jj,jl) , pt_ups(ji,jj,jl) )
               zbdo(ji,jj) = MIN( pt(ji,jj,jl) , pt_ups(ji,jj,jl) )
            ENDIF
         END_2D

         DO_2D( 0, 0, 0, 0 )
            !
            zup  = MAX( zbup(ji,jj), zbup(ji-1,jj), zbup(ji+1,jj), zbup(ji,jj-1), zbup(ji,jj+1) )  ! search max/min in neighbourhood
            zdo  = MIN( zbdo(ji,jj), zbdo(ji-1,jj), zbdo(ji+1,jj), zbdo(ji,jj-1), zbdo(ji,jj+1) )
            !
            zpos = MAX( 0._wp, pfu_ho(ji-1,jj  ,jl) ) - MIN( 0._wp, pfu_ho(ji  ,jj  ,jl) ) &  ! positive/negative part of the flux
               & + MAX( 0._wp, pfv_ho(ji  ,jj-1,jl) ) - MIN( 0._wp, pfv_ho(ji  ,jj  ,jl) )
            zneg = MAX( 0._wp, pfu_ho(ji  ,jj  ,jl) ) - MIN( 0._wp, pfu_ho(ji-1,jj  ,jl) ) &
               & + MAX( 0._wp, pfv_ho(ji  ,jj  ,jl) ) - MIN( 0._wp, pfv_ho(ji  ,jj-1,jl) )
            !
            zpos = zpos - (pt(ji,jj,jl) * MIN( 0., pu(ji,jj) - pu(ji-1,jj) ) + pt(ji,jj,jl) * MIN( 0., pv(ji,jj) - pv(ji,jj-1) ) &
               &          ) * ( 1. - pamsk )
            zneg = zneg + (pt(ji,jj,jl) * MAX( 0., pu(ji,jj) - pu(ji-1,jj) ) + pt(ji,jj,jl) * MAX( 0., pv(ji,jj) - pv(ji,jj-1) ) &
               &          ) * ( 1. - pamsk )
            !
            !                                  ! up & down beta terms
            ! clem: zbetup and zbetdo must be 0 for zpos>1.e-10 & zneg>1.e-10 (do not put 0 instead of 1.e-10 !!!)
            IF( zpos > epsi10 ) THEN ; zbetup(ji,jj,jl) = MAX( 0._wp, zup - pt_ups(ji,jj,jl) ) / zpos * e1e2t(ji,jj) * z1_dt
            ELSE                     ; zbetup(ji,jj,jl) = 0._wp ! zbig
            ENDIF
            !
            IF( zneg > epsi10 ) THEN ; zbetdo(ji,jj,jl) = MAX( 0._wp, pt_ups(ji,jj,jl) - zdo ) / zneg * e1e2t(ji,jj) * z1_dt
            ELSE                     ; zbetdo(ji,jj,jl) = 0._wp ! zbig
            ENDIF
            !
            ! if all the points are outside ice cover
            IF( zup == -zbig )   zbetup(ji,jj,jl) = 0._wp ! zbig
            IF( zdo ==  zbig )   zbetdo(ji,jj,jl) = 0._wp ! zbig
            !
         END_2D
      END DO
      CALL lbc_lnk( 'icedyn_adv_umx', zbetup, 'T', 1.0_wp, zbetdo, 'T', 1.0_wp )   ! lateral boundary cond. (unchanged sign)


      ! monotonic flux in the y direction
      ! ---------------------------------
      DO jl = 1, jpl
         DO_2D( 1, 0, 0, 0 )
            zau = MIN( 1._wp , zbetdo(ji,jj,jl) , zbetup(ji+1,jj,jl) )
            zbu = MIN( 1._wp , zbetup(ji,jj,jl) , zbetdo(ji+1,jj,jl) )
            zcu = 0.5_wp + SIGN( 0.5_wp , pfu_ho(ji,jj,jl) )
            !
            zcoef = ( zcu * zau + ( 1._wp - zcu ) * zbu )
            !
            pfu_ho(ji,jj,jl) = pfu_ho(ji,jj,jl) * zcoef + pfu_ups(ji,jj,jl)
            !
         END_2D

         DO_2D( 0, 0, 1, 0 )
            zav = MIN( 1._wp , zbetdo(ji,jj,jl) , zbetup(ji,jj+1,jl) )
            zbv = MIN( 1._wp , zbetup(ji,jj,jl) , zbetdo(ji,jj+1,jl) )
            zcv = 0.5_wp + SIGN( 0.5_wp , pfv_ho(ji,jj,jl) )
            !
            zcoef = ( zcv * zav + ( 1._wp - zcv ) * zbv )
            !
            pfv_ho(ji,jj,jl) = pfv_ho(ji,jj,jl) * zcoef + pfv_ups(ji,jj,jl)
            !
         END_2D

      END DO
      !
   END SUBROUTINE nonosc_ice


   SUBROUTINE limiter_x( pdt, pu, pt, pfu_ups, pfu_ho )
      !!---------------------------------------------------------------------
      !!                    ***  ROUTINE limiter_x  ***
      !!
      !! **  Purpose :   compute flux limiter
      !!----------------------------------------------------------------------
      REAL(wp)                  , INTENT(in   ) ::   pdt          ! tracer time-step
      REAL(wp), DIMENSION(:,:  ), INTENT(in   ) ::   pu           ! ice i-velocity => u*e2
      REAL(wp), DIMENSION(:,:,:), INTENT(in   ) ::   pt           ! ice tracer
      REAL(wp), DIMENSION(:,:,:), INTENT(in   ) ::   pfu_ups      ! upstream flux
      REAL(wp), DIMENSION(:,:,:), INTENT(inout) ::   pfu_ho       ! high order flux
      !
      REAL(wp) ::   Cr, Rjm, Rj, Rjp, uCFL, zpsi, zh3, zlimiter, Rr
      INTEGER  ::   ji, jj, jl    ! dummy loop indices
      REAL(wp), DIMENSION (jpi,jpj,jpl) ::   zslpx       ! tracer slopes
      !!----------------------------------------------------------------------
      !
      DO jl = 1, jpl
         DO_2D( nn_hls, nn_hls-1, 0, 0 )
            zslpx(ji,jj,jl) = ( pt(ji+1,jj,jl) - pt(ji,jj,jl) ) * umask(ji,jj,1)
         END_2D
      END DO
      IF( nn_hls == 1 )   CALL lbc_lnk( 'icedyn_adv_umx', zslpx, 'U', -1.0_wp)   ! lateral boundary cond.

      DO jl = 1, jpl
         DO_2D( nn_hls-1, 0, 0, 0 )
            uCFL = pdt * ABS( pu(ji,jj) ) * r1_e1e2t(ji,jj)

            Rjm = zslpx(ji-1,jj,jl)
            Rj  = zslpx(ji  ,jj,jl)
            Rjp = zslpx(ji+1,jj,jl)

            IF( np_limiter == 3 ) THEN

               IF( pu(ji,jj) > 0. ) THEN   ;   Rr = Rjm
               ELSE                        ;   Rr = Rjp
               ENDIF

               zh3 = pfu_ho(ji,jj,jl) - pfu_ups(ji,jj,jl)
               IF( Rj > 0. ) THEN
                  zlimiter =  MAX( 0., MIN( zh3, MAX(-Rr * 0.5 * ABS(pu(ji,jj)),  &
                     &        MIN( 2. * Rr * 0.5 * ABS(pu(ji,jj)),  zh3,  1.5 * Rj * 0.5 * ABS(pu(ji,jj)) ) ) ) )
               ELSE
                  zlimiter = -MAX( 0., MIN(-zh3, MAX( Rr * 0.5 * ABS(pu(ji,jj)),  &
                     &        MIN(-2. * Rr * 0.5 * ABS(pu(ji,jj)), -zh3, -1.5 * Rj * 0.5 * ABS(pu(ji,jj)) ) ) ) )
               ENDIF
               pfu_ho(ji,jj,jl) = pfu_ups(ji,jj,jl) + zlimiter

            ELSEIF( np_limiter == 2 ) THEN
               IF( Rj /= 0. ) THEN
                  IF( pu(ji,jj) > 0. ) THEN   ;   Cr = Rjm / Rj
                  ELSE                        ;   Cr = Rjp / Rj
                  ENDIF
               ELSE
                  Cr = 0.
               ENDIF

               ! -- superbee --
               zpsi = MAX( 0., MAX( MIN(1.,2.*Cr), MIN(2.,Cr) ) )
               ! -- van albada 2 --
               !!zpsi = 2.*Cr / (Cr*Cr+1.)
               ! -- sweby (with beta=1) --
               !!zpsi = MAX( 0., MAX( MIN(1.,1.*Cr), MIN(1.,Cr) ) )
               ! -- van Leer --
               !!zpsi = ( Cr + ABS(Cr) ) / ( 1. + ABS(Cr) )
               ! -- ospre --
               !!zpsi = 1.5 * ( Cr*Cr + Cr ) / ( Cr*Cr + Cr + 1. )
               ! -- koren --
               !!zpsi = MAX( 0., MIN( 2.*Cr, MIN( (1.+2*Cr)/3., 2. ) ) )
               ! -- charm --
               !IF( Cr > 0. ) THEN   ;   zpsi = Cr * (3.*Cr + 1.) / ( (Cr + 1.) * (Cr + 1.) )
               !ELSE                 ;   zpsi = 0.
               !ENDIF
               ! -- van albada 1 --
               !!zpsi = (Cr*Cr + Cr) / (Cr*Cr +1)
               ! -- smart --
               !!zpsi = MAX( 0., MIN( 2.*Cr, MIN( 0.25+0.75*Cr, 4. ) ) )
               ! -- umist --
               !!zpsi = MAX( 0., MIN( 2.*Cr, MIN( 0.25+0.75*Cr, MIN(0.75+0.25*Cr, 2. ) ) ) )

               ! high order flux corrected by the limiter
               pfu_ho(ji,jj,jl) = pfu_ho(ji,jj,jl) - ABS( pu(ji,jj) ) * ( (1.-zpsi) + uCFL*zpsi ) * Rj * 0.5

            ENDIF
         END_2D
      END DO
      IF( nn_hls == 1 )   CALL lbc_lnk( 'icedyn_adv_umx', pfu_ho, 'U', -1.0_wp)   ! lateral boundary cond.
      !
   END SUBROUTINE limiter_x


   SUBROUTINE limiter_y( pdt, pv, pt, pfv_ups, pfv_ho )
      !!---------------------------------------------------------------------
      !!                    ***  ROUTINE limiter_y  ***
      !!
      !! **  Purpose :   compute flux limiter
      !!----------------------------------------------------------------------
      REAL(wp)                   , INTENT(in   ) ::   pdt          ! tracer time-step
      REAL(wp), DIMENSION (:,:  ), INTENT(in   ) ::   pv           ! ice i-velocity => u*e2
      REAL(wp), DIMENSION (:,:,:), INTENT(in   ) ::   pt           ! ice tracer
      REAL(wp), DIMENSION (:,:,:), INTENT(in   ) ::   pfv_ups      ! upstream flux
      REAL(wp), DIMENSION (:,:,:), INTENT(inout) ::   pfv_ho       ! high order flux
      !
      REAL(wp) ::   Cr, Rjm, Rj, Rjp, vCFL, zpsi, zh3, zlimiter, Rr
      INTEGER  ::   ji, jj, jl    ! dummy loop indices
      REAL(wp), DIMENSION (jpi,jpj,jpl) ::   zslpy       ! tracer slopes
      !!----------------------------------------------------------------------
      !
      DO jl = 1, jpl
         DO_2D( 0, 0, nn_hls, nn_hls-1 )
            zslpy(ji,jj,jl) = ( pt(ji,jj+1,jl) - pt(ji,jj,jl) ) * vmask(ji,jj,1)
         END_2D
      END DO
      IF( nn_hls == 1 )   CALL lbc_lnk( 'icedyn_adv_umx', zslpy, 'V', -1.0_wp)   ! lateral boundary cond.

      DO jl = 1, jpl
         DO_2D( 0, 0, nn_hls-1, 0 )
            vCFL = pdt * ABS( pv(ji,jj) ) * r1_e1e2t(ji,jj)

            Rjm = zslpy(ji,jj-1,jl)
            Rj  = zslpy(ji,jj  ,jl)
            Rjp = zslpy(ji,jj+1,jl)

            IF( np_limiter == 3 ) THEN

               IF( pv(ji,jj) > 0. ) THEN   ;   Rr = Rjm
               ELSE                        ;   Rr = Rjp
               ENDIF

               zh3 = pfv_ho(ji,jj,jl) - pfv_ups(ji,jj,jl)
               IF( Rj > 0. ) THEN
                  zlimiter =  MAX( 0., MIN( zh3, MAX(-Rr * 0.5 * ABS(pv(ji,jj)),  &
                     &        MIN( 2. * Rr * 0.5 * ABS(pv(ji,jj)),  zh3,  1.5 * Rj * 0.5 * ABS(pv(ji,jj)) ) ) ) )
               ELSE
                  zlimiter = -MAX( 0., MIN(-zh3, MAX( Rr * 0.5 * ABS(pv(ji,jj)),  &
                     &        MIN(-2. * Rr * 0.5 * ABS(pv(ji,jj)), -zh3, -1.5 * Rj * 0.5 * ABS(pv(ji,jj)) ) ) ) )
               ENDIF
               pfv_ho(ji,jj,jl) = pfv_ups(ji,jj,jl) + zlimiter

            ELSEIF( np_limiter == 2 ) THEN

               IF( Rj /= 0. ) THEN
                  IF( pv(ji,jj) > 0. ) THEN   ;   Cr = Rjm / Rj
                  ELSE                        ;   Cr = Rjp / Rj
                  ENDIF
               ELSE
                  Cr = 0.
               ENDIF

               ! -- superbee --
               zpsi = MAX( 0., MAX( MIN(1.,2.*Cr), MIN(2.,Cr) ) )
               ! -- van albada 2 --
               !!zpsi = 2.*Cr / (Cr*Cr+1.)
               ! -- sweby (with beta=1) --
               !!zpsi = MAX( 0., MAX( MIN(1.,1.*Cr), MIN(1.,Cr) ) )
               ! -- van Leer --
               !!zpsi = ( Cr + ABS(Cr) ) / ( 1. + ABS(Cr) )
               ! -- ospre --
               !!zpsi = 1.5 * ( Cr*Cr + Cr ) / ( Cr*Cr + Cr + 1. )
               ! -- koren --
               !!zpsi = MAX( 0., MIN( 2.*Cr, MIN( (1.+2*Cr)/3., 2. ) ) )
               ! -- charm --
               !IF( Cr > 0. ) THEN   ;   zpsi = Cr * (3.*Cr + 1.) / ( (Cr + 1.) * (Cr + 1.) )
               !ELSE                 ;   zpsi = 0.
               !ENDIF
               ! -- van albada 1 --
               !!zpsi = (Cr*Cr + Cr) / (Cr*Cr +1)
               ! -- smart --
               !!zpsi = MAX( 0., MIN( 2.*Cr, MIN( 0.25+0.75*Cr, 4. ) ) )
               ! -- umist --
               !!zpsi = MAX( 0., MIN( 2.*Cr, MIN( 0.25+0.75*Cr, MIN(0.75+0.25*Cr, 2. ) ) ) )

               ! high order flux corrected by the limiter
               pfv_ho(ji,jj,jl) = pfv_ho(ji,jj,jl) - ABS( pv(ji,jj) ) * ( (1.-zpsi) + vCFL*zpsi ) * Rj * 0.5

            ENDIF
         END_2D
      END DO
      IF( nn_hls == 1 )   CALL lbc_lnk( 'icedyn_adv_umx', pfv_ho, 'V', -1.0_wp)   ! lateral boundary cond.
      !
   END SUBROUTINE limiter_y


   SUBROUTINE Hbig( pdt, phi_max, phs_max, phip_max, psi_max, pes_max, pei_max, &
      &                  pv_i, pv_s, pa_i, pa_ip, pv_ip, psv_i, pe_s, pe_i )
      !!-------------------------------------------------------------------
      !!                  ***  ROUTINE Hbig  ***
      !!
      !! ** Purpose : Thickness correction in case advection scheme creates
      !!              abnormally tick ice or snow
      !!
      !! ** Method  : 1- check whether ice thickness is larger than the surrounding 9-points
      !!                 (before advection) and reduce it by adapting ice concentration
      !!              2- check whether snow thickness is larger than the surrounding 9-points
      !!                 (before advection) and reduce it by sending the excess in the ocean
      !!
      !! ** input   : Max thickness of the surrounding 9-points
      !!-------------------------------------------------------------------
      REAL(wp)                    , INTENT(in   ) ::   pdt                                   ! tracer time-step
      REAL(wp), DIMENSION(:,:,:)  , INTENT(in   ) ::   phi_max, phs_max, phip_max, psi_max   ! max ice thick from surrounding 9-pts
      REAL(wp), DIMENSION(:,:,:,:), INTENT(in   ) ::   pes_max
      REAL(wp), DIMENSION(:,:,:,:), INTENT(in   ) ::   pei_max
      REAL(wp), DIMENSION(:,:,:)  , INTENT(inout) ::   pv_i, pv_s, pa_i, pa_ip, pv_ip, psv_i
      REAL(wp), DIMENSION(:,:,:,:), INTENT(inout) ::   pe_s
      REAL(wp), DIMENSION(:,:,:,:), INTENT(inout) ::   pe_i
      !
      INTEGER  ::   ji, jj, jk, jl         ! dummy loop indices
      REAL(wp) ::   z1_dt, zhip, zhi, zhs, zsi, zes, zei, zfra
      !!-------------------------------------------------------------------
      !
      z1_dt = 1._wp / pdt
      !
      DO jl = 1, jpl
         DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
            IF ( pv_i(ji,jj,jl) > 0._wp ) THEN
               !
               !                               ! -- check h_ip -- !
               ! if h_ip is larger than the surrounding 9 pts => reduce h_ip and increase a_ip
               IF( ( ln_pnd_LEV .OR. ln_pnd_TOPO ) .AND. pv_ip(ji,jj,jl) > 0._wp ) THEN
                  zhip = pv_ip(ji,jj,jl) / MAX( epsi20, pa_ip(ji,jj,jl) )
                  IF( zhip > phip_max(ji,jj,jl) .AND. pa_ip(ji,jj,jl) < 0.15 ) THEN
                     pa_ip(ji,jj,jl) = pv_ip(ji,jj,jl) / phip_max(ji,jj,jl)
                  ENDIF
               ENDIF
               !
               !                               ! -- check h_i -- !
               ! if h_i is larger than the surrounding 9 pts => reduce h_i and increase a_i
               zhi = pv_i(ji,jj,jl) / pa_i(ji,jj,jl)
               IF( zhi > phi_max(ji,jj,jl) .AND. pa_i(ji,jj,jl) < 0.15 ) THEN
                  pa_i(ji,jj,jl) = pv_i(ji,jj,jl) / MIN( phi_max(ji,jj,jl), hi_max(jpl) )   !-- bound h_i to hi_max (99 m)
               ENDIF
               !
               !                               ! -- check h_s -- !
               ! if h_s is larger than the surrounding 9 pts => put the snow excess in the ocean
               zhs = pv_s(ji,jj,jl) / pa_i(ji,jj,jl)
               IF( pv_s(ji,jj,jl) > 0._wp .AND. zhs > phs_max(ji,jj,jl) .AND. pa_i(ji,jj,jl) < 0.15 ) THEN
                  zfra = phs_max(ji,jj,jl) / MAX( zhs, epsi20 )
                  !
                  wfx_res(ji,jj) = wfx_res(ji,jj) + ( pv_s(ji,jj,jl) - pa_i(ji,jj,jl) * phs_max(ji,jj,jl) ) * rhos * z1_dt
                  hfx_res(ji,jj) = hfx_res(ji,jj) - SUM( pe_s(ji,jj,1:nlay_s,jl) ) * ( 1._wp - zfra ) * z1_dt ! W.m-2 <0
                  !
                  pe_s(ji,jj,1:nlay_s,jl) = pe_s(ji,jj,1:nlay_s,jl) * zfra
                  pv_s(ji,jj,jl)          = pa_i(ji,jj,jl) * phs_max(ji,jj,jl)
               ENDIF
               !
               !                               ! -- check s_i -- !
               ! if s_i is larger than the surrounding 9 pts => put salt excess in the ocean
               zsi = psv_i(ji,jj,jl) / pv_i(ji,jj,jl)
               IF( zsi > psi_max(ji,jj,jl) .AND. pa_i(ji,jj,jl) < 0.15 ) THEN
                  zfra = psi_max(ji,jj,jl) / zsi
                  sfx_res(ji,jj) = sfx_res(ji,jj) + psv_i(ji,jj,jl) * ( 1._wp - zfra ) * rhoi * z1_dt
                  psv_i(ji,jj,jl) = psv_i(ji,jj,jl) * zfra
               ENDIF
               !
            ENDIF
         END_2D
      END DO
      !
      !                                           ! -- check e_i/v_i -- !
      DO jl = 1, jpl
         DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, nlay_i )
            IF ( pv_i(ji,jj,jl) > 0._wp ) THEN
               ! if e_i/v_i is larger than the surrounding 9 pts => put the heat excess in the ocean
               zei = pe_i(ji,jj,jk,jl) / pv_i(ji,jj,jl)
               IF( zei > pei_max(ji,jj,jk,jl) .AND. pa_i(ji,jj,jl) < 0.15 ) THEN
                  zfra = pei_max(ji,jj,jk,jl) / zei
                  hfx_res(ji,jj) = hfx_res(ji,jj) - pe_i(ji,jj,jk,jl) * ( 1._wp - zfra ) * z1_dt ! W.m-2 <0
                  pe_i(ji,jj,jk,jl) = pe_i(ji,jj,jk,jl) * zfra
               ENDIF
            ENDIF
         END_3D
      END DO
      !                                           ! -- check e_s/v_s -- !
      DO jl = 1, jpl
         DO_3D( nn_hls, nn_hls, nn_hls, nn_hls, 1, nlay_s )
            IF ( pv_s(ji,jj,jl) > 0._wp ) THEN
               ! if e_s/v_s is larger than the surrounding 9 pts => put the heat excess in the ocean
               zes = pe_s(ji,jj,jk,jl) / pv_s(ji,jj,jl)
               IF( zes > pes_max(ji,jj,jk,jl) .AND. pa_i(ji,jj,jl) < 0.15 ) THEN
                  zfra = pes_max(ji,jj,jk,jl) / zes
                  hfx_res(ji,jj) = hfx_res(ji,jj) - pe_s(ji,jj,jk,jl) * ( 1._wp - zfra ) * z1_dt ! W.m-2 <0
                  pe_s(ji,jj,jk,jl) = pe_s(ji,jj,jk,jl) * zfra
               ENDIF
            ENDIF
         END_3D
      END DO
      !
   END SUBROUTINE Hbig


   SUBROUTINE Hsnow( pdt, pv_i, pv_s, pa_i, pa_ip, pe_s )
      !!-------------------------------------------------------------------
      !!                  ***  ROUTINE Hsnow  ***
      !!
      !! ** Purpose : 1- Check snow load after advection
      !!              2- Correct pond concentration to avoid a_ip > a_i
      !!
      !! ** Method :  If snow load makes snow-ice interface to deplet below the ocean surface
      !!              then put the snow excess in the ocean
      !!
      !! ** Notes :   This correction is crucial because of the call to routine icecor afterwards
      !!              which imposes a mini of ice thick. (rn_himin). This imposed mini can artificially
      !!              make the snow very thick (if concentration decreases drastically)
      !!              This behavior has been seen in Ultimate-Macho and supposedly it can also be true for Prather
      !!-------------------------------------------------------------------
      REAL(wp)                    , INTENT(in   ) ::   pdt   ! tracer time-step
      REAL(wp), DIMENSION(:,:,:)  , INTENT(inout) ::   pv_i, pv_s, pa_i, pa_ip
      REAL(wp), DIMENSION(:,:,:,:), INTENT(inout) ::   pe_s
      !
      INTEGER  ::   ji, jj, jl   ! dummy loop indices
      REAL(wp) ::   z1_dt, zvs_excess, zfra
      !!-------------------------------------------------------------------
      !
      z1_dt = 1._wp / pdt
      !
      ! -- check snow load -- !
      DO jl = 1, jpl
         DO_2D( nn_hls, nn_hls, nn_hls, nn_hls )
            IF ( pv_i(ji,jj,jl) > 0._wp ) THEN
               !
               zvs_excess = MAX( 0._wp, pv_s(ji,jj,jl) - pv_i(ji,jj,jl) * (rho0-rhoi) * r1_rhos )
               !
               IF( zvs_excess > 0._wp ) THEN   ! snow-ice interface deplets below the ocean surface
                  ! put snow excess in the ocean
                  zfra = ( pv_s(ji,jj,jl) - zvs_excess ) / MAX( pv_s(ji,jj,jl), epsi20 )
                  wfx_res(ji,jj) = wfx_res(ji,jj) + zvs_excess * rhos * z1_dt
                  hfx_res(ji,jj) = hfx_res(ji,jj) - SUM( pe_s(ji,jj,1:nlay_s,jl) ) * ( 1._wp - zfra ) * z1_dt ! W.m-2 <0
                  ! correct snow volume and heat content
                  pe_s(ji,jj,1:nlay_s,jl) = pe_s(ji,jj,1:nlay_s,jl) * zfra
                  pv_s(ji,jj,jl)          = pv_s(ji,jj,jl) - zvs_excess
               ENDIF
               !
            ENDIF
         END_2D
      END DO
      !
      !-- correct pond concentration to avoid a_ip > a_i -- !
      WHERE( pa_ip(:,:,:) > pa_i(:,:,:) )   pa_ip(:,:,:) = pa_i(:,:,:)
      !
   END SUBROUTINE Hsnow

   SUBROUTINE icemax3D( pice , pmax )
      !!---------------------------------------------------------------------
      !!                   ***  ROUTINE icemax3D ***
      !! ** Purpose :  compute the max of the 9 points around
      !!----------------------------------------------------------------------
      REAL(wp), DIMENSION(:,:,:), INTENT(in ) ::   pice   ! input
      REAL(wp), DIMENSION(:,:,:), INTENT(out) ::   pmax   ! output
      !
      REAL(wp), DIMENSION(Nis0:Nie0) ::   zmax1, zmax2
      REAL(wp)                       ::   zmax3
      INTEGER  ::   ji, jj, jl   ! dummy loop indices
      !!----------------------------------------------------------------------
      ! basic version: get the max of epsi20 + 9 neighbours
!!$      DO jl = 1, jpl
!!$         DO_2D( 0, 0, 0, 0 )
!!$            pmax(ji,jj,jl) = MAX( epsi20, pice(ji-1,jj-1,jl), pice(ji,jj-1,jl), pice(ji+1,jj-1,jl),   &
!!$               &                          pice(ji-1,jj  ,jl), pice(ji,jj  ,jl), pice(ji+1,jj  ,jl),   &
!!$               &                          pice(ji-1,jj+1,jl), pice(ji,jj+1,jl), pice(ji+1,jj+1,jl) )
!!$         END_2D
!!$      END DO
      ! optimized version : does a little bit more than 2 max of epsi20 + 3 neighbours
      DO jl = 1, jpl
         DO ji = Nis0, Nie0
            zmax1(ji) = MAX( epsi20, pice(ji,Njs0-1,jl), pice(ji-1,Njs0-1,jl), pice(ji+1,Njs0-1,jl) )
            zmax2(ji) = MAX( epsi20, pice(ji,Njs0  ,jl), pice(ji-1,Njs0  ,jl), pice(ji+1,Njs0  ,jl) )
         END DO
         DO_2D( 0, 0, 0, 0 )
            zmax3 = MAX( epsi20, pice(ji,jj+1,jl), pice(ji-1,jj+1,jl), pice(ji+1,jj+1,jl) )
            pmax(ji,jj,jl) = MAX( epsi20, zmax1(ji), zmax2(ji), zmax3 )
            zmax1(ji) = zmax2(ji)
            zmax2(ji) = zmax3
         END_2D
      END DO
   END SUBROUTINE icemax3D

   SUBROUTINE icemax4D( pice , pmax )
      !!---------------------------------------------------------------------
      !!                   ***  ROUTINE icemax4D ***
      !! ** Purpose :  compute the max of the 9 points around
      !!----------------------------------------------------------------------
      REAL(wp), DIMENSION(:,:,:,:), INTENT(in ) ::   pice   ! input
      REAL(wp), DIMENSION(:,:,:,:), INTENT(out) ::   pmax   ! output
      !
      REAL(wp), DIMENSION(Nis0:Nie0) ::   zmax1, zmax2
      REAL(wp)                       ::   zmax3
      INTEGER  ::   jlay, ji, jj, jk, jl   ! dummy loop indices
      !!----------------------------------------------------------------------
      jlay = SIZE( pice , 3 )   ! size of input arrays
      ! basic version: get the max of epsi20 + 9 neighbours
!!$      DO jl = 1, jpl
!!$         DO jk = 1, jlay
!!$            DO_2D( 0, 0, 0, 0 )
!!$               pmax(ji,jj,jk,jl) = MAX( epsi20, pice(ji-1,jj-1,jk,jl), pice(ji,jj-1,jk,jl), pice(ji+1,jj-1,jk,jl),   &
!!$                  &                             pice(ji-1,jj  ,jk,jl), pice(ji,jj  ,jk,jl), pice(ji+1,jj  ,jk,jl),   &
!!$                  &                             pice(ji-1,jj+1,jk,jl), pice(ji,jj+1,jk,jl), pice(ji+1,jj+1,jk,jl) )
!!$            END_2D
!!$         END DO
!!$      END DO
      ! optimized version : does a little bit more than 2 max of epsi20 + 3 neighbours
      DO jl = 1, jpl
         DO jk = 1, jlay
            DO ji = Nis0, Nie0
               zmax1(ji) = MAX( epsi20, pice(ji,Njs0-1,jk,jl), pice(ji-1,Njs0-1,jk,jl), pice(ji+1,Njs0-1,jk,jl) )
               zmax2(ji) = MAX( epsi20, pice(ji,Njs0  ,jk,jl), pice(ji-1,Njs0  ,jk,jl), pice(ji+1,Njs0  ,jk,jl) )
            END DO
            DO_2D( 0, 0, 0, 0 )
               zmax3 = MAX( epsi20, pice(ji,jj+1,jk,jl), pice(ji-1,jj+1,jk,jl), pice(ji+1,jj+1,jk,jl) )
               pmax(ji,jj,jk,jl) = MAX( epsi20, zmax1(ji), zmax2(ji), zmax3 )
               zmax1(ji) = zmax2(ji)
               zmax2(ji) = zmax3
            END_2D
         END DO
      END DO
   END SUBROUTINE icemax4D

#else
   !!----------------------------------------------------------------------
   !!   Default option           Dummy module         NO SI3 sea-ice model
   !!----------------------------------------------------------------------
#endif

   !!======================================================================
END MODULE icedyn_adv_umx